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Signatures of quantum integrability and nonintegrability in the spectral properties of finite
Hamiltonian matrices

Vyacheslav V. Stepanov and Gerhard Mu¨ller
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817

~Received 2 March 2000!

For a two-spin model which is~classically! integrable on a five-dimensional hypersurface in six-dimensional
parameter space and for which level degeneracies occur exclusively~with one known exception! on four-
dimensional manifolds embedded in the integrability hypersurface, we investigate the relations between sym-
metry, integrability, and the assignment of quantum numbers to eigenstates. We calculate quantum invariants
in the form of expectation values for selected operators and monitor their dependence on the Hamiltonian
parameters along loops within, without, and across the integrability hypersurface in parameter space. We find
clear-cut signatures of integrability and nonintegrability in the observed traces of quantum invariants evaluated
in finite-dimensional invariant Hilbert subspaces. The results support the notion that quantum integrability
depends on the existence of action operators as constituent elements of the Hamiltonian.

PACS number~s!: 05.45.2a, 75.10.Hk, 75.10.Jm

I. INTRODUCTION

An autonomous classical Hamiltonian system with two
degrees of freedom, specified by some analytic function
H(p1 ,q1 ;p2 ,q2) of canonical coordinates, is either inte-
grable or nonintegrable—tertium non datur. If a second in-
tegral of the motion can be found, i.e., an analytic function
I (p1 ,q1 ;p2 ,q2) which is functionally independent ofH and
satisfiesdI/dt5$H,I %50, the system is proven integrable. If
chaotic trajectories can be detected in the phase flow, the
system is demonstrably nonintegrable. Although it may hap-
pen that neither evidence can be ascertained in practice for a
given H, one or the other status is guaranteed to apply.

A question of long-standing interest has been whether an
equally clear-cut classification of systems exists in quantum
mechanics. Translating the criterion of classical integrability
into quantum mechanics for systems with few degrees of
freedom opens up loopholes of ambiguity that are not easily
closed@1,2#. Quantum mechanically, a second integral of the
motion, i.e., an operatorI with @H,I #50 can always be con-
structed, for example, via time average of an arbitrary opera-
tor A @3,4#. Performing the time average in the energy rep-
resentation eliminates all off-diagonal matrix elements ofA.
Which attributes of quantum invariants are most sensitive to
the integrability status of the system?

Quantum chaos research has identified a catalog of at-
tributes that distinguish quantized nonintegrable from quan-
tized integrable systems@5–7#. The most widely studied dis-
tinctive properties pertain to level statistics. However, in the
extreme quantum limit of a typical model system, where the
density of energy levels is low, this distinction is blurry at
best or altogether unrecognizable. Only in the energy range
where the level density is high, which includes the semiclas-
sical regime, do the contrasting level spacing distributions
come into focus. Other indicators of quantum chaos are simi-
larly ambiguous.

One unequivocal discriminant between quantized inte-
grable and nonintegrable systems was recently identified in a
study of level crossing manifolds in the parameter space of a

two-spin model@8#. The system is specified by the quadratic
Hamiltonian

H5 (
a5x,y,z

$2JaS1
aS2

a1 1
2 Aa@~S1

a!21~S2
a!2#% ~1!

for two quantum spinsS1 ,S2 of equal lengthAs(s11) (s
5 1

2 ,1,32 ,...). In theclassical limit\→0,s→`,\As(s11)
5s, the operatorsSi turn into 3-component vectors,Si
5s(sinqi coswi ,sinqi sinwi ,cosqi), and Eq. ~1! then de-
scribes the energy function of an autonomous Hamiltonian
system with two degrees of freedom and canonical coordi-
nates pi5s cosqi ,qi5wi ,i51,2. The classical integrability
condition was shown to have the form@9#

~Ax2Ay!~Ay2Az!~Az2Ax!1 (
abg5cycl~xyz!

Ja
2~Ab2Ag!50.

~2!

Quantum mechanically, the Hamiltonian~1! is expressible
as a real symmetric block-diagonal matrix, where each of the
infinitely many finite-dimensional blocks is associated with
one spin-s realization of an irreducible representation of the
underlying~discrete! symmetry group~see the Appendix!.

The main conclusions of the level crossing study for this
system may be summarized as follows@8#: ~i! In the six-
dimensional~6D! parameter space of~1!, level degeneracies
occur on smooth 4D structures@10# ~ii ! For an invariant
block of H with K levels, this 4D structure consists ofK
21 sheets, each representing one twofold@k,k11# level
degeneracy in the sequenceE1<E2<¯<EK . ~iii ! All 4D
level crossing sheets are completely embedded in the 5D
integrability hypersurface.~iv! Under mild assumptions, the
integrability condition ~2! can be determined analytically
from the conditions of level degeneracy in low-dimensional
invariant Hilbert subspaces ofH.

These results strongly suggest that the notion of integra-
bility remains meaningful for quantum systems described by
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finite Hamiltonian matrices, notwithstanding the fact that
there exist universal algorithms for the diagonalization of
finite symmetric matrices.

For a deeper understanding of this subtle notion of quan-
tum integrability, we note that classical integrability guaran-
tees the existence of a canonical transformation
(p1 ,q1 ;p2 ,q2)→(J1 ,u1 ;J2 ,u2) to action-angle coordi-
nates. It transforms the HamiltonianH(p1 ,q1 ;p2 ,q2) and
the second integral of the motionI (p1 ,q1 ;p2 ,q2) into ana-
lytic functions HC(J1 ,J2),I C(J1 ,J2). Each point (J1 ,J2)
on the action plane specifies a torus in phase space. In the
nonintegrable case, the actionsJ1 ,J2 are only defined for
the surviving tori. Since the tori are no longer dense any-
where in phase space, no smooth functionsHC ,I C on J1 ,J2
exist anymore.

In a companion paper@11# we have postulated that the
underlying cause for the embedment of (dI21)-dimensional
level crossing manifolds in adI-dimensional~classical! inte-
grability manifold of the parameter space~with dimensional-
ity d>dI! is linked to the existence of action operators as
constituent elements of the Hamiltonian. In that study we
have demonstrated for two distinct model systems the ex-
plicit functional dependenceHQ(J1 ,J2),I Q(J1 ,J2) of the
Hamiltonian and the second integral of the motion on two
action operators, and compared it to the similar yet different
functional dependenceHC(J1 ,J2),I C(J1 ,J2) of the corre-
sponding classical invariants on the classical action coordi-
nates.

The familiar controversies surrounding the notion of
quantum action do not arise unless we insist on interpreting
the action operator as a~stationary! canonical momentum,
which calls for an angle operator. The main problem is how
to define the latter in a satisfactory way@12–14#. If the ac-
tion operator is defined solely on the basis of its spectral
properties, there is no need for introducing angle operators.

II. METHOD

A more indirect but no less compelling method for dem-
onstrating the existence of action operators as constituent
elements of the quantum invariantsH,I in some regions of
parameter space, namely on the integrability hypersurface,
and their nonexistence elsewhere is pursued here for the two-
spin model~1!. We investigate the functional dependence of
the eigenvalues of quantum invariants on the Hamiltonian
parameters, in particular across lines demarcating changes in
symmetry and/or integrability status.

Here and in the following, all references to integrability
status rely on the well understood and rigorously established
classical integrability condition~2!, but the focus is on the
study of quantum mechanical properties that are sensitive to
this condition and thus impart meaning to it as a quantum
integrability condition.

On the integrability hypersurface~2!, the natural quantum
numbers of the eigenstates within any invariant Hilbert sub-
space ofH are the integer pairs (m1 ,m2) specifying the ei-
genvalues~in units of \! of the action operatorsJ1 ,J2 .
Henceforth we call themaction quantum numbers. Else-
where in parameter space, where level crossings between
eigenstates of the same parameter space are prohibited, the
natural quantum number is a single integer, theenergy sort-

ing quantum number n. What consequences do these con-
flicting assignments of quantum numbers in the two regions
of parameter space have for the functional dependence of
quantum invariants on the Hamiltonian parameters?

Consider the case of aK-dimensional invariant subspace
of ~1! spanned by the basis given in the Appendix. TheK
eigenstatesuk&,k51, . . . ,K then form a star of orthonormal
vectors pointing in oblique directions with respect to the co-
ordinate axes. A tiny change of the parametersJa ,Aa causes
the star of eigenvectors to rotate slightly. By monitoring the
inner product between eigenvectors before and after every
infinitesimal parameter change, we can keep track of all
eigenvectors along the entire loop in parameter space.

At the same time, we monitor the effect of the gradually
transforming eigenvectors on the eigenvalues of two quan-
tum invariants. For this purpose we choose the energy ex-
pectation valueEk5^kuHuk& and the expectation valueI k

5^kuAuk&, whereA is some function of theSi
a @15#. When

the Hamiltonian parametersJa ,Aa are varied along a path in
6D parameter space, the vectoruk& traces a path on the sur-
face of aK-dimensional unit sphere, and the point (Ek ,I k)
leaves a trace in the plane of invariants.

What if two eigenvectors are accidentally degenerate
(Ek5Ek8), which happens when their energy eigenvalues
cross each other at some point on the path in parameter
space? Generically, the eigenvalues of the second invariant
are different at the point of level degeneracy (I kÞI k8). We
can always choose the second invariant so that this is the
case. At the crossing point the orientation of the two eigen-
vectors is not fixed. However, that ambiguity is removed if
we impose the condition that the path of every point (Ek ,I k)
in the plane of invariants must be continuous.

We shall see that varyingJa ,Aa along a closed path in
parameter space does not guarantee that the trace of every
eigenstate in the (Ek ,I k) plane is also closed. It may happen,
for example, that two eigenvectors transform into each other
in the course of one parameter-space loop, thus leaving an
open trace in the plane of invariants, which will be closed
only after a second traversal of the loop. The two kinds of
quantum numbers assigned to eigenstates in different regions
of parameter space as discussed previously, suggest the fol-
lowing scenario.

~i! If the closed path in parameter space lies entirely on
the integrability hypersurface, then the traces of all eigen-
states in the plane of invariants will be closed. Along the
loop, level crossings occur frequently, but the labeling of all
eigenstates by the action quantum numbersm1 ,m2 remains
valid on every stretch of it.

~ii ! If the path in parameter space lies entirely off the
integrability hypersurface, the traces of all eigenstates will
again be closed but for a different reason. Level crossings are
prohibited in this region. All states are labeled by the energy
sorting quantum numbern. That label is valid along the en-
tire loop.

~iii ! If the closed path in parameter space consists of a leg
A on and a legB off the integrability hypersurface, then the
conflicting assignment of quantum numbers has the conse-
quence that some of the traces in the plane of invariants
remain open. An eigenstateuk& may undergo one or several
level crossings on legA of the path and thus end up at a
different position in the energy-level sequence at the begin-
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ning of legB when the energy-sorting quantum number kicks
in. As the parameters are varied along legB back to their
starting values, the point (Ek ,I k) is prevented from finding
its way back to the original position in the plane of invariants
because level crossings are now prohibited.

Not surprisingly, physical reality turns out to be more
complicated. However, the observations made by this
method of analysis prove to be highly illuminating in regard
to the relations between symmetry, integrability, and the as-
signment of quantum numbers.

III. RESULTS

To facilitate comparison with results obtained previously,
we use the same reduced 3D parameter space as in Ref.@8#.
It is spanned byJy ,Jz ,Ax2Ay[2A at Jx51,Ax1Ay50,Az
50 @16#. The integrability condition~2!, which becomes

A~11Jy
222Jz

222A2!50, ~3!

is satisfied on a 2D surface consisting of the planeA50 and
a hyperboloid with axis atA50,Jz50. Embedded in this
integrability surface are 1D level crossing manifolds in pat-
terns whose complexity increases with the number of levels
in the invariant~Hilbert! subspaces under consideration@8#.

Individual eigenstatesuk& will now be tracked along
closed paths in this reduced parameter space. Each path se-
lected displays distinct characteristic features in the traces on
the plane of invariants (Ek ,I k). Here we useI k5^ku(S1

z

1S2
z)2uk&. We consider invariant~Hilbert! subspaces of

symmetry classA1A with K56,10 levels corresponding to
spin quantum numberss54,5, respectively ~see the
Appendix!.

Figure 1 depicts the reduced parameter space projected
onto the integrability planeA50. The dotted-dashed lines

represent the level crossing manifold ofHA1A
5 with K510

levels in the planeA50. None of the intersection points of
two dotted-dashed lines involves triple or quadruple degen-
eracies. Each level crossing line can thus be labeled
@k,k11# by the positions in the level sequenceE1<E2
<¯<EK of the two levels involved in the crossing@17#.

The integrability hyperboloid intersects the integrability
plane along the two dashed lines. There exist 30HA1A

5 level
crossing lines on the hyperboloid. These lines intersect the
planeA50 at seven points on each dashed line, namely on
the intersection points with dotted-dashed lines and on the
symmetry points atuJyu5uJzu51. The solid circles represent
projections of paths along which we track the quantum in-
variantsEk ,I k .

A different projection of the reduced parameter space is
shown in Fig. 2. The larger circle represents a path along the
intersection of the integrability hyperboloid with the plane
Jy50.4. The squares on that circle mark the locations where
the 10 level crossing lines on the hyperboloid forHA1A

4 in-
tersect the planeJy50.4. The smaller~concentric! circle rep-
resents a path that is located in the nonintegrable region of
parameter space except for the two points where it intersects
the integrability planeA50 ~dashed line!.

A. Hallmark of integrability

The first path considered is the circleJy
21Jz

25 1
4 in the

plane A50 as shown in Fig. 1. This path does not come
close to any of the symmetry points~pentagons!. In Fig. 3 we
have plotted the 10 levels ofHA1A

5 versus angular distancea
on the circular path. We observe 20 pairwise crossings be-
tween six levels at the angles where the path intersects the
dotted–dashed lines in Fig. 1.

No instances of level repulsion can be discerned in this
plot, which is not to say that thea dependence of adjacent
levels is uncorrelated. Take the six levels near the center of

FIG. 1. Reduced parameter space (Jy ,Jz ,A) projected onto the
(Jy ,Jz) plane. The two dashed lines mark the intersection, 2Jz

2

2Jy
251, of the integrability hyperboloid with the planeA50. In

the integrability planeA50, level degeneracies ofHA1A
5 occur

along the dotted-dashed lines and multiple degeneracies at the sym-
metry pointsuJyu5uJzu51 marked by the four pentagons. The solid
circles represent projections of paths with radiiAJy

21Jz
25

1
2 , &,

3
2 along which we track the quantum invariantsEk , I k .

FIG. 2. Reduced parameter space (Jy ,Jz ,A) projected onto the
(Jz ,A) plane. The solid circles represent paths withJz

21A2

50.3712, 0.58 atJy50.4 along which we track the quantum invari-
antsEk ,I k . The larger circle is located on the integrability hyper-
boloid. The positions of level crossings ofHA1A

4 states along that
path are indicated by squares. The dashed line marks the integrabil-
ity planeA50.
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the spectrum. They can be divided into two groups of three
levels undergoing similar oscillations along the path. The
synchronicity of these oscillations is, in fact, a consequence
of the ~postulated! smooth dependence of the functions
HQ(J1 ,J2) and I Q(J1 ,J2) on a for this path embedded in
the integrability plane@11#.

In Fig. 4 we show the traces in the (Ek ,I k) plane of the
two eigenstates whose levels undergo four@7,8# crossings
along the path~thick lines in Fig. 3!. The traces are continu-
ous, closed, and smooth. The square and the arrow indicate
the starting point and the direction of the trace. Every level
crossing is represented by two vertically displaced asterisks,
one on each trace.

It is important to note that the traces remain perfectly
smooth at the points of level crossing. The level crossings
have no impact on the eigenvectors, or on the expectation
valuesI k . Every eigenvector loops around and returns to its
original orientation in Hilbert space. Its path is largely unaf-
fected by the presence of other eigenvectors which become
instantaneously degenerate with it. It is as if vectors under-
going level crossings belonged to different invariant sub-
spaces.

The behavior of energy levels as observed in Fig. 3 and
the properties of traces as seen in Fig. 4 reflect what we
expect for a typical situation in an integrable system with
two degrees of freedom. The two invariantsEk ,I k are func-
tions of two quantized actionsJ1 ,J2 with a smooth depen-
dence on the Hamiltonian parameters. The discrete values of
the actions define the natural quantum numbers of all levels,
and each eigenstate maintains its identity along any path in
parameter space notwithstanding the presence of level cross-
ings. All traces produced along closed paths are therefore
closed as well.

There are two sources of complication forcing on us a
refinement of this description without undermining the pos-
tulated link between quantum integrability and action opera-
tors. These two complications will be discussed next before
we investigate the effects of nonintegrability.

B. Level repulsion near symmetry points

The second path considered is the circleJy
21Jz

25 9
4 in the

integrability planeA50 ~see Fig. 1!. What makes it different
from the previous path is that it passes close to the four
points uJyu5uJzu51, where additional degeneracies occur,
caused by a higher symmetry.

The 10 levels ofHA1A
5 versusa are plotted in Fig. 5. As in

Fig. 3 for the previous path, we observe 20 level crossings,
each one associated with a point where the circular path in-
tersects one of the dotted-dashed lines in Fig. 1. In addition
to these crossings we observe instances of level collisions at
a5np/2, n51,3,5,7, i.e., in the vicinity of the symmetry
points.

It is instructive to compare the effects of level crossings
and level collisions on the traces in the plane of invariants. In
Fig. 6 we show again the trace of the point (Ek ,I k) for two
states that are involved in four@7,8# levels crossings~thick
lines in Fig. 5!, now along the second path. These traces
exhibit features not seen in Fig. 4.

We again observe that none of the level crossings leaves
any mark on the traces, implying that the wave functions of
the two eigenstates are completely unperturbed by the instan-
taneous level degeneracies~see asterisks!. On any stretch
between successive mutual crossings, both levels collide
with one neighboring level, and each collision does have a
dramatic effect on the traces of the states involved in the

FIG. 3. Energy eigenvaluesEk , k51, . . . ,10 in theinvariant
subspace ofHA1A

5 as defined in Eq.~A1! and plotted vs the angular
distancea on the circular path with radiusAJy

21Jz
250.5 in the

planeA50 of the reduced parameter space (Jy ,Jz ,A).

FIG. 4. Closed traces in the (Ek ,I k) plane of twoHA1A
5 levels

along the circular path with radiusAJy
21Jz

25
1
2 in the planeA50

of the reduced parameter space (Jy ,Jz ,A). The traces start at the
open squares (a50°) in the directions indicated. The asterisks
mark level crossing points.

FIG. 5. Energy eigenvaluesEk , k51, . . . ,10 in theinvariant
subspace ofHA1A

5 plotted vsa on the path with radiusAJy
21Jz

2

51.5 in the planeA50 of (Jy ,Jz ,A) space.
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collision. Level collisions produce precipitous changes in the
second invariantI k near the closest encounter of the colliding
levels. The rapid variation of expectation values signals a
strong perturbation of the wave functions in a level collision.
The presence of this characteristic signature of level colli-
sions is as conspicuous in the traces shown in Fig. 6 as is
their absence in the traces shown in Fig. 4.

In what might be called a hard level collision, the two
states exchange wave functions in a manner like two billiard
balls exchange momenta in a head-on collision. This makes
it hard to distinguish a hard collision from a crossing in a
plot such as Fig. 5 because of graphical resolution. A plot of
one invariant versus the other~Fig. 6! is much more sensitive
to that distinction. Here a hard level collision produces a
variation in I k that looks almost like a discontinuity.

The phenomena observed in Figs. 5 and 6 are not in con-
tradiction with the assertion that the invariantsEk ,I k are
functions of two quantum actions. It tells us, however, that
the dependence of these functions on the Hamiltonian pa-
rameters is singular at the symmetry points ofH. The phe-
nomenon of level repulsion in the immediate vicinity of sym-
metry points is then caused by invariants pertaining to the
higher symmetry and by the associated additional level de-
generacies.

The traces of all levels depicted in Fig. 5 are closed as
were all traces of the levels shown in Fig. 3. The implication
is that the number of crossings between any pair of levels
must be an even number. The fact is that neither the level
crossings nor the level collisions can cause any confusion in
the labeling of the levels by action quantum numbers along a
path in the integrability planeA50 as long as it avoids the
points uJyu5uJzu51 of higher symmetry with symmetry in-
duced level degeneracies. Each eigenstate maintains its iden-
tity along such paths, or so it seems.

C. Open traces caused by a change in symmetry

The third path considered is the circleJy
21Jz

252 at A
50 ~see Fig. 1!. It is embedded in the integrability plane and
passes through the pointsuJyu5uJzu51. The impact of these
symmetry points on the energy levels is depicted in Fig. 7.
What were level collisions in Fig. 5 have now turned into
additional level crossings. At the symmetry points, the 10

levels combine into a singlet, a doublet, a triplet, and a qua-
druplet. No instances of level repulsion are observable any-
more.

The absence of level collisions along this path is con-
firmed by a study of the traces in the (Ek ,I k) plane. In Fig. 8
we show the traces of the two states that again start in the
seventh and eighth positions of the level sequence. Gone are
the rapid near-vertical displacements which we have identi-
fied in Fig. 6 and which were caused by level collisions. The
traces in Fig. 8 are as unaffected by the new symmetry in-
duced level crossings as they are oblivious of crossings else-
where in the integrability plane.

However, a striking new feature makes its appearance in
Fig. 8. The traces do not close in themselves after one loop
around the circular path in parameter space. The eighth level
becomes the seventh level after one loop, and then turns into
the second level after two loops. Only after the third loop
does it end up in the original eighth position of the level
sequence.

In Fig. 7 the three levels involved in that loop are drawn
as thick lines. Inspection shows that there are two further
groups of three states which transform into each other as the
parameter values loop around the circle. That leaves one
state~near the center of the spectrum! whose trace closes in
itself after one loop.

FIG. 6. Closed traces in the (Ek ,I k) plane of twoHA1A
5 levels

along the path with radiusAJy
21Jz

251.5 in the planeA50 of
(Jy ,Jz ,A) space. The traces start at the squares (a50°) in the
directions indicated. The asterisks mark level crossing points.

FIG. 7. Energy eigenvaluesEk , k, . . . ,10 in the invariant sub-
space ofHA1A

5 plotted versusa on the path with radiusAJy
21Jz

2

5& in the planeA50 of (Jy ,Jz ,A) space.

FIG. 8. Open traces in the (Ek ,I k) plane of threeHA1A
5 levels

along the path with radiusAJy
21Jz

25& in the planeA50 of
(Jy ,Jz ,A) space. The traces start at the squares (a50°) in the
directions indicated The asterisks mark level crossing points.
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Is this phenomenon of levels transforming into each other
compatible with the notion that the invariants are functions
of the quantized actions with a smooth dependence on the
Hamiltonian parameters? Yes if we allow the dependence on
the parameters to be singular at points of higher symmetry
within the integrability manifold. The presence of such sin-
gularities was already suggested by the level collisions ob-
served in Figs. 5 and 6. The results of Figs. 7 and 8 confirm
the singular parameter dependence from a different vantage
point.

When we start with the second path in parameter space
~Sec. III B! and increase the radius of the circle gradually
toward that of the third path, we observe a gradual hardening
of the level collisions near the symmetry points. The hard-
ening is characterized by increasingly sharp curvatures in the
graphs ofEk versusa ~Fig. 5! and by increasingly rapid
vertical variations in the graphsI k versusEk ~Fig. 6!.

In the limiting case of this path, the sharply curved but
smooth bends in the graphEk versusa turn into cusps, and
the fast but smooth vertical variations in the graphsI k versus
Ek turn into discontinuities. An infinitely hard level collision
is indistinguishable from a level crossing. In Figs. 7 and 8
smooth segments of graphs between singularities that belong
to different colliding levels are rejoined to form entirely
smooth graphs ofcrossinglevels.

Hence, if we insist that all levels maintain their identity
along any closed path in the integrability planeA50, we
must interpret all level crossings that take place at the points
of higher symmetry,uJyu5uJzu51, as infinitely hard level
collisions. All the evidence accumulated thus far still sup-
ports the existence of the functionsHQ(J1 ,J2) and
I Q(J1 ,J2) with a smooth parameter dependence on the in-
tegrability manifold, provided we allow for singularities at
points of higher symmetry.

Before we discuss the strongly contrasting properties of
quantum invariants along paths that are not fully embedded
in the integrability manifold of~1!, we should report on yet
another feature that complicates the interpretation of the in-
tegrable cases.

D. Open traces caused by topology

The circle A21Jz
250.58 with center atJy50.4 is the

fourth path along which we study the behavior of quantum
invariants. This path represents a circular section of the in-
tegrability hyperboloid~3! ~see Fig. 2!. Like the first path
considered, it does not pass near any point in parameter
space where symmetry induced level degeneracies occur.

The angular dependence of the sixHA1A
4 levels, depicted

in Fig. 9, does indeed not show any level collisions just as
was the case in Fig. 3 for the first path. All levels undergo
several crossings along this path, and none of the crossings
has any noticeable effect on the quantum invariantsEk ,I k
plotted in Fig. 10.

Nevertheless, there is a major difference between the evo-
lution of eigenstates along these two paths. Each one of the
six levels shown in Fig. 9 transforms into a different level in
the course of one loop of the path around the integrability
hyperboloid. It takes three loops for every eigenstate to re-
turn to its original position in the level sequence. On the
plane of invariants this phenomenon is reflected in open

traces that connect to form two rings of three segments each
as shown in Fig. 10. The two sets of levels are distinguished
by line thickness.

Unlike in the previous situation~Sec. III C!, here the
open-trace phenomenon cannot be attributed to a change of
symmetry along the path. What distinguishes the first path,
where open traces do not occur from the fourth path, where
they do occur, is that only the former can be shrunk to a
point without leaving the integrability manifold. Hence the
multiple connectedness of the integrability hyperboloid
forces us to allow for functionsHQ(J1 ,J2) and I Q(J1 ,J2)
whose dependence on the Hamiltonian parameters is still
smooth but multiple valued.

With these concessions, the signature properties of quan-
tum integrability postulated above remain fully intact. The
quantum invariantsEk ,I k exhibit strongly contrasting fea-
tures when observed along paths that are not embedded in
the integrability manifold. Visualizing these differences does
not depend on a statistical analysis. They are unmistakenly
identifiable in systems with very few levels.

E. Level repulsion due to nonintegrability

For a direct comparison with the previous situation, we
now choose a circle with the same center as the fourth path

FIG. 9. Energy eigenvaluesEk , k51, . . . ,6 in theinvariant
subspace ofHA1A

4 plotted versusa on the path with radius
AA21Jz

25A0.58 atJy50.4 embedded in the integrability hyperbo-
loid of (Jy ,Jz ,A) space.

FIG. 10. Open traces in the (Ek ,I k) plane of all sixHA1A
4 levels

along the path with radiusAA21Jz
25A0.58 atJy50.4 on the inte-

grability hyperboloid in (Jy ,Jz ,A) space. The traces start at the
squares (a50°) in the directions indicated. The asterisks mark
level crossing points.
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and a somewhat smaller radius,Jz
21A250.3712. This fifth

path lies off the integrability manifold except for two points
where it intersects the integrability planeA50 ~see Fig. 2!.
However, no level degeneracies occur at these intersection
points.

The six HA1A
4 levels versusa along the fifth path are

plotted in Fig. 11. Even though the resulting pattern is
vaguely similar to that observed in Fig. 9, the differences are
clear cut. All level crossings have turned into level colli-
sions.

Most of the collisions are fairly soft. The two hardest
collisions are barely resolved as such on the scale of Fig. 12.
None of the levels transform into each other any more. The
levels are now naturally labeled by the energy sorting quan-
tum number. Each open segment of the traces shown in Fig.
10 has turned into a closed trace. All level collisions, espe-
cially the hard ones, leave the characteristic marks on the
traces in the form of a rapidly varying second invariantI k .

If we were to move the fifth path closer to the integrabil-
ity hyperboloid by increasing its radius~see Fig. 2!, we could
observe a gradual hardening of all level collisions. The level
configurations as shown in Fig. 11 would increasingly re-
semble those in Fig. 9. The traces as shown in Fig. 12, how-

ever, would remain very different from those pertaining to
the integrable case~Fig. 10!.

Only in the limiting case where the fifth path merges with
the fourth path would the closed traces of the nonintegrable
model break into segments connected by vertical lines. The
ends of each segment would then rejoin ends of other
segments to form the smooth rings of open traces shown in
Fig. 10.

Similar observations are made upon lifting the first path
off the integrability planeA50 to a plane atAÞ0. All the
level crossings that exist in Fig. 3, for example, turn into
level collisions. The closed traces such as those shown in
Fig. 4 break into pieces whose ends rejoin via near vertical
lines into a new set of closed traces.

Along the second path we had observed~in Fig. 5! level
crossings~due to integrability! and level collisions~due to
nearby points of higher symmetry!. Lifting this path off the
integrability plane again removes all level crossings and re-
sults in a set of closed traces. The characteristic marks of
level collisions on the traces in the (Ek ,I k) plane are the
same no matter whether they are caused by a reduced sym-
metry or by nonintegrability.

Lifting the third path off the integrability plane has the
same effects on the level crossings attributed to integrability
and the level crossings attributed to the higher symmetry at
selected points in parameter space~Fig. 7!. All are removed
indiscriminately.

F. Open traces caused by nonintegrability

The conflicting assignments of quantum numbers to
eigenstates for parameter values on and off the integrability
manifold is most compellingly documented when we pick a
path in parameter space that is only partially embedded in
the integrability manifold.

The sixth path considered in this study of quantum invari-
ants is a modification of the first path~Sec. III A! with the
same projection in Fig. 1. Whereas the first path was embed-
ded in the integrability planeA50, the sixth path has a vari-
able height relative to that plane:A(a)50.3 cos2(a/2). It
touches down to the integrability plane at a single point (a
5180°), where a@5,6# level crossing takes place.

Along this path there exist no other level crossings. All
the other crossings that existed in Fig. 3 for the first path are
now replaced by level collisions~see Fig. 13!.

The inevitable consequence of having a single level cross-
ing along a closed path in parameter space is the existence of
a pair of open traces in the plane of invariants, namely the
traces of the states that undergo the@5,6# crossing ata
5180°. These traces are shown in Fig. 14. The ends of the
solid and dashed lines form a single loop, which is traced in
the direction indicated.

What causes here an open trace in the plane of invariants
is obviously akin to what had caused an open trace in the
situation described in Sec. III C. In both cases two levels
cross once due to particular circumstances at one point of the
path, and are thus prevented from crossing back to their
original position in the level sequence on the remaining
stretch of the path. In Sec. III C the particular circumstance
was a higher symmetry, here it is integrability.

FIG. 11. Energy eigenvaluesEk , k51, . . . ,6 in theinvariant
subspace ofHA1A

4 plotted vsa on the path with radiusAA21Jz
2

5A0.3712 atJy50.4 off the integrability hyperboloid in (Jy ,Jz ,A)
space.

FIG. 12. Closed traces in the (Ek ,I k) plane of all sixHA1A
4

levels along the path with radiusAA21Jz
25A0.3712 atJy50.4 off

the integrability hyperboloid in (Jy ,Jz ,A) space. The traces start at
the the squares (a50°) in the directions indicated.
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IV. INTERPRETATION

The study of quantum invariants along closed paths
through parameter space indicates that a change in symmetry
and a change in integrability status produce related phenom-
ena. In some dynamical systems, the conservation laws that
guarantee integrability are direct consequences~via Noet-
her’s theorem! of continuous symmetries. Switching from
integrability to nonintegrability is then accompanied by a
reduction in symmetry.

In the two-spin model~1!, the presence of a~continuous
rotational! O(2) or higher symmetry in spin space does in-
deed imply the existence of a second integral of the motion,
namely the component of the total spin along the symmetry
axis, and integrability is guaranteed. However, a second in-
tegral of the motion was shown to exist for certain parameter
values even in the absence of a continuous rotational sym-
metry @9#. Does integrability in that case indicate the pres-
ence of a hidden symmetry?

Classical integrability guarantees that the Hamiltonian~1!
can be expressed as a function of the two action variables:
H5HC(J1 ,J2). The cyclical nature of the angle coordinates
thus implies thatHC is invariant with respect to continuous
rotationlike transformations in phase space. Since this is not

related to a continuous symmetry in configuration space, it is
appropriate to call it ahiddensymmetry.

For a description of the impact of symmetries on the level
spectrum of the quantum two-spin model, it is useful to dis-
tinguish three kinds of symmetry: discrete symmetries, con-
tinuous symmetries, and hidden symmetries.

Discretesymmetries have no bearing on the classical in-
tegrability property, but they do affect the shapes of phase-
space trajectories. Quantum mechanically, they divide the
Hilbert space ofH into invariant subspaces. In general, this
does not result in symmetry-induced level degeneracies, but
it does lead to accidental degeneracies between levels be-
longing to different invariant subspaces. Such level crossings
exist independently of whether or notH is integrable.

Hiddensymmetries, which guarantee classical integrabil-
ity, cause additional accidental level degeneracies, namely
between states within one of the invariant subspaces pertain-
ing to any existing discrete symmetry.

Continuoussymmetries, in essence, combine the effects
of the discrete and hidden symmetries, and allow accidental
intersubspace degeneracies. In addition to these effects, con-
tinuous symmetries~sometimes in tandem with discrete sym-
metries! produce level degeneracies of a permanent nature,
the so-called symmetry-induced level degeneracies.

There exists a hierarchy of symmetries in the two-spin
model~1!: ~S0! In the absence of any symmetry, there are no
level degeneracies. All levels will collide when Hamiltonian
parameters are varied. This situation can be realized by an
external magnetic field.~S1! The existence of discrete sym-
metries alone produces finite-D invariant Hilbert subspaces.

TABLE I. Symmetry-adapted basis vectors for integers. The
local spin quantum numbers satisfy the relations 0, l 1<s, 2 l 1

, l 2, l 1 . The subspace dimensionalityK is 1
2 (s11)(s12) for

A1S, 1
2 s(s21) for A1A, and 1

2 s(s11) for the other six classes.

A1S u00&, (u l 1 ,l 1&1u2 l 1 ,2 l 1&)/A2,
(u l 1 ,2 l 1&1u2 l 1 ,l 1&)/A2,

(u l 1 ,l 2&1u2 l 1 ,2 l 2&1u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2
l 11 l 2 even

A1A (u l 1 ,l 2&1u2 l 1 ,2 l 2&2u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 even

B1S (u l 1 ,l 1&2u2 l 1 ,2 l 1&)/A2
(u l 1 ,l 2&2u2 l 1 ,2 l 2&1u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2

l 11 l 2 even

B1A (u l 1 ,2 l 1&2u2 l 1 ,l 1&)/A2
(u l 1 ,l 2&2u2 l 1 ,2 l 2&2u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2

l 11 l 2 even

B2S (u l 1 ,l 2&2u2 l 1 ,2 l 2&1u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 odd

B2A (u l 1 ,l 2&2u2 l 1 ,2 l 2&2u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2
l 11 l 2 odd

B3S (u l 1 ,l 2&1u2 l 1 ,2 l 2&1u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2
l 11 l 2 odd

B3A (u l 1 ,l 2&1u2 l 1 ,2 l 2&2u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 odd

FIG. 13. Energy eigenvaluesEk , k51, . . . ,10 in theinvariant
subspace ofHA1A

5 plotted vsa on the path with radiusAJy
21Jz

2

50.5 atA50.3 cos2(a/2) in (Jy ,Jz ,A) space.

FIG. 14. Open traces in the (Ek ,I k) plane of the twoHA1A
5

levels which undergoes one@5,6# crossings along the path with
radiusAJy

21Jz
250.5 atA50.3 cos2(a/2) in (Jy ,Jz ,A) space. The

traces start at the squares in the direction indicated. The asterisk on
each trace marks the level crossing point ata5180°.
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Level crossings exist between states belonging to different
subspaces. Levels within any subspace collide.~S2! The ex-
istence of hidden symmetries in addition to discrete symme-
tries produces level crossings between states in the same in-
variant subspace.~S3! The continuous symmetries produce
permanent degeneracies in certain regions of parameter
space.

There exists a hierarchy of level collisions which corre-
sponds to the hierarchy of symmetries.~S1!→~S0! Intersub-
space level crossings in the presence of discrete symmetries
turn into level collisions when discrete symmetries are re-
moved. ~S2!→~S1! Intrasubspace level crossings turn into
level collisions when the hidden symmetries are removed,
i.e., when the integrability is destroyed.~S3!→~S2!
Symmetry-induced level degeneracies associated with a con-
tinuous symmetry are removed outside the range of that sym-
metry irrespective of the presence or absence of the hidden
symmetry.

Some level crossings along paths through symmetry
points in parameter space turn into level collisions along
nearby paths that miss the symmetry point. Other level cross-
ings are insensitive to whether the path hits or misses the
symmetry point. They are the product of the hidden symme-
try.

All phenomena observed in the quantum invariantsEk ,I k
along closed paths on, off, and across the integrability mani-
fold, indicate that the effects of a change in integrability
status are akin to the effects of a change in symmetry. All
observations point to the existence of a hidden symmetry that
accompanies quantum integrability.

In the classical limit, this hidden symmetry manifests it-
self in phase space when viewed from a particular coordinate
system—the action-angle coordinates. The same hidden
symmetry must also exist in the quantum system, but only on
the integrability manifold. Even though nonintegrability is
not to be taken literally in the quantum case, the presence or
absence of that hidden symmetry has consequences that are
equally clear-cut as in the classical limit.
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APPENDIX: DISCRETE SYMMETRIES

The ~discrete! symmetry group relevant for the general
2-spin Hamiltonian~1! is D2^ S2 , whereD2 contains the
three twofold rotationsC2

a , a5x,y,z about the coordinate

axes, andS2 the permutations of the two spins. The eight
irreducible representations of D2^ S2 are named
A1S, A1A, B1S, B1A, B2S, B2A, B3S, B3A, whereS(A)
stand for ~anti-!symmetric under permutation and
A1,B1,B2,B3 for (C2

x ,C2
y ,C2

z)5(1,1,1),(1,21,21),
(21,1,21),(21,21,1), respectively@4,18#.

The basis vectors with transformation properties corre-
sponding to the eight different irreducible representationsR
are listed in Table I for integers and in Table II for half-
integers. The Hamiltonian matrix can then be expressed in
the form

H5 %

R,s
HR

s ~A1!

with blocks of dimensionalitiesK51,3,6,10, . . . in 16 dif-
ferent realizations, two for each symmetry class~one with
integers and one with half-integers! @19#.

@1# S. Weigert, Physica D56, 107 ~1992!.
@2# S. Weigert and G. Mu¨ller, Chaos, Solitons and Fractals5, 1419

~1995!.
@3# A. Peres, Phys. Rev. Lett.53, 1711~1984!.
@4# N. Srivastava and G. Mu¨ller, Z. Phys. B81, 137 ~1990!.
@5# M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics

~Springer-Verlag, New York, 1990!.

@6# L. E. Reichl,The Transition to Chaos in Conservative Classi-
cal Systems: Quantum Manifestations~Springer-Verlag, New
York, 1992!.

@7# M. C. Gutzwiller, Am. J. Phys.66, 304 ~1998!.
@8# V. V. Stepanov and G. Mu¨ller, Phys. Rev. E58, 5720~1998!.
@9# E. Magyari, H. Thomas, R. Weber, C. Kaufman, and G.

Müller, Z. Phys. B65, 363 ~1987!.

TABLE II. Symmetry-adapted basis vectors for half-integers.
The local spin quantum numbers satisfy the relations 0, l 1<s,
2 l 1, l 2, l 1 . The subspace dimensionalityK is 1

8 (4s221)
for symmetric and 1

8 (2s11)(2s13) for antisymmetric
representations.

A1S (u l 1 ,l 2&2u2 l 1 ,2 l 2&1u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 even

A1A (u l 1 ,2 l 1&2u2 l 1 ,l 1&)/A2
(u l 1 ,l 2&2u2 l 1 ,2 l 2&2u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2

l 11 l 2 even

B1S (u l 1 ,2 l 1&1u2 l 1 ,l 1&)/A2
(u l 1 ,l 2&1u2 l 1 ,2 l 2&1u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2

l 11 l 2 even

B1A (u l 1 ,l 2&1u2 l 1 ,2 l 2&2u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 even

B2S (u l 1 ,l 1&1u2 l 1 ,2 l 1&)/A2
(u l 1 ,l 2&1u2 l 1 ,2 l 2&1u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2

l 11 l 2 odd

B2A (u l 1 ,l 2&1u2 l 1 ,2 l 2&2u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2
l 11 l 2 odd

B3S (u l 1 ,l 1&2u2 l 1 ,2 l 1&)/A2
(u l 1 ,l 2&2u2 l 1 ,2 l 2&1u l 2 ,l 1&2u2 l 2 ,2 l 1&)/2

l 11 l 2 odd

B3A (u l 1 ,l 2&2u2 l 1 ,2 l 2&2u l 2 ,l 1&1u2 l 2 ,2 l 1&)/2
l 11 l 2 odd
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@10# Only one exception to that rule is known. The energy level
E50 is also degenerate on a 3D manifold away from the in-
tegrability hypersurface~2! ~see Refs.@8# and @18#!.

@11# V. V. Stepanov and G. Mu¨ller ~unpublished!.
@12# S. D. Augustin and H. Rabitz, J. Chem. Phys.71, 4956~1979!.
@13# R. G. Newton, Ann. Phys.~N.Y.! 124, 327 ~1980!.
@14# A. Luis and L. L. Sa´nchez-Soto, Phys. Rev. A48, 752~1993!.
@15# A natural choice ofA would be an operator that commutes

with H on the integrability hypersurface as can be constructed
from the known second classical integral of the motion~Ref.
@9#!, but any polynomial of theSi

a will produce expectation

values with equivalent properties~Refs.@3# and@9#!. Only the
diagonal matrix elements matter in this context.

@16# The Ja ,Aa are measured in arbitrary energy units divided by
\2. To avoid cluttered notations in the text and in the figures,
this unit will be suppressed in all explicit results that follow.

@17# The levels involved in the crossings are@k,k11# with k
55,7,4,4,7,5,3,6,6,3,5 starting from either end of the horizon-
tal line counterclockwise along the frame of the graph.

@18# R. Weber, doctoral dissertation, University of Basel, 1988.
@19# K51 has only 15 realizations.
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