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PHYSICAL REVIEW E VOLUME 62, NUMBER 2 AUGUST 2000

Signatures of quantum integrability and nonintegrability in the spectral properties of finite
Hamiltonian matrices

Vyacheslav V. Stepanov and Gerhard Iiu
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817
(Received 2 March 2000

For a two-spin model which iglassically integrable on a five-dimensional hypersurface in six-dimensional
parameter space and for which level degeneracies occur excluswitly one known exceptionon four-
dimensional manifolds embedded in the integrability hypersurface, we investigate the relations between sym-
metry, integrability, and the assignment of quantum numbers to eigenstates. We calculate quantum invariants
in the form of expectation values for selected operators and monitor their dependence on the Hamiltonian
parameters along loops within, without, and across the integrability hypersurface in parameter space. We find
clear-cut signatures of integrability and nonintegrability in the observed traces of quantum invariants evaluated
in finite-dimensional invariant Hilbert subspaces. The results support the notion that quantum integrability
depends on the existence of action operators as constituent elements of the Hamiltonian.

PACS numbgs): 05.45~-a, 75.10.Hk, 75.10.Jm

I. INTRODUCTION two-spin mode[8]. The system is specified by the quadratic
Hamiltonian
An autonomous classical Hamiltonian system with two
degrees of freedom, specified by some analytic function
H(p;1,q1:p,,0,) of canonical coordinates, is either inte- H= 2 {3,815 +3 AL(SHP+ (S (D
grable or nonintegrabletertium non datur If a second in- e

tegral of the motion can be found, i.e., an analytic function .
I(p1,01;P2.0,) Which is functionally independent ¢4 and forltwg quantum spins,, S, of equal lengthyo(a+1) (o
satisfiesd1/dt={H,1}=0, the system is proven integrable. If =z.1:z,---). In theclassical limiti —0,0—,Jo(o+1)
chaotic trajectories can be detected in the phase flow, thgS: the operatorsS turn into 3-component vectors
system is demonstrably nonintegrable. Although it may hap-~ s(sm ¥ COSg;,Sin; sin¢; ,cos®), and Eqg. (1) then qe- '
pen that neither evidence can be ascertained in practice forS¢'iPes the energy function of an autonomous Hamiltonian
given H, one or the other status is guaranteed to apply. system with two degregs of freedom ano_l car!omcal C.O.md"
A question of long-standing interest has been whether aRat€S Pi=S€0s;.Gi=¢;.i=1,2. The classical integrability
equally clear-cut classification of systems exists in quantun(f ondition was shown to have the fori]
mechanics. Translating the criterion of classical integrability
into quantum mechanics for systems with few degrees of , _ _ 208 A \V—
freedom opens up loopholes of ambiguity that are not easil>£AX AR A (A, AX)+aﬁy:cZycl(xyz) JalAs=A)=0.
closed[1,2]. Quantum mechanically, a second integral of the 2
motion, i.e., an operatdrwith [H,l1]=0 can always be con-
structed, for example, via time average of an arbitrary opera- Quantum mechanically, the Hamiltoniét) is expressible
tor A [3,4]. Performing the time average in the energy rep-as a real symmetric block-diagonal matrix, where each of the
resentation eliminates all off-diagonal matrix element#\of infinitely many finite-dimensional blocks is associated with
Which attributes of quantum invariants are most sensitive t@ne spine realization of an irreducible representation of the
the integrability status of the system? underlying(discret¢ symmetry grougsee the Appendijx
Quantum chaos research has identified a catalog of at- The main conclusions of the level crossing study for this
tributes that distinguish quantized nonintegrable from quansystem may be summarized as follop&: (i) In the six-
tized integrable systeni&—7]. The most widely studied dis- dimensional6D) parameter space ¢1), level degeneracies
tinctive properties pertain to level statistics. However, in theoccur on smooth 4D structurdd.0] (i) For an invariant
extreme quantum limit of a typical model system, where theblock of H with K levels, this 4D structure consists &f
density of energy levels is low, this distinction is blurry at —1 sheets, each representing one twofpigk+ 1] level
best or altogether unrecognizable. Only in the energy rangdegeneracy in the sequenEg<E,<---<E. (iii) All 4D
where the level density is high, which includes the semiclastevel crossing sheets are completely embedded in the 5D
sical regime, do the contrasting level spacing distributionsntegrability hypersurfaceiv) Under mild assumptions, the
come into focus. Other indicators of quantum chaos are simiintegrability condition (2) can be determined analytically
larly ambiguous. from the conditions of level degeneracy in low-dimensional
One unequivocal discriminant between quantized inteinvariant Hilbert subspaces &f.
grable and nonintegrable systems was recently identified in a These results strongly suggest that the notion of integra-
study of level crossing manifolds in the parameter space of &ility remains meaningful for quantum systems described by
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finite Hamiltonian matrices, notwithstanding the fact thating quantum number.nWhat consequences do these con-
there exist universal algorithms for the diagonalization offlicting assignments of quantum numbers in the two regions
finite symmetric matrices. of parameter space have for the functional dependence of
For a deeper understanding of this subtle notion of quangquantum invariants on the Hamiltonian parameters?
tum integrability, we note that classical integrability guaran-  Consider the case of lé-dimensional invariant subspace
tees the existence of a canonical transformatiorpf (1) spanned by the basis given in the Appendix. Fhe
(P1,d1;P2,02) —(J1,601;72,0,) to action-angle coordi- eigenstatesk),k=1, ... K then form a star of orthonormal
nates. It transforms the Hamiltonian(py,q:1;p2,02) and  vectors pointing in oblique directions with respect to the co-
the second integral of the motidiip;,d;;p2,02) into ana-  ordinate axes. A tiny change of the parametkrsA,, causes
lytic functionsHc(J1,72),1c(J1,72). Each point (71,7,)  the star of eigenvectors to rotate slightly. By monitoring the
on the action plane specifies a torus in phase space. In théner product between eigenvectors before and after every
nonintegrable case, the actiogg,J, are only defined for infinitesimal parameter change, we can keep track of all
the surviving tori. Since the tori are no longer dense anyeigenvectors along the entire loop in parameter space.
where in phase space, no smooth functibies | c on 7;,7> At the same time, we monitor the effect of the gradually
exist anymore. transforming eigenvectors on the eigenvalues of two quan-
In a companion paperll] we have postulated that the tum invariants. For this purpose we choose the energy ex-
underlying cause for the embedment df{ 1)-dimensional  pectation valueE,=(k|H|k) and the expectation valuk
level crossing manifolds in d,-dimensionalclassical inte- ~ =(k|A|k), whereA is some function of th&* [15]. When
grability manifold of the parameter spageith dimensional-  the Hamiltonian parameteds, ,A,, are varied along a path in
ity d2d|) is linked to the existence of action operators asgp parameter space, the Vectb)‘ traces a path on the sur-
constituent elements of the Hamiltonian. In that Study We€face of aK-dimensional unit Sphere' and the ponﬁkuk)
have demonstrated for two distinct model Systems the €Xreaves a trace in the p|ane of invariants.
plicit functional dependencelo(J1,72),1q(J1,72) of the What if two eigenvectors are accidentally degenerate
Hamiltonian and the second integral of the motion on two(g,=E,,), which happens when their energy eigenvalues
action operators, and compared it to the similar yet differentross each other at some point on the path in parameter
functional dependencelc(J1,72),1c(J1,72) of the corre-  space? Generically, the eigenvalues of the second invariant
sponding classical invariants on the classical action coordigre different at the point of level degenerady#1,:). We
nates. can always choose the second invariant so that this is the
The familiar controversies surrounding the notion of case. At the crossing point the orientation of the two eigen-
quantum action do not arise unless we insist on interpretingectors is not fixed. However, that ambiguity is removed if
the action operator as @tationary canonical momentum, e impose the condition that the path of every polt ()
which calls for an angle operator. The main problem is howi the plane of invariants must be continuous.
to define the latter in a Satisfactory Wéw—lzﬂ If the ac- We shall see that Varyinga !Aa a|ong a closed path in
tion operator is defined solely on the basis of its spectraharameter space does not guarantee that the trace of every
properties, there is no need for introducing angle operatorsgjgenstate in theH,,1,) plane is also closed. It may happen,
for example, that two eigenvectors transform into each other
Il METHOD in the course of one parameter-space loop, thus leaving an
' open trace in the plane of invariants, which will be closed
A more indirect but no less compelling method for dem-only after a second traversal of the loop. The two kinds of
onstrating the existence of action operators as constituemfuantum numbers assigned to eigenstates in different regions
elements of the quantum invariaritsl in some regions of of parameter space as discussed previously, suggest the fol-
parameter space, namely on the integrability hypersurfacdéowing scenario.
and their nonexistence elsewhere is pursued here for the two- (i) If the closed path in parameter space lies entirely on
spin model(1). We investigate the functional dependence ofthe integrability hypersurface, then the traces of all eigen-
the eigenvalues of quantum invariants on the Hamiltoniarstates in the plane of invariants will be closed. Along the
parameters, in particular across lines demarcating changes limop, level crossings occur frequently, but the labeling of all
symmetry and/or integrability status. eigenstates by the action quantum numbaism, remains
Here and in the following, all references to integrability valid on every stretch of it.
status rely on the well understood and rigorously established (ii) If the path in parameter space lies entirely off the
classical integrability conditiori2), but the focus is on the integrability hypersurface, the traces of all eigenstates will
study of quantum mechanical properties that are sensitive tagain be closed but for a different reason. Level crossings are
this condition and thus impart meaning to it as a quantunprohibited in this region. All states are labeled by the energy
integrability condition. sorting quantum number. That label is valid along the en-
On the integrability hypersurfad®), the natural quantum tire loop.
numbers of the eigenstates within any invariant Hilbert sub- (iii) If the closed path in parameter space consists of a leg
space ofH are the integer pairsnf;,m,) specifying the ei- A on and a legB off the integrability hypersurface, then the
genvalues(in units of z) of the action operatorsr;, J>. conflicting assignment of quantum numbers has the conse-
Henceforth we call thenaction quantum numbersElse- quence that some of the traces in the plane of invariants
where in parameter space, where level crossings betweeemain open. An eigenstatk) may undergo one or several
eigenstates of the same parameter space are prohibited, tlewel crossings on led of the path and thus end up at a
natural quantum number is a single integer, ¢énergy sort-  different position in the energy-level sequence at the begin-
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FIG. 1. Reduced parameter spadg {J,,A) projected onto the FIG. 2. Reduced parameter spadg ,J,,A) projected onto the
(Jy.J,) plane. The two dashed lines mark the intersectiof 2 (J,,A) plane. The solid circles represent paths wilh+ A?
—J§= 1, of the integrability hyperboloid with the plan®=0. In =0.3712, 0.58 af,= 0.4 along which we track the quantum invari-
the integrability planeA=0, level degeneracies dﬂ,5MA occur  antsgg,l,. The larger circle is located on the integrability hyper-
along the dotted-dashed lines and multiple degeneracies at the syteloid. The positions of level crossings b|t4A1A states along that
metry points|Jy| =|J,|=1 marked by the four pentagons. The solid path are indicated by squares. The dashed line marks the integrabil-
circles represent projections of paths with radi]y2+Jzz=%, V2, ity plane A=0.

% along which we track the quantum invariaig, I .

represent the level crossing manifold iR, , with K=10
ning of legB when the energy-sorting quantum number Kickslevels in the planed=0. None of the intersection points of
in. As the parameters are varied along Bdack to their  two dotted-dashed lines involves triple or quadruple degen-
starting values, the pointg,l,) is prevented from finding eracies. Each level crossing line can thus be labeled
its way back to the original position in the plane of invariants[k,k+ 1] by the positions in the level sequen&g<E,
because level crossings are now prohibited. <---<Ey of the two levels involved in the crossiig7].

Not surprisingly, physical reality turns out to be more  The integrability hyperboloid intersects the integrability
complicated. However, the observations made by thigplane along the two dashed lines. There exisH3Q, level
method of analysis prove to be highly illuminating in regard crossing lines on the hyperboloid. These lines intersect the
to the relations between symmetry, integrability, and the aspjaneA=0 at seven points on each dashed line, namely on

signment of quantum numbers. the intersection points with dotted-dashed lines and on the
symmetry points afly|=|J,|=1. The solid circles represent
. RESULTS projections of paths along which we track the quantum in-

variantsgy, I .

A different projection of the reduced parameter space is
shown in Fig. 2. The larger circle represents a path along the
intersection of the integrability hyperboloid with the plane
Jy=0.4. The squares on that circle mark the locations where
the 10 level crossing lines on the hyperboloid ff, , in-
tersect the pland,=0.4. The smallefconcentrig circle rep-
resents a path that is located in the nonintegrable region of
parameter space except for the two points where it intersects
the integrability planéA=0 (dashed ling

To facilitate comparison with results obtained previously,
we use the same reduced 3D parameter space as ifdRef.
It is spanned by, ,J,,A,—A,=2A at J,=1A+A,=0A,
=0 [16]. The integrability conditior(2), which becomes

A(1+35-232-2A%) =0, (3

is satisfied on a 2D surface consisting of the plase0 and
a hyperboloid with axis aA=0,J,=0. Embedded in this
integrability surface are 1D level crossing manifolds in pat-
terns whose complexity increases with the number of levels
in the invariant(Hilbert) subspaces under considerat{@&.
Individual eigenstatesik) will now be tracked along The first path considered is the cirdéﬁ-‘]g:% in the
closed paths in this reduced parameter space. Each path $gane A=0 as shown in Fig. 1. This path does not come
lected displays distinct characteristic features in the traces oflose to any of the symmetry poinfisentagonks In Fig. 3 we
the plane of invariantsy,I,). Here we usel,=(k|(S{  have plotted the 10 levels &f3, , versus angular distanee
+S5)?|k). We consider invariantHilbert) subspaces of on the circular path. We observe 20 pairwise crossings be-
symmetry clasA1A with K=6,10 levels corresponding to tween six levels at the angles where the path intersects the
spin quantum numbersoc=4,5, respectively (see the dotted—dashed lines in Fig. 1.
Appendix. No instances of level repulsion can be discerned in this
Figure 1 depicts the reduced parameter space projectqalot, which is not to say that the dependence of adjacent
onto the integrability planeA=0. The dotted-dashed lines levels is uncorrelated. Take the six levels near the center of

A. Hallmark of integrability
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FIG. 3. Energy eigenvalues,, k=1, ...,10 in theinvariant FIG. 5. Energy eigenvalues,, k=1, ..., 10 in theinvariant

subspace oH3, , as defined in Eq(A1) and plotted vs the angular subspace oH3,, plotted vs« on the path with radius/Jy2+Jzz
distancea on the circular path with radius/Jy2+Jzz=0.5 in the =15 in the planeA=0 of (J,,J,,A) space.
planeA=0 of the reduced parameter spadg J,,A).

The behavior of energy levels as observed in Fig. 3 and

the spectrum. They can be divided into two groups of thret;Jche properties OT traces as seen in Fig. 4 reflect what we
expect for a typical situation in an integrable system with

level [ imil ilati I h h. Th : ;
evels undergoing similar oscillations along the pat ewo degrees of freedom. The two invariaiig,|, are func-

synchronicity of these oscillations is, in fact, a consequenc : . .
of the (postulated smooth dependence of the functions (;ons of tv‘f[?] qE'antl'zlted 'actlorﬁl,jzt W'th_l_?] srg'oothtdeptlen- f
Ho(7.75) andl o(73..75) on a for this path embedded in ence on the Hamiltonian parameters. The discrete values o
; e the actions define the natural quantum numbers of all levels,
the integrability pland11]. . S . ;
and each eigenstate maintains its identity along any path in

In Fig. 4 we show the traces in th&y,l,) plane of the . )
two eigenstates whose levels undergo foTy8] crossings parameter space notwithstanding the presence of level cross-
ings. All traces produced along closed paths are therefore

along the pathtthick lines in Fig. 3. The traces are continu- osed as well
ous, closed, and smooth. The square and the arrow indica% ' o .
There are two sources of complication forcing on us a

the starting point and the direction of the trace. Every level efinement of this descrintion without undermining the pos-
crossing is represented by two vertically displaced asterisk% ; P . - 9 P
ulated link between quantum integrability and action opera-

one on each trace. tors. These two complications will be discussed next before
It is important to note that the traces remain perfectly ~ =" : b : e
e investigate the effects of nonintegrability.

smooth at the points of level crossing. The level crossing¥V
have no impact on the eigenvectors, or on the expectation
valuesl, . Every eigenvector loops around and returns to its
original orientation in Hilbert space. Its path is largely unaf- The second path considered is the Cirjf;e— Jg:% in the
fected by the presence of other eigenvectors which becomgtegrability planeA=0 (see Fig. 1. What makes it different
instantaneously degenerate with it. It is as if vectors underfrom the previous path is that it passes close to the four
going level crossings belonged to different invariant subpoints |3y/=13,/=1, where additional degeneracies occur,

B. Level repulsion near symmetry points

spaces. caused by a higher symmetry.
The 10 levels oH3, , versusa are plotted in Fig. 5. As in
45 . . . . . . . Fig. 3 for the previous path, we observe 20 level crossings,

each one associated with a point where the circular path in-
tersects one of the dotted-dashed lines in Fig. 1. In addition
to these crossings we observe instances of level collisions at
a=nm/2, n=1,3,5,7, i.e., in the vicinity of the symmetry
points.

It is instructive to compare the effects of level crossings
and level collisions on the traces in the plane of invariants. In
Fig. 6 we show again the trace of the poilg,(l,) for two
states that are involved in fo(i7,8] levels crossingsthick
lines in Fig. 9, now along the second path. These traces
exhibit features not seen in Fig. 4.

7 We again observe that none of the level crossings leaves
any mark on the traces, implying that the wave functions of

FIG. 4. Closed traces in theE(,l,) plane of twoH3,, levels  the two eigenstates are completely unperturbed by the instan-
along the circular path with radiugmz% in the planeA=0 taneous level degeneraci¢see asterisis On any stretch
of the reduced parameter spack (J,,A). The traces start at the between successive mutual crossings, both levels collide
open squaresa=0°) in the directions indicated. The asterisks with one neighboring level, and each collision does have a
mark level crossing points. dramatic effect on the traces of the states involved in the
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FIG. 6. Closed traces in theE(,l,) plane of twoH3,, levels FIG. 7. Energy eigenvaluds,, k, ...,10 in the invariant sub-

along the path with radius/Jy2+JZZ= 1.5 in the planeA=0 of  space ofH3,, plotted versusx on the path with raLdius/JszrJZ2
(Jy,Jz,A) space. The traces start at the squares-Q°) in the  =v2 in the planeA=0 of (J,,J,,A) space.

directions indicated. The asterisks mark level crossing points.
levels combine into a singlet, a doublet, a triplet, and a qua-

collision. Level collisions produce precipitous changes in thedruplet. No instances of level repulsion are observable any-
second invariant, near the closest encounter of the colliding more.
levels. The rapid variation of expectation values signals a The absence of level collisions along this path is con-
strong perturbation of the wave functions in a level collision.firmed by a study of the traces in thE,(,l,) plane. In Fig. 8
The presence of this characteristic signature of level colliwe show the traces of the two states that again start in the
sions is as conspicuous in the traces shown in Fig. 6 as seventh and eighth positions of the level sequence. Gone are
their absence in the traces shown in Fig. 4. the rapid near-vertical displacements which we have identi-

In what might be called a hard level collision, the two fied in Fig. 6 and which were caused by level collisions. The
states exchange wave functions in a manner like two billiardraces in Fig. 8 are as unaffected by the new symmetry in-
balls exchange momenta in a head-on collision. This makeduced level crossings as they are oblivious of crossings else-
it hard to distinguish a hard collision from a crossing in awhere in the integrability plane.
plot such as Fig. 5 because of graphical resolution. A plot of However, a striking new feature makes its appearance in
one invariant versus the oth@¥ig. 6) is much more sensitive Fig. 8. The traces do not close in themselves after one loop
to that distinction. Here a hard level collision produces aaround the circular path in parameter space. The eighth level
variation inl that looks almost like a discontinuity. becomes the seventh level after one loop, and then turns into

The phenomena observed in Figs. 5 and 6 are not in corthe second level after two loops. Only after the third loop
tradiction with the assertion that the invariarig,l, are does it end up in the original eighth position of the level
functions of two quantum actions. It tells us, however, thatsequence.
the dependence of these functions on the Hamiltonian pa- In Fig. 7 the three levels involved in that loop are drawn
rameters is singular at the symmetry pointstbfThe phe- as thick lines. Inspection shows that there are two further
nomenon of level repulsion in the immediate vicinity of sym- groups of three states which transform into each other as the
metry points is then caused by invariants pertaining to thgparameter values loop around the circle. That leaves one
higher symmetry and by the associated additional level destate(near the center of the spectrumhose trace closes in

generacies. itself after one loop.
The traces of all levels depicted in Fig. 5 are closed as
were all traces of the levels shown in Fig. 3. The implication wl

is that the number of crossings between any pair of levels
must be an even number. The fact is that neither the level
crossings nor the level collisions can cause any confusion in 30}
the labeling of the levels by action quantum numbers along a
path in the integrability plan&d=0 as long as it avoids the .
points|J,|=[J,|=1 of higher symmetry with symmetry in- 20|
duced level degeneracies. Each eigenstate maintains its iden-
tity along such paths, or so it seems.

35+

25 1

C. Open traces caused by a change in symmetry

The third path considered is the circlé+J2=2 at A
=0 (see Fig. 1 It is embedded in the integrability plane and
passes through the pointd|=|J,|=1. The impact of these FIG. 8. Open traces in theE(,l,) plane of threeH3,, levels

symmetry points on the energy levels is depicted in Fig. 7along the path with radius/J2+J?=v2 in the planeA=0 of
What were level collisions in Fig. 5 have now turned into (J,,J,,A) space. The traces start at the squares °) in the

additional level crossings. At the symmetry points, the 1Odirections indicated The asterisks mark level crossing points.
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Is this phenomenon of levels transforming into each other 15
compatible with the notion that the invariants are functions
of the quantized actions with a smooth dependence on the
Hamiltonian parameters? Yes if we allow the dependence on
the parameters to be singular at points of higher symmetry
within the integrability manifold. The presence of such sin-
gularities was already suggested by the level collisions ob-
served in Figs. 5 and 6. The results of Figs. 7 and 8 confirm
the singular parameter dependence from a different vantage

point.
When we start with the second path in parameter space "
(Sec. llIB) and increase the radius of the circle gradually 7o 45 9 185 180 225 270 315 360

toward that of the third path, we observe a gradual hardening o

of the level collisions near the symmetry points. The hard- FIG. 9. Energy eigenvalueg,, k=1, ..., 6 in theinvariant
ening is characterized by increasingly sharp curvatures in théubspace ofHz,, plotted versusa on the path with radius
graphs of Ey versusa (Fig. 5 and by increasingly rapid /A2+32=/0.58 atJ,=0.4 embedded in the integrability hyperbo-
vertical variations in the grapHg versusk, (Fig. 6). loid of (J,,J,,A) space.

In the limiting case of this path, the sharply curved but
smooth bends in the graffy versusa turn into cusps, and
the fast but smooth vertical variations in the graphsersus
E turn into discontinuities. An infinitely hard level collision

s indistinguishable from a level crossing. In 'F.|gs. 7 and 8o en-trace phenomenon cannot be attributed to a change of
smooth segments of graphs between singularities that belong ,metry along the path. What distinguishes the first path,
to different colliding Igvels are rejoined to form entirely \ here open traces do not occur from the fourth path, where
smooth graphs ofrossinglevels. o _ . they do occur, is that only the former can be shrunk to a
Hence, if we insist that all levels maintain their identity point without leaving the integrability manifold. Hence the
along any closed path in the integrability plaAe=0, we  multiple connectedness of the integrability hyperboloid
must interpret all level crossings that take place at the pointgrces us to allow for functionsl o(71,.72) andlo(J1,7)
of higher symmetry|J,[=|J,|=1, as infinitely hard level whose dependence on the Hamiltonian parameters is still
collisions. All the evidence accumulated thus far still sup-smooth but multiple valued.
ports the existence of the functionBlo(J7;,7,) and With these concessions, the signature properties of quan-
lo(J1,72) with a smooth parameter dependence on the intum integrability postulated above remain fully intact. The
tegrability manifold, provided we allow for singularities at quantum invariant€, I, exhibit strongly contrasting fea-
points of higher symmetry. tures when observed along paths that are not embedded in
Before we discuss the strong]y Contrasting properties ofhe |ntegrab|I|ty manlfold Visualizir}g these differenc_es does
quantum invariants along paths that are not fully embeddefot depend on a statistical analysis. They are unmistakenly
in the integrability manifold of1), we should report on yet identifiable in systems with very few levels.
another feature that complicates the interpretation of the in-

traces that connect to form two rings of three segments each
as shown in Fig. 10. The two sets of levels are distinguished
by line thickness.

Unlike in the previous situationSec. 1110, here the

tegrable cases. E. Level repulsion due to nonintegrability
For a direct comparison with the previous situation, we
D. Open traces caused by topology now choose a circle with the same center as the fourth path
The circle A>+J2=0.58 with center at),=0.4 is the 30
fourth path along which we study the behavior of quantum

invariants. This path represents a circular section of the in- 25|
tegrability hyperboloid(3) (see Fig. 2 Like the first path
considered, it does not pass near any point in parameter .|
space where symmetry induced level degeneracies occur.

The angular dependence of the H)ﬁlA levels, depicted = sl
in Fig. 9, does indeed not show any level collisions just as
was the case in Fig. 3 for the first path. All levels undergo
several crossings along this path, and none of the crossings
has any noticeable effect on the quantum invaridgtsl
plotted in Fig. 10.

Nevertheless, there is a major difference between the evo-
lution of eigenstates along these two paths. Each one of the
six levels shown in Fig. 9 transforms into a different level in  FIG. 10. Open traces in thé&(,1,) plane of all sixH4, , levels
the course of one loop of the path around the integrabilityalong the path with radiugAZ+ 2= /0.58 atJ,=0.4 on the inte-
hyperboloid. It takes three loops for every eigenstate to regrability hyperboloid in ¢,,J,,A) space. The traces start at the
turn to its original position in the level sequence. On thesquares ¢=0°) in the directions indicated. The asterisks mark
plane of invariants this phenomenon is reflected in openevel crossing points.
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15 , ‘ - - ‘ - ‘ ever, would remain very different from those pertaining to

the integrable casé-ig. 10.

10 /\/ Only in the limiting case where the fifth path merges with
5l | the fourth path would the closed traces of the nonintegrable
W model break into segments connected by vertical lines. The

ends of each segment would then rejoin ends of other
segments to form the smooth rings of open traces shown in

o~—o" 7 T ] Fig. 10.

/\/ Similar observations are made upon lifting the first path
1or 7 off the integrability planeA=0 to a plane aA#0. All the
level crossings that exist in Fig. 3, for example, turn into
0 45 90 1% 180 25 270 315 360 level collisions. The closed traces such as those shown in

o Fig. 4 break into pieces whose ends rejoin via near vertical
FIG. 11. Energy eigenvalues, , k=1, ..., 6 in theinvariant  lines into a new set of closed traces.

Ey
o

subspace oH4,, plotted vsa on the path with radius/AZ+J2 Along the second path we had observedFig. 5 level
=/0.3712 atl,= 0.4 off the integrability hyperboloid ink, ,J,,A) crossings(due to integrability and level collisions(due to
space. nearby points of higher symmejnLifting this path off the

integrability plane again removes all level crossings and re-
and a somewhat smaller radiu1§+ A2=0.3712. This fifth sults in a set of closed traces. The characteristic marks of
path lies off the integrability manifold except for two points level collisions on the traces in thég,l,) plane are the
where it intersects the integrability plake=0 (see Fig. 2  same no matter whether they are caused by a reduced sym-
However, no level degeneracies occur at these intersectiometry or by nonintegrability.
points. Lifting the third path off the integrability plane has the

The six Ha 4 levels versusa along the fifth path are same effects on the level crossings attributed to integrability
plotted in Fig. 11. Even though the resulting pattern isand the level crossings attributed to the higher symmetry at
vaguely similar to that observed in Fig. 9, the differences areselected points in parameter spdEg. 7). All are removed
clear cut. All level crossings have turned into level colli- indiscriminately.
sions.

Most of the collisions are fairly soft. The two hardest
collisions are barely resolved as such on the scale of Fig. 12. o )
None of the levels transform into each other any more. The The conflicting assignments of quantum numbers to
|eve|s are now natura”y |abe|ed by the energy Sorting quaneigenstates for parameter values on and off the |ntegrab|l|ty
tum number. Each open segment of the traces shown in Fignanifold is most compellingly documented when we pick a
10 has turned into a closed trace. All level collisions, espepath in parameter space that is only partially embedded in
cially the hard ones, leave the characteristic marks on ththe integrability manifold.
traces in the form of a rapidly varying second invarifnt The sixth path considered in this study of quantum invari-

If we were to move the fifth path closer to the integrabil- ants is a modification of the first patisec. Il A) with the
ity hyperboloid by increasing its radilsee Fig. 2, we could  same projection in Fig. 1. Whereas the first path was embed-
observe a gradual hardening of all level collisions. The leveled in the integrability plan&=0, the sixth path has a vari-
configurations as shown in Fig. 11 would increasingly re-able height relative to that planes(a)=0.3 cod(a/2). It
Semble those in F|g 9. The traces as ShOWn in F|g 12, hO\NfOUCheS down to the |ntegrab|||ty p|ane at a Sing'e pomt (

=180°), where 45,6] level crossing takes place.
36— : : : : Along this path there exist no other level crossings. All
the other crossings that existed in Fig. 3 for the first path are
now replaced by level collisionsee Fig. 13

The inevitable consequence of having a single level cross-
ing along a closed path in parameter space is the existence of
a pair of open traces in the plane of invariants, namely the
traces of the states that undergo f%6] crossing ata
=180°. These traces are shown in Fig. 14. The ends of the
solid and dashed lines form a single loop, which is traced in
the direction indicated.

What causes here an open trace in the plane of invariants
is obviously akin to what had caused an open trace in the
situation described in Sec. llIC. In both cases two levels
cross once due to particular circumstances at one point of the

FIG. 12. Closed traces in theE(,l,) plane of all sixH4,,  Path, and are thus prevented from crossing back to their
levels along the path with radiugA?+J%=/0.3712 at),=0.4 off original position in the level sequence on the remaining
the integrability hyperboloid inJ, ,J,,A) space. The traces start at stretch of the path. In Sec. Il C the particular circumstance
the the squaresa(=0°) in the directions indicated. was a higher symmetry, here it is integrability.

F. Open traces caused by nonintegrability
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TABLE I. Symmetry-adapted basis vectors for integerThe
local spin quantum numbers satisfy the relations|@<o, —1I;
<lI,<l;. The subspace dimensionaliy is %(a+ 1)(c+2) for
AlS, % o(o—1) for AlA, and% o(o+1) for the other six classes.

AlS 00), (|11.10)+]=11,=1:0)/V2,
(N1, =1y +1=11.10)/V2,
(Ml + =1, =1+l )+ =15, —11))/2

I,+1, even
AlA (Ml =1, =1y =[l2. ) = [= 12, = 11))/2
I,+1, even
B1S (1) =1=11.=1))/V2
FIG. 13. Energy eigenvaluds,, k=1, ..., 10 in theinvariant (1o)==l =)+l ) = =15, = 1))/2
subspace oH3;, plotted vsa on the path with radius/Jszr N l1+12 even
=0.5 atA=0.3 cod(a/2) in (Jy,J;,A) space. B1A (||1,,|1>,|,|l'|l>)/\/§
(11— =11, =)=l 1) +[= 12, = 11))/2
IV. INTERPRETATION l,+1, even
The study of quantum invariants along closed pathss2s (Nl = =1, = 1)+, 1) =] =15, —11))/2
through parameter space indicates that a change in symmetry [,+1, odd
and a change in integrability status produce related phenom-
ena. In some dynamical systems, the conservation laws th82A (N0 =1=11, =) =l ) +[ =12, =11))/2
guarantee integrability are direct consequengga Noet- l1+1; odd

her's theorem of continuous symmetries. Switching from gag

[, D)+ =11, =)+l 1)+ |1, —1))/2
integrability to nonintegrability is then accompanied by a (o) + =l =)tz )+ =12 ~10)

T l,+1, odd
reduction in symmetry.

In the two-spin mode(1), the presence of &continuous B3A (N 0y + =1, =1 =1 ) =] =15, =1 ))/2
rotationa) O(2) or higher symmetry in spin space does in- [,+1, odd

deed imply the existence of a second integral of the motiors
namely the component of the total spin along the symmetry

axis, and integrability is guaranteed. However, a second inrelated to a continuous symmetry in configuration space, it is
tegral of the motion was shown to exist for certain parameteappropriate to call it diddensymmetry.

values even in the absence of a continuous rotational sym- For a description of the impact of symmetries on the level
metry [9]. Does integrability in that case indicate the pres-spectrum of the quantum two-spin model, it is useful to dis-
ence of a hidden symmetry? tinguish three kinds of symmetry: discrete symmetries, con-

Classical integrability guarantees that the Hamiltor(iBn  tinuous symmetries, and hidden symmetries.
can be expressed as a function of the two action variables: Discretesymmetries have no bearing on the classical in-
H=H(J1,7). The cyclical nature of the angle coordinates tegrability property, but they do affect the shapes of phase-
thus implies thatH is invariant with respect to continuous space trajectories. Quantum mechanically, they divide the
rotationlike transformations in phase space. Since this is ndflilbert space oH into invariant subspaces. In general, this
does not result in symmetry-induced level degeneracies, but
it does lead to accidental degeneracies between levels be-
longing to different invariant subspaces. Such level crossings
exist independently of whether or nbitis integrable.

Hidden symmetries, which guarantee classical integrabil-
ity, cause additional accidental level degeneracies, namely
between states within one of the invariant subspaces pertain-
ing to any existing discrete symmetry.

Continuoussymmetries, in essence, combine the effects
of the discrete and hidden symmetries, and allow accidental
intersubspace degeneracies. In addition to these effects, con-
tinuous symmetrieésometimes in tandem with discrete sym-

. metrieg produce level degeneracies of a permanent nature,
4 the so-called symmetry-induced level degeneracies.
There exists a hierarchy of symmetries in the two-spin

FIG. 14. Open traces in theE(,l,) plane of the twoH3,, ~ model(1): (SO In the absence of any symmetry, there are no
levels which undergoes orl&,6] crossings along the path with level degeneracies. All levels will collide when Hamiltonian
radius \/3§+_J§:o_5 atA=0.3cof(a/2) in (J,,J,,A) space. The parameters are varied. This situation can be realized by an
traces start at the squares in the direction indicated. The asterisk g@xternal magnetic fieldS1) The existence of discrete sym-
each trace marks the level crossing pointvat 180°. metries alone produces finif@-invariant Hilbert subspaces.
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Level crossings exist between states belonging to different TABLE Il. Symmetry-adapted basis vectors for half-integer
subspaces. Levels within any subspace colli§® The ex-  The local spin quantum numbers satisfy the relationss| <o,
istence of hidden symmetries in addition to discrete symme=1,<l,<l;. The subspace dimensionaliti is § (402-1)
tries produces level crossings between states in the same ifg¢r symmetric and 3 (20+1)(20+3) for antisymmetric
variant subspacgS3 The continuous symmetries produce representations.

permanent degeneracies in certain regions of parametéet

space. A1S (M1 ==, =1y +[l2, 1) =12, = 11))/2
There exists a hierarchy of level collisions which corre- l1+1; even

sponds to the hierarchy of symmetri¢S1)—(S0) Intersub-  pq (P RN

space level crossings in the presence of discrete symmetries (||1’|2>7|7|1‘ 7|2>7“2’|’1>+|7|2 —1)2

turn into level collisions when discrete symmetries are re-

moved. (S2—(S1) Intrasubspace level crossings turn into 112 even
level collisions when the hidden symmetries are removedB1S (1, = 1)+ =11,10/\2
i.e., when the integrability is destroyed(S3—(S2) (e o)+ =1, =)+, )+ =1, —11))/2
Symmetry-induced level degeneracies associated with a con- l,+1, even
tinuous symmetry are removed outside the range of that sym-
metry irrespective of the presence or absence of the hiddefl” (Tl =T =)=l 1) = [ = T2, —1))/2
symmetry. I,+1, even

Some level crossings along paths through symmetrys,g () +] =1y, —10)/V2
points in parameter space turn into level collisions along () =1y, = 1)+ [l )+ =1 —1))/2
nearby paths that miss the symmetry point. Other level cross- 141, odd
ings are insensitive to whether the path hits or misses the e
symmetry point. They are the product of the hidden symmeB2A (Nl =1y, =) =l 1)y = =15, = 11))/2
try. I,+1, odd

All phenomena observed in the quantum invaridagsl
along closed paths on, off, and across the integrability manic°S (hl)==11,=1:))2
fold, indicate that the effects of a change in integrability (Ml ==l =l iz ) = =12, 11))/2
status are akin to the effects of a change in symmetry. All l,+1; odd
observations point to the existence of a hidden symmetry thaigp (et =1 =1, =1y =[lo )+ =15, —1))/2
accompanies quantum integrability. I,+1, odd

In the classical limit, this hidden symmetry manifests it-
self in phase space when viewed from a particular coordinate

system—the action-angle coordinates. The same hiddegyes andS, the permutations of the two spins. The eight
symmetry must also exist in the quantum system, but only ofyyequcible  representations ofD,®S, are named
the integrability manifold. Even though nonintegrability is A1S, AlA, B1S, B1A, B2S, B2A, B3S, B3A, whereS(A)

not to be taken literally in the quantum case, the presence Qiand for (anti)symmetric under permutation and
absence of that hidden symmetry has consequences that ¢ g1 g2 B3 for (CX,C%,C3)=(1,11),(1-1,~1)

equally clear-cut as in the classical limit. (-1,1-1),(—1,—1,1), respectively4,18|
The basis vectors with transformation properties corre-
ACKNOWLEDGMENTS sponding to the eight different irreducible representati@ns

gre listed in Table | for integes and in Table Il for half-

This work was supported by the Research Office of th S , ,
integero. The Hamiltonian matrix can then be expressed in

University of Rhode Island. We are very grateful to Joachim

Stolze for his comments and suggestions relating to thidhe form
work.
H= @ HY (A1)
APPENDIX: DISCRETE SYMMETRIES R
The (discretg¢ symmetry group relevant for the general with blocks of dimensionalitie& =1,3,6,10. .. in 16 dif-

2-spin Hamiltonian(1) is D,®S,, whereD, contains the ferent realizations, two for each symmetry cldese with
three twofold rotationsC5, @=x,y,z about the coordinate integero and one with half-integee) [19].
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