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The quantum mechanics of cluster melting

Thomas L. Beck and J. D. Doll

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

David L. Freeman

Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881
(Received 15 November 1988; accepted 27 January 1989)

We present here prototype studies of the effects of quantum mechanics on the melting of
clusters. Using equilibrium path integral methods, we examine the melting transition for small
rare gas clusters. Argon and neon clusters are considered. We find the quantum-mechanical
effects on the melting and coexistence properties of small neon clusters to be appreciable.

I. INTRODUCTION

The study of the equilibrium and dynamical properties
of clusters is an active and growing area of research.! From a
theoretical point of view, cluster studies are of interest for a
variety of reasons. First, clusters themselves are important
to a diverse range of physical phenomena and thus their
study has a significant intrinsic interest. Moreover, the study
of the size dependence of the physical properties of clusters is
important in the analysis of the transition from finite to bulk
behavior. Finally, clusters frequently play both a theoretical
and practical role as prototype systems in the study of more
general condensed phase and interfacial phenomena.

Theoretical studies of the equilibrium and dynamical
cluster properties have typically utilized classical mechani-
cal methods. Starting from a specified microscopic force law
and the assumption of classical behavior, numerical Monte
Carlo and molecular dynamics methods can produce esti-
mates for the equilibrium and dynamical properties of such
systems that are free of untestable numerical approxima-
tions. The studies of Lee, Barker, and Abraham? of the ther-
modynamic properties of rare gas clusters are an excellent
example of this type of investigation. For many problems,
classical mechanical studies are appropriate and yield physi-
cally relevant predictions. For other problems, however,
quantum-mechanical effects are sufficiently large that they
cast doubt on the adequacy of purely classical approaches.

Numerical path integral methods are emerging as im-
portant tools for the analysis of many-body quantum-me-
chanical systems.® These techniques have been shown to be
useful in the study of a broad range of physical problems,
including the study of the thermodynamic properties of clus-
ters. The details of these approaches as well as their applica-
tion to cluster problems have been outlined previously.* It
is sufficient to note here that these methods are the quantum-
mechanical generalizations of conventional classical Monte
Carlo methods. We also note that these methods have been
extended recently to permit time-dependent, as well as equi-
librium, applications.”"’

The present work is concerned principally with the clus-
ter melting transition. The initial observation of a transition
between solid-like and liquid-like forms for clusters was ob-
tained via classical Monte Carlo and molecular dynamics
simulations of argon clusters.’®?* A quantum statistical
model was then developed by Berry and co-workers which is
based on a harmonic oscillator-rigid rotor expression for the
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rigid form near melting and a model for the liquid form tak-
en from nuclear theory.>*~?¢ From these models, energy level
spectra were constructed and a correlation diagram was
drawn between the limiting spectra. The free energy was
then determined as a function of temperature and a nonrigi-
dity parameter describing motion along the correlation dia-
gram. The implications of Refs. 25 and 26 are that finite
clusters exhibit different and sharp melting and freezing
temperatures, and that these temperatures approach each
other and the bulk transition temperature as N, the number
of atoms, approaches infinity. Between the melting and
freezing temperatures, the model predicts a coexistence of
liquid-like and solid-like forms in an ensemble of clusters,
much as one would see in a chemical equilibrium between
different isomeric forms. The model calculations were per-
formed on hamiltonians constructed to characterize the
melting behavior of Ar,. Classical simulations of the Ar,,
cluster give evidence consistent with this approach in that a
coexistence of solid-like and liquid-like forms, as determined
by equilibrium and dynamical properties of the separate
forms, is observed in the transition range of energies or tem-
peratures in both isoergic and isothermal simulations.?’+?8
Further studies showed that all argon clusters with N> 3
exhibit a transition from a rigid, solid-like form to a nonri-
gid, liquid-like form as a function of energy, but the particu-
lar melting behavior of a given cluster is a very irregular
function of N.?**® For example, the argon clusters with
N =17, 13, and 19 exhibit especially high melting tempera-
tures and show a range of energies over which one can distin-
guish a coexistence of solid-like and liquid-like forms. How-
ever, the N =28, 14, and 20 clusters, resulting from the
addition of a single argon atom to the “magic number” clus-
ters, melt at much lower temperatures and exhibit no such
coexistence. Also, Ar; exhibits no coexistence®' and no clus-
ter studied with N> 19 (Ar,, has a relatively wide coexis-
tence range) shows the coexistence in the transition region.
These findings led to a study of the physical mechanisms
underlying the melting behavior.>*** The study utilized peri-
odic steepest descent quenches along relatively long trajec-
tories in the transition range of energies to determine the
potential minima accessed along a trajectory, the time scales
for the motions, and the nature of the reaction paths linking
the minima. The authors found that the conditions under
which one can observe a coexistence of solid-like and liquid-
like forms are the existence of a very stable potential mini-
mum relative to the nearest accessible minima, and a separa-
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tion of time scales for the interwell and intrawell motions.
The motions linking the minima are generally very collective
motions; no clear “surface diffusion” of an outer atom on a
rigid core was observed in the size range studied. The coexis-
tence of solid-like and liquid-like forms refers to a coexis-
tence of the motions about the very stable, low-lying mini-
mum and the higher-lying, less stable minima, respectively,
in cases where the potential surface has this form. Fully li-
quid-like behavior is observed when the time scale separa-
tion between intrawell and interwell motions breaks
down.??3*

The conditions for coexistence are met in some but not
all of the clusters between N = 3 and 33, and are especially
pronounced in the three “closed shell” pentagonal struc-
tures: the pentagonal bipyramid, the icosahedron, and the
double icosahedron. However, systems like the N = 14, 17,
and N> 19 clusters have a large range of near-lying minima
accessible in the transition region, and thus exhibit no coex-
istence of distinct liquid-like and solid-like forms. As ob-
served in the quench studies, the number of near-lying mini-
ma accessible in the transition range for clusters with N> 19
rises sharply with N, and thus the likelihood of observing
coexistence of solid-like and liquid-like forms in the larger
clusters due to the two well separated kinds of potential
minima is small. One likely exception to this is the sequence
of stable Mackay icosahedra at N = 55,147, etc.’>*® De-
tailed knowledge of the potential surfaces of these small sys-
tems in terms of potential minima and connectivity is thus
important in understanding the widely varying equilibrium
and dynamical behavior of the clusters as a function of N.

Several experimental groups have begun to examine the
possibility of cluster melting in pure and mixed clusters.
Electron diffraction patterns have exhibited solid-like and
liquid-like forms as a function of backing conditions in a
molecular beam.>”® Vibrational Raman spectroscopy on
large clusters of N, (on the order of 10°-10° molecules) has
been used to characterize gas-liquid, liquid~solid, and 5~ to
a-solid phase transitions.>® Spectroscopic studies coupled
with Monte Carlo and molecular dynamics simulations on
mixed clusters of argon and a dopant species have revealed a
very diverse behavior as a function of cluster size and tem-
perature.*®** The spectra and simulations support the no-
tion that one observes highly varying equilibrium and dy-
namical behavior as a function of the solvent cluster size and
temperature. One of the studies*? discusses four distinct or-
der—disorder transitions in carbazole-argon clusters.

The classical simulation studies leave unanswered ques-
tions concerning the magnitude of possible quantum-me-
chanical effects on the melting transition. Such effects could,
in principle, be studied through the use of approximate
methods; in practice, however, Monte Carlo path integral
techniques are now sufficiently well developed that fully
quantum calculations are quite feasible. In this paper we
present numerically exact quantum calculations of the clus-
ter melting transition of the Ar; and Ne, clusters. We find a
small quantum effect for the argon cluster and a substantial
quantum effect on the melting and coexistence properties for
the neon cluster at temperatures along the melting curve.
Studies examining quantum effects as a function of cluster

size are currently underway.

Section II briefly sketches the numerical path integral
methods appropriate for the present study and specifies the
empirical potential model. Numerical results and associated
discussions and applications are presented in Sec. III.

i{l. FORMALISM

This section describes the Monte Carlo path integral
formalism used in the present study. General reviews outlin-
ing the application of both classical and quantum Monte
Carlo methods to the study of clusters are available and
should be consulted if a more detailed discussion is de-
sired.*~® For simplicity, a one-dimensional notation will be
used in much of the following.

General thermodynamic averages for the canonical en-
semble are given classically by

(B) =fdx exp| ~ﬂV(x)]B(x)/f dx expl — BV(x)],
(n

where B is some property of interest, x is a (possibly) multi-
dimensional variable denoting the coordinates necessary to
describe the physical system, and F(x) is the interaction
potential. Averages of the type in Eq. (1) are not generally
available analytically, except for certain idealized interac-
tion potentials. They can, however, be evaluated by numeri-
cal Monte Carlo methods for general interactions. Classical
Monte Carlo methods have been reviewed by Valleau and
Whittington** while issues germane to cluster applications
have been discussed by Abraham.*

Thermodynamic averages for the canonical ensemble
are given quantum mechanically by

(B) =Trlexp( — BH)B ]/Tr[exp( —BH)], (2)

where H is the system Hamiltonian and the operator Brepre-
sents the property of interest. Considering the particular
case where B is diagonal in the coordinate representation,
Eq. (2) takes on the form

(B) = J dx(xle””)x)B(x)/f dx{xle=""|x). (3)

The quantum-mechanical average is thus similar to the cor-
responding classical expression, except that the simple clas-
sical Boltzmann factor is replaced by the appropriate density
matrix element.

Progress toward the general evaluation of quantum-me-
chanical averages of the type discussed above can be made
using numerical path integral methods. The details of these
approaches are described elsewhere.*® In simple terms, one
transforms the formal “‘sum over paths” representation of
the quantum-mechanical density matrix element in Eq. (3)
into an ordinary, but high-dimensional integral over “‘auxil-
iary” variables that label the quantum-mechanical “paths”.
The details of this transformation depend on the particulars
of how the paths are enumerated. The essential result, how-
ever, is that for the case of Boltzmann statistics, Eq. (3) can
be written as

(B) = de dap(x,a)B(x)/J dx dap(x,a), (4)
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where p(x,a) is a known positive probability distribution
function. The assumption of Boltzmann statistics is valid for
the systems studied below. Within the Fourier path integral
approach used in this study p(x,a) is given by

p(x,a) =exp ( - z a;/20% — B{ V)), (5)
k=1
where

ol =2/ mnk?, (6a)
1

(V) =J du V[x(u)], (6b)
0

x(u) =x+ z a, sin(kwu). (6¢)

k=1

The quantum-mechanical expression, Eq. (4), is now an
average over both the original coordinates x and the asso-
ciated auxiliary variables, a. This average can, however, be
evaluated using standard Monte Carlo methods. In essence,
the numerical path integral approach has transformed the
original quantum-mechanical problem in x into a ““classical”
problem in the augmented space (x,a). In practice, one typi-
cally truncates the formally infinite Fourier representation
of the paths, Eq. (6¢), at some upper limit k., following
convergence of the quantity of interest. The value of &, ,,
required for any particular problem can be estimated by re-
quiring that the natural length scale for that Fourier vari-
able, Eq. (6a), be small relative to the length scale of the
interaction potential. Useful techniques designed to improve
the convergence of the basic Fourier approach are available
and were used in the present work.*5*” A number of cluster
studies have been reported using the methods described
above as well as related approaches.*-%*->°

In the present work we are particularly concerned with
possible quantum-mechanical effects on the transition
between solid-like and liquid-like behavior in clusters. We
have investigated this issue by computing the root-mean-
square (rms) bond length fluctuations in the cluster, defined
as

2 JUri)y = (ry)?

6= ’ (7)
N(N-1) ,g, (ry)

as a function of temperature both classically and quantum
mechanically. The indices in the sum in Eq. (7) range over
the particles within the cluster. The rms bond length fluctu-
ations were evaluated by both classical and path integral
Monte Carlo methods. This quantity gives a clear indication
of the onset of nonrigid or liquid-like motions in the cluster,
as it rises sharply at energies or temperatures where the clus-
ter begins to exhibit, for example, diffusive modes in the
power spectrum of the velocity autocorrelation function and
a linearly increasing mean-square displacement.?’-3%-32-33
The rapid rise of § at the melting point of the clusters is
reminiscent of the Lindemann criterion for bulk melting,
which states that the bulk material melts when the fluctu-
ations reach 10%-15%.

The second quantity we examine is the mean potential
energy of the cluster. This quantity is calculated classically
as in Eq. (1) and quantum mechanically via Eq. (4). We

calculate the average potential energy over short intervals
along the Metropolis walk and then calculate the distribu-
tion of the short interval averages. The distribution gives an
indication of the “basins of attraction” in the configuration
space in the transition region. This calculation is analogous
to the calculation of the distribution of coarse grained kinetic
energies in molecular dynamics studies.?’® However, we
emphasize that the “time” along the Monte Carlo procedure
is fictitious, and that the distribution merely gives some indi-
cation of the nature of the potential surface accessed along
the Metropolis walk. A similar averaging procedure was
used in Ref. 28 in a study of the constant temperature behav-
ior of the Ar; cluster; coexistence of solid-like and liquid-
like forms is indicated by the observation of a bimodal form
for the distribution. In effect, the distribution of potential
energies gives a mapping of the potential minima accessed
along the Metropolis walk, as long as the walk is trapped for
appreciable amounts of time along the Monte Carlo integra-
tion in motions about each of the minima. The seven atom
cluster has a potential surface which leads to coexistence of
forms in the transition region in classical simulations; that is,
it possesses one low-lying minimum (the pentagonal bipyra-
mid) relative to the higher-lying minima.*?-*

In the present study the cluster potential was approxi-
mated by a pairwise sum of Lennard-Jones interactions. Ta-
ble I lists the well depth and range parameters used for the
different rare gases in the present study. In addition to these
pairwise interactions, the cluster potential used in the pres-
ent study included a spherical “confining” potential ¥, of
the form

Ve=73 (r/R), (8)

where the parameter R. specifies the cluster confining vol-
ume. The radius of the confining potential was chosen to be
much larger than the radius of the cluster in these studies to
mimic free boundary conditions; typically, a value of 20 a.u.
was used. Varying the radius to larger values had no notice-
able effect on the § or mean potential values.

Since the potential of interaction between the atoms is of
a pairwise, Lennard-Jones form, the law of corresponding
states for the various rare gases holds in classical simulations
of a given cluster size if free boundary conditions are as-
sumed. In practice, the confining potential was set to a large
enough value that the system experienced essentially free
boundary conditions; test calculations were performed on
the neon and argon clusters which showed that the law of
corresponding states holds. Thus, the rms bond length fluc-
tuation curves are the same for classical Ar,; and Ne, when
the & values are plotted as a function of the temperature
scaled by the well depth. The quantum results of course do
not necessarily obey this rule.

TABLE I. Lennard-Jones parameters used in the neon and argon studies.

€ g
Neon 362K 2744
Argon 1194 K 341 A
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Hii. RESULTS AND DISCUSSION

The methods of Sec. II were applied to the study of the
melting transition in seven atom argon and neon clusters.
The results for the quantum and classical calculation of the
rms bond length fluctuations as a function of scaled tempera-
ture are summarized in Fig. 1. Except in the low-tempera-
ture region, the classical and quantum-mechanical results
for argon are quite similar. The differences between the
quantum and classical results at the low temperatures arise
from the zero-point motions about the pentagonal bipyrami-
dal structure. There is little or no quantum effect on the
melting temperature, however.

This is not the case for neon, where appreciable differ-
ences between the classical and quantum results are visible in
the transition region of Fig. 1. The quantum-mechanical
melting curve for neon is shifted to lower temperatures rela-
tive to the classical calculation. This result can be explained
as follows. The introduction of quantum mechanics has two
effects: zero-point motion and tunneling. If, for descriptive
purposes, we view the potential surface for the quantum case
as a modified potential of the Feynman-Hibbs form®'
(which corresponds to a local gaussian average over length
scales proportional to the thermal deBroglie wavelength},
the local averaging has the effect of raising the minima and
lowering the saddles of the multidimensiona! surface. Both
of these effects contribute to the onset of nonrigid behavior
at lower temperatures than is observed in the classical calcu-
lation.

The bulk melting temperature of neon (23.48 K) is very
close to that predicted by assuming the law of corresponding
states and scaling the melting temperature of bulk argon
(83.95 K), which can to a high degree of accuracy be treated

0.3
Ne QM . Tonne
e {‘. ;g&ﬁg
02 | } o
[/} L ArQM é
]. ;
01 | i
Y.
b Ar and Ne CM
cogged? _—— Arand e
0.0
0.0 0.1 0.2 0.3
kT/e

FIG. 1. Shown are the classical and path integral Monte Carlo estimates of
the rms bond length fluctuations [ Eq. (7) ] for seven atom argon and neon
clusters. The results for each study utilized 4 X 10° Monte Carlo points for
temperatures in the transition region and smaller numbers of points else-
where. The quantum-mechanical studies used Fourier path integral meth-
ods with gradient partial averaging. One (five) Fourier coefficients were
used in the quantum-mechanical argon (neon) studies. Convergence in the
low-temperature results was obtained with this number of coefficients.

classically, so quantum effects on melting are not large in the
bulk neon system.>? Therefore, the shift of the § curve in the
cluster is a finite size effect due to the accessibility of neigh-
boring potential minima at lower temperatures in the cluster
relative to the bulk.

Also, note that the quantum rms fluctuations are sub-
stantial for the neon clusters even as the temperature ap-
proaches 0.0 K. The zero-point motions are large enough
(6=0.075) that the system accesses anharmonic regions of
the potential surface even at very low temperatures. In fact,
the quantum calculation gives a § value at low temperatures
which is very close to the value where transitions between
various potential minima begin to occur in the classical sim-
ulation.

The distributions of potential energies accessed along
the Metropolis walk have also been calculated (Fig. 2) for
the neon and argon clusters, as discussed in Sec. II. The
classical results are very similar to the behavior observed in
Monte Carlo simulations of Ar,;.2® At low temperatures, a
unimodal distribution is observed as the Metropolis walk
samples states corresponding to motions about the stable
pentagonal bipyramidal structure. As the temperature is in-
creased into the transition range, the distribution takes on a
bimodal form which is consistent with earlier molecular dy-
namics simulations of the seven atom system?® and Monte
Carlo simulations of the 13 atom cluster.?® The low poten-
tial-energy structure corresponds to the pentagonal bipyra-
mid, while the peak at higher potential-energy results from
motions about the higher-lying minima. The coexistence of
motions within the stable pentagonal bipyramidal well and
motions among the higher-lying minima was interpreted as
solid-liquid coexistence in the dynamics simulations of
Ar,,**3* since the dynamical properties of the two forms
indicate a separation into solid-like and liquid-like proper-
ties, respectively.

The quantum effects on the distributions for the argon
cluster are not large. The same bimodal distribution is ob-
served in the transition range of temperatures, but the quan-
tum results are shifted to slightly higher potential energy.
For neon, however, the alteration of the distribution is dra-
matic. Atall temperatures studied, the quantum distribution
takes on a broad unimodal form; the coexistence behavior
[as indicated by a clear bimodal form for the distribution, as
in Figs. 2(e) and 2(g) ] resulting from the particular form of
the potential surface in the classical simulation is lost. Also,
the quantum distribution is shifted to much higher potential
energies. This occurs even at 2.0 K where the classical distri-
bution is a very narrow unimodal distribution resulting from
sampling about the most stable, solid-like structure. In ef-
fect, the neon atoms at these temperatures have a large
enough thermal deBroglie wavelength that the cluster is very
“soft,” and the potential surface is explored in a very differ-
ent manner than in the classical system. Even at very low
temperatures, the cluster accesses regions of the potential
surface which, for the classical system, would allow passage
over saddles to neighboring potential minima. As mentioned
above, if one views the potential surface for the quantum
neon cluster as a modified potential of the Feynman—Hibbs
form, the averaging over length scales proportional to the
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FIG. 2. Distributions of short time averaged potential energies for the classical and quantum simulations calculated along long particle procedures (typically
2% 10° attempted moves). The averaging interval was taken to be 7000 attempted particle moves, with approximately a 50% acceptance rate at each
temperature. For the quantum results, particle and Fourier coefficient moves were attempted at each step. (a) Classical Ar, at 19.0 K, in the transition range
of temperatures. (b) Quantum Ar, at 19.0 K. (c) Classical Ne, at 2.0 K. (d) Quantum Ne, at 2.0 K. (e) Classical Ne, at 5.0 K. (f) Quantum Ne, at 3.0K.
(g) Classical Ne, at 6.5 K. (h) Quantum Ne, at 6.5 K.
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deBroglie wavelength significantly alters the nature of the
potential surface.

Several experiments have now been done on cluster sys-
tems composed of a dopant species either imbedded in or
adsorbed on argon clusters.**** A wide range of spectral
behavior has been observed for given cluster sizes and tem-
peratures. The results discussed above imply that, for experi-
ments probing the transition from solid-like to liquid-like
behavior in the analogous neon clusters, quantum effects can
be expected to be important. We are currently investigating
such mixed systems.

Quantum Monte Carlo methods provide a useful tool
for the calculation of properties which are indicators of the
onset of nonrigid behavior in small clusters. The quantum
effects on the melting and solid-like, liquid-like coexistence
properties of the clusters are found to be relatively small for
argon and large for neon. Other cluster phenomena that
would be amenable to study by these methods are, e.g., mass
segregation in clusters due to quantum effects, the structure
of species adsorbed on the surface of a cluster, and the stabil-
ity of various clusters formed in a nucleation process. Newly
developed time-dependent methods™"” should prove useful
in calculating dynamical properties of clusters and other
many-body systems. Work is currently underway utilizing

these methods.
Note added in proof. Following completion of this paper,

we became aware of a recent path integral simulation of
small argon clusters by Franke ez al.>’
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