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Integrability and action operators in quantum Hamiltonian systems

Vyacheslav V. Stepanov and Gerhard Mu¨ller
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817

~Received 26 April 2000; revised manuscript received 27 December 2000; published 12 April 2001!

For a ~classically! integrable quantum-mechanical system with two degrees of freedom, the functional

dependenceĤ5HQ( Ĵ1 ,Ĵ2) of the Hamiltonian operator on the action operators is analyzed and compared with
the corresponding functional relationshipH(p1 ,q1 ;p2 ,q2)5HC(J1 ,J2) in the classical limit of that system.
The former converges toward the latter in some asymptotic regime associated with the classical limit, but the

convergence is, in general, nonuniform. The existence of the functionĤ5HQ( Ĵ1 ,Ĵ2) in the integrable regime
of a parametric quantum system explains empirical results for the dimensionality of manifolds in parameter
space on which at least two levels are degenerate. The analysis is carried out for an integrable one-parameter
two-spin model. Additional results presented for the~integrable! circular billiard model illuminate the same
conclusions from a different angle.

DOI: 10.1103/PhysRevE.63.056202 PACS number~s!: 05.45.2a, 75.10.Hk, 75.10.Jm

I. INTRODUCTION

A conspicuous phenomenological discriminant between
quantized integrable and nonintegrable parametric Hamil-
tonian systems with two or more degrees of freedom is the
occurrence or prohibition of level crossings between states
within the same invariant Hilbert subspace of the underlying
symmetry group@1–3#. Consider a quantum system whose
Hamiltonian depends ond continuous parameters. Suppose
that this model is~classically! integrable if thed parameters
satisfy r relations, which is equivalent to stating that the
model is integrable for parameter values on an integrability
manifold of dimensionalitydI5d2r in d-dimensional pa-
rameter space.

Empirical evidence shows that almost all level crossings
occur at parameter values on the integrability manifold. Ge-
nerically, two levels that are degenerate at one point on the
integrability manifold remain degenerate for any variations
of the d parameters that satisfy ther integrability conditions
plus one condition specific to the two levels in question. This
is equivalent to stating that level degeneracies occur on (dI

21)-dimensional level crossing manifolds, which are em-
bedded in the integrability manifold.

A recent study@4#, which investigated this issue system-
atically, showed for a two-spin model withd56 and dI
55, the level crossing manifolds are, in fact, four-
dimensional, and that they are all confined to the five-
dimensional integrability manifold. It showed, moreover,
that the ~classical! integrability manifold can be recon-
structed from the~intrinsically quantum-mechanical! level
crossing manifolds.

A related study@5# of the same model system showed that
the effects of nonintegrability on the energy-level spectrum
and on the spectra of other quantum invariants are akin to the
effects of a symmetry reduction. Observed energy-level de-
generacies were attributed to discrete or continuous symme-
tries of the quantum model Hamiltonian and to a~possibly
hidden! symmetry associated with the~classical! integrabil-
ity condition.

The focus of the present paper is to illuminate the natural

cause that gives rise to the signatures of quantum integrabil-
ity described in Ref.@5# and that explains the relationship
between level crossing manifolds and integrability manifolds
established in Ref.@4#. We argue that the natural cause is the
presence of action operators as constituent elements of the
Hamiltonian operator for integrable quantum systems.

The textbook solution of an integrable classical dynamical
system with two degrees of freedom, specified by an analytic
function H(p1 ,q1 ;p2 ,q2) of canonical coordinates, is to
transform the Hamiltonian into a function of two action co-
ordinates: H5HC(J1 ,J2). The canonical transformation
(pi ,qi)→(Ji ,u i), i 51,2 to action-angle coordinates
amounts to a solution of the dynamical problem because it
transforms Hamilton’s equations of motion,ṗi52]H/]qi ,
q̇i5]H/]pi , generically a set of coupled nonlinear differen-
tial equations, intoJ̇i50, u̇ i5]HC /]Ji[v i with the solu-
tions Ji5const,u i(t)5v i t1u i

(0) .
This solution is guaranteed whenever a second integral of

the motion can be found, i.e., an analytic function
I (p1 ,q1 ;p2 ,q2), which is functionally independent ofH and
has a vanishing Poisson bracket withH:dI/dt5$H,I %50.
Deriving the expressionsHC(J1 ,J2) and I C(J1 ,J2) from H
and I requires the use of separable canonical coordinates.
Finding separable coordinates can be a difficult task even if
the second invariant is known.

The functionsHC(J1 ,J2) and I C(J1 ,J2) establish a piv-
otal link between an integrable classical system and a quan-
tized version of it. Semiclassical quantization derives its rai-
son d’être from the obvious fact that quantizing a functional
relation is much less problematic if it involves only quanti-
ties such asH, I, J1 , andJ2 whose quantum counterparts are
guaranteed to be commuting operators.

II. QUANTUM VERSUS QUANTIZED

In the context of this paper, it is useful to distinguish three
renditions of a given model system:~i! thequantumversion,
~ii ! theclassicalversion, and~iii ! the ~semiclassically! quan-
tizedversion.

The ~primary! quantum model is specified by the Hamil-
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tonian expressed as an operator valued function of a set of
dynamical variables~position, momentum, spin, . . . !. The
commutation relations of these operators and the metric of
the associated Hilbert space along with the rules of quantum
mechanics then determine, via the Heisenberg equation of
motion, the time evolution of any observable quantity of
interest.

The classical limit converts the Hamiltonian operator into
the classical energy function, the commutator algebra of dy-
namical variables into the sympletic structure~the fundamen-
tal Poisson brackets!, and the Heisenberg equation of motion
for any operator into the Hamilton equation of motion for the
corresponding classical quantity. These quantities, in turn,
enable us to express the energy function as a classical Hamil-
tonian, i.e., as a function of canonical coordinates.

The quantization of a classical Hamiltonian system re-
quires a prescription for translating the functional relations
between classical dynamical variables into functional rela-
tions between corresponding operators. Semiclassical quan-
tization is one neat and clean procedure applicable to all
integrable classical systems. It borrows from classical me-
chanics the functional dependenceĤ5HC( Ĵ1 ,Ĵ2), of the
Hamiltonian on the action operators and postulates that the
eigenvalue spectrum of the latter consists of equidistant lev-
els spaced by\ @6#.

^Ĵi&5\S ni1
1

4
a i D , i 51,2 ~1!

with integerni . The ~integer! Maslov indicesa i are deter-
mined by the topology of the classical trajectories in phase
space @7#. Semiclassical quantization thus makes specific
predictions for the energy-level spectrum of the quantized
version of the model system at hand@8#.

It is a well-known fact that the~semiclassically! quantized
energy-level spectrum and the~primary! quantum energy-
level spectrum do not coincide. The latter implies the exis-
tence of a functionHQ( Ĵ1 ,Ĵ2) with properties that differ
significantly from those of the functionHC( Ĵ1 ,Ĵ2). The op-
erator valued functionHQ , including its dependence on a set
of Hamiltonian parameters that can be varied continuously
across some integrability manifold of the underlying model,
is a distinctive feature of quantum integrability.

The properties ofHQ( Ĵ1 ,Ĵ2) in relation to those of the
semiclassical functionHC( Ĵ1 ,Ĵ2), will be investigated in
Sec. III for an integrable two-spin model and in Sec. IV for
the ~integrable! circular billiard model.

III. TWO-SPIN MODEL

We consider two quantum spinsŜ1 ,Ŝ2 of equal length
As(s11) (s5 1

2 ,1,32 , . . . ) interacting via a uniaxially sym-
metric exchange interaction@9#:

Ĥ52~Ŝ1
xŜ2

x1Ŝ1
yŜ2

y!2kŜ1
zŜ2

z . ~2!

The second integral of the motion, which follows from No-
ether’s theorem, is

Î 5M̂z5
1

2
~Ŝ1

z1Ŝ2
z!. ~3!

In the classical limit\→0, s→`, and\As(s11)5s, the
operators Ŝi turn into three-component vectorsSi
5s(sinqi coswi , sinqi sinwi , cosqi), and Eq.~2! then de-
scribes the energy function of an autonomous Hamiltonian
system with two degrees of freedom and canonical coordi-
natespi5s cosqi , qi5w i , and i 51,2 @10#.

A. Classical actions

Generically, the classical time evolution of this system is
nonlinear and quasiperiodic. In the parameter range 0,k
,1, the following relation between the integrals of the mo-
tion H5E ~energy!, I 5Mz ~magnetization!, and a set of
classical actionsJ1 ,J2 can be inferred from the exact solu-
tion @11#:

J152Mz , J25
1

2p E
0

t

dt
zż

11z2 ,

z~ t ![
1

2
s~cosq12cosq2!5z0 sn~rt,z0 /a!,

z~ t ![tan~w12w2!5
rz0 cn~rt,z0 /a! dln~rt,z0 /a!

E1k@Mz
22z0

2 sn2~rt,z0 /a!#
,

~4!
z0

25zm
2 2Azm

4 2c, a25zm
2 1Azm

4 2c,

c5@~s22Mz
2!22~E1kMz

2!2#/~12k2!,

zm
2 5Mz

21
s22kE

12k2 , t5
4

r
KS z0

a D , r5A12k2a,

where sn(p,x), cn(p,x), dn(p,x) are Jacobian elliptic func-
tions andK(p) is a complete elliptic integral@12#.

For the casek51 with higher rotational symmetry, con-
siderable simplifications occur in the classical time evolu-
tion. Both spins precess uniformly about the direction of the
conserved vectorST[S11S2 , and the precession rate isv
5uSTu for both spins. Equations~4! for the classical actions
become

J152Mz , ~5a!

J25
4

p E
0

p/2a

dtFz22
z2s21Mz

22z2

~11z2!~E1Mz
22z2!G , ~5b!

z~ t !5z0 sinat, z~ t !5
az0 cosat

E1Mz
22z0

2 sin2at
,

z0
25

1

2
~s21E!F12

4Mz
2

a2 G , a5A2~s22E!,

and can be evaluated in the closed form

J152Mz , ~6a!
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J252A2~s22E!1~s2Mz!sgn~s22E22sMz!

1~s1Mz!sgn~s22E12sMz!. ~6b!

Inverting relations~6! yields a degree-two polynomial de-
pendence ofE, Mz on J1 ,J2 :

I C~J1 ,J2!5Mz5
1

2
J1 , ~7a!

HC~J1 ,J2!5E5s22
1

2
l c
2, ~7b!

where l c5J22uJ1u if suJ1u.s22E and l c52s2J2 , if
suJ1u,s22E.

B. Quantum actions

For the casek51, the exact quantum spectrum follows
directly from the higher rotational symmetry ofĤ:

^Ĥ&Q5\2s~s11!2
\2

2
l ~ l 11!, ^M̂ z&Q5

\

2
m, ~8!

where l 50,1, . . . ,2s is the quantum number of the total
spin andm52 l ,2 l 11, . . . ,1 l that of its z component.
One set of quantum actions~1! has eigenvalues@13#

^Ĵi&/\[Ji
Q52s,2s11, . . . ,1s, ~9!

which are related tol, m as follows:

J1
Q5s2 l , J2

Q5s2 l 2m ~m<0!, ~10a!

J1
Q5s2 l 1m, J2

Q5s2 l ~m>0!. ~10b!

The two quantum invariants expressed as explicit functions
of action operators then read

HQ~ Ĵ1 ,Ĵ2!5Ĥ5
1

2
\2s~s11!1

1

2
min~ Ĵ1 ,Ĵ2!

3@\~2s11!2min~ Ĵ1 ,Ĵ2!#, ~11a!

I Q~ Ĵ1 ,Ĵ2!5M̂ z5
1

2
~ Ĵ12 Ĵ2!, ~11b!

where min(Ĵ1,Ĵ2) selects the action operator with the smaller
eigenvalue.

While the functional dependence in Eq.~11! is again de-
scribed by a degree-two polynomial, it is different from the
functional dependence~7! found classically. The former can-
not be reconciled with the latter by any canonical transfor-
mation, nor does the quantum spectrum converge uniformly
toward the classical spectrum fors→`, as we shall see in
Sec. III C 1.

For the cases 0<k,1 we must calculate the (2s11)2

eigenvalues of the two quantum invariantsĤ,M̂z by numeri-
cal diagonalization ofĤ in the 4s11 invariant subspaces of

M̂z . From the numerical data for̂Ĥ&, ^M̂ z&, we can infer
the correct assignment of action quantum numbers^Ĵi&/\ to
eigenstates by smoothly connecting the spectrum in param-
eter space to the known relations~11! for k51. The resulting
data forHQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2) can then be compared with
the ~semiclassically quantized! inverse classical relations~4!,
HC( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2), to high precision albeit not analyti-
cally as in the casek51. Numerical results will be presented
in Sec. III C 2.

C. Quantum corrections to quantized actions

In some simple applications, the functionsHQ ,I Q are
identical to the functionsHC ,I C . Hence there are no such
quantum corrections. If we take, for example, the two-spin
model Ĥ52Ŝ1

zŜ2
z , then both classical invariantsE, Mz de-

pend solely on the canonical momenta, and the latter are
identified to be actions:pi5Ji . Hence we haveE5
2J1J2 , Mz5(1/2)(J11J2), which, upon semiclassical
quantization witĥ Ĵi&/\52s, 2s11, . . . ,1s, yields the
exact quantum eigenvalue spectrum. This situation is excep-
tional. For all cases of Eq.~2! with 0<k<1, quantum cor-
rections do exist.

1. Analytic results forkÄ1

For the parameter settingk51, the functionsHQ( Ĵ1 ,Ĵ2),
I Q( Ĵ1 ,Ĵ2), as given by expressions~11!, are to be compared
to the semiclassical expressionsHC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2) in-
ferred from the classical relations~7! with quantum actions
~9!. It turns out to be more practical to perform the compari-
son for the inverse functional relations. We substitutes(s
11) for s2 and the exact eigenvalues~8! for E, Mz into the
classical expressions~6!. The result is a set of noninteger
valued semiclassical action quantum numbers

J1
C5m, ~12a!

J2
C5H 0 m5 l 50

2As~s11!2Al ~ l 11! umu,m0

umu2Al ~ l 11! umu.m0 ,

~12b!

wherem05 l ( l 11)/2As(s11). An optimal match with the
quantum actions~10! can be achieved if we subject Eq.~12!
to two successive canonical transformations:

j 1
C85 j 1

C ,

J2
C85H 2As~s11!2uJ1

Cu1J2
C J2

C<0

J2
C J2

C.0,

J1
C95H J2

C822As~s11!1s1
1

2
J1

C8<0

J2
C822As~s11!1s1J1

C81
1

2
J1

C8.0
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J2
C95H J2

C822As~s11!1s1
1

2
2J1

C8 J1
C8<0

J2
C822As~s11!1s1

1

2
J1

C8.0.

We thus arrive at the expressions

J1
C955

s1
1

2
m5 l 50

s2Al ~ l 11!1
1

2
m<0

s2Al ~ l 11!1
1

2
1m m.0,

~13a!

J2
C955

s1
1

2
m5 l 50

s2Al ~ l 11!2m1
1

2
m<0

s2Al ~ l 11!1
1

2
m.0.

~13b!

The deviations of the noninteger valuedJ1
C9 , J2

C9 from the
integer valuedJ1

Q , J2
Q then describe the quantum corrections

to the semiclassical actions.
Using Al ( l 11)2 1

2 5 l 1O( l 21), we see at once that the
genuinely quantum-mechanical relations~10! and the semi-
classical relations~13! are asymptotically equivalent at low
energies~large l! for s→`. At high energies~small l!, on
the other hand, the two relations remain distinct no matter
how large we choose the value of the spin quantum number
s.

To set the stage for the cases 0,k,1, we plot in Figs.
1~a! and 2~a! the eigenvalues ofĤ versus those ofM̂z in
representations with spin quantum numberss52 and s
54, respectively. The patterns of regularity and similarity in
the arrays of points are a direct consequence of the smooth
functional relations HQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2). The map
(^Ĥ&,^M̂ z&)→(J1

Q ,J2
Q) from the plane of invariants to the

action plane is provided by Eqs.~10! and produces the tri-
angles in Figs. 1~b! and 2~b!. These points form a perfect
lattice with unit spacing.

If we use instead the map~13! provided by semiclassical
quantization, we obtain the array of open circles in Fig. 1~b!
and Fig. 2~b!. The bonds shown in parts~a! and ~b! of the
two graphs correspond to each other. The distortion in the
lattice of circles relative to the perfect lattice of triangles is a
graphical representation of the quantum corrections in the
functionsHQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2) relative to the semiclassical
functionsHC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2). It visually confirms what
we have already concluded from comparing Eqs.~10! and
~13!, namely, that the deviations die out at low energies
~lower left area! but persist at high energies~upper right

area! for s→`. A useful measure of the leading quantum
correction to the semiclassical relationHC( Ĵ1 ,Ĵ2) is the
quantitysDJ, where

DJ[A~DJ1!21~DJ2!2, DJi[Ji
Q2Ji

C9 ~14!

represents the distance between the triangles and circles on
corresponding array sites in Figs. 1~b! and 2~b!. From Eqs.
~10! and ~13! we obtain

DJ5H 1/& l 50

&S l 2
1

2
2Al ~ l 11! D lÞ0.

~15!

The dependence ofsDJ on J1
Q , J2

Q thus represents the
1/s quantum correction to the semiclassically quantized ac-
tions. It has an inverse first power divergence in one corner
of the action plane for energy levels at the upper threshold of
the spectrum:sDJ;@4&( l /s)#21. For states withl /s!1
the leading quantum correction is ofO(1). In this part of the
spectrum, semiclassical quantization remains inadequate no
matter how large we choose the spin quantum numbers.

FIG. 1. ~a! Eigenvalue^Ĥ& ~energy! versus eigenvaluêM̂ z&
~magnetization! as given in Eqs.~8! of all eigenstates of Hamil-
tonian ~2! with k51, s52. ~b! The full triangles are the quantum
images (J1

Q ,J2
Q) of these eigenstates in the action plane as provided

by Eqs. ~10!. The open circles are the semiclassical images

(J1
C9 ,J2

C9) as provided by Eqs.~13! with s25s(s11).

VYACHESLAV V. STEPANOV AND GERHARD MULLER PHYSICAL REVIEW E63 056202

056202-4



The state with the largest quantum correction to semiclas-
sical quantization is the singlet combination of the two spins.
This state or any nearby state in the action plane have no
proper semiclassical representation.

2. Numerical results for 0ËkË1

Here we use the same graphical representation even
though we must rely on the results of a numerical diagonal-
ization for the energy eigenvalues. Atk,1 we observe that
certain features of the quantum invariants change qualita-
tively because the rotational symmetry ofĤ has been re-
duced, whereas other features remain qualitatively the same
because the integrability of the model has not been de-
stroyed.

In Figs. 3~a! and 4~a! we have plotted the eigenvalues

^Ĥ&, ^M̂z& of the two quantum invariants versus each other
at k50.1 for s52 ands54, respectively. Again the data
points display regular patterns. They evolve from the pat-
terns shown in Figs. 1~a! and 2~a! by smooth deformation of
the lines of bonds as the value ofk is lowered gradually. The
lower symmetry removes the level degeneracies pertaining to
the strings of horizontal bonds in Figs. 1~a! and 2~a!. Note
that level crossings are a natural consequence of the defor-
mation process anywhere in the parameter range 0<k<1.

When we substitute the eigenvalues^Ĥ& and ^M̂z& from
the numerical diagonalization into the exact expression~4!

for the classical actions and subject the resulting set of dis-

crete valuesJi
C to the transformationsJi

C→Ji
C8→Ji

C9 , we
obtain arrays of points in the form of distorted lattices as
illustrated by the open circles in Figs. 3~b! and 4~b! for the
two examples at hand. The deviations of these data points
from the sites of a perfect lattice~marked by triangles! then
again represent the quantum corrections to the~semiclassi-
cally! quantized actions. The patterns in Figs. 3~b! and 4~b!
are also connected to those in Figs. 1~b! and 2~b! by smooth
deformation of the lines of bonds upon gradual variation of
the parameterk.

A closer look at the 1/s quantum correction is afforded if
we plot the scaled distancesDJ versus the scaled action
quantum numbersJ1

Q/s and J2
Q/s for a system with many

more levels (s540). A contour plot of the resulting land-
scape is shown in Fig. 5. Convergence ofsDJ toward a
smooth function ofJ1

Q/s, J2
Q/s is almost uniform. In the

casek50.1 considered here, there are two points~as op-
posed to a single corner point atk51!, where the 1/s cor-
rection diverges. The data pointssDJ closest to these loca-
tions again tend to grow}s.

FIG. 2. Plot of the same quantities as in Fig. 1 but for spin
quantum numbers54.

FIG. 3. ~a! Eigenvalue^Ĥ& ~energy! versus eigenvaluêM̂ z&
~magnetization! of the (2s11)2525 eigenstates of the two-spin
model ~2! with k50.1 for s52. Data from a numerical diagonal-

ization. ~b! The full triangles are the eigenvaluesJi
Q5^Ĵi&/\ of the

action operators, the images of the inverted functionsHQ( Ĵ1 ,Ĵ2),

I Q( Ĵ1 ,Ĵ2). The open circles are the semiclassical images (J1
C9 ,J2

C9)
from Eqs.~4! with s25s(s11), the images of the inverted func-

tions HC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2).
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The two sharply peaked maxima in the landscape of Fig.
5 will merge into a single divergence ass→`. At this point
in the action plane, the leading quantum correction to semi-
classical quantization is again ofO(1). Its location in the
action plane does, however, no longer coincides with an ex-
tremum in the energy-level spectrum. The divergence in
sDJ occurs at energyE5ks2 ~for s→`!, where the clas-

sical equations of motion have a fixed point. For eigenstates
with action quantum numbers in the vicinity of this point,
quantum effects persist no matter how larges is made.

One point in the action plane wheresDJ diverges, exists
throughout the regime 0<k,1. With k increasing from
zero, the singularity moves gradually toward one corner of
the action plane, and the energy of the state pertaining to
those action coordinates moves toward the upper threshold
of the spectrum. This trend is indicated in Fig. 6, which
shows the 1/s landscape fork50.5. The endpoint of this
gradual shift, the casek51, was described in Sec. III C 1.

The asymptotic landscape fors→`, to which the graphs
in Figs. 5 and 6 converge almost everywhere, can now be
used as the reference frame for the higher-order quantum
corrections. The deviations of the data points from this new
reference, appropriately scaled, will produce another land-
scape, representing the 1/s2 correction to the semiclassically
quantized actions@14#.

We consider the lineJ2
Q5J1

Q2s/2 for this purpose. In the
main plot of Fig. 7 we show the 1/s correctionssDJ along
this line for s54,8,16,32. Also shown are data fors
51600, which are very close to the asymptotic values for the
1/s correction and now serve as the reference line for the
1/s2 corrections.

In the inset to Fig. 7 we have plotted the scaled deviations
of the s54,8,16,32 data from the new reference line. The
results suggest that these data again converge toward a line,
which will then be the reference line for 1/s3 corrections.
Like the reference line in the main plot of~a! @~b!#, which is
embedded in the landscape Fig. 5@Fig. 6#, the new reference
line will be embedded in a landscape representing the 1/s2

quantum corrections to semiclassical quantization over the
entire action plane.

The point to be emphasized here is not so much the exact
shape of the landscapes that represent successive orders of
quantum corrections to the semiclassically quantized actions,
nor even that such corrections exist, and that the leading term
may be ofO(1) at special points rather than ofO(s21) as

FIG. 4. Plot of the same quantities as in Fig. 3 but for spin
quantum numbers54.

FIG. 5. Scaled distancesDJ for s540, k50.1 between the

images of the inverted functionsHQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2), and the

images of the inverted functionsHC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2).

FIG. 6. Scaled distancesDJ for s540, k50.5 between the

images of the inverted functionsHQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2) and the

images of the inverted functionsHC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2).
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might be expected. Most important is that these results dem-
onstrate the existence of the discrete functionHQ( Ĵ1 ,Ĵ2)
with a continuous dependence on the Hamiltonian parameter
k that produces level crossings quite naturally.

IV. CIRCULAR BILLIARD

In the second application we consider a particle of massm
that is free to move two dimensionally across a circular area
of radius R. The classical Hamiltonian expressed in polar
canonical coordinates reads

H~pr ,r ;pq ,q!5
pr

2

2m
1

pq
2

2mr2 1V~r !, ~16!

whereV(r ) is a hard-wall potential that confines the particle
to r<R.

In a recent study, Ree and Reichl@15# analyzed this sys-
tem classically and quantum mechanically as an integrable
limiting case of the circular billiard with a straight cut. In
general, the cut renders the classical time evolution chaotic.

Other integrable and nonintegrable variations of the quantum
billiard problem have been discussed elsewhere in the recent
literature@16,17#.

Here we use some results of Ref.@15# to investigate the
functional dependence of the circular billiard Hamiltonian on
the actions quantum mechanically and semiclassically for
comparison with the two-spin results presented previously.

Integrability of the circular billiard model is guaranteed
by the conservation of angular momentumL5pq . The ca-
nonical transformation to action-angle coordinates produces
the following relations between the integrals of the motionE,
L and the two-action variables:

J15L, ~17a!

J25
A2mE

p FAR22x22x arccosS x

RD G , ~17b!

wherex5AL2/2mE. The eigenfunctions of the circular bil-
liard, i.e., the solutions of

S ]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]q2 1k2DC~r ,q!50 ~18!

with k252mE/\2 and Dirichlet boundary conditions are
known. The exact expressions for the two quantum invari-
antsĤ ~energy! and L̂ ~angular momentum! are

^Ĥ&5
\2a lk

2

2mR2 , ^L̂&56 l\, ~19!

wherel 50, 1, 2, . . . anda lk is thekth zero (k51,2, . . . ) of
the Bessel functionJl(x).

One major distinction between the circular billiard model
and the two-spin model is that all invariant Hilbert subspaces
are infinite dimensional in the former and finite-dimensional
in the latter. The energy has no upper bound in the circular
billiard and the angular momentum has neither upper nor
lower bound.

FIG. 8. EigenvaluêĤ& ~energy! versus eigenvaluêL̂& ~angular
momentum! as given in Eq.~19! of the eigenstates near the bottom
of the spectrum of the circular billiard model.

FIG. 7. Dependence of the scaled distancesDJ for ~a! k
50.1, ~b! k50.5 between the images of the inverted functions

HQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2) and the images of the inverted functions

HC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2). Shown are data fors54 ~squares!, s58
~circles!, s516 ~triangles!, s532 ~pentagons!, ands51600~solid
line!. Inset: Scaled deviations@sDJref2sDJs# of the s
54,6,8,16 data from the reference line~s51600 data!.
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In Fig. 8 we have plotted the eigenvalues^Ĥ& versuŝ L̂&
of the two quantum invariants near the bottom of the level
spectrum. As in the two-spin model, the regular pattern of
points is a signature of quantum integrability. In both models
the points tend to become displaced irregularly when nonin-
tegrable perturbations are introduced@11,15#.

The integersk,l in Eq. ~19! can be identified as the eigen-
values~in units of \! of a set of quantum actions:

^ Ĵ1&5\ l , ^Ĵ2&5\S k2
1

4D . ~20!

The shift in the second expression is dictated by a Maslov
index a151 ~see Sec. II! @7#. The results of Eq.~19! com-
bined with Eq.~20! thus define specific functional relations
HQ( Ĵ1 ,Ĵ2), I Q( Ĵ1 ,Ĵ2) between quantum invariants and
quantum actions. They are to be compared with the func-
tional relationsHC( Ĵ1 ,Ĵ2), I C( Ĵ1 ,Ĵ2) as defined by Eq.~17!
combined with Eq.~20!.

For a graphical representation of the quantum corrections
to semiclassical quantization, we proceed as in Sec. III. In
Fig. 9 we plotDJ2[uJ2

Q2J2
Cu versusk and l, whereJ2

Q5k
21/4 andJ2

C is the value of Eq.~17b! when the exact eigen-
values~19! for the quantum invariants are substituted into
the expression.

We observe a landscape in the form of a sloped ridge
centered atl 50. The largest quantum correction to semiclas-
sical quantization pertains to the ground state~with k51, l
50!. The plot suggests that the quantum corrections die out
for large k. This is confirmed by substitution of the
asymptotic expression fork@ l @12#,

a lk;b2
4l 2

8b
1O~b23!, b5k1

l

2
2

1

4
, ~21!

into Eq. ~19! for use in Eq.~17b!:

J2~ l ,k!;\Fk2
1

4
1

1

8p2k
1O~k22!G , k@ l . ~22!

The quantum corrections also decrease with increasingulu at
fixed k, but not all the way to zero. To demonstrate this for
k51, we use the asymptotic expression forl @k51 @12#,

a l1;u l u1C1u l u1/31C2u l u21/3 ~23!

with C1.1.8558 andC2.1.033 for use in Eq.~19!. When
substituted into Eq.~17b! we obtain the asymptotic value

J2~ l ,1!5~\/3p!~2C1!3/21O~ u l u22/3!, ~24!

which deviates from the reference value\(12 1
4 ) by roughly

1%. The conclusion is that the semiclassical regime of the
circular billiard is restricted to states withk@ l . It does not
include, for example, any states along the lowest branch (k
51) shown in Fig. 9, no matter how large the energy of the
state becomes with increasingulu.

V. CONCLUSION

In this paper we have investigated a key signature of
quantum integrability in systems with two degrees of free-
dom, namely, the functional dependence of the Hamiltonian
Ĥ and the second integral of the motionÎ on two action
operatorsĴ1 , Ĵ2 .

The results presented in Secs. III and IV for the~semi-
classically! quantized and the~primary! quantum energy-
level spectra of two integrable model systems suggest the
following interpretation, which is consistent with the conclu-
sions inferred from an entirely different line of reasoning
@18#: ~i! Quantum integrability implies that the Hamiltonian
can be expressed as an operator valued function of the ac-
tions: Ĥ5HQ( Ĵ1 ,Ĵ2), where the eigenvalue spectrum of the
action operators is of the form~1!. ~ii ! This function is dif-
ferent from the functionHC( Ĵ1 ,Ĵ2) inferred via semiclassi-
cal quantization from the solution of the classical dynamical
problem.~iii ! In some asymptotic regime associated with the
classical limit the functionHQ( Ĵ1 ,Ĵ2) converges, if properly
scaled, toward the functionHC( Ĵ1 ,Ĵ2), but the convergence
need not be uniform.~iv! For the second integral of the mo-
tion, which ~classically! guarantees integrability, there
exist functions I Q( Ĵ1 ,Ĵ2) and I C( Ĵ1 ,Ĵ2) with analogous
properties.

The existence of action operators as constituent elements
of all quantum invariants in integrable model systems is a
key property necessary to explain the dimensionality of level
crossing manifolds relative to the dimensionality of integra-
bility manifolds in the parameter space of model systems
with parametric integrability conditions. On the
dI-dimensional integrability manifold in the parameter space
of a given model system, both functionsHQ( Ĵ1 ,Ĵ2) and
I Q( Ĵ1 ,Ĵ2) will then depend continuously on these param-
eters. The quantum eigenvalue spectrum on the integrability

FIG. 9. Quantum corrections to the semiclassical prediction for
the energy eigenvalues of the circular billiard model. Plotted is the
deviationDJ25uJ2

Q2J2
Cu, whereJ2

Q5k21/4 andJ2
C5J2 /\ as de-

termined by Eq.~17b! with E5^Ĥ&, L5^L̂& substituted from
Eq. ~19!.
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manifold is determined bŷĤ&Q5HQ(^Ĵ1&,^Ĵ2&) and can be
interpreted as a set of continuous functions of the Hamil-
tonian parameters subject to the constraints imposed by the
integrability condition. The level crossings, which occur at
the intersections of the graphs of any two members from the
set of functions, are then naturally confined to
(dI21)-dimensional manifolds and are naturally embedded
in the integrability manifold, in agreement with empirical
evidence@4#.

For parameter values away from the integrability mani-
fold, no smooth functionHC(J1 ,J2) exists anymore because
action values exist only for the surviving invariant tori,
which are no longer dense anywhere in phase space. Like-
wise, the observed prohibition of level crossings in the non-
integrable parameter regime makes it impossible to consis-
tently extend the functionHQ( Ĵ1 ,Ĵ2) beyond the integrable

regime. The eigenvalues of the two action operators, which
are the natural quantum numbers of the eigenstates in the
integrable regime, must be replaced here by a single quan-
tum number representing the fixed level sequence within any
invariant Hilbert subspace. Clear-cut evidence for two dis-
tinct parameter regimes pertaining to the action quantum
numbers~integrable regime! and to the energy-sorting quan-
tum number ~nonintegrable regime! was presented in
Ref. @5#.
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