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ON THE STABILITY OF SOLUTIONS OF CERTAIN SYSTEMS
OF DIFFERENTIAL EQUATIONS WITH PIECEWISE
CONSTANT ARGUMENT

S. R. GRACE, Orman, M. R. S. KULENOVI(, and H. EL-METWALLY *, Kingston

(Received March 22, 1999)

Abstract. We obtain some sufficient conditions for the existence of the solutions and
the asymptotic behavior of both linear and nonlinear system of differential equations with
continuous coefficients and piecewise constant argument.
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1. INTRODUCTION

In this paper we study the nonlinear differential equation

1 1
(1) 2 () + Ay(t) = Bty ([t + 5]) + 1 (), [t+ 5]))
where A(t) and B(t) are r X r continuous matrices, f: R x R" x R" — R" is a
continuous function on R x R2", z is a 7-vector, and [.] is the integer part of a
number.

Also we will investigate the equation

2) 2 (6) + Aa(t) = By ([t + 5])

with continuous matrices A and B.

* On leave from Department of Mathematics, Faculty of Science, University of Mansoura,
Mansoura, Egypt.

449



Differential equations with piecewise constant argument (EPCA) represent a hy-
brid of continuous and discrete dynamical systems and therefore combine the prop-
erties of both the differential and difference equations. These equations have many
applications in the control theory and certain biomedical models [3].

The research of first order differential equations with piecewise constant arguments
of delay and advanced type was initiated by Cooke and Wiener [4] and Shah and
Wiener [7]. A lot of results concerning the scalar versions of equation (1) have been
studied in [1, 5, 8] and the references cited therein.

Our goal in this article is to derive the sufficient conditions for the existence of
solutions of equations (1) and (2) and the global asymptotic stability of equations (1)
and (2). An important tool in achieving this goal will be the variant of the variation
of constant formula for equation (2).

We note that the results related to Theorems 1 and 2 of this paper for equations
of the form (2) with constant matrices A and B are included in Theorem 1 [9]. Also
results concerning the existence and uniqueness are extensions of Theorem 1.1 [2].

2. MAIN RESULTS

By a solution of equation (1) on (—o0,00) we mean a function z(t) satisfying the
conditions
(i) x(t) is continuous on (—oo, 00);
(ii) the derivative z'(t) exists everywhere, with the possible exception of the half-
integer points n + %, where one-sided derivatives exist;
(ili) Eq. (1) is satisfied on each interval [n — ,n + 1), with integer n.
In what follows we will use the norm of a p X ¢ matrix A as

|A| = max{|a;j|: i=1,2,...,p and j=1,2,...,¢ for p<gq}.

The trivial solution of equation (1) is said to be globally asymptotically stable if
every solution x(t) of equation (1) tends to zero as t — oo.

I.
In this part, we prove our main results for equation (2). In Theorem 1 and Theo-
rem 2 below we will establish sufficient conditions for the existence and uniqueness of

the solutions of Eq. (2). These results follow from the representation of the solutions
of Eq. (2).

Theorem 2.1. Let the matrix

n+1
Ch, =I—/ B(u)exp{—fun-s_1 A(s)ds} du, n=0,1,...
n+%

450



be non-singular, then Eq. (2) has a unique solution on [0, 00) given by

t
(3) z(t) = [F(t,n) +/ B(s)F(t,s) ds] an,
where a,, is a solution of the difference equation
(4) An+1 :erananv n=0,1,...,

C,, is defined above,

n+i
Dn:F(n+1,n)+/ 2B(s)F(n—i—l,s)ds

n

and

F(u,v) = exp{— [ A(s)ds}.

Proof. Forte [n— %,n-l— %), Eq. (2) reduces to

(5) 2'(t) + A(t)z(t) = B(t)an, an = z(n).

Integrating Eq. (5) from n to t <n + % gives

z(t) — exp{— f; A(s)ds}a, = exp{— f; A(s)ds} / B(u) exp{ [ A(s) ds} du a,,.
Hence we obtain
x(t) = [exp{— f; A(s)ds} —|—/ B(u) exp{— fi A(s)ds} du] an,

which is equivalent to

2(t) = {F(t,n) + / B F(tu) du} an,
where
F(u,v) = exp{— [ A(s)ds}.
Letting ¢ — n + %, we have

n+3

(6) x(n—&—%) = {exp{—féﬂré A(s) ds}—|—/n ’ B(u) exp{—fjJr% A(s)ds} du|ay.
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Again, for t € [n + %, n -+ %), integrating Eq. (2) from n + 1 to ¢ we obtain

z(t) = [exp{— f;H A(s)ds} + /+1 B(u) exp{— fi A(s)ds} du] Api1-

Then as t — n + 3, the continuity of z(t) yields

(7)
(n—i— 1) = {exp{ f"+2 A(s ds}—i—/n

1
n+3

B(u)exp{— fn+2A ds}du}anﬂ
+1

Equations (6) and (7) imply
n-&-%

[exp{ n+2A ds}+/n+l
(8) = [exp{ fn+2A ds}—l—/nJr%

n

B(u exp{ f+2A ds}du]awrl
B(u) exp{— f+2A ds}du]an

Multiplying both sides of (8) by exp{ f::l% A(s)ds} yields

[H /;: B(u)exp{— [T A(s) ds} du] A1

- {exp{f:—ﬂA(s)ds} +/nn+;B(u) exp{— [ A(s) ds}du} an,

which is equivalent to

[I— /;HB(u) exp{—fj“A(s)ds}du] A

+3
n—i—%
= {exp{féﬁ1 A(s)ds} +/ B(u) exp{ff;“—l A(s)ds} du} Q.

Since the matrix C), is non-singular, we see that

g1 = [I - /:H B(u) exp{— [ A(s) ds}du} -

+2
n+i
n+1 2 n+1
X [exp{—fn A(s)ds} —l—/ B(u) exp{— [} A(s)ds}du] an,
or in the simple form
An+1 :C’;anan, n=20,1,...
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+3
and
n+%
Dn:F(n+1,n)+/ B(u)F(n+ 1,u) du,
which proves the Theorem. O

Remark 2.1. Taking A(t) = —A and B(t) = B in Theorem 2.1 above, we get
Theorem 1 in [9]. In this case, Eq. (3) takes the form

t
z(t) = {eA(t_") +/ BeAlt—u) du] an,

and
x(t) = [eA(t —n)—(I- eA(t_"))A_lB] Q.
Therefore
x(t) = M(t —n)an, an, = x(n),
where

M(t) =e* + (e*" —1)A™'B

and we obtain the result in [9].

Remark 2.2. If A and B are constant matrices and [t + %] is replaced by [t], we

get Theorem 1.1 in [2].

Theorem 2.2. The solution z(t) of Eq. (2) has a unique backward continuation
on (—o0,0) given by (3) and

Gnp—1 :Wn_lznafny ﬂ:07—17—27._,

where the matrices W,, and Z,, are given by
n-}
W, =1+ / B(u) exp{— f;kl A(s)ds} du,
n—1

9)

n—1

Zn = exp{— f:_l A(s)ds} —|—/ ’ B(u) exp{— fun_l A(s)ds} du

n

provided the matrix W,, is non-singular.

453



Proof. As in the proof of Theorem 2.1, for t € [n — ,n + 3) we have Eq. (3)

1
and as t — n — 3, we get

no1

(10) x(n—%) = [exp{—f:_é A(s) ds}—!—/ ’ B(u) exp{—f:_% A(s) ds}du] -

n

Also, for t € [n— 3, n— 1), integrating Eq. (2) from n —1 to ¢ and letting t —n— 1

we obtain
(11) 1
o(n-1) = [exp{—f::ﬁ A ask+ [ Bues{- 17 A() ds}du]

From Equations (10) and (11) we find

n—1

’ B(u)exp{— f:_% A(s)ds} du} an-1

[exp{— f:__l% A(s) ds} + /

n—1

_ {exp{— I As) ds) + /

n

n—41

’ B(u) exp{— f:fé A(s)ds} du] s

which is equivalent to

1

{I + /:: B(u)exp{— [""" A(s) ds} du] -

_ [exp{— i A as)+ [

n

n—41

’ B(u) exp{— f;_l A(s)ds} du] .

Hence we have
—-1
On—1 =W, " Znan, n=0,-1,...

where W,, and Z,, are defined by (9). The proof is completed. O
Theorem 2.3. Assume that
6) |A(t)] = & for some § >0 and |B(t)| <y where 0 < v < 4.

Then the trivial solution of Eq. (2) is globally asymptotically stable.
Proof. Let x(t) be a solution of Eq. (2). From Eq. (3) we have

(12) lz(8)] = [Z(B)] |an],

where .

Z(t) = exp{—f; A(s)ds} —|—/ B(u) exp{—qu A(s)ds} du.
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It follows from Condition (i) that

t
20 < 4y [ qu <1 I - e,

n

Then we get
v

(13) |Z(t)] <1—|—g.
Now Eq. (4) implies

an+1 = Than, n=20,1,...
where T,, = C}; 1D,,. Hence we obtain

Ap = nf]_Tn72...T()a(), ap :ZL'(O), n:0,1,...

Thus
(14) |lan| = [Th-1]|Tn-2|. .. |To |ao|.

Now, Condition (i) gives

1

n+2
| D <e*5+7/ e OtV qy, n=0,1,...

n

and so

(15) Dy < e 4 e —e].

Let H = f::; B(u) exp{— f;ﬂrl A(s)ds} du. Then by using Condition (i), we have

n+1
|H‘ < 'Y/ e—é(n+1—u) du < 1[1 —6_6/2].
n+%

[«

Therefore, from the fact that |A| — |B| < |\A| - |B|’ < |A — B| for the p x ¢ matrices
A and B, we find

i _
(16) Cul =T = H| > 1] - |H| > 1 - T[1 - 777,

Thus Inequalities (15) and (16) give

(17) (T] = |G D] = [C| Y D] < =
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Now we obtain < 1 from (i). Consequently

l—e]<1l—e"

|2

Thus
g[l —e Ve e <10

Hence we have

1[1 e 4 1[6—5/2 —e ¥ <1—e?

1) 1)
or

e’ + z[e*‘S/2 —e <1 1[1 —e79/2,

0 1)
Therefore we obtain
—5 | A[a—08/2 _ =0
_|_
e Tle e ?] -1

1— 21— 072

Now from (17) we get

(18)
where
Nk Gt}
1—3[1—e 2]
Thus Equations (14) and (18) give
|an| < A"|aol,
which implies
(19) lim a, =0.
Thus it follows from (12), (13), and (19) that
lim z(t) =0

t—o0

and the proof is completed.
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Example. Consider the differential equation
1
(20) 2'(t) = A@)(t) + By ([t + 5}) t>0

where z(t) € R? and A(t) and B(t) are 2 x 2 matrices given by

sint—1 cost
A<t) = 17671’2 —

e 1+e—?
and
2

2 Ae P
eB+1 Tte ¢t

e

[eﬁ sint —e? cost]

for some constants A > 2 and 8 > 0. By Theorem 2.3, the trivial solution of Eq. (20)
is globally asymptotically stable. In fact, the vector z(t) = (e~*,e~(**1)) is a solution
of Eq. (20).

IT.
In this section we study Eq. (1).

Theorem 2.4. Assume that the matrix C,, defined as in Theorem 2.1 is also
non-singular. Then Eq. (1) has a unique solution on [0, 00) given by

(21) z(t) = [exp{fi A(s)ds} +/ B(u) exp{ffi A(s)ds} dulay

t
+ / exp{f fi A(s) ds}f(u, z(u), an) du,
where a,, is a solution of the difference equation

(22) Ont1 = Tnan + Wy, n=20,1,...,
T, =C,'D,, W, =C, Y E, +F,),

the matrices C,, and D,, are defined as in Theorem 2.1 and the matrices F,, and F,
are defined by

n+l n+1
E, :/ ) exp{— [ A(s)ds}f(u, z(u), ant1) du,
n+z
(23) ’

n+% 1
F, = / exp{— f;H_ A(s)ds}f(u, z(u), an) du.

Proof. The proof is similar to that of Theorem 2.1 and therefore it is omitted.
|
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Theorem 2.5. Assume that Condition (i) in Theorem 2.3 holds. Let f(t,x,y),t €
R, =,y € R" satisfy

(i) [f (1, 51) = f(t w2, 42)] < N(H)|21 — 22| + K(8)[y1 — v
where N (t) and K (t) are non-negative scalar functions defined on (tg, 00) such that

(iii) / N(s)ds =a < o0, and / K(s)ds=p<o00, a,3€R".
to to

Then the trivial solution of Eq. (1) is globally asymptotically stable.
Proof. From Eq. (21) we find

(24) 2] < z(®)] an| + ,

/ exp{— fi A(s)ds} f (u, z(u), an) du

where z(t) is defined as in Theorem 2.3. Now, it follows from Conditions (i) and (ii)
that

/ exp{— f; A(s)ds} f(u, z(u), an) du

< / exp{— [ A(s) ds} [N (w))o(w)| + K (w)|an]] du
< / N(u)|x(u)|du+/ K(u)|ay| du.
By Condition (iii) we obtain

(25) /exp{—fiA(s)ds}f(u,x(u),an) du </ N(uw)|z(u)| du + Blay).

By substituting from (25) in (24), we get

t
(26) [z()] < (J2(8)] + B)lan| +/ N (u)]z(u)| du.
Eq. (22) implies
an:C;_lanflanfl‘}’anly n:1327"-

Therefore from Theorem 2.1 in [6, p. 13] we have

n—1

Ap = n—lTn—2 N Toao + Z Tn—lTn—2 ce TT»WT..
r=0
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Thus

n—1
and < Tt [Toaal - Tol laol + 3 1T sl [T al .. T W .
r=0
Also as in Theorem 2.3, from (18) we find
n—1
(27) |an] < A'aol + Y AT W,
r=0

Now

n+1
wal =071 [ el L A ds o))

2

n+3 .
+/ exp{ffunJr A(s)ds}f(u,z(u), angr) du.

Assume that

an = max {z(t)[}.

Then by Condition (i) we have
n+1
Wal <10 [ 26N ) £ K ()] ] o
n

So, from Inequality (16) and Condition (iii), we see that

2(a+ p)

(28) W] < m|ﬁ| = L@,
where L = %. Then it follows from (27) and (28) that
n—1
(29) @] < Aao| + 37 LA,
r=0

Applying the discrete Gronwall’s inequality [6, p. 21] to Eq. (20), we obtain
n—1 _ e
[l < XMfaol exp { I 32 X7 | = Wfagle (7T ),
r=0

Therefore, we have

(30) |an| < A™|ag|el?" /A=Y,
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In view of (26) and (30), we obtain

t

j2(8)] < (|2(8)] + B)A"agle™" /=N / N (w)|z(u)| du.

n

Thus Inequality (13) implies

t
2(0)] < (14§ +B) A" fao| 2"/ +/ N (u)]e(u)] du.

Again applying the continuous Gronwall’s inequality we obtain

lz(t)] < (1 + % + B) Nag| €A/ AN exp{ [T N (u) du},

which by Condition (ii) gives

|z(t)] < (1 + % + 5) A7) ag| e%elA"/ (1=,

Since % > 0, we obtain

lz(t)| < (1+ % +6)|a0|ea>\teL)\t/(1f)\)_

Thus
lim z(t) = 0.
t—oo
The proof is completed. O
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