University of Rhode Island DigitalCommons@URI

PHY 204: Elementary Physics II -- Slides

PHY 204: Elementary Physics II (2021)

2020

10. Resistor circuits. Kirchhoff's laws

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Robert Coyne University of Rhode Island, robcoyne@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/phy204-slides

Recommended Citation

Müller, Gerhard and Coyne, Robert, "10. Resistor circuits. Kirchhoff's laws" (2020). *PHY 204: Elementary Physics II -- Slides.* Paper 35. https://digitalcommons.uri.edu/phy204-slides/35

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Slides by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Direct Current Circuit

Consider a wire with resistance $R = \rho \ell / A$ connected to a battery.

- **Resistor rule**: In the direction of *I* across a resistor with resistance *R*, the electric potential drops: $\Delta V = -IR$.
- **EMF rule**: From the (-) terminal to the (+) terminal in an ideal source of emf, the potential rises: $\Delta V = \mathcal{E}$.
- **Loop rule**: The algebraic sum of the changes in potential encountered in a complete traversal of any loop in a circuit must be zero: $\sum \Delta V_i = 0$.

Battery with Internal Resistance

- Real batteries have an internal resistance r.
- The terminal voltage $V_{ba} \equiv V_a V_b$ is smaller than the emf \mathcal{E} written on the label if a current flows through the battery.
- Usage of the battery increases its internal resistance.
- Current from loop rule: $\mathcal{E} Ir IR = 0 \implies I = \frac{\mathcal{E}}{R+r}$
- Current from terminal voltage: $V_{ba} = \mathcal{E} Ir = IR \quad \Rightarrow I = \frac{V_{ba}}{R}$

Resistor Circuit (4)

Consider the resistor circuit shown.

- (a) Find the direction of the positive current (cw/ccw).
- (b) Find the magnitude of the current.
- (c) Find the voltage $V_{ab} = V_b V_a$.
- (d) Find the voltage $V_{cd} = V_d V_c$.

Resistor Circuit (6)

Consider the resistor circuit shown.

- (a) Choose a current direction and use the loop rule to determine the current.
- (b) Name the direction of positive current (cw/ccw).
- (c) Find $V_{ab} \equiv V_b V_a$ along two different paths.

Power in Resistor Circuit

Battery in use

- Terminal voltage: $V_{ab} = \mathcal{E} Ir = IR$
- Power output of battery: $P = V_{ab}I = \mathcal{E}I I^2r$
 - + Power generated in battery: $\mathcal{E}I$
 - Power dissipated in battery: I^2r
- Power transferred to load: $P = I^2 R$

Battery being charged:

- Terminal voltage: $V_{ab} = \mathcal{E} + Ir$
- Power supplied by charging device: $P = V_{ab}I$
- Power input into battery: $P = \mathcal{E}I + I^2 r$
 - + Power stored in battery: $\ensuremath{\mathcal{E}I}$
 - Power dissipated in battery: I^2r

Resistor Circuit (7)

Consider two 24V batteries with internal resistances (a) $r = 4\Omega$, (b) $r = 2\Omega$.

• Which setting of the switch (L/R) produces the larger power dissipation in the resistor on the side?

Impedance Matching

A battery providing an emf \mathcal{E} with internal resistance r is connected to an external resistor of resistance R as shown.

For what value of R does the battery deliver the maximum power to the external resistor?

• Electric current:
$$\mathcal{E} - Ir - IR = 0 \implies I = \frac{\mathcal{E}}{R+r}$$

• Power delivered to external resistor: $P = I^2 R = \frac{\mathcal{E}^2 R}{(R+r)^2} = \frac{\mathcal{E}^2}{r} \frac{R/r}{(R/r+1)^2}$

• Condition for maximum power:
$$\frac{dP}{dR} = 0 \Rightarrow R = r$$

Resistor Circuit (5)

Consider the resistor circuit shown.

- (a) Choose a current direction and use the loop rule to determine the current.
- (b) Name the direction of positive current (cw/ccw).
- (c) Find the potential difference $V_{ab} = V_b V_a$.
- (d) Find the voltage $V_{cd} = V_d V_c$.

Symbols Used in Cicuit Diagrams

Resistors Connected in Series

Find the equivalent resistance of two resistors connected in series.

- Current through resistors: $I_1 = I_2 = I$
- Voltage across resistors: $V_1 + V_2 = V$
- Equivalent resistance: $R \equiv \frac{V}{I} = \frac{V_1}{I_1} + \frac{V_2}{I_2}$
- $\bullet \ \Rightarrow \ R = R_1 + R_2$

Resistors Connected in Parallel

Find the equivalent resistance of two resistors connected in parallel.

- Current through resistors: $I_1 + I_2 = I$
- Voltage across resistors: $V_1 = V_2 = V$
- Equivalent resistance: $\frac{1}{R} \equiv \frac{I}{V} = \frac{I_1}{V_1} + \frac{I_2}{V_2}$
- $m{\cdot} \ \Rightarrow \ rac{1}{R} = rac{1}{R_1} + rac{1}{R_2}$

Resistor Circuit (1)

Consider the two resistor circuits shown.

- (a) Find the resistance R_1 .
- (b) Find the emf \mathcal{E}_1 .
- (c) Find the resistance R_2 .
- (d) Find the emf \mathcal{E}_2 .

Resistor Circuit (2)

Consider the two resistor circuits shown.

- (a) Find the resistance R_1 .
- (b) Find the current I_2 .
- (c) Find the current I_3 .
- (d) Find the resistance R_4 .

Resistor Circuit (8)

Consider the circuit of resistors shown.

- Find the equivalent resistance R_{eq}.
- Find the currents I_1, \ldots, I_5 through each resistor and the voltages V_1, \ldots, V_5 across each resistor.
- Find the total power *P* dissipated in the circuit.

Loop Rule

• When any closed-circuit loop is traversed, the algebraic sum of the changes in electric potential must be zero.

Junction Rule

• At any junction in a circuit, the sum of the incoming currents must equal the sum of the outgoing currents.

Strategy

- Use the junction rule to name all independent currents.
- Use the loop rule to determine the independent currents.

Applying the Junction Rule

In the circuit of steady currents, use the junction rule to find the unknown currents I_5, \ldots, I_9 .

Applying Kirchhoff's Rules

Consider the circuit shown below.

- Junction *a*: I_1 , I_2 (in); $I_1 + I_2$ (out)
- Junction $b: I_1 + I_2$ (in); I_1, I_2 (out)
- Two independent currents require the use of two loops.
- Loop A (ccw): $6V (2\Omega)I_1 2V (2\Omega)I_1 = 0$
- Loop *B* (ccw): $(3\Omega)I_2 + 1V + (2\Omega)I_2 6V = 0$
- Solution: $I_1 = 1A$, $I_2 = 1A$

Resistor Circuit (11)

Consider the electric circuit shown.

- Identify all independent currents via junction rule.
- Determine the independent currents via loop rule.
- Find the Potential difference $V_{ab} = V_b V_a$.

Resistor Circuit (9)

Use Kirchhoff's rules to find

- (a) the current *I*,
- (b) the resistance R,
- (c) the emf \mathcal{E} ,
- (d) the voltage $V_{ab} \equiv V_b V_a$.

Resistor Circuit (10)

Consider the electric circuit shown.

- (a) Find the current through the 12V battery.
- (b) Find the current through the 2Ω resistor.
- (c) Find the total power dissipated.
- (d) Find the voltage $V_{cd} \equiv V_d V_c$.
- (e) Find the voltage $V_{ab} \equiv V_b V_a$.

Resistor Circuit (12)

Consider the electric circuit shown.

- Find the equivalent resistance *R_{eq}* of the circuit.
- Find the total power *P* dissipated in the circuit.

Resistor Circuit (3)

Consider the rsistor and capacitor circuits shown.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the power P_2, P_3, P_4 dissipated in each resistor.
- (c) Find the equivalent capacitance C_{eq} .
- (d) Find the energy U_2, U_3, U_4 stored in each capacitor.

