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Locating stationary paths in functional integrals: An optimization method
utilizing the stationary phase Monte Carlo sampling function

Thomas L. Beck and J. D. Doll
Los Alamos National Laboratory, MS G-738, Los Alamos, New Mexico 87545

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

(Received 6 September 1988; accepted 17 November 1988)

A method is presented for determining the stationary phase points for multidimensional path
integrals employed in the calculation of finite-temperature quantum time correlation functions.
The method can be used to locate stationary paths at any physical time; in the case that t> 8%,
the stationary points are the classical paths linking two points in configuration space. Both
steepest descent and simulated annealing procedures are utilized to search for extrema in the
action functional. Only the first derivatives of the action functional are required. Examples are
presented first of the harmonic oscillator for which the analytical solution is known, and then
for anharmonic systems, where multiple stationary phase points exist. Suggestions for Monte
Carlo sampling strategies utilizing the stationary points are made. The existence of many and
closely spaced stationary paths as well as caustics presents no special problems. The method is
applicable to a range of problems involving functional integration, where optimal paths linking

two end points are desired.

I. INTRODUCTION

The use of Monte Carlo methods in conjunction with a
path-integral formulation of quantum mechanics has creat-
ed a new tool in the calculation of equilibrium and dynami-
cal properties of quantum many-body systems. '~ The calcu-
lation of time-dependent quantities for multidimensional
quantum systems via such a method proves to be a difficult
task because of the highly oscillatory nature of the inte-
grands. This behavior occurs because the time propagator
exp(iHt /#i) leads to integrals involving complex exponen-
tials, exponentials which become more and more oscillatory
as the physical time ¢ increases. This is in contrast to the
equilibrium case where the density matrix elements of inter-
est are purely real and the associated calculations are amena-
ble to standard Monte Carlo procedures.

Several recent developments, however, have led to an
increased optimism concerning the utility of Monte Carlo
methods in the evaluation of integrals arising in the calcula-
tion of real time properties.>~'* Recently, we have presented
an extension of traditional equilibrium Monte Carlo tech-
niques aimed at evaluating high-dimensional averages of
rapidly oscillating integrands, the stationary phase Monte
Carlo (SPMC) method.® The basic theory as well as exam-
ples of its applications to prototype problems and to the cal-
culation of real time, finite-temperature correlation func-
tions are described elsewhere.’

In the SPMC method, numerical difficulties associated
with the Monte Carlo construction of averages of highly os-
cillatory integrands are treated by means of a “coarse grain-
ing” procedure. In essence, the method amounts to devising
a “filtering” strategy for identifying and removing unneces-
sary “noise” from the integrand. This approach can be made
exact, both formally and in practice. In situations where the
integrands are highly oscillatory, the method results in a
substantial increase in computational efficiency over stan-
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dard Monte Carlo evaluations. For the important case of the
calculation of finite-temperature correlation functions, the
SPMC approach permits studies at times well beyond the
thermal time S7. Connections between our approach and
the work by Filinov'® and Makri and Miller'>'® are de-
scribed elsewhere.®

The SPMC method tends to emphasize regions of con-
figuration space where the action functional is stationary,
i.e., extrema of the action, while filtering out regions of rapid
oscillations. For the case of a pure propagator, the stationary
points of the action for paths connecting two points in con-
figuration space correspond to the classical paths linking
these two points. However, when averages are calculated at
finite temperature, for example, in the calculation of finite-
temperature time correlation functions, the stationary
points reflect both equilibrium and dynamical consider-
ations.

In this paper we present an optimization method which
utilizes the SPMC technique coupled to steepest descent
quench and simulated annealing procedures to search for the
stationary points of the multidimensional action functionals.
The purpose of this work is twofold. First, locating the sta-
tionary points of the multidimensional path integrals is im-
portant in understanding the sampling issues involved in the
fully quantum-mechanical Monte Carlo calculation of the
integrals, since the Metropolis Monte Carlo sampling meth-
od must cover all of the dynamically important portions of
the configuration space on a reasonable time scale. Knowl-
edge of the number and location of the stationary points of
the action gives some indication of the complexity of the
integral.

Second, once the stationary paths are located for a given
density matrix element, the paths can be incorporated into a
Monte Carlo procedure where the Metropolis walk samples
fluctuations about each of the stationary paths with periodic
random additions of vectors linking the stationary regions.
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This sampling strategy avoids the possibility of a large num-
ber of separated stationary phase regions which are not ac-
cessed during the course of the simulation. Cline and Wo-
lynes'* have discussed a similar method where fully
quantum results are obtained for a dissipative system by de-
corating classical paths with quantum fluctuations. We per-
form calculations to locate the stationary points in a variety
of examples and propose a Monte Carlo strategy for sam-
pling the stationary regions.

In a more general context, the optimization procedure
discussed below can be used to locate optimal paths for pro-
cesses that link two end points, for example, in a functional
integral representation of a nonequilibrium thermodynamic
process.'* The optimization method may also be useful, for
example, in determining least energy reaction paths for mul-
tidimensional systems where the starting and final configu-
rations are known, and the path linking the initial and final
configurations is represented by a Fourier expansion.’®

The present paper is concerned with a Monte Carlo path
integral method for determining and then using the station-
ary paths in a fully quantum Monte Carlo procedure for the
calculation of time correlation functions at finite tempera-
ture. The method avoids the time consuming calculation of
second derivative matrices with subsequent determinant cal-
culation and diagonalization common to traditional station-
ary phase approximations to path integrals'”'® and other
Monte Carlo strategies.'>!* It is thus numerically feasible in
applications to highly nonlinear multidimensional quantum
problems where many classical paths may connect two
points in configuration space or where caustics may occur.

We will not discuss semiclassical procedures involving
wave-packet methods and/or classical trajectory calcula-
tions. '®-2* These methods generally invoke trajectory calcu-
lations in real or imaginary time (classically forbidden pro-
cesses) or complex phase space coordinates. Typically, one
must find all trajectories that connect the desired initial and
final states. The path integral prescription fixes the end
points and searches for all the paths linking the end points
which lead to stationary (or near stationary) points in the
action. Wandzura,?* Klauder,”® and Zhang, Levy, and
Friesner®® have recently discussed useful methods for ap-
proximate evaluations of the path integral.

The paper is organized as follows. In Sec. II we present a
short summary of the stationary phase Monte Carlo method.
The steepest descent quench and simulated annealing proce-
dures for the location of stationary points are discussed in
Sec. III. The application of the method to some simple har-
monic and anharmonic examples is described in Sec. IV,
with discussion of the results and suggestions for a Monte
Carlo sampling strategy given in Sec. V.

Il. STATIONARY PHASE MONTE CARLO

In this section we present a short summary of the sta-
tionary phase Monte Carlo method. More detailed discus-
sions of the method appear elsewhere.®® For present pur-
poses, it is sufficient to consider a prototype one-dimensional
integral of the form

I =fdxp(x)e"'ﬂx>. 2.1)
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The quantity p(x) is a positive-definite weight function
which will be associated with a thermal weight in the appli-
cations to the calculation of finite-temperature time correla-
tion functions discussed below, and f(x) is a phase function
associated with the dynamics in the applications. The meth-
od summarized below is readily extended to multidimen-
sional applications. The integral can be rewritten as

I(1) =dep(x)D(x)e"f"", (2.2)
where D(x,t) is given by
D(x) =fa’y P(y) LEZD) putmn—m—pn (2.3)
p(x)

This identity holds as long as P( y) is a normalized probabil-
ity distribution (typically chosen to be a prelimit delta func-
tion) and the integration is performed over either an infinite
y interval or an interval where p and the phase function are
periodic. The function D(x,¢) acts as a “damping function”
which filters out the highly oscillatory regions of the inte-
grand. This behavior can be observed by considering the
first-order gradient expansion approximation to the damp-
ing function. Let P( y) be a Gaussian function with width .
The length scale of € is chosen to optimally filter the inte-
grand in oscillatory regions away from the stationary phase
points.® Then the first-order expression Dy(x,?) is given by

D(x)=D,(x)=exp[ — (etf")*/2], (2.4)

indicating that this function damps regions of the integrand
where the phase function is not stationary. The first-order
gradient form of the damping function leads to an approxi-
mate evaluation of the integral, but can be made exact by the
inclusion of corrections via a secondary Monte Carlo proce-
dure for the calculation of D(x,t), given by Eq. (2.3).%°

By including this first-order gradient expression for the
damping function in the integral as follows:

1) =fdxp(x)1>o(x) [D’;(("—)— 0, (2.5)

o\ X

one can set up a sampling scheme for the Monte Carlo inte-
gration which uses the product of p and D, as the dynamical
importance sampling (DIS) function. This sampling func-
tion then contains both thermal and dynamical information,
since p(x) is the thermal weight function and D,(x) isa
function of the first derivative of the phase function, which
involves dynamical properties.

This Monte Carlo procedure emphasizes the portions of
configuration space where the phase function is stationary
and yet “thermally accessible” by the p distribution. We will
see below that some stationary points in the phase function
may lead to thermal weights that are negligible. Also, for an
integral involving nonlinear terms in the phase function,
multiple stationary phase points result, and then the Monte
Carlo procedure becomes one of sampling appropriately
over all of the relevant parts of the configuration space in a
way that is computationally feasible. It is thus important to
first find and then ensure that the Metropolis walk samples
all of these relevant portions of the configuration space.

In Ref. 9, we used the general SPMC method described
above to calculate real time correlation functions at finite
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temperature for a one-dimensional harmonic oscillator and
for several anharmonic one-dimensional examples. The deri-
vation of the finite-temperature time correlation function in

the Fourier language is given in Ref. 9. The structure of the
}

S dxdx'dadbp(lal,[b])explirf({a],[b])]4(x)B(x’)

3183

multidimensional path integral for the time correlation func-
tion is formally the same as the one-dimensional example
discussed above. That is, the thermally symmetrized correla-
tion function G 4z () can be written as

) (2.6)

G (1) =

§ dx dx' da db p([al],[b])exp[irf([a],[b])]

where x and x’ refer to the configuration space end points of
the path and the a and b refer to the sets of Fourier coeffi-
cients used to parametrize the path linking x and x’ and the
return path from x' to x, respectively. The variable 7 is the
ratio of the physical time to the symmetrized thermal time,
ie,7=t/( Bfi/2). Eachpathisexpandedina Fourier series
about a straight line reference path as follows:

x, () =x + (X' —x)u+ Y a;sin(kmu), (2.7a)
k

Xy (1) = x' + (x—-x')u+§;b,‘sin(kﬂ-u). (2.7b)

See Fig. 1 for a schematic representation of the paths. The
quantity p([a],[b]) is given by
p( [a),[b]) =] Pro (x',x, Bc)|2‘?_ (5. (fa]> + S.([bD]
(2.8)
where p;, is the free particle weight and the phase function is
Sf([al,[b]) = S_([a]) —S_([b]). (2.9)
S, is given by

1
5. (a) = 3 /25, £ L [ v @10

The Gaussian width appearing in (2.10) is given by

s = 2| B.1*#/[mr*k*( B/2)],
with B, =B /2 + it /%.

The p([a],[b]) portion of the integral corresponds to a
thermal weight which has the structure of the exponential of
a Hamiltonian (or, more appropriately, a Lagrangian in
imaginary time) integrated along a given path while the

(2.11)

80 Y T r T T T

FIG. 1. Schematic representation of the outgoing path linking x and x’ para-
metrized by the a set of coefficients, and the return path parametrized by the
b set of coefficients. The Monte Carlo integration of the path integral in-
volves sampling over all such end-point configurations, x and x’, and the
two sets of Fourier coefficients.

r
phase function has the structure of a Lagrangian integrated

along the path. It is the stationary points of the S _ functional
that determine which paths are most important in the calcu-
lation of the path integral, as long as the paths are thermally
accessible. Notice that for physical times ¢> B4, the action
functional (phase function) takes on the form observed in a
pure propagator. It is in this limit that the stationary phase
points can be associated with classical paths linking the end
points.

The first-order gradient expression for the damping
function in this multidimensional example is given by

D, ([1,b])
=ep(~1 3 PE{[aLI/3a, )

k=1

+ [3Tal,(6))/3b,]}) . 2.12)

This function is inserted into the original integral [Eq.
{2.6)] for the time correlation function in both numerator
and denominator to generate a DIS function analogous to
that in Eq. (2.5). What one wants to search for then are the
thermally accessible stationary (or near stationary) points
in the S_ functional which lead to a D, value of 1.0. These
are the paths which contribute most in the evaluation of the
path integral, as they give the largest values of the sampling
function pD,. In the next section we discuss a general meth-
od by which one can locate the stationary (or near station-
ary) points of the action functional.

. STEEPEST DESCENT AND SIMULATED ANNEALING
METHODS TO SEARCH FOR EXTREMA IN THE ACTION

In the previous section we outlined a general Monte
Carlo method, the SPMC method, for evaluating quantum
real time correlation functions at finite temperature. The
sampling function used in this method, pD, or the dynamical
importance sampling function, contains both thermal and
dynamical information due to the p and D, portions, respec-
tively. The p portion of the sampling function contains ther-
mal information since it has the structure of the exponential
of a Hamiltonian integrated along a path, as one would find
in an equilibrium path integral calculation. The D, function,
on the other hand, emphasizes portions of configuration
space where the action (or phase function) is stationary and
damps regions where the action is not stationary, and thus
directs the sampling into the dynamically important regions
of configuration space. The dynamically important regions
are in fact the classical paths at times much longer than the
thermal time. The p and D, functions thus reflect different
(and sometimes competing) properties of the system. By
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locating the stationary points of the thermal and action por-
tions of the sampling function, one obtains both the impor-
tant thermal and dynamical regions of the configuration
space of the quantum system in contact with a finite-tem-
perature heat bath. We describe two methods which enable
one to locate the stationary points.

The first derivatives of the thermal and action function-
als with respect to the Fourier coefficients used to parame-
trize the path are given by (see the Appendix) '

1
as, (la]) =—a—k-i-'ﬂ—f Msin (kmru)du.
aak si 0 Ix

(3.1‘)

These first derivatives are calculated as the sine transform of
the force along the path leading from x to x’. Once these first
derivatives are calculated, they can be implemented in a
steepest descent algorithm to drive the functionals S, and
S_ to the nearest minima, if indeed minima exist with re-
spect to each of the Fourier coefficients. That is, we solve the
set of differential equations

& = — VS, (a) (3.2)

given a fixed x and x’, via some propagation method. The
time derivative refers to motion along the path of steepest
descent given by the gradient of the S, functional with re-
spect to the Fourier coefficients. In our calculations we used
afourth-order Runge—Kutta algorithm to propagate the sys-
tem of equations to the nearest minimum. The quenches
were initiated at periodic, well-spaced intervals along the
Metropolis walk. We will see below that only at relatively
short physical times can one quench with respect to all of the
coefficients to a local minimum in the action S_.

The second optimization procedure we describe is a sim-
ulated annealing procedure to locate extrema of the action
and minima of the thermal functional S, . The annealing
procedure utilizes the sampling function pD; to locate the
extrema. Simulated annealing is a useful and general tool in
combinatorial optimization problems, and it and related ar-
tificial intelligence methods have proved useful in many con-
texts.”” The actual function used in the annealing procedure
is the DIS function employed in the Monte Carlo evaluation
of the time correlation function:

Fs = | pg (x',x, B.)’exp( — [S.([a]) + S, ([bD1/T))

L5 2a{[(af[al,[b])/da, ]
2T2 k=1

Xexp(—

+[91al,101)/36,1)). (3.3)
The df /da, [written as (S’_ ) below] and S functionals
are described in Sec. II and the two “temperatures,” 7', and
T,, allow one to selectively anneal onto minima in the S,
functional, the (S’ )? functional, or simultaneously onto
minima in both. An exponential heating or cooling rate was
employed in the annealing schedule, with the heating or
cooling rate chosen slow enough so that the Metropolis
Monte Carlo walk could find the minima of interest, but not
so slow that the relaxation always proceeded to a global min-
imum. Heating or cooling in this context simply means ad-

justing a parameter, T or T, so as to drive the Metropolis
Monte Carlo walk to a nearby minimum in the function of
interest.

By cooling both pieces of the sampling function at the
same rate, the system anneals onto paths which try to mini-
mize both pieces simultaneously. That is, the system drifts
towards paths which are nearly stationary in the action but
yet have an appreciable thermal weight. On the other hand,
if we heat the S portion of the sampling function while
cooling the (.S’_ )? piece, the system will originally wander
about thermally favorable portions of the Fourier coefficient
space but ultimately drift to stationary regions of the phase
function itself, i.e., extrema of the action.

If the stationary points are well isolated and the Metro-
polis walk has difficulty “finding’’ each stationary point dur-
ing the course of the Monte Carlo simulation, the annealing
procedure can be used to first heat the (S ’_ )2 portion of the
sampling function and then rapidly cool onto local minima.
By using the annealing procedure outlined above, one can
get a good idea of the important parts of the configuration
space and thus the sampling issues involved in the computa-
tion of the path integral.

Another important attribute of the annealing method is
that it is capable of finding local minima in the functional
(5’_ )% where (S'_ ) #0. These regions do not correspond
to stationary points of the action but rather to locally slowly
varying regions. These paths may be important in tunneling
problems, where one may have complex roots to the set of
nonlinear equations necessary to analytically determine the
stationary phase points. The annealing procedure in this case
locates the real portion of roots which themselves are not too
far off the real axis. Since the path integral is calculated over
a set of real variables, the annealing procedure in principle
locates all stationary or locally slowly varying regions over
the appropriate range of integration variables. The steepest
descent procedure on the action does not locate such regions
which are slowly varying relative to neighboring regions.
Rather it locates the nearest stationary point in the action, if
it exists. Using steepest descents to find the slowly varying
regions would involve quenching on the (S ‘_ )? function,
which would necessitate the calculation of second deriva-
tives of the action with respect to the Fourier coefficients.

To reiterate, the optimization method discussed above
can be used to locate the important portions of configuration
space in the evaluation of the path integral of Eq. (2.6) as
determined by the DIS function pD,,. The steepest descent
procedure is useful at short physical times when the action at
the stationary points is a local minimum with respect to all of
the Fourier coefficients (see below). Generally the type of
path observed at short times is nearly a straight line path
since the system in effect has little time to wander about the
potential surface. One then expects to see one or at most a
few stationary paths linking two end points. At longer phys-
ical times, two effects are observed. The action at stationary
points can become locally maximal with respect to the low-
order coefficients, and therefore the simulated annealing
procedure is a more general tool which can be applied for all
physical times to locate the extrema of the action by mini-
mizing the functional ($’_ )2. Also, in general one observes
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a larger number of stationary points for anharmonic systems
at long times since the path can explore larger portions of the
potential surface. The Metropolis walk coupled with heating
and cooling cycles in the annealing schedule leads to a thor-
ough exploration of the configuration space which facilitates
the location of the large number of extrema. The disadvan-
tage of annealing is that it is slightly more costly than
quenching, although both procedures require only modest
amounts of computer time.

IV. RESULTS
A. Harmonic oscillator

The quantum harmonic oscillator provides a good ex-
ample of the utility of the quench-annealing procedure,
since the stationary points are analytically available. How-
ever, the resulting set of equations is linear in each of the
coefficients, so only a single stationary point exists for each
set of end points x and x’. The set of equations for the station-
ary points is given by

s, ([a])  a

1
%, =?k-i§-[> mao*x(u)sin(kru)du = 0.
4.1

When the Fourier path is inserted in the integral, the follow-
ing expression is obtained:

as, ([a]) a ma)zﬁ( x X X ak)
Back Lt LA, B ool A Ay g LRl
da, s 2 ki k1r( )+ 2
(4.2)
Solving for each a, we get
mo’f 1 —‘(ma)zﬂ) «
=] —EZ 4+ — ZEEPVIX( — 1)r —
a ( 3 :i:si) 98 [x(— 1) 3]
4.3)

for the stationary points of the action functional. The second
derivatives are given by

9%, (a) :(limwzﬂ)
a2 2 4 )

Notice that for the equilibrium factor S, the curvature is
always positive so that quenches in this functional always
lead to local minima. The curvature in the action functional,
however, becomes negative under the condition

44)

2 2
(ﬂzkz)/(%*+i—)ﬁ2<wz~ (4.5)

h2

That is, as time increases, the stationary points of the action
functional become local maxima with respect to the low-
order coefficients. The singularity where the second deriva-
tive is zero is termed a caustic. For the harmonic oscillator,
the caustics occur near times corresponding to the turning
points in the classical motion.

The analytical results for a particular choice of end
points x and x’ are presented in Table I. The number of
Fourier coefficients &,,,,, was chosen tobe 7 throughout. The
values of the coefficients are listed as a function of the coeffi-
cient number and the physical time in units of oscillator per-

TABLE 1. Analytical results for the harmonic oscillator: the stationary
points of the action functional at £ = 0.4 and ¢ = 1.0 oscillator periods, and
the curvature for the a,, set of coefficients.

k a, b, a, curvature
=04 1 0.182¢ 4+ 00 0.182¢ + 00 0.101e 4 01
2 —0217e-01 0.217¢ - 01 0.127e + 02
3 0.190¢ - 02 0.190¢e — 02 0.322¢ 4 02
4 —0232e-02 0.232¢ — 02 0.594¢ 4+ 02
S 0.389%¢ — 03 0.389%¢ ~ 03 0.945¢ + 02
6 —0.66% 03 0.66%¢ — 03 0.137¢ +-03
7 0.140e — 03 0.140¢ — 03 0.188¢ + 03
1=10 1 —0.842¢ — 01 —0.842¢ - 01 —0.218¢ + 01
2 0.387¢ 401 —0.387¢ 4+ 01 —0.713¢ - 01
3 0.178¢ — 01 0.178¢ — 01 0.345¢ 4 01
4 —0.165¢ 01 0.165¢ — 01 0.837¢ + 01
5 0.250e — 02 0.250e — 02 0.147¢ + 02
6 0409 02 0.409¢ — 02 0.224¢ + 02
7 0.831e — 03 0.831¢ — 03 0.316¢ 402

iods. The quench results are listed in Table II for one time
which gives a positive curvature in the action for all of the
Fourier coefficients. The quenches, initiated at well-spaced
intervals along the Metropolis walk, lead directly to the cor-
rect stationary phase point. The path is shown in Fig. 2.
When the time is increased beyond ¢ = 0.5, however, the
quenches become unstable because of the negative curvature
of the action with respect to the first Fourier coefficient.
Similarly, quenches with respect to each successive coeffi-

TABLE II. Quench and simulated annealing results for the harmonic oscil-
lator at = 0.4 and ¢ = 1.0 periods.

k a, b,
Quenches at ¢t = 0.4 1 0.182e 4 00 0.182¢ + 00
on phase function 2 —0217e—-01 0.217¢ — 01
3 0.190e — 02 0.190e — 02
4 —023le—02 0.231e — 02
5 0.387¢ — 03 0.387¢ — 03
6 —0.664e —03 0.664¢ — 03
7 0.138¢ — 03 0.138¢ — 03
Simulated annealing 1 0.218e + 00 0.173e + 00
at ¢ = 0.4 on phase 2 —0.268e—01 0.257¢ — 01
function 3 0.309¢ — 02 0.174e — 02
4 —0.160e - 02 0.157¢ — 02
5 0.133e — 02 0.235¢ — 02
6 0.156e — 02 0.152¢ — 02
7 0.346¢ — 02 0.151e — 03
Simulated annealing 1 —087le—01 —0.852¢—01
at ¢ = 1.0 on phase 2 0.368¢ + 01 — 0.386e + 01
function alone 3 0.161e — 01 0.168¢ — 01
4 —0.138¢—01 0.185¢ — 01
5 0.182¢ — 02 0.384¢ — 02
6 —0.503¢—02 0.291e — 02
7 0.144¢ — 02 0.290¢ —- 02
Simulated annealing 1 —0655—01 —0.736e 01
at t = 1.0 on thermal 2 0.524¢ — 01 —0.382¢ — 01
and phase functions 3 0.836e — 03 —0.384¢ — 03
4 —0.163e—02 —0231e—~02
5 —0285—02 0.351e — 02
6 —059e¢—02 —0.124¢ 01
7 —02ile—02 —0.728¢—02
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80 T T T T T T T T T T T

-0.2 -0.1 0 0.1 0.2 0.3 0.4

FIG. 2. Stationary paths for the harmonic oscillator at a short time, 1 = 0.4
periods. The temperature is set to 500 K with an oscillator frequency of
o = 1000 K and mass of m = 1.0 a.u. The time axis is number of discretiza-
tion steps along a path. Distances are in a.u. Both quenches (a,4) and simu-
lated annealing (c,d) were applied to the S_ functional. Quenching and
annealing lead to nearly identical paths. Also, a quench was performed on
the S, functional to determine the paths with the optimal thermal weight
(e, f). Notice that the stationary paths for the action and thermal pieces
differ in this case. The thermal weight p of the paths determined by quench-
ing the S_ functional is 0.689. Annealing gives a thermal weight of 0.656.
The thermal weight of the optimal S__ paths is 0.953.

cient become unstable at the next half period of the oscilla-
tor.

The annealing procedure can also be used to locate the
stationary points for the harmonic oscillator. At short times,
the annealing procedure finds the same stationary phase re-
gions as the quench results (Table II and Fig. 2). The paths
resulting from simulated annealing are not identical with the
analytical results and quench results because the annealing
procedure was terminated prior to complete convergence.
The annealing paths are very close to stationary, however,
since D, = 1.00. The cooling process can be continued to
achieve arbitrary accuracy. At times where the quenches
lead to divergences in the first Fourier coefficient, i.e., 1> 0.5
periods, the annealing method finds the relevant local maxi-
ma in the action, as well as the minima, which exhibits the
utility of the annealing method for the location of all of the
extrema of the action, even at long physical times (Table II
and Fig. 3).

An important issue in the sampling procedures becomes
apparent, for example, at ¢ = 1.0, the point where the curva-
ture in the action with respect to the second coefficient be-
gins to take on a negative value. The analytically determined
stationary point at = 1.0 has a very large second coeffi-
cient, a, = 3.87. This large coefficient leads to large kinetic
and potential energies in the equilibrium function p, which
in turn leads to a very small thermal weight for this particu-
lar path. If the annealing is performed as a cooling process on
both the thermal and action parts of the sampling function
simultaneously, the system drifts towards a path for which
the second coefficient is constrained to not move towards the
large value of the stationary path due to the large kinetic and
potential energies of such a path (Table IT and Fig. 3). How-
ever, when the thermal portion of the sampling function is
heated while the dynamical portion is cooled, the system is
free to drift towards the true extrema of the action along the

80 ¥ ‘ 1

60} -
- c,d .

40} -

TIME

- a,b 7
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FIG. 3. Optimal paths for the harmonic oscillator at ¢ = 1.0 periods deter-
mined by simulated annealing. The stationary paths in the action (4,b) give
a D, value of 1.0 and lead to a thermal weight of 10734 When annealing is
applied to both pieces of the DIS function simultaneously, the more direct
paths result (¢,d). For this case D,, = 0.951 and p = 0.961, which exhibits
the tradeoff in optimizing both functions simultaneously.

course of the annealing procedure, and the large second coef-
ficient is obtained. This indicates that there may be to some
degree a *“‘competition” between the equilibrium and dy-
namical pieces of the sampling function at physical times
where caustics or near caustics occur.

The quench—annealing procedure is a useful tool, then,
to locate stationary points in the multidimensional path inte-
gral expression for the harmonic oscillator time correlation
function. Also, the annealing procedure gives insight into
which classical paths are thermally accessible paths. The an-
nealing procedure locates stationary paths at long physical
times and at times where caustics or near caustics occur.

B. Anharmonic systems

It is apparent from Eq. (3.1} that, if the potential con-
tains anharmonic terms, the path integral may exhibit multi-
ple paths linking two end points in the configuration space
which are stationary points in the action. The analytical cal-
culation of the stationary points would involve solving a set
of coupled k,,,, dimensional nonlinear equations, a nonlin-
ear root finding procedure that would become very difficult
in a high-dimensional system. The quench~annealing proce-
dure provides a practical alternative tool to locate the sta-
tionary paths in these anharmonic systems. We choose three
example anharmonic one-dimensional systems to search for
muitiple stationary phase behavior: a simple anharmonic os-
cillator, a Morse oscillator, and a double-well oscillator
which exhibits tunneling behavior. The quench and simulat-
ed annealing procedures were used on these systems at var-
ious physical times. Multiple stationary phase points are
found for all three cases.

The first example anharmonic system we examine is the
harmonic oscillator plus an anharmonic term:

V(x) = 0.5maw*(x* + 0.4x*). (4.6)
The effects of the anharmonicity on the time correlation
function are discussed in Ref. 9. The oscillator frequency is

chosen to be @ = 1000 K, the mass m == 1.0 a.u., and the
temperature 7'= 1000 and 2000 K. The quench procedure,
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FIG. 4. Multiple stationary paths for the first anharmonic example with
T = 1000 K.. The thermal weight of the paths with one period of oscillation
(a,b,c) is0.37. When the a path has one oscillation period and the bpath 1.5
oscillations (cand d), the thermal weight is 0.0027. At 7= 2000 K, the two
paths are essentially superimposable on the paths at 7= 1000 K, indicating
that the paths are temperature independent and thus classical paths.

at a time less than one-half period of the oscillator, t = 0.4
periods, results in only one stationary point. However, at
t = 1.0, where quenches are unstable with respect to the low-
order coefficients, the annealing procedure applied to the
(S *_ )*function alone (in what follows we apply the anneal-
ing procedure to the D, function alone to locate the station-
ary points of the action) leads to multiple stationary phase
points. Some of the paths are shown in Fig. 4, along with the
associated thermal weights. One path appears to dominate in
that it gives the largest thermal weight. The second set of
paths also is a stationary point but the larger displacement in
the b path results in a much smaller thermal weight. Notice
that the stationary paths are independent of temperature,
which indicates that, at this physical time, the paths can be
termed classical paths. The annealing procedure found a
large number of other stationary paths with very small ther-
mal weights (on the order of 0.001).

We examine a Morse oscillator as a second example,
where

V(x) =D,(1 —e~ )% 4.7)

Weset D, = 40 000 K and a = 2.0a.u.~!, respectively. The
ratio of the temperature to the dissociation energy was cho-
sen as 0.175, with a mass of 1.0 a.u. The annealing procedure
applied at ¢t = 1.0 period (determined from the curvature in
the potential at x = 0) locates two stationary paths linking
the end points x = 0.00 a.u. and x’ = 0.15 a.u. (Fig. 5). The
two paths result in similar thermal weights. One path first
moves up the steep repulsive part of the potential surface and
then moves out and back in the x direction before stopping at
the end point. The second path moves directly up the long-
range portion of the potential surface before returning to the
end point x". The path which stays more confined to the
region near the minimum in the potential surface has the
favorable thermal weight. At any rate, at least two stationary
paths are important in the Metropolis sampling of the inte-
gral, and interference effects due to the two paths are likely
to be important.

Finally, we use the annealing procedure to locate multi-
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FIG. 5. Multiple stationary paths for the Morse oscillator. (a) The Morse
potential function and eigenvalues, determined analytically. (b) Two sta-
tionary paths at # = 1.0, If both a and b paths are of the form of path a, the
thermal weight is 0.314. If the two paths are as shown (aand b), the thermal
weight is 0.136, i.e,, both paths have an appreciable thermal weight, and
interference effects from the two trajectories are likely to be important.

ple stationary phase (or near stationary) points in the action
for a tunneling system. The potential we use is 2 harmonic
well plus a Lorentzian barrier centered on the origin?8:

V(x) =0.5mao’x* + A/[1 + (x/a)?]. (4.8)

The parameters are chosen to be » = 1895 K, the barrier
height 4 = 1.5%w, and the barrier width a = 0.09 a.u. The
exact eigenvalues can be determined numerically for this
one-dimensional example. The eigenvalues are shown in Fig.
6 and clearly indicate a tunneling system. The tunnel split-
ting for the parameters chosen is 1295 K. The tunneling be-
havior is most pronounced at low temperatures which just
allow excitation to the first excited state. In this case, the
dipole autocorrelation function oscillates as a cosine wave
with the frequency of the tunnel splitting. One might expect
that at low enough temperatures, few if any classical paths
would lead from one side of the barrier to the other.

We performed the annealing procedure at 7= 500 K
and ¢ = 1.0 periods (of the unperturbed oscillator) with end
points first on the same side of the barrier and then on oppo-
site sides. The annealing procedure always finds a stationary
point with an appreciable thermal weight when the two end
points are on the same side of the barrier [Fig. 6(b)]. Clear-
ly in this case the thermal energy necessary to “find” the
other end point is not terribly large, and a classical path can
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FIG. 6. Multiple stationary and near stationary paths for a tunneling system. (a) The double-well potential and eigenvalues. (b) Stationary paths with end
points on the same side of the barrier: p = 0.026, D, = 1.00. (c) End points on opposite sides of the barrier: p = 0.0057, Dy = 0.964. The a path is the single
stationary path with an appreciable thermal weight. The b path is a near stationary or tunneling path. (d) p = 2.8 X 10, D, = 1.00. The large amplitude of

the a path leads to a small thermal weight. Both a and b paths are stationary.

be located which links the end points. Also, a large number
of other stationary points with relatively small thermal
weights are found.

When the annealing procedure is used to locate station-
ary points when x and x’ are located on separate sides of the
barrier, however, it locates local minima in the (S "_ )? func-
tion in the majority of cases. These local minima correspond
to regions where (S_ )0, that is locally slowly varying
but not stationary points of the action [Figs. 6(c) and
6(d) ]. This behavior is indicative of tunneling paths linking
the end points. A large number of local minima were found
with similar, appreciable thermal weights, which points out
the sampling difficulty for this particular problem. One sta-
tionary path was also observed with a thermal weight of on
the order p = 0.0039. A second stationary path was found
which gives a p value of 10, This implies that, for this
case, only one thermally allowed stationary path exists, and
the near stationary, tunneling paths give important contri-
butions to the integral. Other stationary paths besides the
thermally allowed path appear to be very much on the
fringes of the Boltzmann distribution. Notice that the single
stationary path has a “kink” in it near the point where the
trajectory passes the barrier separating the two minima. The
paths which result in a D, value of less than 1.0 appear to
pass rapidly through the barrier region.

A simple one-dimensional example serves to illustrate

the sampling issues that arise in a tunneling system. Consid-
er a one-dimensional integral of the form of Eq. (2.1) with
the following phase function: ‘

f(x) =x*/4 + x3/3 + cx*/2. (4.9)

The stationary points of this function occur at x =0,

[—1+J(1=4c) 1/2. The roots are thus real or complex
depending on the value of ¢. The function D, at various val-
ues of c is presented in Fig. 7. Notice that the three stationary
phase points are apparent when the roots are purely real.
When ¢ > 0.25, however, two of the roots move off the real
axis. The effect on D, is apparent in Fig. 7 as a shoulder in the
distribution function at x = — 0.5. The shoulder becomes
less pronounced as the imaginary portion of the roots be-
comes larger. Notice that when ¢ = 0.30, D, has a local max-
imum at x = — 0.5 with a value less than 1. This local maxi-
mum occurs when the imaginary part of the complex root is
not far off the real axis.

The D, function naturally weights paths which are sta-
tionary or near stationary in the action. The Monte Carlo
integration of the path integral as described above occurs
along the real axis, so all of the tunneling effects are in princi-
ple incorporated by sampling the appropriate portions of
configuration space as determined by the DIS function, that
is sampling all of the stationary or near stationary yet ther-
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FIG. 7. D, for the one-dimensional example with complex roots: f(x) = x*/4 + x*/3 + ¢x*/2. (a) c = — 1.0, (b) ¢ =0.30, (¢) = 1.0, (d) ¢ = 2.0. Notice

the local maximum in (b) at x = — 0.5 with D, < 1.0.

mally accessible paths. However, it may be more efficient to
allow the contour of the integration to distort to incorporate
the complex valued tunneling trajectories. This idea was use-
ful in certain barrier crossing problems where a coordinate
rotation method was used,”'! and has been discussed in oth-
er contexts.”®

V. DISCUSSION

In this paper we have presented a general algorithm for
locating stationary points in the phase function of multidi-
mensional oscillatory path integrals which requires only first
derivatives of the action. The stationary paths are the classi-
cal paths linking two end points over a time interval ¢ if
t> f#. The method involves a combination of steepest de-
scent and simulated annealing procedures. It is found to ef-
fectively locate the single stationary phase point for the har-
monic oscillator given a set of path end points. Also, the
quench-annealing procedure locates and assigns a thermal
weight to multiple stationary paths in nonlinear problems,
however anharmonic the potential function. This informa-
tion is useful in itself as it gives some indication of the impor-
tant portions of configuration space and thus of the complex-
ity involved in a Metropolis Monte Carlo sampling strategy.

It may also be useful when formulating, for example, a
semiclassical theory with thermal averaging in very anhar-
monic systems to know the classical or stationary paths

which contribute appreciably to the physical process of in-
terest. This information determines the degree of phase in-
terference that must be included from separate classical
paths in the thermally averaged semiclassical picture.

For a system in which classically forbidden paths domi-
nate the process of interest, the annealing procedure as de-
scribed above locates paths which are not strictly stationary
in the action, but which are locally slowly varying. The lack
of stationary paths linking the two points on opposite sides of
the barrier at low temperatures is indicative of this tunneling
behavior. Only trajectories very much on the fringe of the
Boltzmann distribution can classically connect two end
points on opposite sides of the barrier, if the temperature is
small relative to the barrier height. Also, in a multidimen-
sional tunneling system, the annealing procedure can be
used to determine whether there exists any classically al-
lowed paths which link two end points.

Once the path integral for the time-dependent quantity
is written as in Eq. (2.6), the calculation of the multidimen-
sional integral becomes a problem in sampling appropriately
over the important portions of the configuration space. For a
simple harmonic oscillator, where only one stationary phase
point exists, the sampling is straightforward. However,
when multiple stationary phase points exist in the problem,
the sampling issue becomes formally similar to problems en-
countered in studying a classical system with a large number
of local minima in the potential surface; in the dynamics
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problem the analogy of potential minima is minima in the
function (S’_ )2 In the case of the classical system, the
problem is one of locating all or most of the local minima in
the potential surface which contribute appreciable Boltz-
mann weights to a given state and then devising a sampling
scheme to allow the Metropolis walk to sample all of these
regions. If kT is small relative to the barriers separating the
local minima, move strategies must be incorporated to allow
infrequent hops between the local minima.

The simplest strategy is to first “catalogue” the set of
stationary phase points and then incorporate into the move
strategy the possibility of infrequent additions of vectors
which connect the various stationary points or “lattice
sites.”” These moves must be chosen randomly to ensure de-
tailed balance in the Metropolis procedure. For example, a
random choice of a “lattice vector” connecting two of the
stationary phase regions could be added to the current con-
figuration during a certain percentage of the moves. This
procedure ensures detailed balance since the probability of
attempting a move back to the original configuration is the
same as for the trial move, and ensures that the relevant
portions of configuration space are sampled. An example of
this kind of rare event problem occurs in the study of surface
diffusion at low temperatures, where a similar sampling
strategy proved useful.*

Finally, it would be useful to utilize a more efficient
strategy which incorporates the information obtained from
the optimization procedures discussed above into the sta-
tionary phase Monte Carlo method. Staging®' and multi-
grid®? methods may be useful in employing the large ampli-
tude, collective motions necessary to connect the stationary
phase regions in a practical way. Efforts are currently under-
way to utilize these Monte Carlo strategies.
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APPENDIX

We consider here the Fourier path integral expression
for the ratio of the general complex temperature density ma-
trix element to its free particle counterpart,

(x'|le ™ |x)

(x'le™ " |x)g,
_ Sdaexp (—3_, a,/20% — B.AV))
- fdaexp (—2i_, ai/20%)

) (A1)

where B, is the complex temperature, and where the remain-
ing quantities are given by

1
V) =f du V [x(w)], (A2)
0

x(u) =x+ (X' —x)u+ 2 a, sin(kmu), (A3)
k=1

o = 2B.#/mrk>. (A4)
We denote the exponent in the numerator of Eq. (A1) as

S@a) = 3 ai/20% +B.AV). (A5)

k=1

The requirement that S be an extremum with respect to the
Fourier coefficients is

aS(a) _
ay
From Egs. (A2)—(A5) it is straightforward to show that the
condition that S be an extremum becomes

a, =4 0% B. fi(a), (AT)

where £, (a) is the k th Fourier sine component of the force
evaluated along the quantum-mechanical path specified by
(A3):

1
fi= 2J du ( —?Ml)ﬂ) sin(kmu).
(0]

Ox(u

Equations (A7) and (A8) are a set of self-consistent condi-
tions that determine the extrema of the path-integral “ac-
tion” for general complex temperatures B.. Knowledge of
such extrema is a convenient starting point for various semi-
classical approximations to the exact path-integral results.

Two special cases of the general results are noteworthy.
If B. is purely real, 8. = f3, then Eq. (A7) becomes

2ﬁ2
= %ZIEf w(a).
If, on the other hand, 3. is purely imaginary, 8, = it /#, then
Eq. (A7) becomes

t 2
- mf «(a).
Planck’s constant does not appear in Eq. (A10) since the
result is a purely classical one: solution(s) to Eq. (A10)
combined with Eq. (A3) describe the classical mechanical
path(s) that travel from x to x’ in a time ¢. Building the
desired initial and final end points of the classical path into
Egs. (A10) and (A3) may prove a useful alternative to tra-
ditional trajectory methods for various semiclassical appli-
cations.

0 allk. (A6)

(A8)

a, (A9)

a, = (A10)
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