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Quasiparticles governing the zero-temperature dynamics of the one-dimensional spin-1Õ2
Heisenberg antiferromagnet in a magnetic field

Michael Karbach,1 Daniel Biegel,1 and Gerhard Mu¨ller2

1Bergische Universita¨t Wuppertal, Fachbereich Physik, D-42097 Wuppertal, Germany
2Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817

~Received 5 March 2002; published 2 August 2002!

TheT50 dynamical properties of the one-dimensional~1D! s5
1
2 Heisenberg antiferromagnet in a uniform

magnetic field are studied via the Bethe ansatz for cyclic chains ofN sites. The ground state at magnetization
0,Mz,N/2, which can be interpreted as a state with 2Mz spinons or as a state ofN/22Mz magnons, is
reconfigured here as the vacuum for a different species of quasiparticles, thepsinonsand antipsinons. We
investigate three kinds of quantum fluctuations, namely the spin fluctuations parallel and perpendicular to the
direction of the applied magnetic field and the dimer fluctuations. The dynamically dominant excitation spectra
are found to be sets of collective excitations composed of two quasiparticles excited from the psinon vacuum
in different configurations. The Bethe ansatz provides a framework for~i! the characterization of the new
quasiparticles in relation to the more familiar spinons and magnons,~ii ! the calculation of spectral boundaries
and densities of states for each continuum,~iii ! the calculation of transition rates between the ground state and
the dynamically dominant collective excitations,~iv! the prediction of line shapes for dynamic structure factors
relevant for experiments performed on a variety of quasi-1D antiferromagnetic compounds, including KCuF3 ,
Cu(C4H4N2)(NO3)2, and CuGeO3.

DOI: 10.1103/PhysRevB.66.054405 PACS number~s!: 75.10.Jm, 75.30.Ds, 75.40.Gb, 75.50.Ee

I. INTRODUCTION

Quantum spin chains are some of the most intensively
studied models representing strongly fluctuating quantum
many-body systems because of their amenability to exact
analysis and because of the sustained interest in materials
exhibiting quasi-one-dimensional magnetic properties. Of
particular interest are the dynamical properties in the low-
temperature regime, reflecting strong quantum fluctuations.

Quantum fluctuations result from the time evolution of
nonstationary observables of a many-body system in the
ground state. They can be investigated~experimentally, theo-
retically, or computationally! by dynamical probes. The three
main ingredients of each dynamical probe,~i! interaction
Hamiltonian,~ii ! ground state, and~iii ! dynamical variable,
make a specific set of collective excitations visible to the
probe. The specificity is determined by the symmetries of all
three ingredients.

A dynamical probe yields information on spectrum and
transition rates. Different sets of data are collected from the
same many-body system@ingredients~i! and~ii !# via particu-
lar fluctuation operators@ingredient~iii !#. Different views of
the quantum fluctuations are filtered out by operator specific
selection rules and transition rates.1

Collective excitations are modes in which some of the
tightly coupled fundamental degrees of freedom~electrons,
ions, atoms! move collectively in more or less complex pat-
terns. The free-particle-like normal modes known to exist in
systems made of linearly coupled degrees of freedom are the
inspiration of attempts to describe collective excitations quite
generally as composites of elementary modes that are weakly
coupled at most. This requires that the ground state of the
system can be meaningfully interpreted as a physical vacuum
in which certain kinds of elementary excitations~quasiparti-

cles! move without attenuation and scatter off each other
nondestructively.

In completely integrable many-body systems, the identity
of the quasiparticles in any given eigenstate is upheld on a
rigorous basis and encoded by a set of quantum numbers. All
excited states can then indeed be generated systematically
via the creation of quasiparticles from the ground state con-
figured as a physical vacuum. The interaction of the quasi-
particles may not be weak, but it is of a kind that preserves
their identity. The factorizability of the associatedSmatrices,
which is characteristic of completely integrable systems, re-
duces all quasiparticle couplings to two-body scattering
events for which a general solution can be formulated, e.g.,
in the form of a Bethe wave function.2,3

The focus here is set on the quasiparticles that govern the
quantum fluctuations of the one-dimensional~1D! s5 1

2

Heisenberg antiferromagnet in an external magnetic field:4,5

H5 (
n51

N

@JSn•Sn112hSn
z#. ~1!

The ground state ath>hS52J, uF&[u↑↑•••↑&, has satu-
rated magnetization,Mz5N/2. It is the reference state of the
coordinate Bethe ansatz and plays the role of the vacuum for
magnons~spin-1 quasiparticles!. All eigenstates ofH are de-
scribed as configurations of interacting magnons. The ground
state ath50, uA&, has magnetizationMz50. It containsN/2
magnons. In the framework of the Bethe ansatz, it is recon-
figured as the physical vacuum forspinons, a species of spin-
1
2 quasiparticles, and the entire spectrum ofH is reinterpreted
as composites of interacting spinon pairs. Likewise at inter-
mediate fields, 0,h,hS , the ground stateuG& is reconfig-
ured as a new physical vacuum, and the low-lying collective
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excitations are most effectively described as composites of
two new species of quasiparticles, namedpsinonandantip-
sinon.

In a recent paper,6 a detailed description of these quasi-
particles in the framework of the coordinate Bethe ansatz
was given. Their role in the zero-temperature spin fluctua-
tions parallel to the direction of the magnetic field was elu-
cidated in the form of line-shape predictions for the associ-
ated dynamic structure factor. Here we present a more
comprehensive set of applications, which also includes the
perpendicular spin fluctuations and the dimer fluctuations.

Physical realizations of Heisenberg antiferromagnetic
chains have been known for many years in the form of 3D
crystalline compounds with quasi-1D exchange coupling be-
tween magnetic ions. For the study of magnetic-field effects
in the dynamics as predicted in this paper, the coupling must
not be too weak or else it will be hard to reach the low-
temperature regime. It must not be too strong either or else it
will be hard to reach a magnetic field that makes the Zeeman
energy comparable to the exchange energy. One compound
that promises to be particularly suitable for this purpose is
copper pyrazine dinitrate@Cu(C4H4N2)(NO3)2#.7

The spin fluctuations can be observed directly via inelas-
tic neutron scattering experiments. At very low temperatures,
the dominant transitions in the scattering experiment are be-
tween the ground stateuG& and a set of excitationsul& that
are reachable by one of the spin fluctuation operatorsSq

m

5N21/2(neiqnSn
m , m5x,y,z. In the T50 dynamic spin

structure factors

Smm~q,v!52p(
l

u^GuSq
mul&u2d~v2vl!, ~2!

each transition withvl[El2EG and q[kl2kG contrib-
utes a spectral line of intensity 2p z^GuSq

mul& z2.
Some quasi-1D antiferromagnetic compounds, of which

CuGeO3 is the most prominent example,8–10 are susceptible
to a spin-Peierls transition, which involves a lattice distortion
accompanied by an exchange dimerization. The dimer fluc-
tuations,Dq5N21/2(neiqnSn•Sn11, as captured by the dy-
namic dimer structure factor

SDD~q,v!52p(
l

u^GuDqul&u2d~v2vl! ~3!

may not be as directly observable as the spin fluctuations but
an understanding of their quasiparticle composition is a mat-
ter of no less importance.

II. MAGNONS, SPINONS, PSINONS

The coordinate Bethe ansatz provides a natural classifica-
tion of the eigenstates of Eq.~1! in terms of interacting mag-
nons. The structure of the Bethe wave function, its determi-
nation via the solution of the Bethe ansatz equations, and its
use for the calculation of matrix elements are summarized in
the Appendix.

For our discussion here it turns out to be sufficient to
considerr-magnon scattering states of the setKr . In the
invariant Hilbert subspace of magnetizationMz5N/22r , the

Bethe quantum numbers of this set comprise, for 0<r
<N/2 and 0<m<N/22r , all configurations

2
r

2
1

1

2
2m<I 1,I 2,•••,I r<

r

2
2

1

2
1m. ~4!

The Bethe ansatz suggests a threefold interpretation of the
ground stateuG& at 0<Mz<N/2 with quantum numbers

$I i%G5H 2
N

4
1

Mz

2
1

1

2
, . . . ,

N

4
2

Mz

2
2

1

2J . ~5!

Depending on the reference state~pseudovacuum! used, it
can be regarded as a scattering state ofN/22Mz magnons, a
scattering state of 2Mz spinons, or the physical vacuum of
psinons.6

The states in the setKr then all contain the same number
of magnons or spinons but different numbers of psinons. The
integer quantum numberm selects all states fromKr that
contain m pairs of psinons. The ground stateuG& at Mz
5N/22r is the only state withm50. The quasiparticle role
of the psinons in the two-psinon (m51) and four-psinon
(m52) scattering states was highlighted previously.6

The excitations that are important inSzz(q,v) ~parallel
spin fluctuations! at Mz5N/22r were found to consist of a
small subset ofKr which includes 2m-psinon states over the
entire range ofm. However, all 2m-psinon states with sig-
nificant spectral weight were found to belong to particular
configurations of Bethe quantum numbersI i in which 2m
21 psinons behave like a single degree of freedom with
properties akin to those attributed to an antiparticle. The
spectrum ofSzz(q,v) was thus identified as arising predomi-
nantly from psinon-antipsinon (cc* ) excitations.6 Here our
goal is to identify and interpret the dynamically relevant ex-
citations also for Sxx(q,v)5 1

4 @S12(q,v)1S21(q,v)#
~perpendicular spin fluctuations! andSDD(q,v) ~dimer fluc-
tuations!, where we expect psinons and antipsinons to occur
in different combinations.

III. SYMMETRIES AND CONSEQUENCES

Narrowing down the dynamically dominant sets of exci-
tations and characterizing them as specific quasiparticle con-
figurations proceeds in three steps. First we limit the set of
relevant excitations by the application of selection rules that
are imposed by the symmetry properties of the Hamiltonian
~1! and the fluctuation operatorsSq

z ,Sq
6 ,Dq and that are

valid for arbitrary system sizes. Then we identify additional
selection rules that are valid only forN→`. Finally, we
identify from the states not yet excluded those whose transi-
tion rates are predominant inSzz(q,v), S21(q,v),
S12(q,v), andSDD(q,v). This last step, which here is car-
ried out empirically, may very well find its ultimate justifi-
cation by further symmetries related to complete
integrability.11

A. Selection rules for arbitrary N

The conservation laws of the total spinST and itsz com-
ponentST

z imply that transitions between eigenstates of Eq.
~1! induced by the~nonstationary! spin fluctuation operators
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Sq
z , Sq

6 ~vector! and the dimer fluctuation operatorDq ~sca-
lar! satisfy stringent selection rules. The six classes of exci-
tations with permissible transitions fromuG& with ST5ST

z

5Mz for the fluctuation operatorsSq
z ,Sq

6 ,Dq are all listed in
Table I. The locations of these classes of excitations relative
to the ground state in the (ST ,ST

z) plane are shown in Fig. 1.
We note that classes~ii !, ~iii !, and~vi! include the setsKr

for r 5R, R21, andR11, respectively, while the remaining

three classes~i!, ~iv!, and ~v! include sets of states that be-
long to the sameST multiplets as the setsKR or KR11. Table
I also lists the Bethe quantum numbersI i , i 51, . . . ,r for
the type-Kr or equivalent states and describes how the rapidi-
ties zi , i 51, . . . ,r for these states are obtained.

B. Selection rules forN\`

Before we begin evaluating matrix elements from Bethe
ansatz solutions in production mode, we take note that the
rotational symmetry of the Hamiltonian~1! and the vector
nature of the spin fluctuation operator (Sq

x ,Sq
y ,Sq

z) imply the
following rigorous relations between transition rates involv-
ing excitations that belong to the sameST multiplet:12

z^GuSq
zul ( i )&u25

u^GuSq
2ul ( i i i )&u2

2~Mz11!
, ~6a!

z^GuSq
1ul ( iv)&u25

u^GuSq
2ul ( i i i )&u2

~Mz11!~2Mz11!
, ~6b!

z^GuSq
1ul (v)&u25

2u^GuSq
zul ( i i )&u2

Mz
. ~6c!

The significance of the relations~6! is not limited to their
usefulness in reducing computational work. The magnetiza-
tion is an extensive quantity, implyingMz}N at hÞ0. All
transition rates for class~i!, ~iv!, and~v! excitations are then
suppressed by factorsN or N2 relative to the transition rates
of class~ii ! and~iii ! excitations. The consequence is that in a
macroscopic system athÞ0, the spectral weight of all class
~i!, ~iv!, ~v! excitations in theT50 dynamic spin structure
factorsSmm(q,v) is negligible.13

TABLE I. Specifications of type-Kr or equivalent states from six classes. Each class contains states that contribute to a specific dynamic
spin structure factor atT50. Class~ii ! also contributes to the dynamic dimer structure factor. All specifications are relative to a given ground
state withST

z5ST5N/22R5Mz , whereMz is the magnetization in a field of a certain strengthh. The last column identifies the three
subsets of excitations that dominate the spin and dimer fluctuations forN→`.

Class ST Smm(q,v) r Bethe quantum numbers Bethe ansatz solutions Dynamically
ST

z dominant sets

~i! Mz11 Szz(q,v) R I i
(i)5I i

(iii) 1
1
2 , i 51, . . . ,R21 zi

(i)5zi
(iii) , i 51, . . . ,R21

Mz I R
(i)5

1
2 (N2R11) zR

(i)5`

~ii ! Mz Szz(q,v) R I i
(ii) , i 51, . . . ,R zi

(ii) , i 51, . . . ,R cc* ~P2!
Mz SDD(q,v) from Eq. ~4! with r 5R from Eq. ~A3! with r 5R

~iii ! Mz11 S21(q,v) R21 I i
(iii) , i 51, . . . ,R21 zi

(iii) , i 51, . . . ,R21 cc ~P3!
Mz11 from Eq.~4! with r 5R21 from Eq.~A3! with r 5R21

~iv! Mz11 S12(q,v) R11 I i
(iv)5I i

(iii) 11, i 51, . . . ,R21 zi
(iv)5zi

(iii) , i 51, . . . ,R21
Mz21 I R

(iv)5I R11
(iv) 5

1
2 (N2R) zR

(iv)5zR11
(iv) 5`

~v! Mz S12(q,v) R11 I i
(v)5I i

(ii) 1
1
2 , i 51, . . . ,R zi

(v)5zi
(ii) , i 51, . . . ,R

Mz21 I R11
(v) 5

1
2 (N2R) zR11

(v) 5`

~vi! Mz21 S12(q,v) R11 I i
(vi) , i 51, . . . ,R11 zi

(vi) , i 51, . . . ,R11 cc* ~P6!
Mz21 from Eq.~4! with r 5R11 from Eq.~A3! with r 5R11

FIG. 1. Transitions between the ground stateuG& with quantum
numbersST5ST

z5Mz and six classes of excitations permitted by
microscopic selection rules~Ref. 12!. Each class may contribute to
exactly one of three dynamic spin structure factors. Class~ii ! also
contributes to the dynamic dimer structure factor. Fewer classes of
permissible excitations exist forMz50 (h50) and Mz5N/2
(h5hS).
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C. Selection rules related to integrability

We shall find empirically that in each one of the remain-
ing classes~ii !, ~iii !, and~vi! there exists a two-parameter set
of excitations that governs one of the dynamic structure fac-
tors of interest here. We shall name these sets P2, P3, and P6,
respectively~see Table I!. Corresponding finite-N spectral
contributions of class~i!, ~iv!, and~v! states can be inferred
from Eqs.~6!. The associated sets P1, P4, and P5 have their
position in the (q,v) plane shifted vertically relative to the
sets P2, P3, and P6 because of the Zeeman splitting, and the
spectral weight of the former is suppressed by factorsN or
N2 as explained previously.

IV. DYNAMICALLY DOMINANT EXCITATIONS

In our search for the dynamically most relevant excita-
tions, we focus on the case of magnetizationMz /N5 1

4 ~half
the saturation value!. We explore the transition rates for the
spin and dimer fluctuation operators between the ground
stateuG& and the type-Kr states in the classes~ii !, ~iii !, and
~vi!. These excitations are found to contribute most of
the spectral weight to the dynamic spin and dimer structure
factors.

A. Perpendicular spin fluctuations „P3…

The spectral weight inS21(q,v) is carried exclusively
by class~iii ! excitations~see Table I!. A systematic study of
the transition rates of type-KR21 states form50,1,2, . . .
reveals that the dominant contributions to the spectral weight
come from two-psinon (cc) states. The Bethe quantum
numbers of the states involved in these transitions are shown
in Fig. 2 for N516 andMz54. The top row represents the
ground stateuG&, which contains four magnons~small
circles! or eight spinons~large circles!. This is the psinon
vacuum atR54. The next row is the lowest-lying two-
psinon (cc) state excited fromuG&. This excitation also
plays the role of the psinon vacuum (m50) at R53. It is
then characterized as containing three magnons or ten
spinons.

Mobilizing the two innermost spinons turns them into psi-
nons~gray circles!. The remaining five rows in Fig. 2 repre-

sentcc states (m51) at 0,q<p for R53. The state in the
second row is also counted as acc state. Hence there are six
of them in total forN516. Freeing up two additional spinons
from the sidelines produces a set of four-psinon states (m
52) of which thecc states (m50,1) are special members.
The maximum number of psinons that can be mobilized at
R53 is equal to the number of spinons: 2Mz510.

We have calculated the transition ratesz^GuSq
2ul (iii) & z2 be-

tween the ground state forN524, Mz54 and all 2m-psinon
excitations. We found that thecc states are predominant.
They are listed in Table II along with the momentum and
energy transfer of the associated spectral lines. ForN→` the
cc states form the continuum P3 in (q,v) space. In Fig.
3~a! we have plotted all states belonging to P3 forN564
~circles! and the spectral boundaries forN→`. The range of
P3 is restricted toq̄s<uqu<p, where

FIG. 2. Psinon vacuumuG& for N516, Mz54 andcc states
with q>0 from the setK3 out of class~iii !. The I i values are
marked by the positions of the magnons~small circles!. The spinons
~large circles! mark I i vacancies. A subset of the spinons are called
psinons~gray circles!. The wave numbersq[k2kG are given in
units of 2p/N.

TABLE II. cc states withq[k2kG>0 from the setKR21 out
of class ~iii ! excited from the psinon vacuumuG& for N524, R
56: Bethe quantum numbers, wave number~in units of 2p/N),
energy, and transition rate. The ground state haskG50 and EG

5211.512 134 686 2 and is realized ath51.58486 . . . for N→`.

2I i q E2EG1h z^GuSq
2ul (iii) & z2

2210121416 7 1.8184194057 0.0626472812
2410121416 8 1.9556536638 0.1424479327
2422121416 9 2.0088932004 0.2414561733
2422101416 10 1.9746665911 0.3895105465
2422101216 11 1.8556790610 0.6950450037
2422101214 12 1.6606927007 2.2311978057
2610121416 9 2.1612403300 0.0104636629
2622121416 10 2.2113923024 0.0348248694
2622101416 11 2.1742818977 0.0780182561
2622101216 12 2.0527517142 0.1743614335
2624121416 11 2.3389550993 0.0062315774
2624101416 12 2.2987048423 0.0260883689

FIG. 3. ~a! Energy versus wave number of thecc excitations at
Mz5N/4 for N564 ~circles! and N→` ~continuum P3 between
curves!. ~b! Integrated intensity ofS21(q) ~inset! and relativecc
contribution~main plot! for N512,16,20,24,28.
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q̄s[2pMz /N. ~7!

Note that the continuum P3 is displaced byDq5p rela-
tive to the two-psinon continuum discussed in the context of
Ref. 6. The psinon vacuum used for P3 is the state in the first
row of Fig. 2. In Ref. 6 the state in the second row is the
vacuum. These choices are dictated by the different fluctua-
tion operators considered now and then.

The relative integrated intensity of thecc states,
S21

cc (q)/S21(q), is plotted in Fig. 3~b! for various N at
fixed Mz5N/4. Corresponding data for the absolute inte-
grated intensityS21(q) are shown in the inset. We observe
that there is virtually no intensity atuqu<q̄s , outside the
range of continuum P3. Asuqu increases fromq̄s towardp,
S21(q) increases gradually and at an accelerated rate. The
value at the zone boundary diverges in the thermodynamic
limit: S21(p);N121/h, with an exponenth(Mz /N) that as-
sumes the value14,15

h~1/4!51.53122 . . . ~8!

for the situation at hand. It reflects the divergenceS21(q)
;up2qu1/h21 for N5`. The relativecc contribution to
S21(q) rises rapidly from zero atq*q̄s toward a value ex-
ceeding 97.8% atq5p. The solid line in the inset is ob-
tained from a two-parameter fit,aup2qu1/h211b, of the
data atq>p/2.

When we decreaseMz at fixed N, the soft mode atq
5p remains stationary while the soft mode atq5q̄s moves
to the left. At Mz50, thecc states become the two-spinon
triplets. The two-spinon part ofS21(q,v) is exactly known
for N→`.16,17 Conversely, when we increaseMz , the soft
mode atq5q̄s moves to the right and thus narrows the range
of P3 continually. At saturation (Mz /N5 1

2 ) the function
S21(q,v) vanishes identically.

B. Dimer and parallel spin fluctuations „P2…

The parallel spin fluctuations were already analyzed in
Ref. 6. The relevant excitations are contained in the setKR
out of class~ii !. This set is subdivided into sets of 2m-psinon
states for 0<m<Mz5N/22R. Each set form.0 contrib-
utes one branch of excitations with significant spectral
weight to Szz(q,v). Figure 4 shows the configurations of
Bethe quantum numbersI i of all these states forN
516, Mz54. The top row represents the psinon vacuum
(m50). The four groups of states underneath represent the
dynamically dominant branches of 2m-psinon states form
51, . . . ,4.

We argued that theI i configurations of these excitations
suggest a simpler interpretation in terms of two quasiparti-
cles, namely one psinon (c) and one antipsinon (c* ). We
reinterpreted the series of dynamically dominant branches
taken from 2m-parameter sets of multiple-psinon states as a
single two-parameter set ofcc* scattering states. These
states form the continuum P2 forN→` in the (q,v) plane
as illustrated in Fig. 5~a!. From the shape of the continuum
with its soft modes atq50 andq5qs , where

qs[p22pMz /N, ~9!

and with the partial overlap along a stretch of the upper
boundary, we reconstructed the energy-momentum relations
of the c andc* quasiparticles.6

The corresponding search for the dynamically dominant
dimer excitations again points to thecc* continuum P2.
Thecc* transition rates for the fluctuation operatorsSq

z and
Dq in a system withN516, Mz54 are listed in Table III for
comparison. These data suggest that the spectral weight in
SDD(q,v) is concentrated more heavily at lower energy than
is observed inSzz(q,v). A more quantitative discussion of
this evidence will follow in Sec. V.

Finite-N data for the integrated intensitiesSzz(q) and
SDD(q) are presented in Figs. 5~b! and 5~c!, respectively.
Both static structure factors rise from zero atq50 to a cusp-
like maximum atq5qs5p/2, where the soft mode is lo-
cated. The cusp is of the form;uqs2quh21. A two-
parameter fit,aN12h1b, of the data atq5qs yields the
extrapolated valuesSzz(p/2).0.307 andSDD(p/2).0.641.
On approach toq5p, the intensity drops more drastically in
SDD(q) than inSzz(q).

For both kinds of fluctuations, the intensity atq<qs al-
most exclusively originates fromcc* excitations. At q
5qs , the relativecc* contributions toSzz(q) andSDD(q)
are estimated to be at least 93% and 95%, respectively, in the

FIG. 4. Psinon vacuumuG& for N516, Mz54 and set ofcc*
states with 0<q<p out of the setK4. The I i are given by the
positions of the magnons~small circles! in each row. The spinons
~large circles! correspond toI i vacancies. The psinon (c) and the
antipsinon (c* ) are marked by a large and a small gray circle,
respectively.
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limit N→`. At q*qs the cc* parts ofSzz(q) andSDD(q)
decrease monotonically but remain dominant except in the
immediate vicinity of the zone boundary. The data suggest a
qualitative difference in how the relativecc* intensities ap-
proach zero asq→p. If the behavior near the zone boundary
can be described by a power law,;up2qug, then we predict
g*1 for the dimer fluctuations andg.0.3 for the spin
fluctuations.6

Upon varying the value ofMz , the continuum P2 changes
its shape continuously. In both limits,Mz /N→0 andMz /N
→ 1

2 , it degenerates into a single branch and then
vanishes.6,12 At Mz50 the dimer fluctuations and the spin
fluctuations are produced by entirely different sets of excita-
tions.Szz(q,v) is known to be dominated by the continuum
of two-spinon triplet excitations,16 which are Bethe ansatz
solutions with real rapidities.SDD(q,v) is presumably gov-
erned by two-spinon singlet excitations, which are Bethe an-
satz solutions with complex rapidities.18

C. Perpendicular spin fluctuations „P6…

For finite N, the spectral weight in the dynamic structure
factor S12(q,v) probes excitations from classes~iv!–~vi!.
However, we know from Sec. III B that the intensities of
class-~iv! and class-~v! excitations are bound to fade away in
the limit N→`. The class-~vi! excitations contain the set
KR11. It turns out that much of the spectral weight in
S12(q,v) is carried again bycc* excitations. However, the
transitions^GuSq

1ul& probe thecc* states in a different in-
variant subspace than the transitionŝGuSq

zul& and
^GuDqul& do. This causes some dramatic changes in the
spectrum and in the spectral-weight distribution.

The differences are best illustrated by Fig. 6 in relation to
Figs. 2 and 4. The top row in all three figures shows theI i
configuration of the ground stateuG& for N516, Mz54. The
remaining rows in Fig. 4 represent thecc* states in the
same invariant subspace, whereas the remaining rows in Fig.
2 represent thecc states in the subspace with one less mag-
non ~i.e., two more spinons!. The firstcc state~second row
in Fig. 2! also plays the role of the psinon vacuum in that
subspace.

The second row in Fig. 6 represents the lowest excitation
probed by ^GuSq

1ul& and, at the same time, the psinon
vacuum with one more magnon~i.e., two less spinons!. The
three groups of five states underneath represent the complete
set of cc* states in the same invariant subspace. Because
the momentum transfer for thesecc* states is relative to a
different psinon vacuum than was the case for thecc* states
discussed in Fig. 4, the observable spectrum of the con-
tinuum P6 which emerges forN→` @Fig. 7~a!# is the mirror
image of the continuum P2@Fig. 5~a!#.

FIG. 5. ~a! Energy versus wave number thecc* excitations at
Mz /N51/4 for N564 ~circles! and N→` ~partially folded con-
tinuum P2 outlined by solid lines!. ~b! Integrated intensitySzz(q)
~inset! and relative P2 contribution ~main plot! for N
512,16,20,24,28,32.~c! Integrated intensitySDD(q) ~inset! and
relative P2 contribution~main plot! for N512,16,20,24,28. The
lines in ~b! connect theN532 data points and the lines in~c! the
N528 data points. The values ofSzz(p/2) andSDD(p/2) extrapo-
lated toN→` are marked~1!.

TABLE III. cc* states withq[k2kG>0 from the setKR out
of class ~ii ! excited from the psinon vacuumuG& for N516, R
54: quantum numberm, wave number~in units of 2p/N), energy,
and transition rates. The ground state haskG50 and EG

5211.512 134 686 2 and is realized ath51.58486 . . . for N→`.
The Bethe quantum numbers were listed in Table II of Ref. 6.

2m q E2EG z^GuSq
zul (ii) & z2 z^GuDqul (ii) & z2

0 0 0.0000000000 1.0000000000 1.0000000000
2 1 0.3504534152 0.0484825989 0.1201967890
2 2 0.5271937189 0.0587154211 0.1687346681
2 3 0.5002699273 0.0773592284 0.2298023543
2 4 0.2722787522 0.1257902349 0.3456324084
4 2 0.7981588810 0.0426892576 0.0720507048
4 3 0.9653287066 0.0552255878 0.1098585317
4 4 0.9301340415 0.0743667351 0.1555227849
4 5 0.6966798553 0.1253357676 0.2470269183
6 3 1.2708459328 0.0345439774 0.0307838904
6 4 1.4285177129 0.0516860817 0.0553527352
6 5 1.3858078992 0.0753564030 0.0866741700
6 6 1.1488426600 0.1406415212 0.1563073306
8 4 1.6819046570 0.0235815843 0.0060903835
8 5 1.8257803105 0.0443726010 0.0140423747
8 6 1.7724601200 0.0744641955 0.0259881320
8 7 1.5309413164 0.1686893882 0.0589091070
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The last row in Fig. 6 is not exactly acc* state. It differs
from the cc* in the previous row only by the smallest
change in one Bethe quantum number. This class-~v! state
belongs to the sameST multiplet as the ground stateuG& ~top

row!. We have included it here because its transition rate is
significant. In fact, it is the only excitation atq50 with a
nonzero transition rate. Even though it is not a member of
the setKR11, its contribution toS12(q,v) marks a natural
endpoint of the continuum P6. The excitation energies and
transition rates pertaining to all states shown in Fig. 6 are
listed in Table IV.

The integrated intensityS12(q) as shown in Fig. 7~b! is
almost flat in the region 0<q<qs . The intensity atq50 is
exactly known:12

S12~0!52Mz /N51/2. ~10!

At q.q̄s the functionS12(q) rises gradually and with in-
creasing slope ending in a divergence atq5p. The relation

S12~q!52Mz /N1S21~q! ~11!

dictates that the singularity is the one already described in
Sec. IV A: S12(q);up2qu1/h21.

The relativecc* contribution to the integrated intensity
is largest near the zone center and near the zone boundary as
shown in the inset to Fig. 7~b!. It gradually drops from 100%
at q50 to ;20% at the soft-mode positionq5q̄s and then
rises back to;72.5% atq5p. Note that theN dependence
of the relative intensity data is much stronger atq.q̄s than
at q<q̄s . We shall see that the qualitatively differentN de-
pendences are also observed in transition rates, from which
interesting conclusions can be drawn.

FIG. 6. Psinon vacuumuG& for N516, Mz54 and set ofcc*
states with 0<q<p out of the setK5. The I i are given by the
positions of the magnons~small circles! in each row. The spinons
~large circles! correspond toI i vacancies. The psinon (c) and the
antipsinon (c* ) are marked by a large and a small gray circle,
respectively. The last row describes a state from class~v! that be-
longs to the sameST multiplet as the psinon vacuum.

FIG. 7. ~a! Energy versus wave number thecc* excitations at
Mz5N/4 for N564 ~circles! andN→` ~partially folded continuum
P6 outlined by solid lines!. ~b! Integrated intensityS12(q) ~inset!
and relative P6 contribution~main plot! for N512,16,20,24,28. The
solid line in the inset results from a two-parameter fit as explained
in the context of Fig. 3.

TABLE IV. cc states withq[k2kG>0 from the setKR11 out
of class ~vi! excited from the psinon vacuumuG& for N516, R
54: Bethe quantum numbers, quantum numberm, wave number
~in units of 2p/N), energy, and transition rate. The ground state has
kG50 and EG5211.512 134 686 2 and is realized ath
51.58486 . . . for N→`. The last row describe a state from class
~v! that belongs to the sameST multiplet asuG&.

2I i 2m q E2EG2h z^GuSq
1ul (v i )& z2

2422101214 0 8 21.4624484093 1.9420228564
2422101216 2 7 21.0239463125 0.6324984574
2422101416 2 6 20.7427954774 0.0473348211
2422121416 2 5 20.6661027722 0.0187604165
2410121416 2 4 20.8076063179 0.0156977974
2210121416 4 3 21.1468483618 0.0980201222
2422101218 4 6 20.5201660070 0.3553105587
2422101418 4 5 20.2494575408 0.0606512819
2422121418 4 4 20.1822770670 0.0309111714
2410121418 6 3 20.3302018783 0.0280474732
2210121418 6 2 20.6710449481 0.2106074048
24221012110 6 5 20.0400322092 0.1984683911
24221014110 6 4 10.2167505272 0.0646015620
24221214110 8 3 10.2717353551 0.0401817835
24101214110 8 2 10.1166329921 0.0372990435
22101214110 8 1 20.2237883038 0.3577163008
24221012112 8 0 0.0000000000 0.5000000000
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V. LINE SHAPES

To calculate the line shapes of thecc andcc* contribu-
tions to the dynamic spin and dimer structure factors we use,
wherever applicable, the product ansatz

S~q,v!5D~q,v!M ~q,v! ~12!

discussed at some length in Ref. 6. The factorD(q,v) is the
density of cc or cc* states, which can be evaluated for
very largeN via the Bethe ansatz. The factorM (q,v) rep-
resents the scaled transition ratesNz^GuSq

mul& z2, m5z,1,
2, or Nz^GuDqul& z2 between the ground state and the sets of
cc or cc* states. These matrix elements are also calculated
via the Bethe ansatz but only for much smaller systems.

For the applications considered here, the product ansatz
depends on a reasonably fast convergence, within the spec-
tral boundaries of the continua P2, P3, and P6, of the finite-
N transition rate data toward a smooth functionM (q,v) as
N→`. Problems with this ansatz arise when the finite-size
excitations for which transition rates are available are subject
to significant energy shifts caused by the quasiparticle inter-
action. Forcc andcc* scattering states, these are effects of
O(N21) as discussed in Ref. 6. The exercise of caution is
also indicated when the scaling behavior of the finite-size
transition rates changes at spectral boundaries as is fre-
quently the case.

Notwithstanding these caveats, the product ansatz is a
useful tool for merging the best available transition-rate data
and density-of-states data. It was successfully tested for the
two-spinon excitations atMz50.16 Any major distortions of
the line shapes predicted by the product ansatz can be
avoided if we omit all data points ofM (q,v) that are shifted
across spectral boundaries. Any theoretical and computa-
tional advances that make it possible to calculate transition
rates for larger systems will improve the predictive power of
the product ansatz.

A. SDD„q,v… and Szz„q,v…

What can be observed in a fixed-q scan of the dimer and
parallel spin fluctuations atq5qs? The line shape determi-

nation ofSDD
cc* (p/2,v) is illustrated in Fig. 8 in comparison

with corresponding data forSzz
cc* (p/2,v) as shown in Fig. 8

of Ref. 6. The first factor in the product ansatz is the same
for both sets of data, namely the density ofcc* states in
continuum P2. It has the characteristic shape with a square-
root divergence at the upper band edgevU as shown in panel
~a!.

The scaled transition ratesMzz
cc* (p/2,v) and

MDD
cc* (p/2,v) @panel ~b!# are monotonically decreasing

functions. For both kinds of fluctuations the data at low fre-
quencies are consistent with the power-law divergence,

Szz
cc* ~p/2,v!;SDD

cc* ~p/2,v!;vh22, ~13!

with h22520.468 . . . aspredicted by conformal invari-
ance. It is nearvU where the two sets of data differ most.
While both transition rate functions tend to vanish atvU ,

this tendency is considerably slower for the parallel spin
fluctuations than for the dimer fluctuations. The resulting line
shapes are dramatically different.

We saw that the slow approach to zero atvU of the par-

allel spin transition ratesMzz
cc* (p/2,v) combined with the

divergence inDcc* (p/2,v) produces a diverging trend at

vU in Szz
cc* (p/2,v). The result is a characteristic double-

peak structure.6 The more rapid approach to zero of the

dimer transition ratesMDD
cc* (p/2,v) overcomes the diver-

gence of Dcc* (p/2,v) and produces a single-peak line

shape inSDD
cc* (p/2,v).

Now we consider the wave numbers halfway between the
soft modeqs and the zone boundary or the zone center. The

line-shape determination via product ansatz ofSDD
cc* (q,v) at

q5p/4, 3p/4 is illustrated in Fig. 9. The corresponding data
for the parallel spin fluctuations were shown in Fig. 9 of Ref.
6. For this situation the upper edge of one band (q5p/4)
coincides with the lower edge of the other band (q53p/4).

Even though the number of available data points for
dimer transition rates is limited, there is a clear indication
that the line shapes of the dimer fluctuations again consist of
single-peak structures with a divergence at the lower band
edgevLÞ0 and a shoulder reaching to the upper band edge
vU , in strong contrast to the double-peak structures pre-
dicted for the line shapes of the parallel spin fluctuations.

In summary, the spectral-weight distribution of the dy-
namic structure factors that probe the dimer and parallel spin
fluctuations have many commonalities but also some very
distinct properties. In both cases, the dominant spectrum is
the continuum P2 ofcc* states within the invariantMz
subspace, which also contains the ground stateuG&. Both

functions SDD
cc* (q,v) and Szz

cc* (q,v) are strongly peaked
along the lower continuum boundaryvL(q). Only the latter
is also peaked along the upper continuum boundaryvU(q).

FIG. 8. ~a! Density of cc* states atq5p/2 for N52048. ~b!
Dimer (DD) and parallel spin (zz) transition rates between the
psinon vacuum and thecc* states atq5p/2 for N<32 (zz) and
N<28 (DD). ~c! Line shape atq5p/2 of thecc* contribution to
Szz(q,v) andSDD(q,v). All results are forMz5N/4. The scales in
~b! and ~c! on the left~right! are forDD (zz).
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The divergence alongvL(q) is caused by the transition rates,
whereas the divergence alongvU(q) is a density-of-states
effect.

B. SÀ¿„q,v…

Here we focus on the line shape atq5p of the cc con-
tribution to the dynamic spin structure factorS21(q,v). The
continuum P3 ofcc states was previously found to be domi-
nant. The results predicted on the basis of the product ansatz
are shown in Fig. 10.

The density of states has the same characteristic shape as
seen previously. The spectral weight is strongly concentrated
in the lowest finite-size excitation. The scaling behavior of
the transition rate for that state,Nz^GuSq

2ul& z2;(1/N)1/h22,
translates, via conformal invariance, into a power-law infra-
red divergence,

S21
cc ~p,v!;v1/h22, 1/h22521.346 . . . , ~14!

for the spectral-weight distribution of the infinite chain. The
solid line represents a two-parameter fit,av1/h221b, of the
data points representing the lowest excitation forN
512,16,20,24,28. The transition rate data at higher frequen-
cies appear to approach zero sufficiently rapidly to overcome
the divergent trend of the density of states to produce a
monotonically decreasing spectral-weight distribution with a
cusp singularity at the upper continuum boundary.

Similar single-peak line shapes are expected for fixed-q
scans across the range of the continuum P3. Hence thecc
contribution to the perpendicular spin fluctuations is a struc-
ture that is strongly peaked along the lower continuum
boundaryvL(q) in the shape of the psinon dispersion6 and a
shoulder reaching to the upper boundaryvU(q) of the con-
tinuum P2. Given the strong divergence ofS21

cc (q,v) at
vL(q), the perpendicular spin fluctuations offer the most
promising way to measure the energy-momentum relation of
the psinon quasiparticle by means of neutron scattering.

C. S¿À„q,v…

Here we are back to focusing on line shapes produced by
cc* excitations as in Sec. V A, but not in the same invariant
Mz subspace. Nevertheless, the continuum P6 as depicted in
Fig. 7~a! produces, atq5p/2, a band of equal width and
location as continuum P2 depicted in Fig. 5 did.

The data used in the product ansatz applied to

S12
cc* (p/2,v) are shown in Fig. 11. The density of states is

exactly the same as in Fig. 8. The data for the transition rates
are monotonically increasing withv. The trend in the low-

frequency limit is thatM 12
cc* (p/2,v) approaches a finite

value, possibly zero. Given the fact thatDcc* (p/2,v) is flat
at low frequencies, the same trend is observed in

S12
cc* (p/2,v). The prediction of conformal invariance for the

leading infrared singularity is

FIG. 9. ~a! Density of cc* states atq5p/4, 3p/4 for N
52048.~b! Dimer transition rates between the psinon vacuum and
the cc* states atq5p/4, 3p/4 for N516,24.~c! Line shape atq
5p/4, 3p/4 of thecc* contribution toSDD(q,v). All results are
for Mz5N/4.

FIG. 10. ~a! Density of cc states atq5p for N52048. ~b!
Perpendicular spin transition rates between the psinon vacuum and
the cc states atq5p for N512,16,20,24,28.~c! Line shape atq
5p of the cc contribution toS21(q,v). All results are forMz

5N/4.

FIG. 11. ~a! Density of cc states atq5p/2 for N52048. ~b!
Perpendicular spin transition rates between the psinon vacuum and
the cc* states atq5p/2 for N512,16,20,24,28.~c! Line shape at
q5p/2 of the cc* contribution toS12(q,v). All results are for
Mz5N/4.
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S12
cc* ~p/2,v!;vh12, h1253.531 . . . ~15!

At the upper band edgevU , the transition rate data ex-
hibit a pronounced maximum that could either signal a di-
vergence or a cusp singularity for the infinite system. What-
ever the case may be, this enhancement amplifies the

divergent density of states inS12
cc* (p/2,v).

Recall that the parallel spin fluctuations exhibit a double-
peak line shape at the soft-mode wave numberqs . By con-
trast, the line shape of the perpendicular spin fluctuations at
the soft-mode wave numberq̄s is a single-peak structure with
the spectral weight concentrated near the upper band edge.
For other wave numbers we do at present not have enough
transition rate data points for a useful application of the
product ansatz. Nevertheless, from the few data points that
we do have some interesting conclusions can be drawn.

In the transition rate data currently available we observe
that the spectral weight is heavily concentrated in a single
excitation for any givenqÞp/2. For 0<q,q̄s that excita-
tion is located along the lower boundary of continuum P6
and for q̄s,q<p along the upper boundary. Both bound-
aries have the shape of the antipsinon dispersion.6 Therefore,

the contribution ofS12
cc* (q,v) to the perpendicular spin fluc-

tuations offers the most direct way to measure the dispersion
of the antipsinon quasiparticle by means of neutron
scattering—not once but twice, in different parts of the Bril-
louin zone.

The outstanding role of the excitations along the two an-
tipsinon branches atq,q̄s andq.q̄s is illustrated in Fig. 12,
where we have plotted the transition ratesz^GuSq

1ul& z2 ver-
susq of all states from continuum P6 across various system
sizes. However, the role of the finite-N excitations that are
part of these dominant branches is different atq,q̄s andq

.q̄s . This is evident by comparison of panels~a! and ~b!,
which show differently scaled transition rates
Naz^GuSq

1ul& z2.
To make sense of the data in this representation we must

distinguish three scenarios and ask the question: For what

value of the scaling exponenta do the transition rate data
exhibit minimalN dependence?

~i! For states that are inside a continuum, the product
ansatz requires requires that the exponenta51 minimizes
the N dependence of the transition rate data.

~ii ! For states that mark the boundary of a continuum
where the spectral-weight distribution has a divergent singu-
larity that is not caused by a divergent density of states the
exponent which minimizes theN dependence of the transi-
tion rate data is in the range 0,a,1.

~iii ! For states that form a branch with nonvanishing spec-
tral weight in the limitN→`, the exponent that minimizes
the N dependence isa50.

There is ample evidence for the first scenario in the results
presented earlier. The data in panel~a! strongly indicate that
the third scenario is realized for the antipsinon branch at 0
,q,q̄s . The evidence is rigorous for the isolated excitation
at q50, which carries all the spectral ofS12(q,v) as dis-
cussed previously.

Panel~b! suggests that the second scenario applies to the
antipsinon branch atq̄s,q<p. The exponenta51/h
50.653 . . . used here is suggested by conformal invariance,
but there is a strong possibility that the singularity of

S12
cc* (q,v) along the antipsinon branch atq̄s,q<p is gov-

erned by aq-dependent exponent. The insets to Fig. 12 show
the N dependence of the corresponding data atq5p, which
is off the scale used in the main plots. At the zone boundary,
the width of continuum P6 has shrunk to zero, which is
likely to affect theN dependence of the transition rate singu-
larly, as indicated.

In conclusion, this study makes predictions of unprec-
edented detail for the line shapes of the spin and dimer fluc-
tuations in the 1Ds5 1

2 Heisenberg antiferromagnet at zero
temperature and nonzero magnetic field. Foremost among
these predictions is the direct observability in the perpen-
dicular spin fluctuations of the dispersion relations for the
two quasiparticles that play a crucial role in this situation:
the psinon and the antipsinon.

A project of considerable interest is the generalization of
the analysis reported here to the 1Ds51/2 XXZ model,
again via the Bethe ansatz. The lower symmetry of theXXZ
model imposes less stringent selection rules on the transi-
tions induced by the spin and dimer fluctuation operators. A
study of quantum fluctuations in theXXZ model at nonzero
magnetic field is likely to yield new insights into the nature
of the c andc* quasiparticles.
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APPENDIX: CALCULATING MATRIX ELEMENTS
VIA THE BETHE ANSATZ

The Bethe ansatz4 is an exact method for the calculation
of eigenvectors of integrable quantum many-body systems.

FIG. 12. ~a! Unscaled and~b! scaledcc* transition rates for
S12(q,v) at Mz5N/4 for N512,16,20,24,28.
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The Bethe wave function of any eigenstate of Eq.~1! in the
invariant subspace withr 5N/22Mz reversed spins relative
to the magnon vacuum,

uc&5 (
1<n1,•••,nr<N

a~n1 , . . . ,nr !Sn1

2
•••Snr

2 uF&, ~A1!

has coefficients of the form

a~n1 , . . . ,nr !5 (PPSr

expS i (
j 51

r

kPjnj1
i

2 (
i , j

r

uPiPj D ~A2!

determined byr magnon momentaki and one phase angle
u i j 52u j i for each magnon pair. The sumPPSr is over the
permutations of the labels$1,2, . . . ,r %.

The consistency requirements for the coefficients
a(n1 , . . . ,nr) inferred from the eigenvalue equationHuc&
5Euc& and the requirements imposed by translational in-
variance lead to a set of coupled nonlinear equations for the
ki and u i j . A computationally convenient rendition of the
Bethe ansatz equations for a state specified by Bethe quan-
tum numbersI 1 , . . . ,I r has the form

Nf~zi !52pI i1(
j Þ i

f„~zi2zj !/2…, i 51, . . . ,r , ~A3!

where f(z)[2 arctanz, ki5p2f(zi), and u i j
5p sgn@Re(zi2zj )#2f„(zi2zj )/2…. The energy and wave
number of the eigenvector thus determined are

E2EF

J
52(

i 51

r
2

11zi
2

, k5pr 2
2p

N (
i 51

r

I i , ~A4!

whereEF5JN/4 is the energy of the magnon vacuum.
In the past, the Bethe ansatz was rarely used for the pur-

pose of calculating matrix elements. The main deterrent has
been the need of evaluating the sumPPSr over ther ! mag-
non permutations in the coefficients~A2! of the Bethe eigen-
vectors~A1!. However, the tide is now changing rapidly for
two reasons:~i! the availability of vastly higher computa-
tional power and~ii ! theoretical advances that make it pos-
sible to reduce matrix elements of Bethe wave functions to
determinantal expressions.19

In the following, we sketch how the matrix elements can
be manipulated effectively by using the Bethe wave func-
tions directly. The use of the determinantal expressions of
Bethe ansatz transition rates for the calculation of dynamic
structure factors will be reported elsewhere.20

In designing an efficient algorithm, we must heed the fact
that in the calculation of a single matrix element, the sum
PPSr is evaluated many times, once for every coefficient
a(n1 , . . . ,nr) of the two eigenvectors involved. Under these
circumstances, it is imperative that the algorithm has rapid
access to a table of permutations. Such tables can be gener-
ated recursively by powerful algorithms.21

The computational effort can be reduced considerably if
we use the translational symmetry of Eq.~A1!, guaranteed
by the relationa(n11 l , . . . ,nr1 l )5eikla(n1 , . . . ,nr) be-
tween Bethe coefficients~A2! pertaining to basis vectors that

transform into each other under translation. Translationally
invariant basis vectors have the form

u j ;k&[
1

Adj
(
l 50

dj 21

eilk u j & l , ~A5!

where u j & l[T l u j &05un1
( j )2 l , . . . ,nr

( j )2 l & and 1<N/dj<N
is an integer. The wave numbersk realized in the set~A5! are
multiples mod(2p) of 2p/dj .

The set of basis vectorsu j &05un1
( j ) , . . . ,nr

( j )&, j
51, . . . ,d, are the generators of the translationally invariant
basis. The set of distinct vectorsu j ;k& for fixed k is labeled
j PJk#$1, . . . ,d%. The rotationally invariant subspace for
fixed N/22r , which has dimensionalityD5N!/ @r !(N
2r )! #, splits into N translationally invariant subspaces of
dimensionality Dk , one for each wave numberk
52pn/N,n50, . . . ,N21. We have

D5(
j 51

d

dj5 (
0<k,2p

Dk , Dk5 (
j PJk

. ~A6!

The Bethe eigenvector~A1! expanded in this basis can
thus be written in the form

uc&5 (
j PJk

aj (
l 50

dj 21

eilk u j & l5(
j 51

d

aj (
l 50

dj 21

eilk u j & l , ~A7!

where theaj[a(n1
( j ) , . . . ,nr

( j )), the Bethe coefficients of the
generator basis vectorsu j &0, are the only ones that must be
evaluated. The last expression of Eq.~A7! holds because the
Bethe coefficientsaj of all generatorsu j &0 that do not occur
in the setJk are zero.

We calculate transition rates for the dynamic structure
factor ~2! in the form

z^GuSq
mum& z25

z^c0uSq
mucm& z2

uuc0uu2uucmuu2
, ~A8!

where uc0&,ucm& are the~non-normalized! Bethe eigenvec-
tors of the ground state and of one of the excited states from
classes~i!–~vi!, respectively. The norms are

uucuu25(
j 51

d

dj uaj u2. ~A9!

The matrix element̂ c0uSq
mucm& is nonzero only ifq5km

2k012pZ. For the fluctuation operatorSq
z it can be evalu-

ated in the form

^c0uSq
zucm&5

1

AN
(
j 51

d

āj
(0)aj

(m) (
n51

N

eiqn (
l 50

dj 21

eilq
l^ j uSn

zu j & l .

~A10!

The nonvanishing matrix elements^c0uSq
6ucm& for the other

spin fluctuation operators must also satisfyq5km2k0
12pZ and can be reduced to somewhat more complicated
expressions involving elementsl 0

^ j 0uSn
6u j m& l m

between basis

vectors from differentST
z subspaces. The memory require-

ments for the calculation of one such matrix element are 6.7
MB for N518, r 59 and 73 MB forN520, r 510.
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