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ABSTRACT 

To improve the performance and safety of future aerospace vehicles, worldwide 

efforts are being directed towards the development of novel aerospace materials which 

exhibit superior structural and multifunctional capabilities in extreme environments. 

Fundamental investigation into the thermo-mechanical response and dynamic failure 

of the materials is paramount before they can be incorporated into the design of future 

space access vehicles that can operate reliably in combined, extreme environments. 

For this purpose, a comprehensive study was conducted to evaluate the performance of 

variety of aerospace materials such as Functionally Graded Materials (FGMs), Ti2AlC, 

and Hastelloy X under extreme thermo-mechanical loadings. 

Starting from the first principles, analytical analyses were conducted to develop 

thermo-mechanical stress fields for mixed mode dynamic curving cracks in 

functionally graded materials (FGMs) under steady-state and transient loading 

conditions. Asymptotic analysis was used in conjunction with displacement potentials 

to develop the stress fields around propagating cracks in FGMs. Asymptotic 

temperature fields were developed first for the exponential variation of thermal 

conductivity and later these temperature fields were used to derive thermo-mechanical 

stress fields for a curving crack in FGMs. Using these thermo-mechanical stress fields, 

various components of the stresses were developed and the effect of curvature 

parameters, transient parameters, temperature and gradation on these stresses were 

discussed. Finally, using the minimum strain energy density criterion, the effect of 

curvature parameters, transient parameters, crack-tip speeds, non-homogeneity values 

and temperature gradients on crack growth directions were determined and discussed. 



 

 

Experimental studies were then conducted to evaluate two different materials, 

namely, Nanolayered Titanium Aluminum Carbide (a MAX phase material) and 

Hastelloy X under varying rates of loading and at different temperatures. The dynamic 

behavior of nanolaminated ternary carbide, Ti2AlC, was characterized under dynamic 

loading using Split Hopkinson Pressure Bar (SHPB) compression apparatus. The 

dynamic loading experiments were performed in the strain-rate range of 1500-4200s-1 

and at temperatures ranging from room temperature (RT) to 1150°C. At room 

temperature, the failure stress and strain show little dependence on strain rate, whereas 

the failure stress drops considerably at temperatures above 900°C. At all strain rates 

and temperatures, Ti2AlC exhibits softening after failure initiation and a more graceful 

failure due to delamination and kink band (KB) formation. At temperatures higher 

than 900°C, grain boundary decohesion is suggested to contribute towards the 

deecrease in the failure stress.  

The dynamic constitutive behavior of Hastelloy X (AMS 5754) was studied at 

room and elevated temperatures under varying rates of loading. A split Hopkinson 

pressure bar (SHPB) apparatus was used in conjunction with an induction coil heating 

system for applying dynamic loads at elevated temperatures. Experiments were carried 

out at different temperatures ranging from room temperature (25°C) to 1100°C at an 

average strain rate of 5000s-1. Room temperature experiments were carried out at 

varying strain rates from 1000s-1 to 4000s-1. The results show that as the strain rate 

increases from quasi-static to 4000s-1, the yield strength increases by approximately 

50%. Also, under dynamic loading, the yield stress decreases with temperature up to 

700°C, after which it (yield strength) shows a peak at 900°C before beginning to 



 

 

decrease again as the temperature is further increased. The Johnson-Cook model was 

used to predict the dynamic plastic response under varying rates of loading and at 

different temperatures.  

A series of experiments were conducted to study the dynamic response of 

rectangular Hastelloy X plates at room and elevated temperatures when subjected to 

shock wave loading. The shock tube apparatus was modified and validated for testing 

Hastelloy X at elevated temperatures. Propane gas was used as the heating source and 

it was directed onto the sample via four nozzles. A cooling system was also 

implemented to prevent the shock tube from reaching high temperatures. High-speed 

photography coupled with the optical technique of Digital Image Correlation (DIC) 

technique was used to record the real-time deformation of the specimen under shock 

wave loading. The DIC technique was used in conjunction with band pass optical 

filters and a high intensity light source to record the full-field deformation images 

under shock loading at high temperatures up to 900 °C. In addition, a high speed 

camera was utilized to record the side-view deformation images. The high temperature 

DIC system has been validated by comparing with the mid-point deflections obtained 

from the side-view camera. The dynamic response of Hastelloy X was evaluated as a 

function of temperature under shock wave loading.  

 

 

 



 

v 

 

ACKNOWLEDGMENTS 

First and foremost I would like to thank Dr. Arun Shukla for his continuous 

guidance and support throughout this research.  His patience and adamant work ethic 

have truly been inspiring and motivating throughout my doctoral research. He is not 

only an outstanding professor and mentor, but a truly inspirational human being. It has 

been an honor for me to be one of his Ph.D. students. 

I would also like to sincerely thank Dr. Martin H. Sadd, Dr. David G. Taggart, 

Dr. Carl-Ernst Rousseau, Dr. Richard Brown, and Dr. K. Wayne Lee for agreeing to 

serve as my committee members.  

The help and encouragement from my friends and colleagues are greatly 

appreciated. I would like to thank all of my lab mates in the Dynamic Photomechanics 

Laboratory that have been by my side and influenced me along the way: Addis 

Kidane, Erheng Wang, Puneet Kumar, James LeBlanc, Nate Gardner, Sachin Gupta, 

Nicholas Heeder, Ryan Sekac, Jefferson Wright, Daniel Gracia, Alexander Escher, 

Prathmesh Parrikar, Chris O’Connell, Emad Makki, Payam Fahr, Murat Yazici, Frank 

LiVolsi, Chris Shillings, Kyle Kossak and Abayomi N. Yussuf. The time spent with 

everyone has made it an incredible experience, as well as provided me with many 

great friendships. In addition, I would like to thank Joe Gomez, Dave Ferriera, Jim 

Byrnes, Rob D'Ambrosca, Jen Cerullo, Nancy Dubee, Sally Marinelli, Brittany 

Mathews and the rest of the mechanical engineering department faculty and staff.  

I would like to acknowledge the financial support provided by Dr. David S. 

Stargel under the Air Force Office of Scientific research (AFOSR) Grant No. FA9550-

09-1-0639. A special thanks to Dr. Otto J. Gregory for providing the Scanning 



 

vi 

 

Electron Microscope (SEM) facility used in obtaining the images of Ti2AlC 

specimens. 

Last but not least, I would like to thank my parents Rama Rao and Sushila, my 

sister Sujana, my brother in-law Sukumar, my fiancée Neha and the rest of my 

extended family for their understanding nature and endless support throughout my 

studies.  

 

 

 



 

vii 

 

PREFACE 

Theoretical and experimental studies have been conducted to study the thermo-

mechanical response of materials under extreme environments. Fundamental 

investigation into the thermo-mechanical response and dynamic failure of the 

materials is paramount before they can be incorporated into the design of future space 

access vehicles that can operate reliably in combined, extreme environments. This 

dissertation addresses the dynamic behaviors and the failure mechanisms of aerospace 

materials under extreme thermo-mechanical loadings. This dissertation is prepared 

using the manuscript format. 

Chapter 1 provides an overview of previous and current published literature of 

subject matter relevant to this dissertation. Topics include a brief background on 

materials tested and their mechanisms and how they can be useful in improving the 

design of future space access vehicles as well as the idea of utilizing various 

functionally graded materials. This chapter serves to provide an overview of the 

relevant research in literature, the possible data gaps that exist, as well as an 

introduction to the studies within this dissertation. 

Chapter 2 focuses on analytical development of thermo-mechanical stress fields 

for a mixed-mode dynamic crack growth along an arbitrarily smoothly varying path in 

functionally graded materials (FGMs). The property gradation in FGMs was 

considered by varying shear-modulus, mass density, thermal conductivity and 

coefficient of thermal expansion exponentially along the gradation direction. 

Asymptotic analysis in conjunction with displacement potentials was used to develop 

the stress fields around propagating cracks in FGMs. Asymptotic temperature fields 
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are developed first for the exponential variation of thermal conductivity and later these 

temperature fields were used to derive thermo-mechanical stress fields for a  curving 

crack in FGMs. Using these thermo-mechanical stress fields, various components of 

the stresses were developed and the effect of curvature parameters, temperature and 

gradation on these stresses were discussed. Finally, using the minimum strain energy 

density criterion, the effect of curvature parameters, crack-tip speeds, non-

homogeneity values and temperature gradients on crack growth directions were 

determined and discussed. This chapter follows the formatting guidelines specified by 

the International Journal of Solids and Structures. 

Chapter 3 provides the details of developing transient thermo-mechanical stress 

fields for a mixed-mode dynamic crack growth behavior along an arbitrarily smoothly 

varying path in functionally graded materials (FGMs). Similar approach as explained 

in chapter 2 was used in developing the stress fields. Asymptotic analysis in 

conjunction with displacement potentials was used to develop transient thermo-

mechanical stress fields around the propagating crack-tip. Asymptotic temperature 

field equations are derived for exponentially varying thermal properties, and later 

these equations were used to derive transient thermo-mechanical stress fields for a 

curving crack in FGMs. The effect of transient parameters (loading rate, crack-tip 

acceleration, and temperature change) and temperature gradient on the maximum 

principal stress and circumferential stress associated with the propagating crack-tip 

was discussed. Finally, using the minimum strain energy density criterion, the effect of 

temperature gradient, crack-tip speeds and T-stress on crack growth directions were 
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determined and discussed. This chapter follows the formatting guidelines specified by 

Acta Mechanica. 

Chalpter 4 details the experimental study conducted on nanolaminated ternary 

carbide, Ti2AlC, was characterized under dynamic loading using Split Hopkinson 

Pressure Bar (SHPB) compression apparatus. The dynamic loading experiments were 

performed in the strain-rate range of 1500-4200s-1 and at temperatures ranging from 

room temperature (RT) to 1150°C. At room temperature, the failure stress and strain 

show little dependence on strain rate, whereas the failure stress drops considerably at 

temperatures above 900°C. At all strain rates and temperatures, Ti2AlC exhibits 

softening after failure initiation and a more graceful failure due to delamination and 

kink band (KB) formation. At temperatures higher than 900oC, grain boundary 

decohesion is suggested to contribute towards the decrease in the failure stress. This 

chapter will follow the formatting guidelines specified by the Acta Materialia.  

Chapter 5 details the experimental study conducted on the dynamic constitutive 

behavior of Hastelloy X (AMS 5754) at room and elevated temperatures under 

varying rates of loading. A split Hopkinson pressure bar (SHPB) apparatus was used 

in conjunction with an induction coil heating system for applying dynamic loads at 

elevated temperatures. Experiments were carried out at different temperatures ranging 

from room temperature (25°C) to 1100°C at an average strain rate of 5000s-1. Room 

temperature experiments were carried out at varying strain rates from 1000s-1 to 

4000s-1. The results show that as the strain rate increases from quasi-static to 4000s-1, 

the yield strength increases by approximately 50%. Also, under dynamic loading, the 

yield stress decreases with temperature up to 700°C, after which it shows a peak at 
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900°C before beginning to decrease again as the temperature is further increased. The 

Johnson-Cook model was used to predict the dynamic plastic response under varying 

rates of loading and at different temperatures. This chapter follows the formatting 

guidelines specified by Journal of Materials Science. 

Chapter 6 details the design of novel experimental set up for testing materials 

under shock loading at extreme temperatures.  The shock tube apparatus was modified 

and validated for testing Hastelloy X at elevated temperatures. Propane gas was used 

as the heating source and it was directed onto the sample via four nozzles. A cooling 

system was also implemented to prevent the shock tube from reaching high 

temperatures. A series of experiments were conducted to study the dynamic response 

of rectangular Hastelloy X plates at room and elevated temperatures when subjected to 

shock wave loading. High-speed photography coupled with the optical technique of 

Digital Image Correlation (DIC) technique was used to record the real-time 

deformation of the specimen under shock wave loading. The DIC technique was used 

in conjunction with band pass optical filters and a high intensity light source to record 

the full-field deformation images under shock loading at high temperatures up to 900 

°C. In addition, a high speed camera was utilized to record the side-view deformation 

images. The high temperature DIC system has been validated by comparing with the 

mid-point deflections obtained from the side-view camera. The dynamic response of 

Hastelloy X was evaluated as a function of temperature under shock wave loading. 

This chapter follows the formatting guidelines specified by Mechanics of Materials. 
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 Chapter 7 provides a summary of the major experimental findings obtained 

during the investigation of various aerospace materials under high rates of loading and 

at extreme temperatures. Suggestions for future designs, as well as experiments and 

analysis will also be provided. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

To improve the performance and safety of future aerospace vehicles, 

worldwide efforts are being directed towards the development of novel aerospace 

materials which exhibit superior structural and multifunctional capabilities in extreme 

environments. Central to this proposed study is to enable revolutionary advances in 

future Air Force technologies through the development of new flight structures that fly 

in the hypersonic flow regime and can sustain severe environments. It was observed 

that the surface of an aircraft travelling at mach 5 speeds can experience temperatures 

above 1000°C. In addition to high temperature and high convective fluxes, the 

materials must be able to withstand high mechanical stresses associated with shock 

loading, vibrations at launch, acoustic-frequency vibrations and structural movement 

of the vehicle, as well as landing impact. Fundamental investigation into the thermo-

mechanical response and dynamic failure of the materials is paramount before they 

can be incorporated into the design of future space access vehicles that can operate 

reliably in combined, extreme environments. To date there has been little research on 

thermo-mechanical characterization of aerospace materials. For this purpose, a variety 

of aerospace materials such as Functionally Graded Materials (FGMs), Ti2AlC, and 

Hastelloy X were investigated to study their response under extreme thermo-

mechanical loadings. 

It was identified that reusable space access vehicles which must withstand 

launches and re-entries into Earth's atmosphere require efficient external thermal 

protection system (TPS) which are usually in the form of rigid surfaces in areas of 



 

2 

 

high or moderate working temperature. FGMs are identified as the potential 

candidates to be used as integrated hot structure in space access vehicles as the 

material combination and the composition gradation in these materials can be tailored 

to optimize their performance to meet multiple functions like thermal resistance, 

structural integrity etc. The fundamental factor that governs the nature of damage 

progression, stable or unstable, in any material is the relative dominance of the energy 

release rate and the material toughness over each other. Therefore, it is very important 

to understand the effect of crack-tip stress fields for propagating cracks in FGMs 

under thermo-mechanical loading.  

Functionally Graded Materials (FGMs) are non-homogeneous composites 

which have spatially varying microstructure and mechanical/thermal properties to 

meet desired functional performance [1, 2]. FGMs used in high temperature 

applications have metals and ceramics as their constituents and thus have both thermal 

and mechanical non-homogeneities. These materials can withstand high temperatures 

effectively due to superior thermal properties of ceramics, and at the same time high 

strength can be achieved with the presence of metal. Several studies on the superior in-

service advantages of FGMs over traditional duplex coatings under high temperature 

and high thermal cycling conditions have been reported. In their studies, Kawasaki 

and Wananabe [3], and Drake et al. [4] reported that the thermal residual stresses are 

relaxed in metal-ceramic layered materials by inserting a functionally graded interface 

layer between the metal and ceramic. Kudora et al. [5] and Takahashi et al. [6] 

reported that FGM coatings suffer significantly less damage than conventional 

ceramic coatings, under thermal shock condition. 
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Several studies on the quasi-static fracture behavior of FGMs under thermo-

mechanical loading have been reported. Assuming exponential variation of material 

properties, Jin and Noda [7] investigated the steady thermal stress intensity factors in 

functionally graded semi-infinite space with an edge crack subjected to a thermal load. 

Using both experimental and numerical techniques, Kokini and Choules [8], and 

Kokini and Case [9] studied surface and interface cracking in FGM coatings subjected 

to thermal shocks. Jin and Paulino [10] studied transient thermal stresses in an FGM 

with an edge crack and having a constant Young’s modulus and Poisson’s ratio, but 

varying thermal properties along the thickness direction.     

The above studies provide closed form solutions for stress intensity factors 

under thermo-mechanical loading, however, for extracting fracture parameters from 

experimental studies, asymptotic expansion of thermo-mechanical stress fields around 

the crack-tip is essential. Jain et al. [11] developed quasi-static stress and displacement 

fields for a crack in an infinite FGM medium under thermo-mechanical loading. Lee et 

al. [12] developed analytical expressions for dynamic crack-tip stress and 

displacement fields under thermo-mechanical loading in FGMs. Recently, Kidane et 

al. [13] developed the thermo-mechanical stress fields for a mixed mode propagating 

crack with a constant velocity along the gradation direction. Also, Chalivendra et al. 

[14] developed the elastic mechanical stress field solutions for an inclined propagating 

transient crack in FGMs. Even though the above mentioned studies of dynamic 

thermo-mechanical asymptotic field equations serve the purpose of obtaining fracture 

parameters from experimental data, these studies have not incorporated the crack path 

curvature associated with a propagating crack in these materials. It has been reported 
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in the experimental and numerical studies that the propagating cracks follow curved 

paths under various loading conditions due to the spatial variation of properties in 

graded materials [15-18]. In order to extract the fracture parameters accurately from 

the experimental data associated with curved cracks, it is essential to consider 

curvature terms in the field equations. Liu and Rosakis [19] developed the higher-

order asymptotic expansion of a non-uniformly propagating dynamic crack along an 

arbitrary curved path for homogeneous materials and they emphasized the importance 

of the curvature terms when experimental data points are considered away from the 

singularity zone to extract fracture parameters. Recently, Chalivendra [20] developed 

crack-tip out of plane displacement field equations for transient curved cracks in 

FGMs. However, asymptotic expansion of near-tip field equations for a curving crack 

under transient thermo-mechanical loading conditions has not yet been reported. 

  Experimental studies have been conducted on Ti2AlC and Hastelloy to 

understand the failure mechanisms and to predict their performance under a 

combination of extreme mechanical and thermal environments. Nanolaminated ternary 

carbides and nitrides, known as MAX phases, have attracted recent attention because 

of their potential for application in extreme environments. They have a general 

formula of Mn+1AXn (n = 1, 2, 3), where M is an early transition metal, A is a group-A 

element and X is either C or N. [21-23]. Titanium aluminum carbide, Ti2AlC, one of 

the well characterized compounds with M2AX chemistry, is lightweight (4.11 g/cm3) 

material with high Young’s modulus (278 GPa) [21], excellent electrical and thermal 

conductivity, high oxidation and corrosion resistance [24]. Like most MAX phases, 

Ti2AlC is relatively soft (Vickers hardness of ~4 GPa) and easily machinable 
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compared to binary transition metal carbides [25-26]. Because of their nanolaminated 

structure and kinking mechanism, Ti2AlC is also exceedingly damage tolerant and 

thermal shock resistant and most likely creep and fatigue-resistant like some other 

MAX phases [27-29]. One of the interesting aspects of MAX phases in general, and 

Ti2AlC in particular is unusual deformation behavior that can be traced back to their 

nanolaminated hexagonal crystal structure with high c/a ratio and presence of the 

relatively large number of movable dislocations. The dislocations, being confined to 

only parallel basal planes, give rise to extensive kinking and delamination in MAX 

phases upon deformation [30-31]. At room temperature, Ti2AlC, similar to other MAX 

phases, shows nonlinear stress-strain behavior with fully reversible hysteresis loops 

and significant amount of energy dissipation under quasi-static cycling loading-

unloading [30, 32-33]. Recently, a microscale model, based on nucleation, growth and 

annihilation of reversible nest of movable dislocations, so called incipient kink bands 

(IKBs), has been proposed to explain the, stress-strain hysteresis in MAX phases [30, 

34-35]. At higher stresses or higher temperature, the IKBs transform into permanent 

kink bands (KBs). Formation of KB along with delamination has been argued in 

literature to be the primary reason for excellent damage tolerance of MAX phases 

[29]. At higher temperatures, i.e. above 1000oC, Ti2AlC, undergoes a brittle-to-plastic 

(BTP) transition above and strains as large as 12% can be reach before failure during 

compressive loading [36].  

Hastelloy X is a nickel based superalloy that possesses excellent high 

temperature strength and oxidation resistance. It is widely used in gas turbine 

operations, petrochemical and in aircraft parts [37]. Several researchers in the past 
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have investigated the behavior of Hastelloy X. Lai [38] investigated changes in the 

hardness and impact toughness at room temperature of Hastelloy X after aging up to 

1000h. The author found that it exhibits age hardening at 540°C and 650°C.  The 

author also observed a slight increase in hardness at 871°C followed by overaging 

after 4000h. Yasuo Kondo et al. [39] presented experimental results on the changes in 

the tensile mechanical properties of Hastelloy X after being used in the liner tube of a 

HENDEL hot gas duct under high temperature helium gas for about 6000h. They 

observed that the 0.2% proof stress and total elongation were slightly decreased when 

Hastelloy X was exposed to high temperature helium. Static tensile stress-strain curves 

of Hastelloy X were reported in Mil Handbook 5h [40]. Swindeman and Brinkman 

[41] reviewed high temperature mechanical properties for materials including 

Hastelloy X, used in a pressure vessel using stress-strain curves obtained 

experimentally. They studied the effect of cold work, chemistry, and heat treatment 

variations in Hastelloy X. Aghaie Khafri and Golarzi [42] characterized the hot 

deformation behavior of Hastelloy X using hot compression tests in the temperature 

range of 900°C-1150°C and at varying strain rates between 0.001 and 0.5s-1. They 

showed that softening mechanisms, dynamic recovery and dynamic recrystallization 

occurred during hot working. Zhao et al. [43] studied the phase precipitation in 

Hastelloy X heat-treated at 750°C, 850°C and 900°C for 26 and 100 hours. They also 

provided a TTT (time-temperature-transformation) diagram by combining the new 

experimental results with the existing literature data. This TTT diagram depicted the 

presence of 623CM and σ phases at temperatures < 900°C and µ phase between 800°C 

and 980°C. Rowley and Thornton [44] modeled visco plastic behavior of Hastelloy X 
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using the Bodner Partom unified constitutive model. Static compression experiments 

were conducted at different temperatures to get the parameters for the model. The 

model results of Hastelloy X for isothermal uniaxial tensile tests showed good 

agreement with the experimental stress-strain data. Although significant progress have 

been achieved in the recent years on understanding mechanical behavior of Hastelloy 

X and Ti2AlC in quasi-static conditions, there is no literature available on the dynamic 

response of these materials under high strains rates and temperatures.  

Also, there is a large volume of literature available on the response of 

monolithic plates and beams subjected to shock loading. Menkes and Opat [45]  

characterized the response of aluminum beams under shock loading. They identified 

three major damage modes, which respectively are inelastic deformation, tensile 

tearing and transverse shear. Later, (Teeling-Smith and Nurick), (Nurick et al.,) and 

(Nurick and Shave,) observed similar failure modes for circular, stiffened square and 

square plates, respectively [46-48]. Wierzbicki and Nurick investigated thin clamped 

plates for different loading radii and applied impulse [49]. They observed that the 

smaller loading radii led to a more localized damage towards the center of the plate, 

while the more distributed load produced tearing fracture at the clamped boundary.  

To date, there have been no studies reported on the damage behavior of aerospace 

materials under shock loading when exposed to extreme environments. 
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Abstract 

Mixed-mode dynamic crack growth along an arbitrarily smoothly varying path 

in functionally graded materials (FGMs) under thermo-mechanical loading is studied. 

The property gradation in FGMs is considered by varying shear-modulus, mass 

density, thermal conductivity and coefficient of thermal expansion exponentially along 

the gradation direction. Asymptotic analysis in conjunction with displacement 

potentials is used to develop the stress fields around propagating cracks in FGMs. 

Asymptotic temperature fields are developed first for the exponential variation of 

thermal conductivity and later these temperature fields are used to derive thermo-

mechanical stress fields for a  curving crack in FGMs. Using these thermo-mechanical 

stress fields, various components of the stresses are developed and the effect of 

curvature parameters, temperature and gradation on these stresses are discussed. 

Finally, using the minimum strain energy density criterion, the effect of curvature 

parameters, crack-tip speeds, non-homogeneity values and temperature gradients on 

crack growth directions are determined and discussed. 

Keywords: Thermo-mechanical stress fields, curving cracks, functionally graded 

materials, asymptotic analysis 

1. Introduction 

   Functionally graded materials (FGMs) are essentially non-homogeneous 

composites which have characteristics of spatially varying microstructure and 

mechanical/thermal properties to meet a predetermined functional performance (e.g., 

Niino et al. 1987: Suresh and Mortensen, 1998). Although their performance in real-

life engineering applications is still under investigation, FGMs have shown promising 
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results when they are subjected to thermo-mechanical loading (e.g., Suresh and 

Mortensen, 1998).  There is an extensive amount of literature published on the fracture 

mechanics of FGMs under both quasi-static loading conditions (e.g., Delale and 

Erdogan, 1983; Schovance and Walton, 1988; Konda and Erdogan, 1994; Gu and 

Asaro, 1997; Wu and Erdogan, 1997; Jin et al. 2002; Kim and Paulino 2002; 

Parameswaran and Shukla, 2002; Chalivendra et al. 2003; Kubair et al. 2005; 

Chalivendra, 2008, 2009; Zhang and Kim, 2011) and dynamic loading conditions 

(e.g., Atkinson and List, 1978; Krishnaswamy et al. 1992; Parameswaran and Shukla, 

1999; Rousseau and Tippur, 2001; Chalivendra et al. 2002; Shukla and Jain, 2004; 

Chalivendra and Shukla, 2005; Abanto-Bueno and Lambros, 2006; Kirugulige and 

Tippur, 2008).  

   The research output on the thermo-mechanical response of FGM’s is limited. 

Hasselman and Youngblood (1978) were among the first to study thermal stresses in 

nonhomogeneous structures associated with thermo-mechanical loading. By 

introducing a thermal conductivity gradient, they demonstrated significant reductions 

in the magnitude of the tensile thermal stress in ceramic cylinders. In other studies, 

thermal residual stresses were relaxed in metal-ceramic layered materials by inserting 

a functionally graded interface layer between the metal and ceramic (e.g., Kawasaki 

and Wantanabe, 1987: Drake et al. 1993: Giannakopoulos et al. 1995). In their studies, 

Kuroda et al. (1993) and Takashashi et al. (1993) reported that when subjected to 

thermal shocks, FGM coatings suffer significantly less damage than conventional 

ceramic coatings.  
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   In continuation of the above studies, several studies on the quasi-static 

fracture of FGMs under thermo-mechanical loading have been reported. Assuming 

exponential variation of material properties, Jin and Noda (1994) investigated the 

steady thermal stress intensity factors in functionally graded semi-infinite space with 

an edge crack subjected to thermal load. Later, Erdogan and Wu (1996) also 

determined the steady thermal stress intensity factor of a FGM layer with a surface 

crack perpendicular to the boundaries. By further assuming the exponential variation 

of thermal and mechanical properties of the materials, Jin and Batra (1996) 

investigated the stress intensity relaxation problem at the tip of an edge crack in a 

FGM subjected to a thermal shock. By employing a finite element method (FEM), 

Noda (1997) analyzed an edge crack problem in a zirconia/titanium FGM plate 

subjected to cyclic thermal loads. Jin and Paulino (2001) studied transient thermal 

stresses in a FGM with an edge crack having a constant Poisson’s ratio and Young’s 

Modulus but varying thermal properties along the thickness direction. Walters et al., 

(2004) developed general domain integral methods to obtain the stress intensity factors 

for the surface cracks in FGMs under mode-I thermo-mechanical loading conditions. 

   The above studies provide closed form solutions for stress intensity factors 

under thermo-mechanical loading, however for extracting fracture parameters from 

experimental studies, the asymptotic expansion of thermo-mechanical stress fields 

around the crack-tip are essential (e.g., Kirugulige and Tippur, 2008). Recently in this 

direction, Jain et al. (2006) developed quasi-static stress and displacement fields for a 

crack in an infinite FGM medium under thermo-mechanical loading. However, there 

were no studies until recently on the dynamic crack growth under thermo-mechanical 
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loads.  Lee et al. (2008) developed analytical expressions for the dynamic crack-tip 

stress and displacement fields under thermo-mechanical loading in FGMs. Kidane et 

al. (2010a) developed the stress fields and strain energy associated with a  propagating 

crack in a homogeneous material under thermo-mechanical loading using an 

asymptotic approach. Very recently, Kidane et al. (2010b) also developed stress field 

equations for dynamic crack propagation in FGMs under thermo-mechanical loading. 

Even though the above mentioned studies of dynamic thermo-mechanical asymptotic 

field equations serve the purpose of obtaining fracture parameters from experimental 

data, these studies have not incorporated the crack path curvature associated with a 

propagating crack in these materials. It has been reported in the experimental and 

numerical studies that the propagating cracks follow curved paths under various 

loading conditions due to the spatial variation of properties in graded materials (e.g., 

Lambros et al. 2000; Noda et al. 2003; Tohgo et al. 2005; Tilbrook et al. 2005). In 

order to extract the fracture parameters accurately from the experimental data 

associated with curved cracks, it is essential to consider curvature terms in the field 

equations. Liu and Rosakis (1994) developed the higher-order asymptotic expansion 

of a non-uniformly propagating dynamic crack along an arbitrary curved path for 

homogeneous materials and they emphasized the importance of the curvature terms 

when experimental data points are considered away from the singularity zone to 

extract fracture parameters. Recently, Chalivendra (2007) developed crack-tip out of 

plane displacement field equations for transient curved cracks in FGMs. To the 

authors' knowledge, there are no studies reported in the literature on the development 
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of crack-tip stress field equations for curving cracks in functionally graded materials 

under thermo-mechanical loading. 

   Hence in this paper, through asymptotic analysis, stress fields for a curving 

crack propagating at an arbitrary velocity in FGMs under steady state thermo-

mechanical loading are developed. The property gradation is considered by varying 

the shear-modulus, mass density, thermal conductivity and coefficient of thermal 

expansion exponentially along the gradation direction. Asymptotic temperature field 

equations are first developed for a steady state temperature condition considering the 

heat flux singularity. These temperature fields are later used to develop the thermo-

mechanical stress fields for curved crack analysis. Using these thermo-mechanical 

stress fields, the effect of curvature terms, temperature and material gradation on 

various stress components is discussed. The crack growth direction as a function of 

temperature, non-homogeneity parameters and crack-tip velocity are also evaluated 

using minimum strain energy density criterion. In addition, using the developed 

equations, the contours of maximum shear stress are plotted to show the effect of 

curvature terms and gradation around the crack-tip.  

2. Theoretical Formulation 

   FGMs can be treated as isotropic non-homogeneous solids because, at a 

continuum level, the properties at any given point in an FGM can be assumed to be the 

same in all directions. Spatial variation of elastic properties, mass density, thermal 

properties and inclination of a curved crack with respect to the gradation direction 

make analytical solutions to the elastic-dynamic equations extremely difficult. Hence, 

an asymptotic analysis similar to that employed by Freund (1990) is used to expand 
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the stress field around a propagating curving crack under thermo-mechanical loading 

conditions.   

    

 

 

 

 

 

 

 

 

 

 

 

 

 

An isotropic linear elastic FGM containing a propagating curving crack with 

temperature gradient in the x-y plane is shown in Fig. 1. At time t = 0, the crack-tip is 

at the origin of Cartesian coordinate system x-y. For any time t > 0, the position of the 

propagating crack-tip is given by (X(t) and Y(t)) as shown in Fig. 1. Shear 

modulus ( )µ , Lamé’s constant ( )λ , density ( )ρ , thermal expansion ( )α  and heat 

conductivity ( )k of the FGM are assumed to vary in an exponential manner as given by 

Fig. 1 Propagating curved crack orientation with respect to property gradation 

direction and temperature gradient. 

X (t) 

Y (t) 

1ξ
2ξ

β(t)

Temperature 
Gradient T∆  

)(xµ )(xλ )(xρ
)(xα )(xk

s 

 

y 

x 



 

20 

 

Eq. (1a) -1(e), whereas, Poisson's ratio ( )ν  is assumed to be a constant. Experimental 

studies (e.g., Shukla and Jain, 2004; Yao et al. 2007) reported in the literature support 

the exponential variation of modulus of elasticity and mass density. 

        ( )xζµµ exp0=                                              (1a) 

       ( )xζλλ exp0=                                   (1b) 

       ( )xexp ζρρ 0=                                           (1c) 

       ( )xexp 10 γαα =                                                  (1d) 

       ( )xexpkk 20 γ=                                           (1e) 

The equations of motion for a plane problem are given by Eq. (2)   
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The relationship between stresses and strains for a plane strain thermo-mechanical 

problem can be written as 

]T)xexp()())[xexp( yyxxxx 1000000 232 γαµλελεµλζσ +−++=                     (3a) 

]T)xexp()()()[xexp( yyxxyy 1000000 232 γαµλεµλελζσ +−++=                  (3b)                       

( ) xyxy x γµζτ 0exp=                             (3c) 

where x and y are reference coordinates, ijσ  and ( )yxjyxiij ,and,where ==ε  are 

in-plane stress and strain components, and subscript “o” means at x= 0 as shown in 

Fig.1. T represents the change in temperature in the infinite medium,ζ , 1γ  and 2γ are 

non-homogeneity constants that have the dimension (length)-1. Each physical variable 

can have a different non-homogeneity parameter. However for mathematical 
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simplicity only three non-homogeneity parameters, one for mechanical properties and 

two for thermal properties, are considered. For a plane strain deformation, the 

displacements u and v  are derived from dilatational and shear wave potentialsΦ  

andΨ . So, displacements can be expressed in terms of potentials as given below 
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Substituting for the stresses and density from (3) and (1) respectively into Eq. (2) and 

after simplification, the equations of motion are written as 
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where cα  is the coefficient of thermal expansion in the vicinity of the instantaneous 

crack-tip and is assumed to be constant.                                                              

Equations (5a) and (5b) can be further written as 
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   Now, a new moving coordinate system ),( 21 ξξ  is introduced, so that the 

origin of the new system is at the moving crack-tip. The 1ξ -axis is tangential to the 

crack trajectory at the crack-tip and coincides with the direction of the crack growth. 

The crack is propagating with constant velocity (c) as a function of time along the 

local 1ξ -direction. The angle between 1ξ -axis and the fixed x-axis are denoted 

by )(tβ , as shown in Fig. 1. Therefore the relationship between the coordinates in 

these two Cartesian co-ordinate systems is 
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                                                   (7) 

If the length of the trajectory that the crack-tip travels during the time interval, [0, t], is 

denoted by s(t), then the magnitude of the crack-tip speed c(t) will be s (t), and the 

curvature of the crack trajectory at the crack-tip, k(t), is given by 
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where  2)(2)()( tYtXtc  +=      

Using the transformations and the relations given below in Eqs. (9)-(11), and also 

neglecting the transient terms associated with acceleration and rate of curvature, the 

equations of motion (6a) and (6b) are further written in the crack-tip moving 

coordinate reference ( 1ξ , 2ξ ) as given in Eqs. (12a) and (12b). 
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   In the above formulation, we assume that the stress waves generated by the 

moving crack-tip are not influenced by the gradation. This assumption is acceptable as 

the property variation around the crack-tip is small in the zone of the interest. 

2.1 Temperature Fields around the Crack-tip 

   In this analysis, it is assumed that the temperature field around the crack-tip 

also changes asymptotically. The transient effects, the thermo-elastic cooling effects, 

and the coupling effects ( iieT 0)23( αµλ + ) are neglected. It has been shown that for 

most materials under static loading conditions, this coupling term is small and can be 

neglected (Sadd, 2009). Several researchers studied the effect of coupling under 

dynamic loading conditions and found that the quantitative effect of coupling is less 

important for metals (Awrejcewicz and krys’ko, 2003). Few other authors observed 

that the difference between the couple and uncoupled solutions are about one percent 

(McQuillen and Brull, 1970; Shiari et al. 2003; Eslami et al. 1994).  Brischetto and 

Carrera (2010) observed that when a mechanical load is applied, the differences 

between the coupled and uncoupled analysis are minimum, in terms of stresses. 

Nowinski (1978) in his book states ‘‘Practically speaking, it is generally possible to 

discount the coupling and to evaluate the temperature and deformation fields, in this 

order, separately”.  So, we establish the uncoupled conduction system and the 

temperature fields can be determined independent of the stress-field calculations. The 

developed field equations can be used for situations with small temperature gradient 
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thermal loading conditions. The heat conductivity is assumed to vary exponentially as 

given by Eq. (1e). The steady state heat conduction equation can be written as  
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Substituting the heat conductivity relation given by Eq. (1e) into Eq. (13) results in  
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Transforming the above equation into the moving crack-tip coordinates, it can be 

written as   
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   At this stage, the asymptotic analysis is performed to solve the above Eq. 

(15). The advantages of this approach are: (i) it does not consider finite specimen 

geometry, and (ii) it does not need the information of external loading boundary 

conditions. It requires only crack-face and crack-line boundary conditions associated 

with the propagating crack to be satisfied. In this process, first a new set of scaled 

coordinates is defined as 

                                                                               (16)  

where ε is an arbitrary parameter and is assumed to be 10 << ε . 

In the scaled coordinates, Eq. (15) can be written as  

εξηεξη 2211 , ==
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For the asymptotic analysis, T is now represented as a power series expansion 

in ε. 
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Substituting Eq. (18) into Eq. (17) gives the following equation.  
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For Eq. (19) to be valid, the partial differential equations corresponding to each power 

of ε (ε1/2,ε, ε3/2, …) should vanish independently. This leads to the following set of 

partial differential equations. 

For m=0 and m=1  
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For m=2  
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Equation (20) (i.e. for m=0 and m=1) is an ordinary Laplace’s equation in the 

domain of 21 ηηρ i+=  and the solution is the same as for a homogenous material (e.g, 

Jain et al. 2006; Chalivendra, 2007). An asymmetric temperature field solution is 

developed to account for real-time thermal loading situations and the heat flux is 

assumed to be singular at the crack-tip (Jin and Noda, 1994).  The singularity of heat 
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flux will not affect even if the transient effects are incorporated as the transient terms 

are of higher order. 

For m=0             
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For m=1    
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The solution T2, for Eq. (21) corresponding to higher powers of ε (m=2) has 

two parts: a homogeneous and a particular solution. The particular solution can be 

obtained using a recursive approach (e.g., Parmeswaran and Shukla, 1999; 

Chalivendra et al. 2002; Chalivendra and Shukla, 2005) and the complete solution for 

Eq. (21) is given below. 
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Transforming back to thr crack-tip coordinates 1ξ  and 2ξ , the full solution of 

the temperature field near the crack-tip is given as  
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   Alternate temperature fields can be easily derived for the conditions such as 

singular temperature at the crack-tip.               
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2.2 Asymptotic Expansion of Crack-tip Stress Fields 

   Similar to the derivation of the temperature field, the asymptotic approach is 

again used in deriving the solutions for the displacement potentials for the equations of 

motion (12a) and (12b). The scaled coordinates, as discussed in Eq. (16), are now 

applied to equations (12a) and (12b) as given below  
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At this stage, it is assumed thatΦ, ψ and T can be represented as a power series 

expansion in ε. 
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   As discussed above, the temperature field is obtained by ensuring that the 

heat flux or the derivative of the temperature field near the crack-tip is singular. This 

means that the potentials for temperature are one power less than the displacement 

potentials. Substituting Eq. (27) into Eqs. (26a) and (26b) gives the following 

equations. 
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For Eqs. (28a) and (28b) to be valid, the partial differential equations 

corresponding to each power of ε (ε3/2, ε2, ε5/2, …) should vanish independently. This 

leads to the following set of partial differential equations. 

For m = 0 and m = 1,  
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Eqs. (29a) and (29b) are similar to those for a homogeneous material where the 

partial differential equations (30a) and (30b), associated with the higher powers of ε 

are coupled to the differentials of the lower order functions through the non-

homogeneity parameters ζ  and temperature term. Eqs. (29a) and (29b) (i.e. for m=0 

and m=1) can be easily reduced to Laplace’s equation in the respective complex 

domains 21 ηαης ll i+= , 21 ηαης ss i+=  1−=i  and the solutions are the same as 

those for homogenous material (eg., Freund, 1990; Gu and Asaro, 1997; Irwin; Shukla 

and Jain, 2004), and can be written as  
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where  
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and Am, Cm Bm and Dm are real constants. 

   Using the definition of the dynamic stress intensity factor KID and KIID for the 

opening mode and shear mode (Chalivendra, 2007), the relation between Ao and KID 

and Co and KIID are obtained.  
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where cµ  is thr crack-tip shear modulus, KID and KIID are the mode-I and mode-II 

dynamic stress intensity factors, respectively. 

Now, considering the crack face boundary conditions, 0and0 1222 == σσ  we 

can also obtain the following relationship between Ao, Bo, Co and Do 
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In order to extract both mode-I and mode-II stress intensity factors accurately from the 
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experimental data when the crack-tip stress field is non-homogenous around the crack-

tip due to imposed thermal fields and material non-homogeneity,  

higher-order stress-field equations are essential in addition to the leading terms and T-

stress (non-singular stress). The solution for the equations (30a) and (30b), 

corresponding to higher powers of ε (m = 2), consists of two parts: a solution for the 

homogeneous equation and a particular solution due to non-homogeneity and 

temperature and these can be obtained recursively (eg., Parmeswaran and Shukla, 

1999; Chalivendra et al. 2002; Chalivendra and Shukla, 2005). The solutions φ2 and ψ2 

obtained are given below. The solutions for φ0, ψ0, φ1 and ψ1 automatically satisfy the 

compatibility equations because these solutions are the same as those for 

homogeneous materials. Since the non-homogeneous specific parts of φ2 and ψ2 are 

obtained from φ0 and ψ0, they also automatically satisfy the compatibility equations
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                                                                                                                                (37a)                                                                                                                                                   

By assembling together the above result for the first few terms and by transforming it 

back into the 21 ξξ −  plane, the combined solution can be written forφ  and ψ  as Eq. 

(37a and 37b),  

                                                      

 

                                                                                                                                    

 

                                                                                                                           (37b)                                                                                                                                           
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The above definitions of the displacement potentials are now used in Eq. (4) to 

obtain the displacements fields. These displacement fields are then used to develop 

strain fields. These strain fields and Eq. (25) are substituted into Eq. (3) to obtain in-

plane steady state stress fields around the crack-tip as given by Eq. (38).  

 

                                                                          (38) 

where ijσ  are stress components, T represents the change in temperature in the infinite 

mediumζ , 1γ  and 2γ  are non-homogeneity constants that have the dimension (length)-

1, c is the crack-tip speed, k is the curvature of the crack trajectory at crack-tip, β is the 

angle between 1ξ -axis and the fixed x-axis as shown in Fig.1, β  is the angular velocity 

as referred in Eq. (7). 

3. Results and Discussion 

      The thermo-mechanical stress fields developed above are used to study the 

effect of temperature field, curvature of the crack path, crack-tip velocity, and the non-

homogeneity on the variation of the maximum shear stress, the circumferential stress, 

maximum principal stress and the crack kinking angle at the crack-tip. The coefficient 

of thermal expansion (αc) of 2ZrB (which is of interest in our experimental research), 

5.9×10-6/oC is used in the analysis. It is assumed that the resulting temperature range 

generates elastic deformation around the crack-tip. Some of the terms associated with 

non-homogeneity and the stress field connected with temperature change impose 

normal and shear stresses on traction free crack faces. The presence of these normal 

and shear stresses on the crack face violates one of the boundary conditions and these 

),,k,c,,,,T,,r(F
)r(

)K,K( .

ij/
IIdId

ij ββγγξθ
π

σ 21212
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stresses need to be removed. The removal of these stresses from the crack face is 

accomplished by superimposing an equal and opposite stress field on the crack face. In 

particular each point on the crack face is subjected to a line load of specific magnitude 

such that the normal stresses from the crack face are removed. Jian et al. (1991) 

proposed a solution for a single line load to derive the stress field around the crack-tip 

and the solution is extended for multiple line loads applied on the crack face line. The 

revised in-plane stress-fields which have traction-free crack face conditions were then 

used in developing various results discussed in section 3.1. In the present analysis, 

since the stress fields are determined closer to the crack tip, the higher order 

temperature terms are neglected. The higher order temperature terms can be used 

when determining stress fields far away from the crack-tip in analyzing the 

experimental data. When the temperature coefficients and the non-homogeneity 

factors are set to zero, these equations fall down to the equations derived by Liu and 

Rosakis. The present analysis assumed constant velocity at the crack-tip. Even though 

the crack-tip acceleration is an important condition to consider, the stress fields may 

not significantly affected by the acceleration terms as the acceleration terms will only 

appear in the higher order terms 

   The material properties and fracture parameters of ZrB2 are used in 

generating the plots and the properties can be found from Fahrenholtz  et al. (2007). 

The properties are as follows: Poisson’s ratio (ν ) = 0.16, shear modulus at the crack-

tip ( cµ ) = 210GPa, density at the crack-tip ( cρ ) = 6119
3/ mkg , crack-tip velocity c/cs 

= 0.5, KID = 5 MPa-m1/2, KIID = 0.2KID,  22
IIDIDeff KKK += , k = 20 rad/m, β = 20°, 
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qo = 100 oC/ m1/2 , γ2 = 1 and a typical value of radius, r = 0.002m. The choice of stress 

intensity factor is motivated by the fact that ceramics have low fracture toughness and 

they often form a part of FGM’s. At this point, it is also important to mention that the 

relative dominance of the temperature or mechanical field will depend on the choice of 

K and qo values. 

3.1 Variation of Stress Components near the Crack-tip  

3.1.1 Effect of Curvature of the Crack path 

   Three major stress components were considered to show the variation of stress fields 

under steady state thermo-mechanical loading: maximum shear stress, circumferential 

tensile stress and maximum principal stress. These stresses are normalized using 

rKeff π2/  and plotted as a function of θ (angle) around the crack-tip. The variation 

of normalized maximum shear stress as a function of curvature for both homogenous 

and FGM systems ( 1=ζ  and 1−=ζ  ) with and without the temperature field is shown 

in Fig. 2. The value of 1=ζ  denotes the increasing shear and mass density ahead of 

the crack tip and 1−=ζ  denotes the reverse situation. The nature of the variation of the 

normalized shear stress changes significantly with the incorporation of curvature 

parameters but no significant variation was observed for different non-homogeneity 

values. For all the cases [(a) – (f)], when the curvature is introduced, the peak value of 

the maximum shear stress and the angle at which the maximum shear stress occurs 

changes significantly.  
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(c) Without temperature ( 00 =q , 1=ζ ) 
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(f) With temperature ( 210
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(a) Without temperature ( 00 =q , 0=ζ ) 

(e) Without temperature ( 00 =q , 1−=ζ ) 
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Fig. 2 Comparison of normalized maximum shear stress for a straight and curved 

crack around the crack–tip for a mixed-mode loading in an FGM with and without 

temperature field (KIID/KID  = 0.2, c/cs = 0.5, 12 =γ , r = 0.002m). 
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(a) Without temperature ( 00 =q , 0=ζ ) 
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(c) Without temperature ( 00 =q , 1=ζ ) 

(e) Without temperature ( 00 =q , 1−=ζ ) (f) With temperature ( 210
0 100 /m/Cq = , 1−=ζ ) 

(d) With temperature ( 210
0 100 /m/Cq = , 1=ζ ) 

(b) With temperature ( 210
0 100 /m/Cq = , 0=ζ ) 

Fig. 3 Comparison of normalized maximum principal stress for a straight and 

curved crack around the crack–tip for a mixed-mode loading in an FGM with and 

without temperature field (KIID/KID = 0.2, c/cs = 0.5, 12 =γ , r = 0.002m). 
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(a) Without temperature ( 00 =q , 0=ζ ) 
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(c) Without temperature ( 00 =q , 1=ζ ) 

(e) Without temperature ( 00 =q , 1−=ζ ) (f) With temperature ( 210
0 100 /m/Cq = , 1−=ζ ) 

(d) With temperature ( 210
0 100 /m/Cq = , 1=ζ ) 

(b) With temperature ( 210
0 100 /m/Cq = , 0=ζ ) 

Fig. 4 Comparison of normalized maximum circumferential stress for a straight and 

curved crack around the crack–tip for a mixed-mode loading in an FGM with and 

without temperature field (KIID/KID = 0.2, c/cs = 0.5, 12 =γ , r = 0.002m). 

 



 

41 

 

Fig. 5 Effect of curvature on normalized (a) maximum principal stress, (b) the 

circumferential tensile stress, and (c) maximum shear stress around the crack–tip for 

a mixed-mode loading in an FGM with temperature field (KIID/KID = 0.2, c/cs = 0.5, 

12 =γ , 1−=ζ , 1000 =q ,r = 0.002m). 

 

(b) Circumferential tensile stress (c) Maximum shear stress 

(a) Maximum principal stress 
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Fig. 6 Effect of curvature parameters on the contours of maximum shear stress 

around the crack–tip for a mixed-mode loading in an FGM with no temperature 

field (KIID/KID = 0.2, c/cs = 0.5, 1−=ζ ). 

 

(a) k = 0, β = 0° (b) k = 20, β = 20° 

(c) k = 60, β = 20° (d) k = 20, β = 60° 
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    Angular variation of the normalized maximum principal stress and circumferential 

tensile stress as a function of curvature with and without the temperature field is 

plotted in Fig. 3 and Fig. 4 respectively. The peak value of the principal and 

circumferential tensile stresses increase significantly when the curvature is introduced 

for both homogeneous and FGM systems and the increase in peak value of these 

stresses is approximately 50% higher for the case of a curved crack. Also the angle at 

which the peak values of these stresses occur changes slightly with the addition of the 

curvature parameters. As observed in the Fig. 2 and Fig. 3, the nature of variation of 

these normalized stresses changes significantly with the addition of curvature terms. 

   The angular variation of all three of the above normalized stress components 

for a fixed value of the non-homogeneity parameter, 1−=ζ , as a function of curvature 

with temperature field are shown in Fig.5. As the local curvature of the crack path (k) 

increases, the peak values of these stresses increase while the angle at which the peak 

value of these stresses occur changes slightly for all the cases.  

   Fig. 6 shows the effect of the curvature on the contours of the maximum 

shear stress around the crack-tip with no temperature field for a mixed-mode loading 

in an FGM of 1−=ζ   for four different curvature conditions. In Fig. 6(a), when 

curvature parameters are set to zero, standard asymmetric contours of mixed-mode 

loading as reported in literature, are obtained. The effect of curvature under  mixed-

mode loading is brought into effect in Fig. 6(b) by considering k = 20, β = 20°, and the 

figure shows that the number and size of the shear stress contours increases with the 

addition of curvature terms. If the angle between 1ξ -axis and the fixed x-axis is kept 
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constant (β = 20°) and the curvature is changed by three times as shown in Fig 6(c), 

the shear stress increases significantly and the stress contours tilt away from the crack 

direction. However, if we keep the curvature value constant at k = 20 and change the 

angle β to 60°, the shear stress contours tilt towards the crack direction, but there is no 

significant change in the size of shear stress contours. Hence, for cases discussed in 

the following sections, a typical value of β = 20° is used in further analysis.  

3.1.2 Effect of Temperature 

   Variation of the normalized maximum principal stress, circumferential stress 

and the maximum shear stress, is plotted around the crack-tip for different temperature 

gradients ( 00 =q , 1000 =q  and 2000 =q ) as shown in Fig. 7. As the temperature 

gradient increases, the peak value of both the normalized maximum principal stress 

and circumferential tensile stress decreases and the angles at which the peak value of 

these stresses occur change slightly for different temperature gradients. In the case of  

the maximum shear stress, there is no change in the stress values for different 

temperature gradients. This is due to the fact that the temperature field gets cancelled 

when yyσ  was subtracted from xxσ  as shown in below Eq. 39 and there are no 

temperature terms in xyτ  (Refer Eq. 3c). 
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(a) Maximum principal stress 

(b) Circumferential tensile stress (c) Maximum shear stress 
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Fig. 7 Variation of normalized (a) maximum principal stress, (b) the 

circumferential tensile stress, and (c) maximum shear stress around the crack–tip 

for a mixed-mode thermo-mechanical loading in an FGM for several values of  

temperature coefficients (KIID/KID = 0.2, c/cs = 0.5, 12 =γ , 1−=ζ , k = 20, β = 20°, r 

= 0.002m). 
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Fig. 8 Effect of property gradation for a curved crack on the contours of for 

maximum shear stress around the crack–tip for a mixed-mode loading in an FGM 

with no temperature field (KIID/KID = 0.2, c/cs = 0.5, k = 20, β = 20°). 

 

 

(a) 0=ζ  

(b) 1=ζ  (c) 1−=ζ  

ζ 2/h
 

ζ1/h 

5

6
7

5

6

7
4

3

2

1

1
23

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ζ 2/h
 

ζ1/h 

5

6

7

4

5

6

3

2
1

1

234

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3.1.3 Effect of Non homogeneity 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of property gradation for a curved crack on the contours of 

maximum shear stress around a propagating crack-tip for k =20 and β = 20° with no 

temperature field is shown in Fig. 8. Fig. 8(a) shows the case of a homogeneous 

material, and Fig. 8(b) &8(c) are plotted for 1=ζ  and 1−=ζ  respectively. For 1=ζ , 

the size of the contours increases above the crack-line and decreases below the crack-

line. Moreover, these contours tilt towards the crack direction which is the increasing 
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property gradation direction as shown in Fig 8(b). However, for 1−=ζ , the reverse 

happens with a decreased size above the crack-line and an increased size below the 

crack-line and the contours tilt away from the crack direction, which is again in the 

increasing property gradation direction.  

A similar plot to that of Fig.8 is made by considering the thermal property 

gradation on the maximum principal stress with temperature gradient, 1000 =q , there 

is no noticeable difference on the contours of maximum principal stress for different 

non-homogeneity values (γ2). This is due to the dominance of first term ( 0q ) in the 

temperature field equation. 

3.2 Crack Extension Angle  

   A dynamically moving crack tends to deviate from its path due to crack-tip 

instability conditions. The crack-tip instability becomes predominant when the cracks 

tend to propagate in non-homogeneous materials under thermo-mechanical loading. In 

the present study, using the derived thermo-mechanical stress field equations, the 

effects of curvature parameters, temperature, crack-tip velocity and material non-

homogeneity on the crack-tip instability are presented. The theoretical prediction of 

the crack extension angle is investigated by using the well-known fracture criterion: 

minimum strain energy density (S-criterion). The strain energy density criterion was 

chosen because it provides a complete description of material damage by including 

both the distortional and dilatational effects (Gdoutus, 1990). Both distortional and 

dilatational vary in proportion, depending on the load history and location due to non-

uniformity in stress or energy fields.  
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3.3 Minimum Strain-Energy Density (MSED) Criterion  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to this criterion (Sih, 1974), the crack initiates when the strain 

energy density achieves a critical value and propagates in the direction of the 

Fig. 9 Effect of (a) temperature, (b) curvature and (c) non-homogeneity on strain 

energy density around the crack–tip for a mixed mode thermo-mechanical loading 

in an FGM (KIID/KID = 0.2, c/cs = 0.5, 12 =γ , r = 0.002m). 
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minimum strain-energy density value. The strain energy density dW/dV near the crack-

tip for an FGM is given as  

       
{ }{ }2 2 2

xx yy xx yy xyX

1dW S (1 ) 2 2dV 4 eζ
ν σ σ νσ σ σ

µ
= = − + − +

                           (40) 

   Fracture takes place in the direction of minimum S, and the condition can be 

obtained by using Eq. (40) 

       cSSat
d

SdS
=>=

∂
∂ 0;0 2

2

θθ
                                                          (41) 

where Sc is the critical strain energy density.  

   Variation of strain energy density around the crack-tip for a thermo-

mechanical loading in an FGM for different temperature gradients, curvatures and 

non-homogeneity is shown in Fig. 9.  The angle at which the strain energy density 

reaches a minimum value changes with temperature, curvature and the non-

homogeneity parameters as shown in Fig. 9. 
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3.3.1 Effect of Crack-tip Velocity  

   The crack extension angles as a function of crack-tip velocity for a typical 

curvature k = 20 and β = 20O, temperature gradient, 1000 =q  under thermo-

mechanical loading as predicted by the MSED criterion is shown in Fig. 10. For pure 

mode-I loading (KIID/KID=0), at a crack-tip velocity of c/cs=0.4, the MSED criterion 

predicts a crack extension angle of about -15o. For all other crack-tip velocities shown 

in the figure, as the value of KIID/KID and KID/KIID increases from 0 to 1 the crack 

extension angle increases monotonically. Also as the crack-tip velocity increases, the 

crack kinks at a larger angle.  
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Fig. 10 Crack extension angle as a function of crack-tip velocity for a mixed-mode 

thermo-mechanical loading in homogeneous material using MSED criterion (ζ =0, 

k = 20, β = 20°, r = 0.002m). 
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 3.3.2 Effect of Non homogeneity 

   

The effect of the non-homogeneity parameter ( 1=ζ  and 1−=ζ ) on the crack 

extension angle for a crack-tip velocity of 0.5cs under thermo-mechanical loading 

( 1000 =q ) is shown in Fig. 11. Under pure mode-I loading, MSED criterion predicts 

crack extension angle of θ =-19o for a FGM with 1=ζ ; θ = -25o for a homogenous 

material (i.e. 0=ζ ) and θ = -32o for a FGM with 1−=ζ . However under pure mode-II 

loading, MSED criterion predicted constant angle of θ = -49o for both the 

homogeneous and FGMs with 1=ζ  and an angle of θ = -51o for FGM with 1−=ζ . 
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Fig. 11 Crack extension angle as a function of non-homogeneity parameter for a 

mixed- mode crack with temperature field (c/cs=0.5, k = 20, β = 20°, r = 0.002m). 
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 3.3.3 Effect of Temperature  

   The effect of the temperature on the crack extension angle for a mixed-mode 

thermo-mechanical loading is shown in Fig. 12 for different non-homogeneity values. 

Typical values of k = 20, β = 20°, γ 2= 1 are assumed for constructing Fig. 12. For a  

homogeneous material and FGMs with ( 1=ζ  and 1−=ζ ), the crack extension angle 

decreases slowly with an increase in the temperature gradient. FGM with 1−=ζ  kinks 

at a larger angle compared to a homogeneous material and a FGM with increasing 

property gradation. This could be attributed to the presence of a compliant material 

ahead of the crack-tip in which the strain energy density reaches a minimum value at a 

higher angle.  
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Fig. 12 Effect of temperature on the crack extension angle for a mixed-mode 

thermo-mechanical loading in FGM for different non-homogeneity values using 

MSED criterion (KIID/KID=0.2, c/cs=0.5, k = 20, β = 20°, 12 =γ , r = 0.002m). 
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Fig. 13 Crack extension angle as a function of crack-tip velocity for a mixed-mode 

thermo-mechanical loading at different temperature fields using MSED criterion 

(KIID/KID=0.2, k=20, β=20°, 12 =γ , r=0.002m). 
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The effects of temperature on the crack extension angle as a function of crack-

tip velocity in a homogeneous material, a FGM with 1=ζ  and a FGM with 1−=ζ  are 

plotted in Fig. 13 using MSED criterion. For all the three cases, the crack  1−=ζ  are 

plotted in Fig. 13 using MSED criterion. For all the three cases, the crack  extension 

angle increases as the crack-tip velocity increases for various temperature gradients.  

3.3.4 Effect of Curvature  

The effect of curvature on the crack extension angle for a crack-tip velocity of 

0.5cs for a mixed-mode thermo-mechanical loading is shown in Fig. 14 for different 

non homogeneity values using MSED criterion. A typical value of 1000 =q  is 

assumed for plotting Fig. 14. Four different values of curvature (k) with fixed β = 20° 

are chosen at the crack-tip. For a homogeneous material, the crack extension angle 

increases as the value of (k) increases. A similar trend is observed for a FGM with  
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Fig. 14 Effect of curvature on the crack extension angle for a mixed-mode thermo-

mechanical loading in FGM for different non-homogeneity factors using MSED 

criterion (KIID/KID=0.2, c/cs=0.5, 1000 =q , β = 20°, 12 =γ , r=0.002m). 
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Fig. 15 Crack extension angle as a function of crack-tip velocity for a mixed-mode 

thermo-mechanical loading for various curvature parameters using MSED criterion 

(KIID/KID=0.2, 1000 =q , 12 =γ , r=0.002m). 
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1=ζ  and 1−=ζ . Also at each value of the curvature at the crack-tip, the crack 

extension angle increases as the value of non-homogeneity decreases. Again, larger 

crack extension angles are noticed for the case of FGM with 1−=ζ .    

The effects of curvature on the crack extension angle as a function of crack-tip 

velocity in a homogeneous material, a FGM with 1=ζ  and a FGM with 1−=ζ  is 

plotted in Fig. 15 using MSED criterion. For a homogeneous material, at each value of 

curvature at crack-tip, the crack extension angle increases as the crack-tip velocity 

increases. Similar behavior is observed for the case of FGMs with 1=ζ  and 1−=ζ . 

3.4 Effect of T-stress on Curvature and Temperature 

   In the previous studies, it was reported in the literature that T-stress ( oxσ  

term) plays a vital role in crack kinking or crack branching for a homogeneous 

material (e.g., Cotterell and Rice, 1980: Shukla et al. 1990: Fang-Li and Roy-Xu, 

2007). In this paper, the effect of T-stress is studied in FGMs under thermo-

mechanical loading.  

                                                                                                                    (42) 

In the above Eq. 42, T is the non-singular stress term. The effect of T-stress 

( oxσ  term) on the crack extension angle for different curvature values and temperature 

gradients around a propagating crack under mixed-mode  loading in an FGM is shown 

in Fig. 16 for different non homogeneity values using MSED criterion.  A Typical 

value of 2
1

)*4/3( −
−= mK IDoxσ  was used for plotting. Fig. 16(a) shows the effect of T-

stress on the crack extension angle as a function of curvature for a fixed temperature  
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Fig. 16 Effect of T-stress on the crack extension angle for different values of 

curvature and temperature for a mixed-mode thermo-mechanical loading in FGM 

for different non-homogeneity factors using MSED criterion ( 2
1

143 −−= m)DK*/(oxσ , 

KIID/KID=0.2, c/cs=0.5, 12 =γ , r=0.002m). 
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gradient ( 1000 =q ) and fixed β = 20°. The crack extension angle increases as the 

value of (k) increases for a homogeneous material and FGMs with 1=ζ  and 1−=ζ .  
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For a FGM with 1−=ζ , the crack kinks at a larger angle. This could be again attributed 

to the presence of a compliant material ahead of the crack-tip in which the strain 

energy density reaches a minimum value at a higher angle.  

   Fig. 16(b) shows the effect of T-stress on the crack extension angle as a 

function of temperature gradient for a fixed value of curvature (k = 20, β = 20°). For 

all the different non-homogeneity values, the crack extension angle decreases as the 

temperature gradient increases. The decrease in crack extension angle is more 

significant for less temperature gradient. Again, larger crack extension angles are 

observed for a FGM with 1−=ζ .  

   When the above results were compared with Fig. 12 and Fig. 14 

(where 0=oxσ ), it is observed that the crack extension angle decreases when the T-

stress ( oxσ  term) is applied.  

   It can be concluded from above analysis (Fig. 2 to Fig. 16) that, the non-

homogeneity parameters, curvature and temperature fields have significant effect on 

the contours of maximum shear stress, various stress components discussed and the 

crack extension angle. So, for curving cracks, non-homogeneity parameters, 

temperature field and curvature terms cannot be ignored in extracting fracture 

parameters from experimental data.  

   There are various experimental techniques such as photoelasticity, coherent 

gradient sensing (CGS), digital image correlation (DIC), interferometry etc. to obtain 

the full field experimental data around the crack-tip. Digital image correlation 

technique can be used to obtain the in plane and out of plane displacements around the 
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crack-tip (Abanto-Bueno and Lambros, 2006; Rousseau et al. 2010). Coherent 

gradient sensing technique can be used obtain the out of plane displacement gradients 

(using the reflection mode) or in plane stress gradients (using transmission mode) for 

opaque and transparent solids respectively (Rousseau et al. 2010; Tippur et al. 1991). 

The photoelasticity technique can be used for transparent materials. The high speed 

digital imaging along with dynamic photoelasticiy can be employed to obtain real 

time, full field data around the crack-tip (Rousseau et al. 2010; Jain and Shukla, 2007). 

Combined experimental techniques of DIC and infrared photography have been 

recently used to study the displacement under dynamic thermo-mechanical loading 

(Silva and Ravichandran, 2011). The above mentioned techniques can be used to 

extract fracture parameters and thermal coefficients used in the stress field equations 

developed in this analysis (Rousseau et al. 2010; Krishnamoorthy and Tippur, 1998).   

4. Conclusions  

   The stress-fields near the crack-tip for steady state mixed-mode thermo-

mechanical loading in a graded material for a smoothly curving crack are developed 

using displacement potentials in conjunction with an asymptotic approach. First, 

asymptotic temperature fields near the crack-tip are developed and then by 

incorporating this developed temperature field into the mechanical field, the thermo-

mechanical stress fields near the crack-tip are generated. Using these developed stress 

field equations, the effect of the non-homogeneity parameters, curvature, and 

temperature is studied on various stress components, on the contours of the maximum 

shear stress and the crack extension angle using minimum strain energy density 

criterion. The results are compared with the previous findings of static and dynamic 
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crack propagation in homogeneous and FGM systems under thermo-mechanical 

loadings (Kidane et al. (2010a) & (2010b)).  When curvature terms are set to zero, the 

solutions match with the previous findings. This analytical study resulted in the 

following key findings:  

• The thermo-mechanical stress fields around the crack-tip are significantly 

affected by the curvature, temperature and non-homogeneity parameters. As 

the curvature at the crack-tip increases, the peak value of the stress components 

also increases. 

•  For a given curvature conditions, as the temperature gradient increases, the 

peak value of the stress components decreases. 

• The mechanical properties gradation affects the contours of the maximum 

shear stress considerably while the thermal properties gradations show no 

significant effect on the stresses.  

• Crack-tip velocity plays a significant role in the crack extension angle. For a 

mixed-mode curving crack under thermo-mechanical loading, the crack 

extension angle increases with the increase in crack-tip velocity. Similar 

behavior was reported earlier for the case of homogeneous and FGMs without 

the curvature parameters (Kidane et al., 2010a and 2010b). 

• Similar to previous findings (Kidane et al., 2010a and 2010b), the increase in 

the temperature gradient decreases the crack extension angle for different non-

homogeneity values. 

• The increase in the value of curvature (k) increases the crack extension angle 

for different non-homogeneity values.  
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• For a homogeneous material and FGMs with 1=ζ and 1−=ζ , the crack 

extension angle increases as the crack-tip velocity increases for different 

values of temperature coefficient ( 0q ) and curvature (k).  

• For an applied T-stress, the increase in the value of curvature (k) increases the 

crack extension angle while the increase in the temperature gradient decreases 

the crack extension angle for different non-homogeneity values.  

• There is a significant effect on the crack extension angle when the T-stress is 

applied. The crack extension angle decreases when the T-stress ( oxσ  term) is 

applied when compared to the case of without the T-stress (where 0=oxσ ).  
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Abstract 

Mixed-mode dynamic crack growth behavior along an arbitrarily smoothly varying 

path in functionally graded materials (FGMs) under transient thermo-mechanical 

loading is studied. Asymptotic analysis in conjunction with displacement potentials is 

used to develop transient thermo-mechanical stress fields around the propagating 

crack-tip. Asymptotic temperature field equations are derived for exponentially 

varying thermal properties, and later these equations are used to derive transient 

thermo-mechanical stress fields for a curving crack in FGMs. The effect of transient 

parameters (loading rate, crack-tip acceleration, and temperature change) and 

temperature gradient on the maximum principal stress and circumferential stress 

associated with the propagating crack-tip is discussed. Finally, using the minimum 

strain energy density criterion, the effect of temperature gradient, crack-tip speeds and 

T-stress on crack growth directions are determined and discussed. 

Keywords: Functionally graded materials, thermo-mechanical loading, transient crack 

growth, mixed-mode, curving cracks, exponential property gradation 

1. Introduction 

Functionally Graded Materials (FGMs) are non-homogeneous composites 

which have spatially varying microstructure and mechanical/thermal properties to 

meet desired functional performance [1, 2]. FGMs used in high temperature 

applications have metals and ceramics as their constituents and thus have both thermal 

and mechanical non-homogeneities. These materials can withstand high temperatures 
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effectively due to superior thermal properties of ceramics, and at the same time high 

strength can be achieved with the presence of metal. Several studies on the superior in-

service advantages of FGMs over traditional duplex coatings under high temperature 

and high thermal cycling conditions have been reported. In their studies, Kawasaki 

and Wananabe [3], and Drake et al. [4] reported that the thermal residual stresses are 

relaxed in metal-ceramic layered materials by inserting a functionally graded interface 

layer between the metal and ceramic. Kudora et al. [5] and Takahashi et al. [6] 

reported that FGM coatings suffer significantly less damage than conventional 

ceramic coatings, under thermal shock condition. 

Several studies on the quasi-static fracture behavior of FGMs under thermo-

mechanical loading have been reported. Assuming exponential variation of material 

properties, Jin and Noda [7] investigated the steady thermal stress intensity factors in 

functionally graded semi-infinite space with an edge crack subjected to a thermal load. 

Later, Erdogan and Wu [8] also determined the steady thermal stress intensity factor 

of a FGM layer with a surface crack perpendicular to the boundaries. By further 

assuming the exponential variation of thermal and mechanical properties of the 

materials, Jin and Batra [9] investigated the stress intensity relaxation problem at the 

tip of an edge crack in a FGM subjected to a thermal shock. Using both experimental 

and numerical techniques, Kokini and Choules [10], and Kokini and Case [11] studied 

surface and interface cracking in FGM coatings subjected to thermal shocks. Jin and 

Paulino [12] studied transient thermal stresses in an FGM with an edge crack and 

having a constant Young’s modulus and Poisson’s ratio, but varying thermal 

properties along the thickness direction. Walters et al. [13] developed general domain 
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integral methods to obtain stress intensity factors for surface cracks in FGMs under 

mode-I thermo-mechanical loading conditions. Zhang and Kim [14] used a complex 

variable approach to characterize the higher order terms for stationary crack-tip fields 

in FGMs. Clements [15] analyzed the antiplane crack problem for inhomogeneous 

anisotropic elastic FGMs.    

The above studies provide closed form solutions for stress intensity factors 

under thermo-mechanical loading, however, for extracting fracture parameters from 

experimental studies, asymptotic expansion of thermo-mechanical stress fields around 

the crack-tip is essential. Jain et al. [16] developed quasi-static stress and displacement 

fields for a crack in an infinite FGM medium under thermo-mechanical loading. Lee et 

al. [17] developed analytical expressions for dynamic crack-tip stress and 

displacement fields under thermo-mechanical loading in FGMs. Recently, Kidane et 

al. [18] developed the thermo-mechanical stress fields for a mixed mode propagating 

crack with a constant velocity along the gradation direction. Also, Chalivendra et al. 

[19] developed the elastic mechanical stress field solutions for an inclined propagating 

transient crack in FGMs.   Even though the above mentioned studies of dynamic 

thermo-mechanical asymptotic field equations serve the purpose of obtaining fracture 

parameters from experimental data, these studies have not incorporated the crack path 

curvature associated with a propagating crack in these materials. It has been reported 

in the experimental and numerical studies that the propagating cracks follow curved 

paths under various loading conditions due to the spatial variation of properties in 

graded materials [20-23]. In order to extract the fracture parameters accurately from 

the experimental data associated with curved cracks, it is essential to consider 
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curvature terms in the field equations. Liu and Rosakis [24] developed the higher-

order asymptotic expansion of a non-uniformly propagating dynamic crack along an 

arbitrary curved path for homogeneous materials and they emphasized the importance 

of the curvature terms when experimental data points are considered away from the 

singularity zone to extract fracture parameters. Recently, Chalivendra [25] developed 

crack-tip out of plane displacement field equations for transient curved cracks in 

FGMs. However, asymptotic expansion of near-tip field equations for a curving crack 

under transient thermo-mechanical loading conditions has not yet been reported. 

In this paper, through an asymptotic analysis, the transient stress and 

displacement fields for a curving crack propagating at varying velocity in FGMs are 

developed. The thermal and mechanical properties are assumed to vary exponentially 

along the gradation direction. The mode-mixity due to the inclination of curved crack 

with respect to property gradient is accommodated in the analysis through the 

superposition of opening and shear modes. First, the three terms of stress fields are 

developed and then the effect of transient parameters on the maximum principal stress, 

circumferential stress and crack extension angle is discussed. 

2. Theoretical Formulation 

FGMs can be treated as isotropic non-homogeneous solids because, at a 

continuum level, the properties at any given point in an FGM can be assumed to be the 

same in all directions. Non-homogeneity at the grain-size level is not considered in the 

formulation of the problem. Spatial variation of elastic properties, mass density, 

thermal properties, inclination of the curved crack with respect to the gradation 

direction and transient conditions make analytical solutions to the elasto-dynamic 
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equations extremely difficult. Hence, an asymptotic analysis similar to that employed 

by Freund [26] is used to expand the stress field around a propagating crack under 

thermo-mechanical loading conditions. 

Isotropic linear elastic FGM, containing a propagating curving crack with 

temperature gradient in the x-y two-dimensional plane is shown in Fig. 1. At time t = 

0, the crack-tip happens to be at the origin of Cartesian coordinate system x-y. For any 

time t > 0, the position of the propagating crack-tip is supposed to be given by (X(t) 

and Y(t)) as shown in Fig. 1. The crack is propagating with a varying velocity ( c ) as a 

function of time. It was identified in previous the experimental studies [27-28] that the 

variation of mechanical properties of laboratory-fabricated FGMs can be fitted by an 

exponential curve. Thus, the shear modulus (μ), Lamé’s constant (λ), and density (ρ), 

are assumed to vary in an exponential manner as given by Eq. (1a)-(1c). The thermal 

properties, namely thermal expansion (α), heat conductivity (k) and heat capacity(C) 

are assumed to vary exponential as given by Eq. (1d)-(1f). Two different non-

homogeneity parameters were used for the thermal properties, where 1γ  was used for 

thermal expansion, and 2γ was used for both heat conductivity and heat capacity.  

                                        ( )xζµµ exp0=                                            (1a) 

                                        ( )xζλλ exp0=                           (1b) 

                                        ( )xζρρ exp0=                                                 (1c) 

                                        ( )x10 exp γαα =                                               (1d) 

                                        ( )xkk 20 exp γ=                                                 (1e) 

                                        ( )xCC 20 exp γ=                                                           (1f) 

where ζ , 1γ  and 2γ are non-homogeneity constants that have the dimension (length)-1.  
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Fig. 1 Propagating curved crack orientation with respect to property gradation 

direction and temperature gradient. 
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Each physical variable can have a different non-homogeneity parameter. However for 

mathematical simplicity only three non-homogeneity parameters, one for mechanical 

properties and two for thermal properties, are considered. Let u and v, functions of x, y 

and t, represent the displacement field in x and y directions, respectively, with t 

representing the time. The Hooke’s law for a plane strain thermo-mechanical problem 

can be written as 

         ]T)xexp()())[xexp( yyxxxx 1000000 232 γαµλελεµλζσ +−++=            (2a) 

         ]T)xexp()()()[xexp( yyxxyy 1000000 232 γαµλεµλελζσ +−++=            (2b)                       

       ( ) xyxy x γµζτ 0exp=                 (2c) 

where x and y are reference coordinates, ijσ  and ( )yxjyxiij ,and,where ==ε  are  

 

 

 

 

    

 

 

 

 

 

 



 

83 

 

in-plane stress and strain components, and subscript “o” denotes at x= 0 as shown in 

Fig.1. T represents the change in temperature in the infinite medium.  

The equations of motion of a plane problem can be written as 

                                    2
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xyxx
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=
∂

∂
+
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ρ
τσ

                                                          (3a) 
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                              (3b) 

  For a plane strain deformation, the displacements u and v are derived from the 

dilatational and shear wave potentials φ  and ψ. These potentials can be expressed as 

                              
yx

u
∂
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+
∂
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=
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∂
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=
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Substituting the displacement relations into the stress expressions in Eq. (2), and then 

substituting these stresses into the equations of motion (Eq. 3), after simplification, we 

get  
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Now, a new moving coordinate system ),( 21 ξξ  is introduced, so that the origin 

of the new system is at the moving crack-tip. The 1ξ -axis is tangential to the crack 
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trajectory at the crack-tip and coincides with the direction of the crack growth. The 

crack is propagating with varying velocity (c) as a function of time along the local 1ξ -

direction. The angle between 1ξ -axis and the fixed x-axis are denoted by )(tβ , as 

shown in Fig. 1. Therefore the relationship between the coordinates in these two 

Cartesian co-ordinate systems is 

                        
{ } { }
{ } { } )(cos)()(sin)(

)(sin)()(cos)(

2

1

ttYyttXx
ttYyttXx
ββξ

ββξ
−+−−=
−+−=

                                    (6) 

If the length of the trajectory that the crack-tip travels during the time interval, 

[0, t], is denoted by s(t), then the magnitude of the crack-tip speed c(t) will be s (t), 

and the curvature of the crack trajectory at the crack-tip, k(t), is given by 

                                       
)t(c
)t(

ds
)t(d)t(k ββ 
==                                                           (7)                      

 where  2)(2)()( tYtXtc  +=      

Using the transformations and the relations given below in Eqs. (8)-(10), the equations 

of motion (5a) and (5b) are further written in the crack-tip moving coordinate 

reference ( 1ξ , 2ξ ) as given in Eqs. (11a) and (11b). 
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It is assumed that the crack velocity c is a function of time for transient crack 

growth, and the potentials φ  and ψ explicitly depend on the time in the moving 

coordinate reference. 

2.1 Temperature Field around the Crack-tip 

In this analysis, it is assumed that the temperature field around the crack-tip 

changes asymptotically. The general heat conduction equation for isotropic materials 

can be written as 
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Density (ρ), heat conductivity (k), and heat capacity (C) are assumed to vary 

exponentially as given by Eqs. (1c), (1e) and (1f). The simplified equation can be 

expressed as 
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For the simplification of Eq. (14), the exponential term on the right-hand side 

is expanded using Taylor series. 
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In the vicinity of the crack-tip, higher order terms having exponential 2 or 

more can be neglected, which leads to the equation 
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Transforming the above equation into the moving crack-tip coordinates, it can 

be written as   
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At this stage, the asymptotic analysis is performed to solve the above Eq. (17). The 

advantages of this approach are: (i) it does not consider finite specimen geometry, and (ii) it 

does not need the information of the external loading boundary conditions. It requires only 

crack-face and crack-line boundary conditions associated with the propagating crack to be 

satisfied. In this process, first a new set of scaled coordinates is defined as 

                                                 (18)  

where ε is an arbitrary parameter and is assumed to be 10 << ε . 

In the scaled coordinates, Eq. (17) can be written as  

εξηεξη 2211 , ==
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For the asymptotic analysis, T is now represented as a power series expansion in ε. 
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Substituting the above infinite series expansion in Eq. (19) results in 
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For Eq. (21) to be valid, the partial differential equations corresponding to each 

power of ε (ε1/2, ε, ε3/2, ...) should vanish independently. This leads to a set of partial 

differential equations. 

For m = 0 and 1 
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For m = 4 and 5 
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The homogeneous solutions for the temperature field can be written in the 

form of cosi jρ θ or sini jρ θ , where i and j are arbitrary real numbers. The solutions 

for Eqs. (23) and (24) corresponding to the higher powers of ε (m≥2) consist of two 

parts: the classical solution and the solution due to non-homogeneity, and the latter 

can be obtained recursively. The details of the procedure are given in Kidane et al. 

[18]. The temperature field solution (first 3 terms) including the non-homogeneity 

parameters and the transient term ( )(0 tq ) can be written as  
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The full solution of the temperature field is attached in the Appendix (A1). 
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2.2 Asymptotic Expansion of Crack-tip Stress Fields 

A process similar to the asymptotic approach used for deriving the temperature 

field around the crack-tip is used for deriving solutions of the displacement potentials 

of the equations of motion. The scaled coordinates discussed in Eq. (18) are now 

applied to Eqs. (11a) and (11b) as given below 
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At this point, it is assumed thatφ , ψ and T can be represented in the power series of ε. 
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Substituting the series expansions from Eq. (27) into Eq. (26) results in 
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                                                                                                                                (28b) 

For Eqs. (28a) and (28b) to be valid, the partial differential equations 

corresponding to each power of ε (ε1/2, ε, ε3/2, ...) should vanish independently. This 

leads to the following set of partial differential equations. 

For m = 0 and 1, 
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For m = 2 and 3,  
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Equations (29a) and (29b) are similar to those for homogeneous material where 

as the partial differential equations (30a) and (30b), associated with higher powers of ε 

are coupled to the differentials of the lower order functions through the non-

homogeneity parameterζ , and the temperature term. Equations (29a) and (29b) (i.e. 

for m = 0 and m = 1) can be easily reduced to Laplace’s equation in the respective 

complex domains 1 1 2 2 1 2, , 1,l sz zη ια η η ια η ι= + = + = − and the solutions are same 

as those for homogenous materials [26, 29-33], and can be written as 
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Am, Cm, Bm and Dm are real constants. 

Using the definitions of dynamic stress intensity factors KID and KIID for the 

opening mode and shear mode [26] as given in Eq. (32), the relation between A0(t) and 

KID(t), C0(t) and KIID(t) are obtained. 
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where μc is the crack-tip shear modulus, KID(t) and KIID(t) are the mode-I and mode-II 

dynamic stress intensity factors, respectively. 

In order to extract both mode-I and mode-II stress intensity factors accurately 

from the experimental data when the crack-tip stress field is non-homogenous due to 

imposed transient thermo-mechanical fields and material non-homogeneity, higher-

order stress-field equations are essential in addition to leading terms and thermal 

stress. The solution for Eq. (30a) and Eq. (30b) corresponding to higher powers of ε 

(m = 2) consists of two parts: the solution for the homogeneous equation and a 

particular solution due to non-homogeneity and temperature, and these can be 

obtained recursively [29-31]. The solutions for 0φ , 0ψ , 1φ and 1ψ  automatically satisfy 

the compatibility equations because these solutions are same as those for 

homogeneous materials.  

To include the effect of the transient temperature term ( )(0 tq ), the particular solution 

for 6φ  is derived. The differential equation is as follows 
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The ratio (1/αl
2) can be calculated for different crack speeds c/cs from the 

knowledge of elastic coefficients. The variation is represented by the approximation 

given by the following equation, 
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The constant ω can be obtained by curve fitting. Using the relation 

2 2 2
1 2(1 )lρ η α ξ η= + + and 2

1

tan 1 ,l
ηθ ξα
η

= + the right hand side, in terms of ρ  and θ , 

is expanded using Taylor series in terms of lρ  and lθ [34]. Parmeswaran and Shukla 

[34] provided a remedial solution to solve this type of equations. When they compared 

their analytical solutions obtained using this approach with the finite element 

simulations, they observed a maximum error of 5% [34].  Using the same approach, 

the equation can be written as 
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The solution for 6φ  can be written as 
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By collecting all the above terms of φ  and ψ , and then transforming back to 

the 21 ξξ −  plane, the solutions for φ  and ψ  can be written as, 
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The above definitions of the displacement potentials are now used in Eq. (4) to 

obtain the displacement fields. These displacement fields are then used to develop the 

strain fields. These strain fields and Eq. (25) are substituted into Eq. (2) to obtain in-

plane stress fields around the crack-tip as given in Appendix (A2-A4).  

3. Results and Discussion 

To study the effects of the transient terms in both mechanical and thermal 

loading on crack propagation, the contours of the maximum principal stress and 

circumferential stress are generated for mixed-mode loading conditions.  The 

asymptotic expansion of the crack-tip stress and displacement fields contain the 

coefficients of An(t), Bn(t), Cn(t) and Dn(t), which can be related to the fracture 

parameters such as the dynamic stress intensity factor and the nonsingular stress 

components around the crack-tip.  The constants A0(t), B0(t), C0(t) and D0(t), are 

related to the mode-I and II stress intensity factors [KID(t) and KIID(t) respectively] as 

given in Eq. (32) and (33). The higher order coefficients A1(t), B1(t), C1(t) and D1(t) 

are assumed to be zero. The material properties and fracture parameters of ZrB2 are 

used in generating the plots [35].  Since the cracks are more likely to propagate from 

the ceramic side, we used the properties of ceramics and varied the properties 

exponentially along the gradation direction. The properties are as follows: Poisson's 

ratio (ν) = 0.16, shear modulus at the crack-tip (µ0) = 210 GPa, density at the crack-tip 

(ρ0) = 6000 kg/m3, coefficient of thermal expansion at crack-tip (α0) = 5.9x10-6 /°C, 

thermal diffusivity at crack-tip (αt0) = 1x10-5 m2/s, non-homogeneity parameters, 

2−=ζ , γ1 = 0.2, γ2 = 0.5, crack-tip velocity (c/cs) = 0.5, k(t) = 20 rad/m, )t(β = 20°, 
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KID = 5 MPa-m1/2, KIID = 1 MPa-m1/2, 22
IIDIDeff KKK += . 

It is assumed that the applied thermal field generates elastic deformation 

around the crack-tip. Some of the terms associated with non-homogeneity and with the 

thermal stress field impose normal and shear stresses on the traction free crack faces. 

The removal of these stresses from the crack face is accomplished by superimposing 

an equal and opposite stress field on the crack face. In particular, each point on the 

crack face is subjected to a line load of specific magnitude such that the normal and 

shear stresses from the crack face are removed. Jiang et al. [36] proposed a solution 

for a single line load to derive the stress field around the crack-tip and the solution is 

extended for multiple line loads applied on the crack face line.  The revised in-plane 

stress fields with traction free crack face conditions are used in analyzing the effect of 

various parameters. 
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3.1 Effect of Transient Terms on the Maximum Principal Stress 

The effect of transient terms on the contours of the maximum principal stress 

around the crack-tip with no temperature field for a mixed mode loading in a FGM is 

 (a) dc/dt = 0; dKID(t)/dt = 0;  

dKIID(t)/dt = 0 

(b) dc/dt = 1 x 107 m/s2;  

dKID(t)/dt = 0; dKIID(t)/dt = 0 

(c) dc/dt = 0;                                  

dKID(t)/dt = 1 x 108 MPa-m1/2 s-1;  

       

 (d) dc/dt = 0;  

dKID(t)/dt = 0; dKIID(t)/dt = 0 ; 
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Fig. 2 Effect of transient terms on the contours of maximum principal stress around 

the crack-tip for mixed mode loading in an FGM (ζ = -2, γ1 = 0.2, γ2 = 0.5, c/cs = 

0.5, k(t) = 20 rad/m,  β(t) = 20°, KID = 5 MPa-m1/2, KIID = 1 MPa-m1/2). 
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shown in Fig. 2. In Fig. 2(a), by setting the coefficients associated with transient terms 

to zero, the contours of maximum principal stress with no transient effects are 

obtained for relative comparison. Fig. 2(b) shows the effect of the crack-tip 

acceleration on the contours of maximum principal stress. To study the effect of crack-

tip acceleration, the value of dc/dt was varied over seven orders of magnitude. Dally 

and Shukla [37] have shown that the rate of change of velocity at crack initiation could 

be of the order of 107 m/s2.  As the acceleration is increased, the contours ahead of the 

crack-tip are compressed. Also, the contour size reduces in the direction perpendicular 

to the crack surface. The effect of loading-rate on the contours of maximum principal 

stress is demonstrated by Fig. 2(c). To study this effect, dKID(t)/dt and dKIID(t)/dt are 

varied over eight orders of magnitude. The stress contours show slight compression 

(almost negligible) in front of the crack-tip for dKID(t)/dt and dKIID(t)/dt of 1x108 MPa-

m1/2-s-1 and 2x107 MPa-m1/2-s-1 , respectively. To study the effect of thermal shock, 

100)(0 =tq ºC-m-1/2s-1 was chosen as a reference value. It is clearly visible in Fig. 2(d) 

that the stress contours are significantly affected as )(0 tq  is introduced. The size of 

the stress contours decreases significantly away from the crack-tip, due to the higher 

order dependence of the stress field on )(0 tq . 

3.2 Effect of Transient Terms on the Circumferential Tensile Stress 

The effect of transient terms on the contours of circumferential stress around 

the crack-tip with no temperature field for a mixed mode loading in a FGM is 

discussed in Fig. 3. The contours of the circumferential stress without transient  
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Parameters are shown in Fig. 3(a). The transient effect due to crack-tip acceleration as 

shown in Fig. 3(b), decreased the size of the contours of circumferential stress ahead 

of the crack-tip as the acceleration is increased. Also, Fig. 3(c) shows that the effect of 

dKID(t)/dt and dKIID(t)/dt on the contour size in front of the crack-tip is negligible. 

 (a) dc/dt = 0; dKID(t)/dt = 0;  

dK (t)/dt  0 

(b) dc/dt = 1 x 107 m/s2;  

dKID(t)/dt = 0; dKIID(t)/dt = 0 

(c) dc/dt = 0;                                   

dKID(t)/dt = 1 x 108 MPa-m1/2 s-1;  

       

(d) dc/dt = 0;  

dKID(t)/dt = 0; dKIID(t)/dt = 0 ; 
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Fig. 3 Effect of transient terms on the contours of circumferential stress around the 

crack-tip for mixed mode loading in an FGM (ζ = -2, γ1 = 0.2, γ2 = 0.5, c/cs = 0.5, 

k(t) = 20 rad/m, β(t) = 20°, IDK = 5 MPa-m1/2, IIDK = 1 MPa-m1/2). 
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Fig. 4 Variation of normalized (a) maximum principal stress, and (b) the 

circumferential tensile stress, around the crack–tip for a mixed-mode thermo-

mechanical loading in an FGM for several values of  temperature coefficients. 

(ζ = -2, γ1 = 0.2, γ2 = 0.5, c/cs = 0.5, k(t) = 20 rad/m, β(t) = 20°, IDK = 5 MPa-

m1/2, IIDK = 1 MPa-m1/2, IDK = 1x108 MPa-m1/2-s-1, IIDK = 2x107 MPa-m1/2-s-1, 

c= 1x107 m/s, )()( 21 tqtq = = 50ºC-m-1/2 , )(0 tq = 100ºC-m-1/2s-1 and  a typical 

value for radius, r = 0.002m). 

 

For 100)(0 =tq ºC-m-1/2s-1, the size of the contours decreases significantly and the 

shape changes considerably as shown in Fig. 3(d).  

3.3 Effects of Temperature   

 

 

 

 

 

 

 

 

 

 

 

 

Variation of normalized maximum principal stress and circumferential stress, 

is plotted around the crack-tip for different temperature gradients ( 00 =q , 1000 =q  

and 2000 =q ) as shown in Fig. 4. Typical values of dc/dt =107 m/s2, dKID(t)/dt = 

1x108 MPa-m1/2-s-1, dKIID(t)/dt of 2x107MPa-m1/2-s-1, 100)(0 =tq ºC-m-1/2s-1, and a 

typical value for radius, r = 0.002m are assumed for plotting Fig. 4. As the 

temperature gradient increases, the peak value of both the normalized maximum 

principal stress and circumferential tensile stress decreases while the angles at which 
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the peak value of these stresses occur change slightly for different temperature 

gradients. 

3.4 Effect of Temperature gradient and Crack-tip Velocity on the Crack 

Extension Angle 

The value of the crack extension angle has been calculated using the minimum 

strain energy density criterion (S-criterion). The strain energy density criterion is used 

in order to provide a complete description of material damage by including both the 

distortional and dilatational effects [38]. The strain energy density dW/dV near the 

crack-tip for an FGM is given as        

           { }{ }2 2 2
xx yy xx yy xyX

1dW S (1 ) 2 2dV 4 eζ
ν σ σ νσ σ σ

µ
= = − + − +                    (41) 

   Fracture takes place in the direction of minimum S, and the condition can be 

obtained by using Eq. (41) 

                  cSSat
d

SdS
=>=

∂
∂ 0;0 2

2

θθ
                                                     (42) 

where Sc is the critical strain energy density.  

The dependence of crack extension angle on the temperature gradient ( 0q ) is 

shown in Fig. 5. Typical values of dc/dt =107 m/s2,  dKID(t)/dt = 1x108 MPa-m1/2-s-1, 

dKIID(t)/dt  = 2x107MPa-m1/2-s-1, 50)()( 21 == tqtq ºC-m-1/2 and 100)(0 =tq ºC-m-1/2s-1 

are assumed for plotting Fig. 5 and Fig. 6. The crack extension angle decreases slowly 

with an increase in the temperature gradient as shown in Fig. 5. The crack extension 

angle is decreased from -51° to -37° as the value of 0q is increased from 0 to 200°C/m-

1/2.    
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Fig. 5 Effect of temperature on the crack extension angle for a mixed-mode thermo-

mechanical loading in. (ζ = -2, γ1 = 0.2, γ2 = 0.5, c/cs = 0.5, k(t) = 20 rad/m, β(t) = 

20°, IDK = 5 MPa-m1/2, IIDK = 1 MPa-m1/2, IDK = 1x108 MPa-m1/2-s-1, IIDK = 2x107 

MPa-m1/2-s-1, c= 1x107 m/s, )()( 21 tqtq = = 50ºC-m-1/2 and )(0 tq = 100ºC-m-1/2s-1). 

 

Fig. 6 Crack extension angle as a function of crack-tip velocity for different values 

of temperature gradient for a mixed-mode thermo-mechanical loading in FGM. (ζ = 

-2, γ1 = 0.2, γ2 = 0.5, k(t) = 20 rad/m,  β(t) = 20°, IDK = 5 MPa-m1/2, IIDK = 1 MPa-

m1/2, IDK = 1x108 MPa-m1/2-s-1, IIDK = 2x107 MPa-m1/2-s-1, c= 1x107 m/s, 

)()( 21 tqtq = = 50ºC-m-1/2 and )(0 tq = 100ºC-m-1/2s-1). 
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Fig. 7 Effect of T-stress on the crack extension angle for different values of 

temperature gradient for a mixed-mode thermo-mechanical loading in FGM. (ζ = -

2, γ1 = 0.2, γ2 = 0.5, c/cs = 0.5, k(t) = 20 rad/m,  β(t) = 20°, IDK = 5 MPa-m1/2, IIDK = 

1 MPa-m1/2, IDK = 1x108 MPa-m1/2-s-1, IIDK = 2x107 MPa-m1/2-s-1, c= 1x107 m/s, 

)()( 21 tqtq = = 50ºC-m-1/2 and )(0 tq = 100ºC-m-1/2s-1). 

 

The effects of temperature on the crack extension angle as a function of crack-

tip velocity in a FGM with 2−=ζ  is plotted in Fig. 6 using the minimum strain energy 

density criterion. The crack extension angle increases as the crack-tip velocity 

increases for various temperature gradients.   

3.5 Effects of T-stress on the Crack Extension Angle 

Previous studies have shown that the T-stress (σox term) plays an important role 

in crack branching and crack kinking for a homogenous material [39, 40]. The effect 

of T-stress on the stress fields in FGMs has been accounted using the following 

equation:  
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In the above Eq. (43), T(σox) is the non-singular stress term. The effect of T-

stress on the crack extension angle for different temperature gradients around a 

propagating crack under mixed-mode thermo-mechanical loading in an FGM is shown 

in Fig. 7 using minimum strain energy criterion. Typical values of σox/ KID = - (3/4) m-

1/2, dc/dt =107 m/s2,  dKID(t)/dt = 1x108MPa-m1/2-s-1, dKIID(t)/dt  = 2x107MPa-m1/2-s-1,  

50)()( 21 == tqtq ºC-m-1/2 and 100)(0 =tq ºC-m-1/2s-1 are assumed for constructing 

Fig. 7.  The value of the crack extension angle decreases as the temperature gradient is 

increased as shown in Fig. 7. The decrease in the crack extension angle is more 

significant for less temperature gradient. The crack extension angle decreases from -

44° to -32° as the value of 0q is increased from 0 to 200°C/m-1/2. Therefore, it can be 

concluded that the application of thermal loading decreases the crack extension angle 

even in the presence of non-singular stresses. Also, for the same temperature field, the 

value of the crack extension angle is found to be lower under T-stress when compared 

to that of the zero T-stress case. 

4. Concluding Remarks 

Thermo-mechanical stress and displacement fields for a smoothly curving crack in 

FGMs are obtained using displacement potentials and an asymptotic analysis. In 

addition to the mechanical fields, temperature fields are also developed for 

exponentially varying thermal properties along the gradation direction. The effect of 

the rate of change of stress intensity factors, acceleration, temperature gradient and 

transient thermal loading on the contours of the maximum principal stress and the 
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circumferential stress under mixed-mode loading conditions are discussed.  The key 

findings are as follows: 

o The thermo-mechanical stress fields are significantly affected by transient 

parameters. As the crack-tip acceleration increases, the size of stress contours 

ahead of the crack-tip decreases.  

o The transient thermal loading term influences the higher-order terms in 

asymptotic crack-tip fields: the displacement in the order of O (r7/2) and the 

stress in O (r5/2). 

o Crack-tip velocity plays a significant role in the crack extension angle under 

transient loading conditions. For a mixed-mode curving crack under transient 

thermo-mechanical loading, the crack extension angle increases with the 

increase in crack-tip velocity.  

o The increase in temperature gradient decreases the crack extension angle for 

different crack-tip velocities with and without the T-stress.  

o There is a significant effect on the crack extension angle when the T-stress is 

applied. The value of crack extension angle decreases when the T-stress ( oxσ  

term) is applied when compared to the case without the T-stress 

(where 0=oxσ ).  
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Abstract 

Nanolaminated ternary carbide, Ti2AlC, was characterized under dynamic loading 

using Split Hopkinson Pressure Bar (SHPB) compression apparatus. The dynamic 

loading experiments were performed in the strain-rate range of 1500-4200/s and at 

temperatures ranging from room temperature (RT) to 1150 oC. At room temperature, 

the failure stress and strain show little dependence on strain rate, whereas the failure 

stress drops considerably at temperatures above 900oC. At all strain rates and 

temperatures, Ti2AlC exhibits softening after failure initiation and a more graceful 

failure due to delamination and kink band (KB) formation. At temperatures higher 

than 900 oC, grain boundary decohesion is suggested to contribute towards the 

decrease in the failure stress.  

1. Introduction 

Nanolaminated ternary carbides and nitrides, known as MAX phases, have 

attracted recent attention because of their potential for application in extreme 

environments. They have a general formula of Mn+1AXn (n = 1, 2, 3), where M is an 

early transition metal, A is a group-A element and X is either C or N.1-3 Titanium 

aluminum carbide, Ti2AlC, one of the well characterized compounds with M2AX 

chemistry, is lightweight (4.11 g/cm3)1 material with high Young’s modulus (278 

GPa),1 excellent electrical and thermal conductivity,4 high oxidation and corrosion 

resistance.5-9 Like most MAX phases, Ti2AlC is relatively soft (Vickers hardness of ~ 

4 GPa)10 and easily machinable11 compared to binary transition metal carbides. 

Because of their nanolaminated structure and kinking mechanism, Ti2AlC  is also 
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exceedingly damage tolerant and thermal shock resistant,12 and most likely  creep-,13-15 

and fatigue-resistant16-18 like some other MAX phases.  

One of the interesting aspects of MAX phases in general, and Ti2AlC in 

particular is unusual deformation behavior that can be traced back to their 

nanolaminated hexagonal crystal structure with high c/a ratio and presence of the 

relatively large number of movable dislocations. The dislocations, being confined to 

only parallel basal planes, give rise to extensive kinking and delamination in MAX 

phases upon deformation.15,19 At room temperature, Ti2AlC, similar to other MAX 

phases, shows nonlinear stress-strain behavior with fully reversible hysteresis loops 

and significant amount of energy dissipation under quasi-static cycling loading-

unloading.15,20-23 Recently, a microscale model, based on nucleation, growth and 

annihilation of reversible nest of movable dislocations, so called incipient kink bands 

(IKBs), has been proposed to explain the stress-strain hysteresis in MAX phases.15,24-25 

At higher stresses or higher temperature, the IKBs transform into permanent kink 

bands (KBs). Formation of KB along with delamination has been argued in literature 

to be the primary reason for excellent damage tolerance of MAX phases.16-17,19 At 

higher temperatures, i.e. above 1000 oC, Ti2AlC,undergoes a brittle-to-plastic (BTP) 

transition and strains as large as 12% can be reached before failure during compressive 

loading.26 Although significant progress has been made in the recent years on 

understanding mechanical behavior of Ti2AlC and other MAX phases under quasi-

static conditions, we are unaware of any studies published in the open literature on the 

effect of high strain rate deformation behavior of Ti2AlC at room or elevated 

temperatures.  
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In this letter we demonstrate that Ti2AlC exhibits strain rate independent 

deformation behavior below BTP transition temperature up to very high strain rates 

under dynamic conditions. The maximum stress in the dynamic true stress-strain 

curves, corresponding to the failure initialization, is comparable with that measured in 

quasi-static experiments. Above BTP transition temperature, maximum stress 

measured in dynamic conditions was found to decrease significantly, in the similar 

way as in quasi–static testing.  

2. Experimental Details 

Dense Ti2AlC, with a grain size of ~100 µm, was processed by hot pressing 

Ti2AlC powders (3-ONE-2, Voorhees, NJ) in graphite die at 1500 oC and 20 MPa for 

4 hour in the vacuum of 10-2 torr. Dynamic compression experiments were carried out 

on cylindrical specimens having 10.16 mm in diameter and 5.33 mm thick for room 

temperature (RT) measurements, and 6.35 mm in diameter and 3.175 mm thick for 

measurements at elevated temperatures.  

A Split Hopkinson Pressure Bar (SHPB) apparatus – with incident and 

transmission bars, made of Maraging steel, having a diameter and length of 12.7 mm 

and 1220 mm, respectively, was used to study the dynamic behavior of Ti2AlC. A clay 

pulse shaper of thickness of 2 mm was placed at the impact end of the incident bar to 

improve force equilibrium conditions at the specimen-bar interface. The theoretical 

and experimental details of SHPB are given elsewhere.27-29 By varying the velocities 

of the striker bar, room temperature experiments were carried out at strain rates 

ranging from 1500-4200/s. Using one-dimensional wave theory, the engineering stress 
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and strain in the specimen can be determined from the transmitted and reflected strain 

pulses respectively as given in Eqs. 1 and 2.  

                                                            )(tt
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bEs εσ =                                             (1) 

                                                           ∫
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εε                                            (2)   

where, εr and εt represent reflected and transmitted strains respectively, cb, Eb and  Ab  

represent wave speed, Young’s modulus and cross sectional area of the bar 

repestively, σs, εs, andand As, , , Ls, represent stress, strain and cross sectional area of 

the specimen respectively, and t represents the time. Equations (1) and (2) were 

suitably modified to obtain the true stress and true strain in the material. 

For experiments at elevated temperatures, the SHPB apparatus in conjunction 

with the induction coil heating system was utilized. A special fixture was designed and 

fabricated to load the specimen. The details of our high temperature SHPB setup can 

be found in (28, 29). High temperature experiments were carried out from RT to 

1150°C under identical strain rate of about 3500/s.  

3. Results and Discussion 

The dynamic true stress-true strain curves for Ti2AlC at room temperature for 

different strain rates ranging from 1500/s to 4200/s are plotted in Fig 1. For all strain 

rates, the maximum dynamic compressive stress of 480 – 600 MPa is attained around 

2% true strain, followed by a stress relaxation up to maximum true strain of 9-16%. 

Unlike most ceramics, and similar to quasi-static experiments,30 Ti2AlC exhibits a 

more graceful failure rather than brittle failure under dynamic loading (insert in Figure 
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1). More interestingly, the maximum stress during the deformation of Ti2AlC does not 

depend significantly on the strain rate during dynamic experiments. The slight 

variation observed in the maximum stress may be due to the difference in pre-existing 

defect concentration in the samples. The adiabatic nature of dynamic tests may also 

affect dislocation nucleation and propagation, which in turn can result in decrease in  

 

 

 

 

 

 

 

 

 

 

 

 

 

maximum stress with increase in strain rates. There is some evidence that the energy 

absorbed by the material decreases marginally with increasing strain-rates. This is 

indicated by the decrease in area under stress-strain curve. However, the material still 

exhibits graceful failure. These comments notwithstanding, more work is needed to 

Fig. 1 (a) Dynamic stress-strain response of bulk Ti2AlC at room temperature for 

different strain rates. Inserts show the samples tested at strain rates of 2300/s and 

2800/s. Results of Scanning Electron Microscopy, SEM, show extensive kink band 

formation and delamination for the samples tested at strain-rates of (b) 2300/s and 

(c) 2800/s. 

2300/s 4200/s 

2800/s 

1500/s 
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understand the small variations in true stress-true strain curves with increasing strain 

rates.  

Scanning Electron Microscopy, SEM, images of the fracture surfaces in 

Figures 1(b) and 1(c) show extensive delamination and KB formation along the 

fracture surface after testing of Ti2AlC at strain rates of 2800/s and 5000/s, 

respectively. The high density of KBs found in the fracture surfaces imply significant 

amount of plastic deformation during crack propagation, which in turn is evident from 

the graceful failure shown in Figure 1(a). As the strain-rate increases, the intensity of 

KB formation decreases slightly and resulting in the decrease of the dissipation 

energy. It is interesting to note here that, similar to quasi-static deformation, no 

evidence of KB has been observed in the polished cross-sections of the interior of the 

samples (not shown here). This suggests that if IKBs – which are reversible in nature – 

form inside the favorably oriented grains during high strain rate deformation, they do 

not develop in full KB and disappear upon unloading. However, these IKBs transform 

to fully developed KBs along the fracture surfaces. Since formation of KBs (Figures 

1(b) and 1(c)) and delamination dissipate significant amount of energy, it hinders the 

crack propagation and results in graceful failure of Ti2AlC even at strain rates as high 

as 4200/s.   

The dynamic true stress-strain curves for Ti2AlC tested at a strain rate of 

3500/s and  different temperatures are shown in Figure 2(a) Initially, as the 

temperature increases from room temperature to 900°C, there is no significant change 

in the maximum compressive strength (about 520-540 MPa). However, at 1150°C, the 

material shows a significant decrease in the maximum true compressive strength to 
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around 400 MPa. For all the temperatures, the failure initiates at a true strain of ~4% 

and reaches a maximum true strain of 45-50%.  Since the diameter of the specimen for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

high temperature testing is smaller in comparison to the room temperature testing the 

resulting stress on the sample for a given loading is higher and this results in larger 

strains29. Even at high temperatures, the material exhibits graceful failure (inset in 

Figure 2a). Here again, SEM micrographs from the fracture surfaces after dynamic 

deformation at elevated temperatures, as illustrated in Figures 2(b) and 2(c) for 

samples tested at 500 oC and 1150 oC respectively, reveal large amount of kinking.  It 

is important to note here that it is difficult to infer from the fracture surfaces whether 

Fig. 2 (a) Dynamic stress-strain response of bulk Ti2AlC at different temperatures at 

a strain-rate of 3500/s. Inserts show the samples tested at 500 and 1150oC. Results 

of Scanning Electron Microscopy, SEM, show deformation kinking along the 

fracture surfaces of samples tested at (b) 500oC and (c) 1150oC, respectively. 
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Fig. 3 Effect of temperature on the maximum stress during the dynamic 

deformation of Ti2AlC. The quasi-static compressive strengths at different 

temperatures, from Ref. 10, are also plotted for comparison. 

 

the amount of plastic deformation by kinking depends on the testing temperature,. 

However, the drop in maximum stress clearly indicates that the material softens, i.e. 

undergoes brittle-to-plastic transition at temperatures above 900 oC even at 

deformation rates of 3500/s.  

The later is even more obvious when the change in maximum stress with 

temperature for the dynamic experiments is plotted, Figure 3. For comparison, the 

change in maximum stress from quasi-static tests10 at 10-4/s is also plotted in the same 

graph. The similar nature of change in maximum stress for both strain rates again 

confirms our conclusion that deformation in Ti2AlC is quite strain-rate insensitive  
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below BTP transition temperature even when strain rates are as high as 3500/s. More 

importantly, Figure 3 suggests that the material goes through the same BTP transition 

at strain rates that are orders of magnitude different from each other. 

 As far as we are aware this is the first report on dynamic stress-strain behavior 

of Ti2AlC at different strain rates and temperatures, and thus more work is needed to 

fully understand observed trends. However, taking into account structural and 

mechanical similarities between the Ti2AlC and Ti3SiC2, for which effect of strain rate 

(of the order of 10-7 – 10-4/s) has been extensively studied,31 it is not unreasonable to 

assume that both of them would behave in a qualitatively similar way. Below the BTP 

transition temperature, Ti3SiC2 exhibits brittle deformation with fully reversible 

hysteresis at low strains, and maximum stresses that are almost independent on the 

deformation rate.31 The hysteretic behavior is shown to be due to reversible motion of 

dislocations in parallel slip planes, and has been discussed in more details 

elsewhere.15,20 Above the BTP transition temperature, the deformation in Ti3SiC2 

depends on the strain rate. For example, maximum stress in Ti3SiC2   shows strain rate 

dependency in the 1100 – 1200 oC temperature range for strain rates below 10-6/s. 

However, above a strain rate of 10-5/s, there is little effect of strain rate on maximum 

stress, and Ti3SiC2 behaves as a brittle solid.31 Hence, like in  quasi-static 

experiments,15 the primary reason for decrease in stress above BTP can be argued to 

be grain boundary decohesion and/or extensive delamination. Thus, further work on 

understanding the role of grain boundaries on the dynamic stress-strain behavior of 

MAX phases in general, and Ti2AlC in particular, will shed more light on the nature of 

maximum stress decrease above BTP transition temperature. 
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4. Conclusions 

In conclusion, stress-strain analysis along with microscopic investigation of the 

fracture surfaces in nanolaminated Ti2AlC under dynamic loading reveal that, like 

quasi-static conditions, the underlying failure mechanism is independent of strain rate 

at temperatures below 900oC and that it is predominantly controlled by delamination 

of the nanolaminated structure and KB formation. At temperatures higher than 900oC, 

grain boundary decohesion plays an important role in crack propagation, and 

subsequently in decrease of failure stress. 
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Abstract 

An experimental investigation has been conducted to study the dynamic constitutive 

behavior of Hastelloy X (AMS 5754) at room and elevated temperatures under 

varying rates of loading. A split Hopkinson pressure bar (SHPB) apparatus was used 

in conjunction with an induction coil heating system for applying dynamic loads at 

elevated temperatures. Experiments were carried out at different temperatures ranging 

from room temperature (25°C) to 1100°C at an average strain rate of 5000/s. Room 

temperature experiments were carried out at varying strain rates from 1000/s to 

4000/s. The results show that as the strain rate increases from quasi-static to 4000/s, 

the yield strength increases by approximately 50%. Also, under dynamic loading, the 

yield stress decreases with temperature up to 700°C, after which it shows a peak at 

900°C before beginning to decrease again as the temperature is further increased. The 

Johnson-Cook model was used to predict the dynamic plastic response under varying 

rates of loading and at different temperatures.  

Keywords: Hastelloy X, thermo-mechanical loading, constitutive behavior, high 

temperatures, SHPB, Johnson-Cook model. 

1. Introduction 

Hastelloy X is a nickel based superalloy that possesses excellent high 

temperature strength and oxidation resistance. It is widely used in gas turbine 

operations, petrochemical and in aircraft parts. Due to its high oxidation resistance, it 
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is also used for structural components in industrial furnace applications [1]. Thus, it is 

important to understand the constitutive behavior of this material.   

Several researchers in the past have investigated the behavior of Hastelloy X. 

Lai [2] investigated changes in the hardness and impact toughness at room 

temperature of Hastelloy X after aging up to 1000h. The author found that it exhibits 

age hardening at 540°C and 650°C.  The author also observed a slight increase in 

hardness at 871°C followed by overaging after 4000h. Yasuo Kondo et al. [3] 

presented experimental results on the changes in the tensile mechanical properties of 

Hastelloy X after being used in the liner tube of a HENDEL hot gas duct under high 

temperature helium gas for about 6000h. They observed that the 0.2% proof stress and 

total elongation were slightly decreased when Hastelloy X was exposed to high 

temperature helium. Static tensile stress-strain curves of Hastelloy X were reported in 

Mil Handbook 5h [4]. Swindeman and Brinkman [5] reviewed high temperature 

mechanical properties for materials including Hastelloy X, used in a pressure vessel 

using stress-strain curves obtained experimentally. They studied the effect of cold 

work, chemistry, and heat treatment variations in Hastelloy X. Aghaie Khafri and 

Golarzi [6] characterized the hot deformation behavior of Hastelloy X using hot 

compression tests in the temperature range of 900°C-1150°C and at varying strain 

rates between 0.001 and 0.5/s. They showed that softening mechanisms, dynamic 

recovery and dynamic recrystallization occurred during hot working. Zhao et al. [7] 

studied the phase precipitation in Hastelloy X heat-treated at 750°C, 850°C and 900°C 

for 26 and 100 hours. They also provided a TTT (time-temperature-transformation) 

diagram by combining the new experimental results with the existing literature data. 
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This TTT diagram depicted the presence of 623CM and σ phases at temperatures < 

900°C and µ phase between 800°C and 980°C. Hong et al. [8] performed low cycle 

fatigue tests of Hastelloy X in the temperature range of 650°C-870°C under various 

strain rates. They found that the Coffin-Manson (C-M) plot was different from those at 

other temperatures and also the fatigue life significantly decreased at the total strain 

range less than 0.6%. Krompholz and Ullrich [9] determined J-integral R curves for 

Hastelloy X upto 660°C using potential drop technique and showed that there is a 

decrease in J-integral value at 660°C. Rowley and Thornton [10] modeled visco 

plastic behavior of Hastelloy X using the Bodner Partom unified constitutive model. 

Static compression experiments were conducted at different temperatures to get the 

parameters for the model. The model results of Hastelloy X for isothermal uniaxial 

tensile tests showed good agreement with the experimental stress-strain data. 

Based upon the careful literature search, it was determined that there is no 

detailed study of the dynamic characterization of Hastelloy X under thermo-

mechanical loading. Hence this study focuses mainly on the dynamic constitutive 

behavior of Hastelloy X at room and elevated temperatures.  

2. Material and Specimen Geometry  

 

The material used in this experimental study is Hastelloy X, supplied by 

Haynes International. The chemical composition of the material is listed in Table 1 

%wt C Si Mn P S Ni Cr Mo Co W Fe B 

Min 0.05 -- -- -- -- -- 20.50 8.00 0.5 0.2 17.00 -- 

Max 0.15 1.00 1.00 0.040 0.030 Residual 23.00 10.00 2.50 1.00 20.00 0.01 

Table 1. Chemical composition of Hastelloy X [1]. 
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[1]. It can be observed from the table that Hastelloy X has high content of Ni, Cr, Fe 

and Mo. Three different types of specimens were machined as per the requirement of 

the experiments. According to ASTM E9, cylindrical specimens with a diameter of 

12.7mm and thickness of 25.4mm were machined for quasi-static experiments. 

Specimens, having a diameter of 7.62mm and thickness of 3.81mm were used for 

dynamic characterization at room temperature and specimens with a diameter of 

6.35mm and thickness of 3.175mm were used at elevated temperatures.  

3. Experimental Details  

3.1 Quasi-Static Characterization 

The quasi-static compression tests were performed using Instron Materials 

Testing System-5585. ASTM standard E9-89a was followed for the specimen 

dimensions and testing procedure. Experiments were performed at a compression-

extension rate of 1mm/min and the tests were continued up to a strain of 25%. 

Molybdenum disulphide was used as a lubricant between the specimen and loading 

head.  

3.2 Dynamic Characterization 
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Fig. 1 Experimental setup of SPHB. 
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A Split Hopkinson Pressure Bar (SHPB) apparatus was used to study the 

dynamic behavior of Hastelloy X. The SHPB consists of a striker bar, a solid incident 

bar and a solid transmission bar, all made out of Maraging steel. Incident and 

transmission bars have a diameter of 12.5mm and a length of 1220mm. The striker bar 

is propelled using an air-operated gun. A clay pulse shaper of thickness 2mm was 

placed at the impact end of the incident bar as shown in Fig. 1 to improve force 

equilibrium conditions at the specimen-bar interface. The theoretical details of SHPB 

can be obtained from Kolsky [11]. The specimen was sandwiched between the 

incident bar and the transmission bar. Molybdenum disulfide was used as a lubricant 

between the specimen and the contacting surfaces of the bars to minimize friction. 

When the striker bar impacts the incident bar, an elastic compressive stress 

pulse, referred to as the incident pulse, is generated. The generated pulse deforms the 

pulse shaper at the impact end and creates a ramp in the incident pulse which further 

propagates along the incident bar. When the incident pulse reaches the specimen, part 

of it reflects back into the incident bar (reflected pulse) in the form of tensile pulse due 

to the impedance mismatch at the bar-specimen interface and the remaining pulse is 

transmitted (transmission pulse) to the transmission bar. Axial strain gages mounted 

on the surfaces of the incident and transmission bar provide time-resolved measures of 

the elastic strain pulses in the bars.   

Room temperature experiments were carried out at strain rates ranging from 

1000-4000/s. Different strain rates are obtained by varying the velocities of the striker 

bar. Using one-dimensional wave theory, the true strain and true stress in the specimen 
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can be determined from the reflected and transmitted strain pulses respectively as 

given in Eqs. 1 and 2.  
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The expressions for the forces at the specimen incident bar interface and at the 

specimen transmission bar interface are given in equations Eqs. 3 and 4 respectively.  

                                      )( ribEbAiF εε +=                                                 (3) 

                                       tbEbAtF ε=                                                         (4)                                   

 Where tri εεε ,, are the time-resolved strain values of the incident, reflected 

and transmitted pulses respectively, bbb Ec ρ= is the longitudinal bar wave speed, 

bE  is the Young’s modulus of the bar material, bρ is the density of the bar material, 

sL  is the thickness of the specimen, bA  the is cross-sectional area of the bar and sA is 

the cross-sectional area of the specimen.  

Force equilibrium within the specimen during the wave loading is attained 

when the forces on each face of the specimen are equal. The ratio of these two forces 

(as given in Eq. 5) provides a measure for force equilibrium. For ideal equilibrium 

conditions, the ratio should be 1.0.  
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heating system 
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Fig. 2 Experimental setup of SHPB apparatus with induction coil heating system. 

   

For experiments at elevated temperatures, the SHPB apparatus in conjunction 

with the induction coil heating system was utilized as shown in Fig. 2. A special  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fixture was designed and fabricated to load the specimen. Two tungsten carbide inserts 

were placed between the two pressure bars and the specimen was sandwiched between 

the tungsten carbide inserts as shown in Fig. 2. The inserts were used to eliminate the 

temperature gradient in the bars and thus protect the strain gages mounted on them. 

The impedance of the inserts was matched with the bars; hence they do not disturb the 

stress wave profiles in the bar. The impedance matching requires the diameter of these 

tungsten carbide inserts to be smaller than the main pressure bars. This is the reason 
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for the specimen diameter for high temperature testing being smaller than that for 

room temperature testing. The bars were kept apart initially, later the specimen and 

carbide inserts were heated in isolation to the desired temperature (usually about 20-

50°C higher than the test temperature) and soon after the bars were brought manually 

into contact with the specimen. The temperature of the specimen was monitored using 

a 0.127mm chromel-alumel thermocouple, which was spot welded onto the specimen. 

In most of the experiments, it takes less than two minutes to heat the specimen to the 

required temperature and it takes less than 10 seconds to bring the pressure bars into 

contact with the tungsten inserts and fire the gun. 

High temperature experiments were carried out from room temperature to 

1100°C under identical strain rate of about 5000/s. Molybdenum disulphide was used 

as lubricant in the initial experiments and subsequently this was replaced with Boron 

Nitride. Molybdenum disulphide works well till about 300°C and Boron nitride is 

supposed to work till about 1200°C. Both the lubricants show about same amount of 

barreling (1 to 2% differences in the center diameter to outside diameter). 

3.3 Johnson Cook Constitutive Model 

3.3.1 Model Description 

Johnson and Cook proposed an empirical constitutive model [12, 13] to predict 

the plastic behavior of metals that are subjected to large strains, high strain rates and 

high temperatures. It is one of the most widely used models due to its simplicity and 

yet effective form. According to the model, the flow stress can be written as 
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whereσ is the flow stress, A and B are the strain hardening parameters and 

typically A is referred as the yield stress at reference strain rate and reference 

temperature, C is a dimensionless strain hardening coefficient, pε is the plastic strain, 

op εε  is the dimensionless strain rate with pε being the plastic strain rate and oε , the 

reference strain rate. Parameters n and m are power exponents of the strain hardening 

and thermal softening terms. T* represents normalized temperature as given below in 

Eq. 7, 

                                  
referencemelt

reference

TT
TT

T
−

−
=*                                          (7) 

where meltT is the melting temperature, referenceT  is the reference temperature and T is the 

test temperature. The expression in the first set of parentheses in Eq. 6 represents 

stress as a function of strain, the expression in the second set of parentheses represents 

the effect of strain rate and the expression in the third set represents the effect of 

temperature.  

3.3.2 Determination of Parameters of Model 

As shown in Eq. 6, there is a set of five model parameters that need to be 

identified (A, B, C, n and m). A, B and n are obtained from a quasi-static test at room 

temperature. The parameter A is often defined as the yield stress of the reference strain 

rate [12]. Here, the quasi-static strain rate is considered as the reference strain rate. 

Parameter A (yield stress) is determined by considering 0.2% strain offset from the 

quasi-static test. Once A is determined, parameters B and n are obtained by fitting the 

quasi-static test data to the model as given in Eq. 8.  
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                              ( )pnBA εσ lnln)ln( +=−                                      (8) 

Having identified A, B and n, the next step is to determine the value of C. 

Dynamic SHPB experiments at reference temperature and different strain rates are 

used to estimate the value of C. The initial yield point and strain rate ( pε ) from each 

dynamic test was used to determine C. In doing so, it was ensured that the heat 

generated from plastic work was not taken into account, thus ignoring the temperature 

effect. The parameter C for a given dynamic test can be calculated as given in Eq. 9, 
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The calculated value of C at different strain rates may not be the same due to 

variations in the experimental data so an average value of C is obtained. 

Now the final task is to identify the value of m. A set of experiments at 

different temperatures but identical strain rate are used to determine the value of m. A 

Similar procedure is followed to that of parameter C, but the effect of temperature is 

included. As each of the parameters is identified from separate experiments, the final 

set of parameters may or may not predict the material behavior when all the terms vary 

at the same time. Therefore, the identified parameters may predict few experiments 

very well but not other experiments. So it is important to optimize the identified 

parameters, which can be done by minimizing the average relative error (Δ) between 

the experimental data and the predicted flow stress [14]. 
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Fig. 3 True compressive stress-strain curve of Hastelloy X under quasi-static 

loading. 
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where expσ is the experimental flow stress, pσ is the predicted flow stress and N is the 

total number of data. The Johnson-Cook material parameters of Hastelloy X are given 

in Table 2.  

 

 

 

 

4. Experimental Results 

4.1 Quasi-Static Response 

 

 

 

 

 

 

 

 

 

The true stress versus true stain curve for Hastelloy X under quasi-static 

conditions is shown in Fig. 3. It has two regions: the initial linear portion and the non-

linear portion. The material exhibited yield strength of 380 MPa and Young’s 

Parameters A 

(MPa) 

B 

(MPa) 

C n m 

Value 380 1200 0.012 0.55 2.5 

Table 2. Johnson-Cook material parameters of Hastelloy X. 
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Fig. 4 Typical real-time strain pulses obtained from strain gages mounted on the 

bars for an average strain rate of 2500/s. 
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Fig. 5 Typical force equilibrium conditions at the specimen-bar interface at an 

average strain rate of 2500/s. 

Modulus of 190GPa. The flow stress (strain hardening) of the material increases as the 

true strain increases.  

4.2 Dynamic Constitutive Response at Room Temperature 

The real time strain-pulses obtained for Hastelloy X at an average strain rate of 

2500/s are shown in Fig 4. It can be oberved from the figure that the clay pulse shaper 

used in all these experiments helped to reduce high frequency oscillations in the 

incident stress wave. It is important for the specimen to be in equilibrium under 

dynamic loading conditions for valid analysis of data. Fig. 5 shows the typical force  
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Fig. 6 True compressive stress-strain curve of Hastelloy X under dynamic 

loading at room temperature. 

 

equilibrium conditions at an average strain rate of 2500/s. The solid line in the figure 

indicates the ideal force ratio of 1.0. The pulse shaper used improved the force 

equilibrium conditions at the specimen-bar interface. The force equilibrium was 

attained at around 50µs and was maintained during the entire loading duration.  

The dynamic true stress-true strain curve for different strain rates ranging from 

1000/s to 4000/s are plotted along with the quasi-static true stress-true strain curve for 

Hastelloy X at room temperature in Fig 6. Hastelloy X shows rate dependency from  

 

 

 

 

 

 

 

 

 

 

quasi-static loading to dynamic loading. The dynamic yield strength is about 50% 

higher than the quasi-static yield strength, while the dynamic flow stress is about 

200MPa higher than the quasi-static flow stress. The constituent elements in the 

material are responsible for the rate sensitivity of Hastelloy X. Under dynamic loading 

conditions, the material showed small increase in yield strength and flow stress as the 

strain rate is increased from 1000/s to 4000/s.  
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Fig. 7 True compressive stress-strain curve of Hastelloy X under dynamic 

loading at elevated temperatures and a strain rate of about 5000/s. 

 

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200

Yi
el

d 
St

re
ng

th
 (M

Pa
)

Temperature ( C)  

Yield Strength

° 
Fig. 8 Effect of temperature on the yield strength under dynamic loading at an 

average strain rate of 5000/s. 

 

4.3 Dynamic Constitutive Response at Elevated Temperatures 

A series of experiments were conducted to investigate the dynamic constitutive 

behavior of Hastelloy X at different temperatures under identical strain rate of about 

5000/s. Fig. 7 shows the dynamic true stress-strain curves for Hastelloy X at different  
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temperatures. All experiments were carried out with the same striker bar and at the 

same pressure. Fig. 7 clearly shows that as the temperature increases, the yield 

strength of the material decreases except at temperatures of 900°C and 1000°C. The  

true strain in the specimen increases and the flow stress decreases as the temperature 

increases. As the temperature increases, the material shows more ductile behavior and 

this result in a decrease in its yield strength and increase in the strain for a given 

applied stress.  

Fig. 8 shows the effect of temperature on the yield strength under dynamic 

loading and the error bars indicate the range of values obtained from three different 

experiments. As temperature increases, the yield strength decreases initially up to 

700°C, then increases and shows a peak at 900°C and then again monotonically 

decreases as the temperature is further increased. The trend reported in this paper is in 

good agreement with the previous findings for Ni base superalloys [15-20] under 

quasi-static loadings. Bettge et al. [15] studied the temperature dependence of yield 

strength of Ni-base superalloy IN 738LC and concluded that the yield strength of the 

material decreases up to 450°C, then increases up to 750°C and finally decreases 

sharply. Sajjadi et al. [19] observed that the yield strength of GTD-111 under tensile 

loading decreases with increasing temperature and reaches a minimum value of 

750MPa at 600°C. With a further increase in temperature to 750°C, the yield strength 

increased up to 1090MPa and then suddenly decreases. Three important factors were 

proposed [16, 17, 19] for the behavior of Ni base superalloys. These are (i) Grain 

boundary embrittlement, (ii) deformation mechanisms and (iii) 'γ coarsening. Grain 

boundary embrittlement by carbide particles and deformation mechanisms has almost 
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the same influence on the ductility of these alloys with temperature. The presence of 

transgranular cracks are more noticeable at higher temperatures but more intergranular 

cracks can be seen between 750°C to 950°C leading to increase in the yield strength of 

the material. Also the ratio of intergranular cracks to transgranular cracks decreases 

above 950°C. The transition of crack initiation on the surface from transgranular to 

intergranular is also noticed in other experiments of Hastelloy X [2, 7, 8, 21]. It was 

also found that in the tensile properties of Hastelloy X above 950°C, there is a change 

in the fracture mode from transgranular dimple rupture to intergranular [3]. For 

Hastelloy X-280, the presence of '
66 , CMCM and CM 23  phases in the 650°C to 930°C 

temperature range creates a ductility minimum at those temperatures [22].  

4.4 Johnson Cook Constitutive Model Response 

As the Johnson Cook model could only predict the stress in the plastic region, 

the elastic region was not considered for plotting. The comparison between the 

experimental data and the predicted data at various strain rates is shown in Fig. 9. A 

small deviation between the experimental data and the predicted data was observed at 

all three strain rates and the deviation was more at lower strain rates compared to 

higher strain rates. The predictability of the Johnson-Cook model for the dynamic 

plastic response of Hastelloy X was also quantified by calculating average relative 

error (Δ) and correlation coefficient(R). Average relative error was calculated using 

Eq. 10 and correlation coefficient (R) can be mathematically expressed as given in Eq. 

11 [14]. 



 

147 

 

(c)  3900/s 
 

(b) 2500/s 
 

(a) 1700/s 

 

0

200

400

600

800

1000

0 0.02 0.04 0.06 0.08 0.1 0.12

Tr
ue

 S
tre

ss
 (M

P
a)

True Plastic Strain

Model
Experimental

0

200

400

600

800

1000

0 0.05 0.1 0.15 0.2

Tr
ue

 S
tre

ss
 (M

P
a)

True Plastic Strain

Model
Experimental

0

200

400

600

800

1000

0 0.05 0.1 0.15 0.2

Tr
ue

 S
tre

ss
 (M

P
a)

True Plastic Strain

Model
Experimental

Fig. 9 Experimental data and model prediction of Hastelloy X under dynamic 

loading at different strain rates. 
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where expσ and pσ are the mean values of expσ and pσ respectively and N denotes the 

number of data points. The correlation coefficient provides information on the strength 

of linear relationship between the experimental data and the predicted data. The  
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predictability of the model for the dynamic plastic response of Hastelloy X at room 

temperature under various strain rates is shown in Table 3. There is good correlation 

between the experimental data and the predicted data for all the three strain rates and 

the average relative error was low at higher strain rates compared to lower strain rates. 

Higher value of 2R  (0.985) was observed for strain rate of 2500/s. Even though the 

value of 2R  (0.983) is high for a strain rate of 1700/s, it has a high relative error 

(7.24%) which indicates larger deviation between the experimental data and the 

predicted data. It should be noted that higher value of 2R  may not necessarily indicate 

better performance [23]. The model has the tendency to be biased towards higher or 

lower values, whereas Δ is calculated through a term by term comparison of relative 

error between the experimental data and the predicted data, therefore it produces 

unbiased statistics. Better correlation can be achieved if the value of Δ is low and this 

can noticed for a strain rate of 3900/s. 

 

 

Strain rate 

( 1s− ) 

Correlation 

coefficient ( 2R ) 

Average relative 

error (Δ), % 

1700 0.983 7.24 

2500 0.985 2.80 

3900 0.987 2.58 

Table 3. Predictability of the model for the dynamic plastic response of Hastelloy 

X at room temperature under various strain rates. 
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Fig. 10 Experimental data and model prediction of Hastelloy X under dynamic 

loading at different temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature (°C) Correlation 

coefficient ( 2R ) 

Average 

relative error 

(Δ), % 

300 0.955 4.24 

500 0.895 6.90 

700 0.989 2.21 

Table 4. Predictability of the model for the dynamic plastic response of Hastelloy 

X at different temperatures. 
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The comparison between the experimental data and the predicted data at 

different temperatures is shown in Fig. 10. Model predictions for the dynamic plastic 

response of Hastelloy X at different temperatures are shown in Table 4. The model 

was not used to predict the dynamic plastic response of Hastelloy X above 700°C as 

the material showed different behavior after 700°C as discussed in the previous 

section. The model predicted very well for all the three temperatures chosen, with Δ 

ranging between 2.21% and 6.90%. Excellent correlation between the experimental 

data and the predicted data was achieved for the temperature of 700°C and this can be 

observed in Table 4 showing a low value of Δ (2.21%). Relatively high value of Δ 

(6.90%) was observed for a temperature of 500°C.  

5. Conclusions 

A series of experiments were conducted to investigate the dynamic constitutive 

behavior of Hastelloy X at room and elevated temperatures. Clay was used as a pulse 

shaper in all the experiments to improve force equilibrium conditions at the bar-

specimen interfaces. A Johnson-Cook model was used to predict the dynamic plastic 

response of Hastelloy X under varying strain rates and at different temperatures. 

Following are the major conclusions of this study: 

• Quasi-static experiments showed yield strength of 380MPa and a Young’s 

Modulus of 190GPa for Hastelloy X. 

• The material showed rate dependency from quasi-static to dynamic loading. 

An increase of 50% in yield stress and 200MPa in flow stress was observed 

from the quasi-static to dynamic loading. Under dynamic loading, the flow 

stress of the material decreases as the temperature increases.  
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• The yield strength of the specimen monotonically decreases as the temperature 

increases up to about 700°C. Between 700°C and 1000°C the yield stress 

increases before again decreasing as the temperature is further increased.  

•  The Johnson-Cook model predicted very well for all the experiments and the 

best correlation was observed for a strain rate of 3900/s (Δ=2.58%) in case of 

room temperatures experiments and for a temperature of 700°C (Δ=2.21%) in 

case of high temperature experiments. 
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Abstract 

A comprehensive series of experiments were conducted to study the dynamic response 

of rectangular Hastelloy X plates at room and elevated temperatures when subjected to 

shock wave loading. A shock tube apparatus, capable of testing materials at 

temperatures up to 900 ºC, was developed. Propane gas was used as the heating source 

to effectively provide an extreme heating environment that is both robust and capable 

of providing uniform heating during shock loading. A cooling system was also 

implemented to prevent the shock tube from reaching high temperatures. High-speed 

photography coupled with the optical technique of Digital Image Correlation (DIC) 

was used to obtain the real-time 3D deformation of the specimen under shock wave 

loading. To eliminate the influence of thermal radiations at high temperatures, the DIC 

technique was used in conjunction with band pass optical filters and a high intensity 

light source to obtain the full-field deformation. In addition, a high speed camera was 

utilized to record the side-view deformation images and this information was used to 

validate the data obtained from the high temperature 3D DIC technique. The results 

showed that uniform heating of the specimen was consistently achieved with the 

designed heating system. For the same applied incident pressure, the highest impulse 

was imparted on the specimen at room temperature. As a consequence of temperature 

dependent material properties, the specimen demonstrated an increasing trend in back 

face (nozzles side) deflection, in-plane strain and out-of-plane velocity with increasing 

temperature. 
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Keywords: Hastelloy X, thermo-mechanical loading, extreme environments, shock 

tube, high temperature DIC. 

1. Introduction 

 The objective of this study was to investigate the performance of Hastelloy X 

under a combination of extreme mechanical and thermal environments. For this 

purpose, a unique experimental set up was established to evaluate the performance of 

Hastelloy X at high temperatures when subjected to a controlled shock wave loading. 

The present shock tube apparatus was modified for testing Hastelloy X at high 

temperatures (up to 900 °C). Propane gas was used as the heating source to effectively 

provide an extreme heating environment that is both robust and capable of providing 

uniform heating during shock loading. A 3D digital image correlation (DIC) system 

was utilized to record the transient deformation data of the specimen during the blast 

loading. A side-view high speed camera was also used to record the real-time 

deformation images. For experiments at elevated temperatures, a blue color optical 

band pass filter and a high intensity light source was utilized in conjunction with the 

3D DIC system. The transient mid-point deflections obtained from the 3D DIC system 

were compared with the deflections from the side-view camera. The DIC analysis was 

implemented to investigate the transient deflection, in-plane strain and out-of-plane 

velocity of the back face of the specimen. The shock pressure profiles and the real-

time deformation images were later used to calculate the deformation energy. Post-

mortem analysis was carried out to evaluate the performance of Hastelloy X at 

different temperatures under shock loading.  
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  Hastelloy X is a nickel based superalloy that possesses excellent high 

temperature strength and oxidation resistance. It is widely used in gas turbine 

operations, petrochemical applications and in aircraft parts. Due to its high oxidation 

resistance, it is also used for structural components in industrial furnace applications 

(Haynes, 2012). Several researchers have previously investigated the behavior of 

Hastelloy X. (Lai, 1978) investigated changes in the hardness and room temperature 

impact toughness of Hastelloy X after aging at 538 °C, 649 °C, 760 °C and 871 °C up 

to 10000 h. The author found that it exhibits age hardening at 649 °C and 760 °C. The 

results also indicated a slight increase in hardness at 871 °C followed by over aging 

after 4000 h. (Kondo et al., 1988) presented experimental results on the changes in the 

tensile mechanical properties of Hastelloy X after being used in the liner tube of a 

HENDEL hot gas duct under high temperature helium gas for about 6000 h. They 

observed that the 0.2 % proof stress and total elongation were slightly decreased when 

Hastelloy X was exposed to high temperature helium. (Aghaie-Khafri and Golarzi, 

2008) characterized the hot deformation behavior of Hastelloy X using hot 

compression tests in the temperature range of 900 °C - 1150 °C and at varying strain 

rates between 0.001 and 0.5 s-1. They showed that softening mechanisms, dynamic 

recovery and dynamic recrystallization occurred during hot working.  (Zhao et al., 

2000) studied the phase precipitation in Hastelloy X heat-treated at 750 °C, 850 °C 

and 900 °C for 26 and 100 hours. They also provided a TTT (time-temperature-

transformation) diagram by combining the new experimental results with the existing 

literature data. This TTT diagram depicted the presence of 623CM and σ phases at 

temperatures < 900 °C and the µ phase between 800 °C and 980 °C. (Hong et al., 
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2008) performed low cycle fatigue tests of Hastelloy X in the temperature range of 

650 °C - 870 °C under various strain rates. They found that the Coffin-Manson (C-M) 

plot was different from those at other temperatures and also the fatigue life 

significantly decreased at the total strain range less than 0.6 %. Recently, (Abotula et 

al., 2011) studied the dynamic constitutive behavior of Hastelloy X at different 

temperatures ranging from 25 °C to 1100 °C and observed that the yield stress under 

dynamic loading decreases up to 700 °C, after which it shows a peak at 900 °C before 

beginning to decrease again as the temperature is further increased. They also 

observed that the amount of strain hardening and flow stress of Hastelloy X decreases 

with increase in temperature.  

Also, there is a large volume of literature available on the response of 

monolithic plates and beams subjected to shock loading. (Menkes and Opat, 1973) 

characterized the response of aluminum beams under shock loading. They identified 

three major damage modes, which respectively are inelastic deformation, tensile 

tearing and transverse shear. Later, (Teeling-Smith and Nurick, 1991), (Nurick et al., 

1995) and (Nurick and Shave, 1996) observed similar failure modes for circular, 

stiffened square and square plates, respectively. (Wierzbicki and Nurick, 1996) 

investigated thin clamped plates for different loading radii and applied impulse. They 

observed that the smaller loading radii led to a more localized damage towards the 

center of the plate, while the more distributed load produced tearing fracture at the 

clamped boundary.  To date, there have been no studies reported on the damage 

behavior of aerospace materials under shock loading when exposed to extreme 

environments. Thus, the present study focuses on the dynamic response of Hastelloy X 
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when subjected to controlled shock loading under extreme environments. The results 

showed that uniform heating of the specimen was consistently achieved with the 

designed heating system. The high temperature flame proof paint used in the 

experiments withstood the temperatures and the intensive shock wave loading. For the 

same applied incident pressure, the highest impulse was imparted on the specimen at 

room temperature. However, due to the temperature dependent material properties, the 

specimen showed an increasing trend in back face deflection, in-plane strain and out-

of-plane velocity with increasing temperature.     

2. Material and Specimen Geometry 

The material used in this experimental study was Hastelloy X, supplied by 

Haynes International. The chemical composition of the material is listed in Table 1.  

 

The table shows that Hastelloy X has a high content of Ni, Cr, Fe and Mo. The density 

of the material is 8220 kg/m3 and the melting temperature ranges between 1260 °C 

and 1355 °C (Haynes, 2012). The dynamic true compressive stress-strain curves of 

Hastelloy X for different temperatures at an average strain rate of about 5000 s-1 were 

obtained using a split Hopkinson pressure bar setup and are plotted in Fig.1. The 

material exhibited yield strength of 380 MPa and a Young’s Modulus of 190 GPa 

under quasi-static loading. The flow stress (strain hardening) of the material increases 

as the true strain increases. Hastelloy X showed rate dependency from quasi-static  

%wt C Si Mn P S Ni Cr Mo Co W Fe B 

Min 0.05 -- -- -- -- -- 20.50 8.00 0.5 0.2 17.00 -- 

Max 0.15 1.00 1.00 0.040 0.030 Residual 
(~40%) 

23.00 10.00 2.50 1.00 20.00 0.01 

Table 1. Chemical composition of Hastelloy X. 

 



 

161 

 

0 5 10 15 20 25 30 35 40 45 50 55
0

200

400

600

800

1000

1200

 25 °C
 300 °C
 500 °C
 700 °C
 900 °C
 1000 °C
 1100 °C

Tr
ue

 S
tre

ss
 (M

Pa
)

True Strain (%)

 

 

Fig. 1 True compressive stress-strain curve of Hastelloy X under dynamic 

loading at elevated temperatures along with the quasi-static true compressive 

stress-strain curve. 

 

 

 

 

 

 

 

 

 

 

 

loading to dynamic loading. The dynamic yield strength was about 50 % higher than 

the quasi-static yield strength, while the dynamic flow stress was approximately 200 

MPa higher than the quasi-static flow stress. At elevated temperatures, the yield 

strength of the material decreases as the temperature increases with an exception at 

900 °C and 1000 °C. The true strain in the specimen increases and the flow stress 

decreases as the temperature increases (Abotula et al., 2011). This behavior is due to 

an increase in material ductility at elevated temperatures. The Johnson-Cook 

parameters were determined for Hastelloy X from the experimental data. In the present 

study, rectangular plates 203 mm long, 51 mm wide and 3 mm thick were used in the 

experiments. 

3. Experimental Procedures  

For the present study, three experiments were conducted for each temperature 

in order to ensure repeatability as well as to better evaluate specimen performance and 
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Fig. 2 Shock tube apparatus. 

 

behavior under shock loading. Experiments were carried out for 25 °C, 360 °C, 700 °C 

and 900 °C temperatures.  

3.1 Shock Tube 

 The shock tube apparatus was utilized to generate controlled blast loadings as 

shown in Fig. 2(a) (Gardner et al., 2011; Gupta and Shukla, 2012; Tekalur et al., 2009; 

Wang et al., 2009). The shock tube has an overall length of 8 m, consisting of a driver, 

driven and muzzle section. The high-pressure driver section and the low pressure 

driven section are separated by a diaphragm. By pressurizing the high-pressure 

section, a pressure difference across the diaphragm is created. When this difference 

reaches a critical value, the diaphragm ruptures. This rapid release of gas creates a 

shock wave, which travels down the tube to impart dynamic loading on the specimen. 
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Fig. 2(b) shows the shock tube apparatus with a detailed image of the muzzle. 

The final muzzle diameter is 38.1 mm. Two pressure transducers (PCB102A) are 

mounted at the end of the muzzle section to measure the incident and reflected 

pressure profiles during the experiment. The distance between the two sensors is 160.0 

mm and the distance between the second transducer and the end of the muzzle is 20.0 

mm. The specimen was placed in the supports and positioned 5 mm away from the 

end of the muzzle. The support fixtures ensured simply supported boundary conditions 

with a span of 152.4 mm.  

A typical pressure profile obtained from the transducer closest to the specimen 

at room temperature is shown in Fig. 2(c). In the present study, a simply stacked 

diaphragm of 2 plies of 2.5 mil mylar sheets with a total thickness of 0.5 mm was 

utilized to generate a shock wave loading that impinged on the specimen with an 

incident peak pressure of approximately 0.25 MPa, a reflected peak pressure of 

approximately 0.72 MPa, an incident shock wave speed of 665 ms-1 and a reflected 

shock wave speed of 235 ms-1. The shock wave generated had a short rise time (~80 

µs) and showed an exponential decay period of approximately 4500 µs.  

3.2 High Temperature Shock Tube Setup  

 The shock tube set up was modified for testing Hastelloy X at high 

temperatures. Initial efforts of using quartz lamps as the heating source were given up 

due to the fragile nature of the heaters. It was determined that the quartz lamps would 

not be suitable to withstand the intense and violent loads developed during shock 

loading since the quartz lamps would have to be placed very close to the specimen in 

order to direct most of the heat onto the specimen. Later, it was decided to use propane  
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Fig. 3 Front-view of the modified shock tube set up. 
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(c) 900 °C 
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Fig. 4 Calibration curves for 360 °C, 700 °C and 900 °C temperatures. 
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Fig. 5 Side-view of the modified shock tube set up with cooling set up. 

 

gas as the heating source and it was directed onto the specimen via four nozzles as 

shown in Fig. 3. Two nozzles were located on each side of the specimen. The nozzles  

on the left side were directed at the center of the specimen, while the nozzles on the 

right side were directed towards the top and bottom of the specimen, respectively. 

Different temperatures were obtained by adjusting the distance between the specimen 

and nozzles. For each temperature, the angle and intensity of all four flames were 

adjusted to obtain uniform heating of the specimen between the supports. The 

temperature on the front face (blast side) of the specimen was monitored at three 

different locations (between the supports) using chromel-alumel thermocouples to 

ensure uniform temperature distribution on the specimen. The temperatures recorded 

at these locations for 360 °C, 700 °C, and 900 °C are shown in Fig. 4. It can be seen 

that a uniform temperature was achieved between the supports for all the temperatures 

with a maximum gradient of +15 °C. Later, temperatures were also recorded on the 

front face (blast side) and back face (nozzles side) of the specimen using chromel-

alumel thermocouples and infrared thermometer respectively to ensure uniform 

temperature on both sides of the specimen. To protect the supports from the high  
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temperatures, a high temperature flame resistant paint was applied and then wrapped 

with a heat shield. A cooling system was also implemented to prevent the muzzle 

section of the shock tube from reaching high temperatures. This was crucial in 

protecting the highly sensitive pressure sensors located towards the end of the muzzle. 

The cooling system, as shown in Fig. 5, consists of a copper coil tightly wound around 

the muzzle end in which tap water is circulated. In addition, a distance of 5 mm was 

maintained between the specimen and the muzzle to protect the shock tube from 

reaching high temperatures. For a distance of 5 mm away from the specimen, a 

maximum temperature of 70 °C was observed at the location where the closest 

pressure sensor was mounted. Both heating and cooling systems together permit the 

specimen to be heated to temperatures up to 900 °C while protecting the surrounding 

equipment, thus allowing for precise pressure measurements during each experiment. 

 

 

 

 

 

 

For each experiment, the temperature at the center of the specimen was 

monitored during the shock loading. Fig. 6 shows the temperature vs. time curves for 

360 °C, 700 °C and 900 °C experiments. Fig. 6 clearly shows that the steady 

temperature was achieved in the specimen before the shock wave loading occurs. At 
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Fig. 6 Temperature vs. time plot for 360 °C, 700 °C and 900 °C experiments. 
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Fig. 7 High-speed photography systems. 
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the instant the shock wave impinges on the specimen, the thermocouple disengages 

from the specimen and the recorded data shows a peak in the temperature-time curve.  

3.3 High Speed Photography Systems  

Two high-speed photography systems were utilized to capture the real-time 3D 

deformation data of the specimen during the blast experiment. The experimental setup, 

shown in Fig. 7, consisted of a back-view 3D Digital Image Correlation (DIC) system 

with two cameras facing the back side of the specimen to obtain the real-time full field 

data. Another high speed camera was placed perpendicular to the side surface  

 

 

 

 

 

 

 

 

of the specimen to capture the side-view deformation images. All cameras were 

Photron SA1 high-speed digital cameras and were used at a frame-rate of 30,000 fps 

with an image resolution of 256×512 pixels for a one second time duration. These 

cameras were synchronized to ensure that the images and data can be correlated and 

compared. 
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3.3.1 High Temperature DIC System under Dynamic Loading  

The 3D DIC technique is one of the most recent non-contact methods for 

analyzing full-field shape, motion and deformation (Gardner et al., 2012; Luo et al., 

1993; Sutton et al., 2009). Two cameras capture two images from different angles 

simultaneously. By correlating these two images, one can obtain the three dimensional 

shape of the surface. Correlating this deformed shape to a reference (zero-load) shape 

gives full-field in-plane and out-of-plane deformations. However, there were 

limitations in using DIC for high temperature applications. It was observed that when 

a material exceeds a certain temperature, the self radiation of the heated material leads 

to decorrelation effects in the images. This phenomenon occurs because the radiated 

light of the heated material will dramatically intensify the brightness while decreasing 

the contrast of the captured image (Pan et al., 2010). Therefore, most of the high 

temperature DIC applications were limited to 600 °C (Bing et al., 2009; De Strycker et 

al., 2010; Li et al., 2008). Recently, (Grant et al., 2009) proposed an effective 

countermeasure to measure the Young’s modulus and coefficient of thermal expansion 

(CTE) of a nickel-base superalloy through the use of filters and blue illumination to 

obtain images up to 800 °C. The recorded images were further analyzed by using a 

Fourier transform cross-correlation algorithm and by frequently updating the reference 

image. This technique requires the specimen to be abraded by a silicon carbide paper 

to form a random pattern without the use of an artificial speckle pattern. However, the 

maximum temperature reported in their work was 800 °C. Very recently, (Pan et al., 

2011) proposed a simple, easy to implement and yet high performance DIC method 

that could be used to obtain full-field deformation measurements of objects up to 1200 
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Fig. 8 Captured image of the specimen (Hastelloy X) at 900 °C using an ordinary 

DIC system. 

 

°C.  They used the commonly employed iterative spatial-domain cross-correlation 

algorithm and optical bandpass filters. Since the optical bandpass filter only allows the 

light of certain wavelengths to pass, it effectively reduces the image intensity 

increment caused by the thermal radiation of heated objects. The authors also 

proposed a simple and effective speckle pattern fabrication as a carrier of deformation 

information.  

 

 

 

 

 

 

 

When an object is heated, it emits electromagnetic waves of all wavelengths 

ranging from infrared to ultraviolet depending on the temperature of the object. As the 

temperature increases, the peak (primary) wavelength slowly shifts towards the shorter 

wavelength and the amount of thermal radiation increases very fast.  Fig. 8 shows the 

captured image using an ordinary DIC technique for a temperature of 900 °C. Since 

the amount of radiation increases at high temperatures, the brightness of the image 

was significantly intensified while reducing the contrast of the image as shown in Fig. 

8. This captured image can no longer be correlated with the reference image to obtain 

the full field deformation data. Using a bandpass optical filter of shorter wavelength 

eliminates the light of other wavelengths and remains insensitive to the intensity 
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changes induced by thermal radiation. For this purpose, an optical bandpass filter of 

shorter wavelength (blue color) was used in this study. The center peak wavelength of 

the filter is 450 nm with a full-width at half-maximum (FWHM) value of 40±8 nm and 

transmission efficiency at peak wavelength is 45 %. Since the bandpass filter allows 

the light between 410-490 nm wavelengths, only very limited light will pass through 

the filter. As a result, even though the filter eliminates the intensity changes, the 

captured images will be of low intensity and contrast. To ensure sufficient contrast in 

the image, the object can be illuminated with halogen lamps or LED lights of 

wavelengths closer to the filter. Since the exposure times are very long under the static 

loading and no loading case, these light sources will provide sufficient contrast in the 

specimen. However, under dynamic loadings and short exposure times, ensuring that 

sufficient light passes through the filter to enhance the intensity of the image becomes 

very challenging. Therefore, a high energy flash lamp (Cordin, Model 659) was used 

as a light source which can provide controlled and relatively consistent illumination 

throughout the entire duration of the event. It has a maximum capacity of 1100 joules 

regardless of the single flash duration. The light source can be illuminated for a 

duration of 0.5 ms to 11 ms in 1 ms increments. In our experiments, the flash lamp 

was illuminated for 5 ms, which gives a power of 220 KW.  

To extract accurate and reliable information using DIC, the specimen is 

required to have either a natural or artificial speckle pattern with random variations of 

gray scale intensity which serves as a carrier of deformation information.  For high 

temperature experiments, commercially available flame proof paint (VHT) which can 

sustain temperatures up to 1200 °C was used to speckle the specimen. Fig. 9 shows the  
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(b) 25 °C (a) 900 °C 

Fig. 10 Images captured at 25 °C and 900 °C using the proposed DIC system in 

conjunction with the optical band pass filters and high intensity light source 

energy flash unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proposed experimental set up with bandpass filters, high speed cameras and the high 

energy flash unit. The image recorded using this proposed set up for Hastelloy X at 

900 °C without any loading is shown in Fig. 10. When the image at 900 °C (Fig. 10b) 

is compared to the reference image (Fig. 10a), there was no significant change in the 

Photron 

 Specimen Flash Bulb Filters 

Cordin Flash Unit 

Fig. 9 Complete experimental set up with bandpass filters, high speed cameras 

and the high energy flash unit. 
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Fig. 11 (a) Pressure profiles measured for different temperatures (b) Pressure 

profile and deflection curve for 25 °C experiment. 

 

intensities of these images. This indicates that the bandpass filters eliminated the 

blackbody radiation and helped acquire high quality image. Also, Fig. 10b ensures that 

the flash unit provided sufficient light for the specimen. The captured images using the 

proposed set up can be used to generate the full field deformation data.   

4. Experimental Results & Discussion 

4.1 Pressure profile & Impulse 

 

 

 

 

 

The pressure profiles measured for Hastelloy X at different temperatures under 

shock loading are shown in Fig. 11a. Three important observations can be made from 

these pressure profiles. (i) The incident and reflected peak pressures are the same for 

different temperatures. This is consistent with the previous findings (Wang et al., 

2011) which showed that the reflected peak pressure for different materials only 

depends on the incident peak pressure. (ii) The overall time period of the load acting 

on the specimen (reflected pressure) changes with temperature. The positive time 
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Fig. 12 Impulse imparted on the specimen for different temperatures. 

 

period of the reflected pressure decreased from 9 ms at 25 °C to 6.5 ms at 900 °C. Due 

to thermal softening at higher temperatures, higher deflections were observed in the 

specimens which caused the pressure to drop relatively faster than at room 

temperature. Thus, the rigid plate will experience reflected pressure for a longer 

duration and obtain more impulse from the blast loading. (iii)  Humps are observed 

during the decay of the reflected pressure profile for different temperatures.  These 

humps are an artifact of the specimen reverberating after reaching its peak deflection 

as shown in Fig. 11b. As the temperature increases, the specimen takes a longer time 

to reach its maximum deflection and therefore the humps for high temperature 

experiments are observed at later times.   

 

 

 

 

 

 

 

Fig. 12 shows the impulse imparted on the specimen for 25 °C, 360 °C, 700 °C 

and 900 °C temperatures. The impulse imparted on the specimen is calculated by 

integrating the force-time data of the reflected pressure profile. As discussed above, at 

higher temperatures, the time period of the reflected pressure profile decreased which 

reduced the impulse imparted on the specimen. Since the overall time period of the 

reflected pressure profile was longer at room temperature and the reflected peak 
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pressure was the same for different temperatures, the specimen at room temperature 

obtained a maximum impulse of 2.9 Ns from the blast loading. When the temperature 

was increased from 25 °C to 900 °C, the maximum impulse achieved in the specimen 

decreased by approximately 41% (2.9 Ns to 1.7 Ns).   

4.2 Real-time Deformation Images  

 

 

 

 

 

 

 

 

 

 

 

 

The real-time observations of the transient behavior of Hastelloy X under 

shock loading for different temperatures are shown in Fig. 13.  The shock wave is 

propagating from the right side of the image to the left side causing deformation in the  

specimens. Time t=0 µs represents the beginning of the event where the shock wave 

impinged on the specimen. The side-view images were shown at different times during 

the event. The final image for each temperature represents the maximum defection of 

t=0 µs t=1400 µs t=3600 µs 

(i) 900 °C 
t=0 µs t=1200 µs t=2900 µs 

(h) 700 °C 

t=0 µs t=1500 µs t=2300 µs 

(g) 360 °C 

Shock 

t b  

t=0 µs t=1200 µs t=1865 µs 

(f) 25 °C 

Specimen 

Fig. 13 Real-time side-view deformation images of the specimen for different 

temperatures. 
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the specimen. These images were later used to calculate the mid-point deflections in 

the specimens. Since the distance between the nozzles and the specimen is 

significantly less for 900 °C, the nozzles are observed in the images.  

At room temperature, when the shock wave impinges on the specimen, mode-I 

failure was observed with large plastic deformation at the center of the specimen and 

resulted in global bending of the specimen. Compressive stresses in the front face and 

tensile stresses in the back face of the specimen are generated during the global 

bending deformation under blast loading. The mid-point deflections increase 

monotonically with time. By t=400 µs, the specimen had deflected 0.5 mm on the 

back face. After t=400 µs, the specimen showed significant deflection and reached a 

maximum deflection of 5.2 mm at t=1865 µs.  

Similar to room temperature, mode-I failure was observed for 360 °C, 700 °C 

and 900 °C experiments and the specimens compressed monotonically with time. As 

the temperature increases, the value of the flow stress for Hastelloy X decreased (as 

shown in Fig. 1) due to thermal softening which caused higher deflections in the 

specimens and deformed for a longer time. The specimens at 360 °C, 700 °C and 900 

°C reached its maximum deflections at 2300 µs, 2900 µs and 3600 µs respectively.    

4.3 Digital Image Correlation Analysis   

The deflection, in-plane strain (εyy) and velocity of the back face for each 

temperature were obtained using the 3D Digital Image Correlation (DIC) technique. 

For higher temperatures, as discussed in section 3.3.1, the DIC technique was used in 

conjunction with an optical blue pass filter and high intensity light source. Since the 

thermal radiation greatly influences the image quality above 600 °C, the results  
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obtained using the proposed DIC method for 700 °C and 900 °C need to be validated. 

To verify the performance of the proposed DIC method, the back face mid-point 

deflections obtained using the proposed DIC technique were compared with the 

deflections measured from the high speed side-view images (Fig. 13). Fig. 14 shows 

the comparison of the deflections obtained from the DIC and the side-view images for 

700 °C and 900 °C experiments. For both experiments, the deflections obtained from 

the DIC match very well with the deflections measured from the high speed images 

(maximum error at their peak deflections is less than 3%). For any time frame, the 

maximum difference in the deflections observed was 0.55 mm for 700 °C and 0.31 

mm for 900 °C. The small variations could be attributed to the different methods used 

to measure the deflections. The results ensure the accuracy of the proposed DIC 

technique and therefore this technique can be used for the measurement of full field 

deformation data at elevated temperatures under dynamic loading. 

The structural response of monolithic plates subjected to a blast loading is 

divided into two sequential stages. Stage I is the one-dimensional fluid-structure  
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Fig. 14 Comparison of mid-point deflections obtained from the DIC technique 

with the side-view high speed images. 
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Fig. 15 Deflection of the back face during fluid structure interaction time for 

different temperatures. 
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Fig. 16 Normalized standard deviation of the back face deflections along the 

center line as a function of time   
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interaction during the blast loading event, in which the front face of the plate is 

accelerated to a velocity by the incoming shock wave, while the back face of the plate 

remain stationary. Stage II is the retardation phase where the plate is brought to rest by 

plastic bending and stretching (Qiu et al., 2011). The deflection contours on the back 

face of the specimen for different temperatures during the fluid structure interaction 

phase between the gas and the specimen are shown in Fig. 15. The shock impinged on 

the specimen at t=0 µs. The localized deflection contours were observed during the 

early stages of the event. The transient deflection contours on the back face evolve 

with time. After a critical time (~100 µs), the non-uniform loading disappears and a 

uniform loading is achieved, where the stress wave became stabilized. This time 

interval can be related to the characteristic fluid structure interaction time. The 

characteristic fluid structure interaction (FSI) time was approximately 100 µs for all 

temperatures. To better understand FSI, the standard deviation of the deflections was 

calculated along the center line of the specimen for each time frame. The standard 

deviation was normalized by its mean and plotted as shown in Fig. 16. This 

normalized standard deviation, represented as n* in Fig. 16 estimates the non-

uniformities in the loading. When the value of n* is zero, it represents the ideal case of 

uniform loading.  For all experiments, the value of n* stabilized at around 100 µs, 

which is defined as characteristic fluid structure interaction time.   

The mid-point back face deflections obtained using DIC for different 

temperatures is shown in Fig. 17. These deflections were also in agreement with the 

deflections measured using the high speed images (as shown in Fig. 13). All of the 

curves exhibit a maximum plastic deformation in its first peak, followed by elastic  
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Fig. 17 Back face deflections of the specimen for different temperatures. 

 

 

 

 

 

 

 

 

deformation. For all temperatures, the specimens deflect in the same manner up to 

approximately 4 mm at t=1300 µs. The specimen at room temperature showed a 

maximum deflection of 5.2 mm at t=1865 µs and then began to reverberate. For the 

same incident pressure loading, the specimens at higher temperatures continued to 

deform for longer time due to thermal softening and lower values of flow stress. At 

900 °C, the specimen deformed for almost twice the duration than the room 

temperature specimen.  The specimens at 360 °C, 700 °C and 900 °C showed 

maximum back face deflections of 7.0 mm, 9.6 mm and 13.5 mm at 2300 µs, 2900 µs 

and 3600 µs respectively.  

The average in-plane strain-rate observed in these experiments was 10 s-1. 

Using the Johnson-Cook parameters as listed in Table 2, the stress-strain curves of 

Hastelloy X were obtained for 25 °C, 360 °C, 700 °C, 900 °C and 1100 °C 

temperatures at a strain-rate of 10 s-1. From the stress-strain curves of Hastelloy X, it 

was determined that the flow stress at 360 °C had decreased by 3.25% when compared 

to room temperature and as a result, the back face deflection was increased by 35%. In 

comparison to room temperature, the value of flow stress at 700 °C and 900 °C had 
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decreased by 18.5 % and 35% respectively. Due to a significant decrease in flow stress 

values at these temperatures, the back face deflections at 700 °C and 900 °C had 

shown an increase of 85 % and 160 % respectively.  

A polynomial fit was made between the percentage increase in peak 

deflections and the percentage decrease in flow stress values for different temperatures 

to predict the deflection of Hastelloy X at 1100 °C  (~90% of melting temperature). 

For a temperature of 1100 °C, the value of flow stress had decreased by 60% and this 

would result in a back face deflection of approximately 21.0 mm.  
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Fig. 18 Full-field out-of-plane deflection images for 25 °C, 360 °C, 700 °C and 

900 °C experiments. 
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The full field out-of-plane deflection (W) images for different temperatures, 

with a scale of 0 mm to 13.5 mm, are shown in Fig. 18. For a better comparison, the 

time scales were kept constant for all temperatures. These images ensure that the full-

field deformation data can be obtained from the modified DIC technique under shock 

wave loading at high temperatures. At time t=0 µs, the shock wave impinges on the 

specimen. For all temperatures, local deflection contours were observed during the 

early time of the event and the specimens exhibited very minimal out-of-plane 

deflections up to t=300 µs . For the specimen at room temperature, between t=300 µs 

and t=1900 µs, a significant amount of deflection was observed. At this time (t=1900 

µs ), the specimens at 360 °C, 700 °C and 900 °C had shown significant deflections of 

6.6 mm, 7.6 mm and 8 mm respectively. After t=1900 µs, as the specimen at room 

temperature began to reverberate, the specimens at higher temperatures continued to 

deform. The specimen at 360 °C deformed further for 400 µs before reaching its 

maximum deflection of 7.0 mm at 2300 µs. In comparison to the room temperature 

experiment, the specimens at 700 °C and 900 °C continued to deform further for 1000 

µs and 1600 µs respectively before reaching their maximum deflections. The 

specimen at 900 °C deformed for a longer time of 3600 µs.  

The in-plane strain (εyy) on the back face of the specimen is plotted in Fig. 19. 

It can be observed from the figure that all the specimens exhibit very minimal in-plane 

strain of 0.05 % up to t=400 µs. After t=400 µs, the specimens showed significant 

bending and resulted in higher in-plane strain values. At room temperature, a 

maximum in-plane strain of 0.4 % was observed at t=1865 µs. As the temperature 

increases, the specimens exhibited higher deflections (more bending) causing an  
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Fig. 19 Back face in-plane strains at the center of the specimen for different 

temperatures. 
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Fig. 20 Back face out-of-plane velocities at the center of the specimen for 

different temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

increase in the in-plane strain values. For 360 °C experiment, a maximum in-plane 

strain of 0.7 % was observed at 2300 µs. For 700 °C and 900 °C experiments, the 

specimens showed maximum in-plane strain of 0.97 % and 1.25 % at 2900 µs and 

3600 µs respectively. In comparison to the room temperature experiment, the 

specimens at 360 °C, 700 °C and 900 °C had shown an increase in εyy by 75 %, 142 % 

and 212 % respectively. Since the strains exceeded the elastic limit, the increase in 
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yield stress at 900 °C (as explained in section 2) had no effect on the performance of 

Hastelloy X under shock loading.  

The out-of-plane velocity on the back face of the specimen is shown in Fig. 20. 

All experiments at different temperatures showed similar velocity profiles up to t=750 

µs. At t=750 µs, all the specimens showed an approximate velocity of 4.25 ms-1. The 

specimen at room temperature reached a maximum out-of-plane velocity of 4.5 ms-1 at 

t=875 µs and began to decelerate after that. In comparison to room temperature, the 

specimen at 360 °C reached same maximum velocity of 4.5 ms-1 (at t=975 µs) but was 

delayed by approximately 105 µs. A maximum out-of-plane velocity of 5.0 ms-1and 

5.6 ms-1 was observed at t=1100 µs and 1400 µs for the specimens at 700 °C and 900 

°C respectively. As observed at room temperature, the specimen at higher 

temperatures also begins to decelerate at a later time. 

4.4 Deformation Energy Evaluation 

After the incident shock wave impinges upon the specimen, a reflected shock 

wave is generated and the reflected pressure is applied on the panel to deform the 

specimen. The total work done by the gas to deform the specimen is defined as the 

deformation energy. The deformation energy is calculated by evaluating the 

deflection-time data from the high speed images (Fig. 13) and the force-time data from 

the reflected pressure profile. Since the force was applied on the front face of the 

specimen, the deflection of the front face of the specimen was determined. By using 

curve fitting method, such as cubic spline curve fitting, the shape of the deformed 

front face was matched and the deflection of every point inside the shock loading area 

was calculated along the front face. Combining the deflection-time data and the force-
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time data will result in force-deflection data. Now the deformation energy can be 

obtained by integrating the force-deflection data (Wang and Shukla, 2010).  

 

 

 

 

 

 

 

The deformation energy for 25 °C, 360 °C, 700 °C and 900 °C experiments is 

plotted in Fig. 21. The maximum deformation energy of 31 joules was observed for 

900 °C. The experiments at 25 °C, 360 °C and 700 °C showed maximum deformation 

energy of 12 joules, 21 joules and 24 joules respectively. The deformation energy for 

the specimen at 900 °C was approximately 160 % higher than that at room 

temperature. This indicates that the specimens at higher temperatures consume more 

energy during the shock loading process.   

4.5 Post-mortem Analysis  

The post-mortem images of the specimens tested at 25 °C, 360 °C, 700 °C and 

900 °C are shown in Fig. 20. Post-mortem images show that the high temperature 

flame proof paint used to speckle the specimens withstood these temperatures under 

dynamic loading. The specimens at 25 °C, 360 °C, 700 °C and 900 °C had recovered 

their deflection by approximately 70 %, 50 %, 20 % and 18% respectively. 
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Fig. 21 Deformation energy of the specimens for different temperatures. 
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25 °C 

360 °C 

700 °C 

900 °C 

Fig. 22 Post-mortem images of the specimens tested at 25 °C, 360 °C, 700 °C 

and 900 °C under blast loading. 

 

 

 

 

 

 

 

 

5. Conclusions 

A series of experiments were conducted to investigate the dynamic behavior of 

Hastelloy X at room and elevated temperatures under shock wave loading. A 3D DIC 

technique was used in conjunction with an optical blue pass filter and high intensity 

light source to record the transient behavior of Hastelloy X at elevated temperatures. 

Following are the major conclusions of this study: 

• A unique experimental set up was built for studying materials at high 

temperatures (up to 900 °C) under shock loading. 

• The DIC system has been modified and validated for obtaining the full-field 

data at elevated temperatures under dynamic loading. The mid-point 

deflections obtained from the DIC technique for 700 °C and 900 °C match 

very well with the deflections obtained using the high speed side-view images. 

• The characteristic fluid structure time is determined to be ~100 µs for all the 

temperatures studied. 

• The impulse imparted on the specimen decreased as the temperature increased 

from 25 °C to 900 °C. 
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•  The maximum back face deflection of the specimen at 900 °C is 

approximately 160 % higher than the specimen at room temperature.  

• The maximum in-plane strain showed an increase of 212 % as the temperature 

increased from room temperature (0.4 %) to 900 °C (1.25 %). 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

1. Conclusions 

The main objective of this investigation is to advance the development of 

aerospace materials that eliminate high-maintenance, parasitic, external thermal 

protection systems and integrate the thermal-load carrying function within the 

structure. The properties of different high temperature materials that are of interest to 

the Air Force for integrated hot/light-weight thermal structures have been exploited for 

this purpose. A unique high temperature/extreme environment experimental test set up 

also has been developed and validated. 3D- Digital Image Correlation (3D DIC) 

technique coupled with high speed imaging, band pass optical filters and high energy 

flash unit was used to obtain the back face out-of-plane deflections and velocities, as 

well as the in-plane strains during the high temperature experiments. The necessary 

fundamental understanding of failure mechanisms and failure modes of the high 

temperature capable aerospace materials have been evaluated, to predict their 

performance and structural integrity under a combination of extreme mechanical and 

thermal environments. Materials that are investigated include Hastelloy X, max phase 

material (Ti2AlC), and functionally graded materials. The evolution of damage in 

these materials under shock conditions when simultaneously subjected to high 

pressures and high temperatures have been studied. Using the experimental data, 

dynamic failure criteria for these materials was established. The specific deliverables 

of the project can be summarized as follows: 
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(1) The thermo-mechanical stress fields around the crack-tip are significantly 

affected by the curvature, temperature and non-homogeneity parameters. As 

the curvature at the crack-tip increases, the peak value of the stress components 

also increases.  

(2) Crack-tip velocity plays a significant role in the crack extension angle. For a 

mixed-mode curving crack under thermo-mechanical loading, the crack 

extension angle increases with the increase in crack-tip velocity. Similar 

behavior was reported earlier for the case of homogeneous and FGMs without 

the curvature parameters. 

(3) There is a significant effect on the crack extension angle when the T-stress is 

applied. The crack extension angle decreases when the T-stress ( oxσ  term) is 

applied when compared to the case of without the T-stress (where 0=oxσ ).  

(4) The thermo-mechanical stress fields are not significantly affected by transient 

parameters. As the crack-tip acceleration increases, the size of stress contours 

ahead of the crack-tip decreases slightly. There is not much significant effect 

on the rate of change of stress intensity factor. 

(5) The transient thermal loading term influences the higher-order terms in 

asymptotic crack-tip fields: the displacement in the order of O (r7/2) and the 

stress in O (r5/2). 

(6) Ti2AlC exhibited graceful failure under dynamic loading. The amount of 

kinking decreases as the strain rate or temperature increases. The energy 

absorbed by the material decreases marginally as the strain-rate increases. The 

material did not show any rate sensitivity below brittle to plastic transition 
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(BTP) temperature even for strain rates as high as 3500/s. however, after BTP 

temperature, the maximum stress dropped significantly.   

(7) Hastelloy X showed rate dependency from quasi-static to dynamic loading. 

The yield stress of the material increased by 50% and the flow stress by 200 

MPa as the strain rate increases from 10-3/s to 4000/s. As the temperature 

increases, the flow stress of the material decreases but the yield stress 

decreases initially up to 700°C, then increases and shows a peak at 900°C and 

then again monotonically decreases as the temperature is further increased. The 

Johnson-Cook parameters were determined for Hastelloy X and they could be 

used to model the behavior of the material under different dynamic loading 

conditions. 

(8) A unique experimental set up has been developed and validated for testing 

materials under shock wave loading. DIC system has been modified for 

obtaining full-field deformation data under dynamic loading at extreme 

temperatures. The modified shock wave and DIC systems together can be used 

to study the response of different materials under extreme environments.  

(9) Under shock wave loading, Hastelloy X showed 150 % increase in the back 

face deflection as the temperature increased from 25°C to 900°C.  

(10) The methods used to evaluate the energy as described by Wang et al. (2010) 

were implemented and the results analyzed. The energy needed to deform the 

specimen increased from 10J to 30J as the temperature increased from 25°C to 

900°C. 
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2. Future Work 

The current research is a step forward in understanding the dynamic response 

of aerospace materials under extreme environments. It elucidates a more 

comprehensive understanding on the dynamic behavior and mechanisms of failure of 

materials subjected to high-intensity loadings.  Different materials, ranging from 

functionally graded materials, Hastelloy X and Ti2AlC were studied. The proposed 

future projects are as follows,  

(1) The thermo-mechanical stress fields were developed for mixed mode curving 

cracks under steady-state and transient loading conditions. These equations 

were developed for elastic deformations at the crack-tip. There is a need to 

determine the thermo-mechanical stress fields by accounting the plastic 

deformation at crack-tip. This study can be started for a simple case by 

assuming bilinear model for the plastic deformation of the material. The stress 

fields for elastic, plastic and thermal loadings can be determined individually 

and later these fields can be super imposed to obtain elasto-plastic thermo-

mechanical stress fields.   

(2) Later, the stress fields can be determined for curving cracks under transient 

loading. 

(3) The response of Ti2AlC (a max phase material) was investigated under 

dynamic compressive loading for different strain rates and temperatures. 

More work is needed to fully understand the deformation mechanisms of this 

material under dynamic loading conditions. Experiments have to be carried 

out to study its response under dynamic tensile loading conditions. Also the 
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dynamic fracture intititaion toughness of this material is needed to determine 

under thermo-mechanical loadings for deeper understanding of the 

mechanical properties in these novel class of materials, enabling further 

developments in power generation, hypersonic and orbital re-entry flights, 

ballistic protection, etc 

(4) The dynamic response of Hastelloy X has been investigated when subjected to 

shock wave loading under extreme environements for simply supported 

boundary condition. To establish the necessary fundamental understanding of 

failure mechanisms and failure modes of the material, experiments have to be 

carried out for different boundary condtions (clamped-free and clamped-

clamped). 

(5) Since aerospace structural materials can experience shock loading from 

oblique angles, it is imperative to understand the performance of these 

materials when subjected to different shock impingement angles. By varying 

the shock impingement angle, the behavior of these specimens under 

moderate to high shock loadings has to be studied. Experiments should be 

carried out at high shock loadings and at extreme temperatures for different 

boundary conditions. High temperature DIC system can be utilized to obtain 

the real-time stress, strain and displacement fields. 

(6) Different high temperature capable aerospace materials are needed to be 

evaluated to predict their performance and structural integrity under a 

combination of extreme mechanical and thermal environments. Some of the 

materials that can be examined include currently available MAX phases, 
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layered materials, etc. Of particular interest to Air Force will be the evolution 

of damage in these materials under shock conditions when simultaneously 

subjected to high pressures and high temperatures. 
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APPENDICES 

APPENDIX A: STANDARD OPERATING PROCEDURES (SOP) 

SHPB 

Specimen preparation: 

1. The specimen dimensions should follow the below relation: 

4
3υ

=
D
L  

       where L is the length, D is the diameter and υ  is the Poisson’s ratio of the 

specimen.  

2. Make sure the faces of the specimen are parallel and flat (use step collet while 

machining metal specimens to get parallel faces). The diameter of the 

specimen after the test should be smaller than the diameter of the pressure bars. 

 

Selecting the bar: 

1. Determine the impedance ( cAρ ) of the specimen.  

where ρ is the density, c 







=

ρ
Ec  is the wave speed and A is the area. 

2. Then select the pressure bars (steel or Aluminum) closer to the impedance of 

the specimen. We also have different diameters for the pressure bars. 

Note: The basic thumb rule is that we use steel bars for the harder materials 

(metals etc..) and Aluminum bars for the softer materials (polymers, foams etc..). 

3. After the pressure bars are selected, make sure the end faces of the bars are flat 

and parallel.  

4. Align the pressure bars and striker on the mounting frame. 

Experimental procedure: 

(a) Give all required connections. Connections include: Connect the BNC 

cables from the amplifier to the oscilloscope. Check the right channels and 

connect them. Make sure the amplifier (2310A) and oscilloscope are 

grounded. Do not change any settings on the amplifier. The amplifier has 
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been calibrated for 350 ohms strain gages. Please refer to manual if you we 

wish to make any changes and let everyone in the lab know before you 

make any changes. Turn ON the amplifier and oscilloscope.  

(a) The excitation voltage and gain are set to 10V and 100 respectively. Turn 

the reset switch ON for all the four channels. 

(b) Check the resistance on the strain gauges and they should read around 350 

ohms.  

(c) Set the voltage levels, trigger position, data duration time (2ms-4ms), for 

all the four channels in Oscilloscope. These values depend on the 

experiments. 

(d) Balance the Wheatstone bridge for all the four channels by turning the reset 

button. 

(e) Check whether the bars are well aligned or not, and also the projectile 

should be well aligned to the impact end of the incident bar. 

(f) Then make sure that the bars are moving freely, if not apply WD-40 

lubricant and adjust the screws of the clamps. 

(g) Clean the interfaces of the bar and the projectile with Kim wipes and ethyl 

alcohol. 

(h) Push the projectile to the end of the barrel of gas gun assembly with a 

flexible poly rod.  

(i) Measure the dimensions of both specimen and pulse shaper. Dimensions 

include:  diameter and thickness. 

(j) Select the striker depending on the strain rate you are trying to get. You can 

vary strain rate by using different pressures and different striker bars. Make 

sure the pulses are not getting overlapped. If the pulses are getting 

overlapped, use the shorter striker bar. (Thumb rule: The longer the striker, 

the lower the strain rate. The higher the pressure, the higher the strain rate). 

(k) Lubricate both faces of the test specimen with Molybdenum disulfide 

lubricant and sandwich the specimen between the bars and align the 

specimen with respect to bar center.  
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(l) Place the pulse shaper at the impact end of the incident bar with a thin layer 

of KY jelly grease (if you are using lead pulse shaper) and align it with 

respect to bar center. We generally use clay and lead pulse shapers. These 

give us very good results for harder materials, but for the softer materials, 

you can try different pulse shapers. These include paper, copper etc. 

(m) Release the nitrogen gas from the gas tank into the gas gun chamber until 

the required pressure level is achieved. 

(n) Arm the oscillation to capture the strain gage voltage signals and make sure 

the arm holds until you release the projectile. If the arm is not holding, 

adjust trigger levels. (Note: if you are getting high noise in your signals 

more than 20mv, turn off the tube ights before the experiment). 

(o) Once again, ensure that the specimen is well aligned between the bars and 

verify the status of the trigger hold before pressing the solenoid valve 

release button. 

(p) Press solenoid valve control box button to release the projectile. 

(q) Save captured voltage pulses onto a USB drive for further analysis of the 

data. 

(r) A MATLAB program is written to read the data from the pulses and 

analyze the pulses using the one-dimensional wave theory stress and strain 

equations. After the experiments are performed, the pulses are used along 

with the MATLAB program to determine the equilibrium and true stress-

strain plots of the specimen. 

(s) After the experiment is completed, turn off the cylinder and make sure all 

the left over nitrogen gas in the gas chamber is released. 

(t) After the data is transferred from the oscilloscope to USB drive, verify that 

in your computer and turn off the amplifier and oscilloscope. 

Analyzing the results: 

1. There are two MATLAB codes to analyze the data. 1. Verify_Equilibrium and 

2. Steel/aluminum_SHPB. Use the appropriate codes to analyze the data. 

Depending on the bars you used, the respective code has to be used.  
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2. Make sure the code has the right properties and dimensions of the pressure bars 

you used. These include diameter, wave speed, and diameter.  

3. If we use hollow tubes, make sure you have the right dimensions in the code. 

For solid bars, dimensions for the hollow tube should be zero. 

4. First run the verify equilibrium code. Make sure the data you get from the 

oscilloscope has the following names for the four channels. TEK00000, 

TEK00001, TEK00002,and TEK00003. The code recognizes these names. 

Make sure the codes and the data are in the same folder. 

5. TEK00000 and TEK00001 represent incident and reflected pulses (channel 1 

and channel2). TEK00002 and TEK00003 represent the transmitted pulse 

(channel 3 and channel 4). The code averages channel 1 and channel 2. And 

channel 3 and channel 4. 

6. The code converts the voltage output to microstrains and balances. 

7. Default values for filtering are given in the code. For incident and reflected 

pulse, default value of 0.2 (fn=0.2) is used and for transmitted pulse, a value of 

0.05 (fn=0.05) is used. Depending on the noise you get, change the values of 

fn. The value of ‘fn’ ranges from 0.001 to 0.99. Higher value of ‘fn’ means, the 

pulses were not filtered. Decrease the value of ‘fn’ if you would like to filter 

more. You can use different values for incident and transmitted pulses.  

8. When you run the code, you get two figures. Figure 1 gives the incident and 

reflected pulses. Figure 2 gives the transmitted pulse.  

 

 

 

 

 

 

 

9. Note the incident starting time, incident end time, reflected starting time and 

transmitted starting time as shown in the above figures. You can zoom the 
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pulses by pressing ‘zoom in’ button at the top to get the right times. Then go to 

MATLAB main window and press ‘ENTER’. 

10. Input the values you found out and press ‘ENTER’. 

11. Now you will get 3 more figures. Figure 3 shows the incident, reflected and 

transmitted pulses. Figure 4 shows the incident, reflected and transmitted 

pulses you picked on before. Figure 5 shows the force ratio. Front face 

represents the forces calculated on the incident and reflected pulses. Back face 

represents the force calculated on the transmitted pulse. Ideally, these two 

fronts and back face should match perfectly. 

12. Various factors decide the equilibrium. These include type of material tested, 

strain rate etc.. 

13. Make sure the incident and reflected pulses start at the same time on Figure 4. 

On the first trial, you might end up something as below 

 

 

 

 

 

 

14.  Go back to the times you found for the incident, reflected and transmitted 

pulses. Never change the times of reflected and transmitted pulses. Shift the 

incident pulse to either side and try for different values until you get decent 

equilibrium. For the case shown above, by shifting the time of the incident 

pulse, the below equilibrium was obtained.  
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15. Save this figure in to the respective folder. Also save the new times of the 

pulses. 

16. Now open the SHPB code and make sure you have the same value for filter as 

in the verify_equilibrium code.  

17. Enter the specimen thickness and diameter in inches. 

18. Again, you get two figures. Figure 1 gives the incident and reflected pulses. 

Figure 2 gives the transmitted pulse. 

19. Go to main ‘MATLAB’ window and enter the final times here. 

20. You get Eng. stress strain curve (Figure 3) and True stress-strain curve (Figure 

4). 

21. Follow the directions of the Figure 4. 

22. Pick two points to calculate the slope. You can pick at the initial elastic region 

of the true stress-strain curve.  

23. You will end up with figure 5.  Pick two points at the linear region as shown 

below. 

 

 

 

 

 

 

 

 

24. Go to MATLAB main window and you can see the strain rate. Note down this 

value. Next you will end up with final figure (Figure 6). This is eng. strain rate 

vs. time. 

25.  Be careful when you pick up the strain rate points. Consider the following 

points 

a. Make sure the region you pick is in the equilibrium. 
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b. For foam materials, you might not get very good equilibrium and 

constant strain rate. So calculate the strain rate over the entire loading 

duration.   

Tensile SHPB: 

Procedure: 

1. The specimen dimensions are given below. These dimensions vary with the 

material tested. For metals, the below dimensions can be used. To perform 

experiments at lower strain rate, increase the gage diameter (D) to 0.2”. For 

plastics, use gage length of 0.2” and gage diameter of 0.2”.  

 

 

 

 

 

 

 

 

2. Selecting the bar is same as explained before. 

3. Experimental procedure is also similar to the above. Here, you place the pulse 

shaper on the flange. You can use paper, clay or lead.  

4. Different striker bars can be used to perform experiments at different strain 

rates. Make sure the striker bar slides freely on the bars. 

5. The specimen will be threaded at both ends to the pressure bars. There is no 

need to use the lubricant. 

6. The connections remain the same as explained before. You can use the same 

amplifier and oscilloscope, and same settings. 

7. The MATLAB codes have been modified and use the appropriate code to 

perform your analysis. The steps to run the code is same as explained for 

compression SHPB. 

 

D 

D (Diameter) = 0.15” 

L1 = 1.5” 

L2 = 0.56” 

     

 

L1  

L3 L2 L2 

3/8”-16 



 

203 

 

 

Compression SHPB at elevated temperatures: 

1. The tungsten carbide inserts will be used. The specimen will be sandwiched 

between these inserts.  

2. The diameter of the specimen should be smaller than the inserts. The below 

figure shows the set up.  

 

 

 

 

 

 

 

 

 

 

 

3. For experiments at elevated temperatures, the SHPB apparatus in conjunction 

with the induction coil heating system will be utilized as shown in Fig. 2. 

4.  A special fixture is used to load the specimen.  

5. The inserts were used to eliminate the temperature gradient in the bars and thus 

protect the strain gages mounted on them.  

6. The impedance of the inserts was matched with the bars; hence they do not 

disturb the stress wave profiles in the bar. The impedance matching requires 

the diameter of these tungsten carbide inserts to be smaller than the main 

pressure bars. This is the reason for the specimen diameter for high 

temperature testing being smaller than that for room temperature testing.  

7. By varying the power, higher temperatures can be achieved. 

8. The induction coil heating system has a power control box, remote to start and 

stop, a cooling unit and cooling supply (blue box) to reserve water. Make sure 
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the blue box has sufficient distilled water. The copper coils are connected to 

the cooling unit and it is places around the inserts. 

9. First turn ON the blue box, then the power supply. The power supply needs the 

larger output in the DPML lab.  

10. Make sure the wheel on the cooling unit is pinning smoothly and fast. If not, 

do not do the experiment. Increase the power supply, to heat the specimen.  

11. When the regulator is turned ON, it should give a click sound after around 30s. 

If it does not, turn it off and try again. If the problem persists, turn off the 

regulator and the problem can be determined. 

12. Turning ON the power supply regulator, it will read ‘cycle continuous’ on the 

remote (smallest one), which is desired. 

13. The system should already be set to manual power output again, which will 

allow to control the power. If it is not set, you can do by using the switch 

located to the immediate right of the dial on the regulator. 

14. Make sure the dial on the regulator is zero, so there will be no immediate 

power output. 

15. Now press ‘start’  button on the remote (small one that reads the diaplay). 

16. The bars were kept apart initially, later the specimen and carbide inserts were 

heated in isolation to the desired temperature (usually about 20-50°C higher 

than the test temperature) and soon after the bars were brought manually into 

contact with the specimen. The temperature of the specimen was monitored 

using a 0.127mm chromel-alumel thermocouple, which was spot welded onto 

the specimen.  

17. In most of the experiments, it takes less than two minutes to heat the specimen 

to the required temperature and it takes less than 10 seconds to bring the 

pressure bars into contact with the tungsten inserts and fire the gun. 

18. Once the temperature is reached, hit ‘stop’ on the display and turn off the 

regulator and the induction heater. Now trigger the oscilloscope. If you trigger 

the oscilloscope before, due to magnetic fields from the induction heater, you 

will see lot of noise. 
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19. Allow the cooling unit to run for some time son that it reaches room 

temperature. 

20. All other experimental procedure, data capturing, and analyzing the results 

remain the same as explained in compression SHPB section. 

 

Note: 

1. Always make sure the yield strength of the material you are testing is never 

beyond the yield strength pressure bars.  

2. For testing ceramics of high strength, we need to use inserts so as to protect the 

bars from plastic deformation.  
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SHOCK TUBE 

Checklist Before Experiments: 

Shock Tube Related: 

� Do you have enough GAS and GAS PRESSURE?  

� Do you have enough MYLAR SHEETS? 

Dump Tank Related:  

� Is the support FIXTURE tight in the dump tank? 

� Are the supports in the right SPAN position? 

� According to your experiment, do you need the EXTRA SPACERS for the 

support? 

� Is the side window, LEXAN SHEET, clean?  

� Are the back windows, LEXAN SHEETS, clean? 

� Are the back windows, LEXAN SHEETS, 1/2 in. thick? 

Visualization System Related:  

� Does every LIGHT work fine? 

� Does every CAMERA work fine? 

� Does LAPTOP work fine? 

Specimen Related:  

� Have you measured the specimen’s SIZE? 

� Have you measured the specimen’s WEIGHT? 

� Is your SPECKLE PATTERN OK? 

� Have you taken the pre-blast IMAGES of the specimen? 
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Checklist During Experiments: 

Shock Tube Related: 

� Have you changed the MYLARS? 

� Are all the screw connections TIGHT? 

� Have you put the PRESSURE SENSORS in the shock tube?  

� Is the shock tube PERPENDICULAR to the supports, and centrally located? 

Dump Tank Related:  

� Is the specimen in the right position and secure? 

� Is the shock tube close enough to the specimen, 1/16 in? 

� Have you put the side doors on the dump tank? 

� If no back side DIC system is required, have you installed a good protection 

for the back side LEXAN windows ? 

DIC System Related:  

� Have you double checked the camera CABLE CONNECTIONS? 

� Is the back view camera system PERPENDICULAR to the back side 

window? 

� Is the side view camera PERPENDICULAR to the side window and 

specimen? 

� Have you set the right FRAME RATE? 

� Have you done the BLACK CALIBRATION (SHADING)?  

� Is the viewing area acceptable (make the view of the specimen as large as it 

can)? 

� Have you FOCUSED on the specimen (use iris 2.8 or smaller)? 

� Have you increased the IRIS to at least 5.6? 

� Have you set SYNC MODE for all slave cameras (E-SYNC)? 

� Have you done the correct CALIBRATION (grids used to track particle 

distance)? 

� Have you set the right TRIGGER MODE? 
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� Have you double checked that the cameras can take the desired images? 

Oscilloscope Related:  

� Have you double checked the CABLE CONNECTIONS from the sensors to 

the channels are right? 

� Have you double checked the VOLTAGE AND TIME RANGE setting? 

� Have you double checked the TRIGGER setting (trigger level and position)?  
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ULTRAH HIGH-SPEED AND HIGH-SPEED PHOTOGRAPHY SYSTEMS: 

IMACON200A 

Set camera facing desired event 

1. Connect control i/o cable, which runs from camera to computer, to camera 

(should already be attached to computer) 

2. Connect a BNC cable from the monitor output of the camera (clearly marked) 

to the stereo converter box used to connect trigger to photogenic flash light. 

3. Connect a BNC cable to trigger 1 (clearly marked) on the camera, and utilizing 

a T joint, connect the trigger to the oscilloscope, with a second BnC branching 

to the make circuit used to trigger the apparatus. 

4. When selecting which Photogenic to use, be sure that one is the flash with the 

bulb capable of producing persistent light – this will be identifiable as the bulb 

with an additional, smaller bulb, situated in the center of the flash ring of the 

rest of the bulb. 

5. FOR CAMERA SETTINGS, put camera into Focus mode and set the 

following: 

a. Set Iris to f2.8 

b. Set exposure to 5 microsec 

c. Set Gain to 5 

6. To focus camera, set flash with the ability to provide a constant light source to 

model, so it provides light with which to focus the camera.  Focus the camera 

as you would any other camera, by use of the lens manual focus. NOTE: The 

camera must be in focus mode in order to focus the lens. 

7. Once camera, flash, and trigger are set, open the camera software on the 

computer system. 

8. Program provides instruction on setting any additional necessary settings, 

which can be tailored to your experiment 

9. MAKE NOTE: 

a. The flash has a rise time of 100 microseconds – be sure that the 

preflash delay is at least that much 
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b. Set MCP to 3 or 4 in computer software – the higher the #, the higher 

the brightness 

c. The camera delay must also be tailored to your experiment – know how 

long your event takes, what part of it you wish to photograph, and how 

long it takes before that happens.  The Imacon, though indeed quite 

mighty, only takes 16 pictures, so you must be sure not to miss your 

event! 

10. TAKE CARE: 

a. When changing the lens, be sure that the shudder of the camera is 

closed – if it is open, and there is no lens on the camera, ambient 

light or any sudden flashes can/will destroy the ISOs and the 

prisms, rendering the camera useless. 

b. When testing the flash for operation, do not look directly into it, or 

flash it while others are doing so – the flash is EXTREMELY 

intense, and can cause disorientation and result in injury. 

11. FINAL NOTE:  The Imacon 200 was the first of its kind, and is worth 

$500,000.  Treat it with respect – handle it and its components with care  
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DIGITAL IMAGE CORRELATION (DIC) ANALYSIS 

TEST AND CAMERA PROCEDURE 

Physical Setup – Prior to any software  

1. Set up lamps 

2. Keep lens caps on cameras  

3. Plug in cameras 

1. Turn on master 

2. Turn on slave 

3. Wait for “sync in” light on slave camera before starting any software 

4. Make sure IP light is also on 

 

Software Setup  

1. Start software – PFV 

2. Go to Cam2 window 

1. Right click 

1. CAM options 

1. I/O 

1. Set sync in to “ON CAM POS” 

1. E-Sync shows up in window 

3. Set frame rate to 20,000 fps (or desired rate) 

4. Shading 

1. Make sure lens cap is on 

1. Click calibrate 

2. Do this for each camera!!! 

5. Now all set with software setup 

 

Camera Setup (Focus and Calibration)  

1. Take lens caps off 

2. Focus and set aperture on the lens itself 

1. Set aperture to 2.8 initially for focusing the camera 
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2. Maximize window of interest in the software for focusing and hit fit 

3. Set aperture to 5.6 for calibration 

4. Repeat for each camera 

3. Calibrate the Cameras 

1. Trig Mode = Random, 1 frame 

2. Hit Record button in software 

3. Move the calibration sheet and hit the trigger button repeatedly while 

rotating and translating the cal sheet 

4. Once sufficient images (>100) are captured hit record done 

4. Data Save Tab 

1. Select the folder to save the calibration iimages  

1. Save CAM 1 (Cal_0_), Type = TIFF 

2. Save CAM 2 (Cal_1_), Type = TIFF 

3. Run Through the calibration process in VIC-3D 

 

Camera Usage (Actual Test)  

1. In the camera software 

1. Camera Tab 

1. Hit Display “Live” 

2. Set Trigger mode to “END” 

3. Hit record button (software) one time 

1. Light goes to orange, and will say Trig In 

4. Hit the Trigger (physical) button to begin recording 

5. Hit the Trigger button again to stop recording 

1. The software will record the images for the 1 second prior to the stop 

recording push.  Therefore you should stop the recording as soon as 

possible after the event or you will miss the data.   

6. DO NOT TURN OFF THE CAMERAS UNTIL THE DATA HAS BEEN 

SAVED 
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7. Check the start point of motion with the red slider bar (the middle number is 

the current frame) 

1. Hit left facing arrow to set begin point to current frame 

2. Play until end of motion and hit stop 

3. Hit right arrow to set end of frames 

You have now isolated the frames that comprise the event 

 

Data Save  

1. Set the folder for the data to be saved to  

1. This is different than the folder the calibration is saved to 

2. Select Camera 1 

1. File names (Data_0_), Type = TIFF  

2. Save 

3. Select Camera 2 

1. File names (Data_1_), Type = TIFF  

2. Save 

 

DATA CALIBRATION AND POST PROCESSING 

1. Open VIC-3-D Program 

2. Click Grid Icon (Cal Images) 

1. Find Calibration images from test 

2. Open all 

3. Click caliper button 

1. Select Target (12x12x9 or whatever used during test) 

2. Extract 

3. Auto 

4. Calibrate 

1. Standard Deviation should be <0.1 and should have used  at 

least 75 images 

5. Now you are done with the calibration part 
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4. Click the speckle images icon 

1. Select the images recorded during the test 

2. Under AOI tools tab 

1. Select the type of view area (rectangle, polygon, etc.) 

2. Select the view area 

3. Take the green box and move to a area of low deformation with 

a high quality speckle dot 

4. Click the “?” icon 

1. Dic_0  camera 1 

2. Dic_1  camera 2 

3. Verify that both cameras are seeing the dot with a 

checkmark next to the image by scrolling through the 

images with the down arrow.  If there is not a chackmar 

next to each image then go back and select a new green 

box location 

4. Click close 

5. Now all ready for post processing 

5. Click the “start analysis” button 

1. Run 

2. The code will run through the images with Z Displacement initially 

3. Done 

6.  Data drop down menu 

1. Post processing 

1. Calculate curvature 

2. Calculate strain 

3. Calculate velocity 

1. Input time step as the inter frame time 

4. Close 

7. Data tab under AOI Tools 

1. Can click on the individual pictures now 
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2. Right click to change contour levels 

3. Plot tools   Autoscale  

1. Uncheck Boxes 

4. Contour, set range 

5. Right click to create animations 

1. Different coding methods increase or decrease the file size 

6. Inspector tools 

1. Point, Line etc. 

1. ‘X’ icon to extract time histories 

 

DIC Coordinate System 
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ENERGY ANALYSIS  

 

This manual is designed for the steps to use the energy and impulse analysis code. 

 

(1)  Obtain the original data 

The original data of shock tube experiments are from the Tektronix 

oscilloscope (TDS3014 or 3014C). The data must have following name: 

First channel: TEK00000.csv 

Second channel: TEK00001.csv 

Normally, there are two columns in these files. The unit of the first column is second 

(s). The unit of the second column is voltage (v).Please copy these files into the folder 

named “experimental data backup”. 

 

(2) Analyze the original data. This step is to analyze the original data to obtain the 

shock wave velocity, the peak pressure and the modified pressure profiles.  

 

This step is carried out in the folder named “original data analysis”. In this folder, the 

m file named profile_analysis.m is necessary. Other files can be deleted or replaced. 

You must copy the original data files into this folder and then run the code. The 

running process is as follow, 

(1) The code will first ask you how many plys you use in the experiment. This 

information is only for your record. It does not matter the analysis process. 

(2) The code will ask you the sensitivity of the sensors. This value is given in 

the box of the sensors. This value means how many milli-voltage related to 

1 psi.  

(3) Then, a figure with two plots of the pressure profiles will be given. Look at 

this figure carefully and determine an approximate biggest time before the 

first jump time of channel 1. (This time should be less than and as close as 

possible to the first jump time of channel 1. Normally, should not be farer 

from the first jump time than 200 microsecond)  
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(4) Then the code will inform you as follow, 

“The peak and velocity data have been saved into the file, which isnamed 

peak&velocity.txt and in the same folder of this code. 

There are two more pressure data files in this folder: 

inc_sp.dat 

ref_sp.dat 

They can be used for energy and impulse evaluation. 

The code will give some plots to verify your data. 

Please double check them very carefully. 

press any key to continue” 

(5) After pressing any key, the code will give four images: 

Figure 1 Original Data 

Figure 2 Modified Pressure Profiles 

Figure 3 Pressure profile of Channel 1 with key point marks 

Figure 4 Pressure profile of Channel 2 with key point marks 

Look at these figures very carefully, especially Figure 3 and 4. If the jump 

points and peak points are not right, you may need to manually pick up the 

jump points and peak points.  

(6) There will be three saved files in the same folder, 

inc_sp.dat 

ref_sp.dat 

peak&velocity.txt 

The first two files will be used to analyze the energy and impulse. There 

are two column data in these two files. The first column is time with unit 

second (s). The second column is pressure data with unit psi.  

The last file records the physical parameters, which needs to be input in the 

energy and impulse analysis. 

(7) Please cut these three data files into the folder named “experimental data 

backup” and delete all of these files in the current folder. 
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(3)  Analyze the incident and remaining energy and impulse 

This step is to use the data obtained in step 2 to analyze the incident and remaining 

energy and impulse in a shock tube experiment.  

 

This step is carried out in the folder named “gas energy and impulse analysis”. In this 

folder, seven m files are necessary. They are, 

Main code: energy_impulse_analysis.m 

Function 1: load_data.m 

Function 2: skip_points.m 

Function 3: density_change.m 

Function 4: sound_speed.m 

Function 5: velocity_change.m 

Function 6: spline_integ.m 

Other files can be deleted or replaced. You must copy the data files: inc_sp.dat and 

ref_sp.dat, into this folder and the correlated blank test data file, inc.dat, from the 

folder named “blank test data”. The code running process is as follow, 

(1) The code will first show the format and unit of the data. Please be sure that the 

data should be the exact format. 

(2) Then the code will give the total number of the data and ask you how many 

points you want to skip. This means if the original data is 

Original Data 

       1     4 

       2     8                                                    New Data 

       3     5                                                       1     4 

       4     11                                                     4     11 

       5     15                                                     7     6 

       6     7                                                       10   19 

       7     6 

       8     17 

       9     12 

Skip two points 
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       10   19 

(3) Then the code will ask you to input physical parameters obtained in step 2 

(saved in peak&velocity.txt).  

(4) The code will calculate the physical parameter profiles. This process is 

automatic. 

(5) Then the code will integrate the parameter profiles to obtain the energy 

components. This process is automatic. 

(6) Finally, the code will ask you to input the name of the file which you want to 

save data into. Then all of the data will be saved into 

filename_gas_energy.mat. The energy and impulse components are saved into 

ten files as follow, 

filename_incident_internal_E.dat                    incident internal energy 

filename_remaining_internal_E.dat remaining internal energy 

filename_incident_translational_E.dat incident translation energy 

filename_remaining_translational_E.dat remaining translational energy 

filename_incident_work_E.dat work done by the incident gas 

filename_remaining_work_E.dat 
work done by the gas behind the 

reflected shock wave 

filename_total_incident_E.dat total incident energy 

filename_total_remaining_E.dat total remaining energy 

filename_total_energy_loss.dat 
absolute difference between the total 

incident and remaining energies 

filename_total_impulse.dat total impulse 

 

Please copy and save these data into a safe folder. 

 

(4)  Analyze the deformation energy of the gas, momentum and kinetic energy of 

the specimen 
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This step is to use the data obtained in step 2 and the high-speed side-view images to 

analyze the deformation energy of the gas, momentum and kinetic energy of the 

specimen in a shock tube experiment.  

This step is carried out in the folder named “specimen momentum and energy”. In this 

folder, only one m files, Deformation_momentum_kinetic_photron.m, are necessary. 

Other files can be deleted or replaced. You must copy the data files: ref_sp.dat, and a 

series of high-speed images into this folder. The code running process is as follow, 

(1) The code will first show the format and unit of the data. Please be sure that 

the data should be the exact format. 

(2) load the time series of the images 

You will have three ways to load the time series of the images. 

(i) The time between two frames is same. You can input total number of 

frames and time between two frames. Then the code will generate 

the time series automatically. 

(ii) The time between two frames is not same. You can input total number 

of frames and input time between two frames frame by frame. 

(iii)The time between two frames is not same. The time between two 

frames is not same. Then you can just load that time series data file. 

            You can choose anyone and following the instruction. 

(3) Length calibration. You can choose any image for length calibration. You 

will need to choose two points on this image and the vertical distance 

between these two points will be used to calibrate the length. Therefore, 

you need to know one real vertical scale between two points on the image. 

For example: 

(i) the span of the supports is 6 inches 

(ii) the outer diameter of the shock tube is 5 inches 

The process will repeat three times. Thus, totally you will pick six times. 

Please follow the instruction. 

(4) Then you can do real measurement. Normally, you need to measure the 

deformation shape of the front face for every image. For each image, you 
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need to choose seven points on the front face. The code will let you pick up 

the top point of the front face first. Then it will let you pick up the bottom 

point of the front face. After this, the code will base on these two points to 

draw seven lines with equivalent distance. Please pick up the points from 

the top to the bottom.  

(5) The code will ask you to input the mass of the specimen. 

(6) The code will ask you to input the name of the file which you want to save 

you data into. 
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APPENDIX B:  MORE DETAILS OF CHAPTER 4 

Experimental Results 

Dynamic Constitutive Response at Room Temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The real time strain-pulses obtained for Ti2AlC at an average strain rate of 

2500/s are shown in Fig 1. The clay pulse shaper used in all these experiments helped 

to reduce high frequency oscillations in the incident stress wave and improved the 

force equilibrium conditions at the specimen-bar interface.   

The dynamic true stress-true strain curve for different strain rates ranging from 

1500/s to 4500/s are plotted for Ti2AlC at room temperature in Fig 2. Ti2AlC shows no 

rate dependency under dynamic loading for a strain rate range of 1500-4500/s. The 

value of maximum dynamic compressive strength varies between 450MPa – 600MPa 

for all the four different strain rates tested. The failure initiates at true strain of 1-3%  

Fig. 1 Typical real-time strain pulses obtained from strain 

gages mounted on the bars for an average strain rate of 2800/s. 
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and the maximum true strain is between 9-16%. Also the material shows more 

graceful failure to brittle failure. At the peak stress, the failure initiates and the 

material shows softening behavior. As a result of this, the value of the true stress 

decreases as the true strain increases. 

 

 

 

 

 

 

 

Fig 3 shows the real-time deformations of Ti2AlC under dynamic loading at 

room temperature for a strain rate of 2800/s. At t=50 μs, the crack initiates at the lower 

Graceful Failure 

Fig. 2 True compressive stress-strain curve of Ti2AlC under dynamic 

loading at room temperature. 
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Fig 3. Real time deformations of Ti2AlC under dynamic loading at room 

temperature for a strain rate of 2800/s. 
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right of the specimen, and starts propagating through the specimen as shown in Fig 5. 

By t=100 μs, more cracks are clearly visible and they have completely propagated 

through the specimen. After this time, the damage begins to grow and the outer edge 

of the specimen breaks off, while the center part of the specimen stays intact. 

Dynamic Constitutive Response at Elevated Temperatures 

 

 

 

 

 

 

 

 

 

 

A series of experiments were conducted to investigate the dynamic constitutive 

behavior of Ti2AlC at different temperatures under identical strain rate of about 

3500/s. Fig. 4 shows the dynamic true stress-strain curves for Ti2AlC at different 

temperatures. All experiments were carried out with the same striker bar and at the 

same pressure. It can be noticed from the figure that, as the temperature increases, 

there is no significant change in the maximum compressive strength till up to 900°C 

and the value of maximum compressive stress is about 520MPa. But at 1150°C, the 

material shows a significant decrease in the maximum compressive strength and the 

Fig. 4 True compressive stress-strain curve of Ti2AlC under dynamic 

loading at elevated temperatures and a strain rate of about 3500/s. 
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value drops to around 400MPa. Even at high temperatures, the material exhibits 

graceful failure. The failure initiates at a true strain of 2-6% and reaches a maximum 

true strain of 45-50%.  

 

 

 

 

 

 

 

Fig. 5 shows the real-time deformations of Ti2AlC under dynamic loading at 

500°C. Similar to room temperature experiments, the failure initiates at the peak stress 

and the outer edge of the specimen breaks off while the center part of the specimen 

remains primarily intact as shown in Fig. 5. However, the damage is more severe at 

high temperatures when compared to room temperature. This is directly related to the 

material softening at elevated temperatures.  
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Fig. 5 Real-time deformations of Ti2AlC under dynamic loading at 500°C. 
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APPENDIX C:  SAFETY GUIDELINES FOR EXPERIMENTAL EQUIPMENT 

SHPB 

1. Never perform experiment without the help of other students 

a. For ease of conducting a safe and efficient experiment 

2. Make sure proper precautions are made prior to experiment 

a. Wear safety glasses at al l times 

b. Long sleeve shirts and shoes should be worn,  no open toe shoes or 

sandals 

c. Make sure all wires and gauges are adhered correctly and prepared 

properly 

3. Make sure proper bars are being used depending upon specific materials being 

tested (steel or aluminum bars) 

a. Solid-Solid Bar (hard materials) 

b. Solid-Hollow Bar (soft materials) 

c. Hollow-Hollow (real soft materials) 

4. DO NOT PRESSURIZE GUN UNTIL YOU ARE ABOUT TO FIRE 

a. Do not put fingers between bars, i.e. striker and incident bar or incident 

and transmitter bar when SHPB is pressurized 

b. Do not stand in front of muzzle or try to load striker bar when 

pressurized 

c. Do not leave bar unattended after pressurized 

d. If adjustments are needed, vent the pressure beforehand 

5. Conduct yourself in a mature and responsible manner at all times in the 

laboratory 

6. Make sure to yell “firing” when experiment is about to be run and SHPB is 

being pressurized, keep outside doors closed so no one walks in 

7. Make sure everyone in the lab, helping or not with the experiment,  is aware an 

experiment will be taking place 
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SHOCK TUBE 

1. Do not stand near shock tube when it is being fired 

a. Stand no closer than 30 feet in any direction 

b. Stand next to person who controls Helium Tank 

2. Wear ear and eye protection 

3. Warn everyone around you that shock tube is to be fired 

a. Make sure Fluids Labs and Microfluidics labs know 

b. Make sure no classes are going on in Design Studio  

c. Make sure Design Studio students are not there 

i. If Design Studio is occupied, and no class is going on, ask 

students to leave for the test 

4. Double check to make sure no one is in specimen lab  

5. Check to make sure door to outside is closed and locked 

6. Have the shock tube area roped off prior to test 

7. Place “warning sign” in front of Microfluidics lab door and close divider off to 

design studio 

8. Be sure to yell “firing” when releasing gas and also around the pressure where 

the diaphragm is expected to burst 

9. Make sure bolts are completely tightened in the enclosure at end of shock tube.  

10.  Make sure all lexan is in place and both sliding doors are closed 

11.  Attach vacuum if sample that is to be blasted will cause excessive debris 

12.  If for any reason someone comes within 30 feet of tube shut off gas 

immediately and ask person to leave 

Procedure For Running a Safe Shock Tube Experiment 

 

1. Load up cart in DPML lab with proper equipment that is to be used 

a. Oscilloscope, High Speed Camera, proper cables, extension cords, duct 

tape, research notebook, pressure sensors, mylar sheets, etc 

b. Ask someone to help you move the cart and camera 
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i. Under no circumstance is the High Speed Camera to be moved 

by less than 2 people.  

ii. This includes loading and unloading the camera 

2. Enter Shock Tube area through garage door and place cart in position 

3. Set up  Camera in proper position 

4. Set up flash bulbs and/or proper lights 

5. Attach cables to necessary components and to triggers 

6. Once High Speed Camera and components are set up, then place sample in 

enclosure 

a. Use rubber band for positioning and then tape the sample in place 

b. Adjust camera for experiment and focus on sample 

7. Set up computer software (Imacon200, or Photron SA1)  

8. Trigger camera and adjust images accordingly 

9. Once Camera and computer are in place, properly set up oscilloscope place 

pressure sensors in the shock tube 

10.  Make sure everything is turned on and set up properly for given test 

a. Camera images and triggers for both oscilloscope and camera are 

dependent on the number of plies being used  

11.  Make sure mylar is in place between driver and driven section 

12.  Once mylar is in place and both the camera and oscilloscope are set up 

properly, double check sample and make sure it is in place and shock tube 

muzzle is touching it.  

13.  Check everything over one more time and make sure nothing triggered 

prematurely 

14.  Make sure tank is completely shut and follow the safety rules 

15.  If sample is known to make mess attach vacuum to enclosure tank Go to 

helium tank and slowly begin releasing gas into the shock tube 

16. Remember to yell “firing” when loading and when burst is expected 

17. Once sample has been blasted, shut off gas and proceed to checking the scope 

and camera for data 
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18. Make sure to save data to respected positions 

a. Camera data saved under “users” 

b. Oscilloscope data saved on floppy and then on your computer 

i. Double check to make sure data is there 

19. Remove sample from shock tube and piece back together 

a. Once the piece pertaining to the sample have been collected and the 

sample put back together as well as possible, take pictures 

i. Remember the longer you wait the more time the sample has to 

creep back and lose shape…which means losing crucial 

information 
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APPENDIX D: MATLAB Code 

Code to calculate and plot thermo-mechanical stress fields for dynamic curving cracks 

under steady-state and transient loading conditons 

clear all; 
 close all; 
 clc; 
%% 
  
format long 
%general constants 
mue=210e9;         % shear modulus 
rho=6000;          % density 
nue=0.16;          % posson ratio 
k=2*nue/(1-2*nue); % delta 
a0=5.9e-6;         % thermal expansion 
at=1e-5; 
crack_length=0.01; 
q0=200;              % temperature constants 
q1=50; 
q2=50; 
q0_dot=100; 
  
%The constants in the stress functions 
K1D=5e6;          %input('Enter the value of K1:');            % mode 
1 stress intensity factor 
K2D=0.2*K1D;                                         % mode 2 stress 
intensity factor 
Kef=sqrt(K1D^2+K2D^2); 
K1D_dot=1e8; 
K2D_dot=2e7; 
%Nonhomozeneous constants  
gamma=0.5;  
gamma1=0.2; % thermal constant 
zeta=-2;   %input('Enter the value of nonhomogeneity factor:');        
% mechanical constant 
%("Enter gradation angle(deg):');                   
%beeta=-(beta);      %(negative angle used in rotation) 
  
ac = a0*((1+(gamma1*crack_length))); 
  
%% 
TD=0.005;% input('the domain for fringe generation= '); 
NOP=202; %input('Number of points ='); 
ds=2*TD/(NOP-1); 
xc=[-TD:ds:TD]; 
yc=[-TD:ds:TD]; 
count_i=0; 
idata=1; 
  
cs=sqrt(mue/rho); 
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cl=cs*sqrt(2+k); 
sr=0.5;%input('sr='); %ratio of crack speed to shear wave speed at 
crack tip 
 c=sr*cs;  %c=3000;        % crack-tip speed 
c_dot=1e7;          % acceleration of crack-tip 
  
kc=20;             %(Curvature) 
beta=20*pi/180; 
al=sqrt(1-(c/cl)^2); 
as=sqrt(1-(c/cs)^2); 
  
  
%end 
count_i=0; 
%%  % constants 
A0=((4*(1+(as^2)))/((4*al*as)-
((1+(as^2))^2)))*(K1D/(3*mue*sqrt(2*pi)));            
A0_dot=((4*(1+(as^2)))/((4*al*as)-
((1+(as^2))^2)))*(K1D_dot/(3*mue*sqrt(2*pi)));  
  
B0=((-2*al)/(1+(as^2)))*A0; 
B0_dot=((-2*al)/(1+(as^2)))*A0_dot; 
  
C0=((8*as)/(3*(4*as*al-((1+(as^2))^2))))*(K2D/(mue*sqrt(2*pi))); 
C0_dot=((8*as)/(3*(4*as*al-
((1+(as^2))^2))))*(K2D_dot/(mue*sqrt(2*pi))); 
  
D0=((1+(as^2))/(2*as))*C0;  
D0_dot=((1+(as^2))/(2*as))*C0_dot;  
  
A1 = -3/4; 
  
  
Dl_A0 = -3 * (sqrt(c)) * ( rho / (mue *(k+2)))* 
(sqrt(c)*(A0_dot+(((c_dot)/(2*c))*A0))); 
  
Dl_C0 = -3 * (sqrt(c)) * ( rho / (mue *(k+2)))* 
(sqrt(c)*(C0_dot+(((c_dot)/(2*c))*C0))); 
         
Bl_A0 = 1.5 * ((c^2) / (al^2)) * ((rho/(mue *(k + 2)))^2) * A0 * 
c_dot; 
         
Bl_C0 = 1.5 * ((c^2) / (al^2))*  ((rho/(mue *(k + 2)))^2) * C0* 
c_dot; 
         
Ds_B0 = -3 * (c) * (rho/mue) *  B0_dot ; 
         
Ds_D0 = -3 * (c) * (rho/mue) * D0_dot ; 
        
Bs_B0 = 1.5 * ((c^2) / (as^2))* ((rho/mue )^2) * B0 * c_dot; 
         
Bs_D0 = 1.5 * ((c^2) / (as^2))* ((rho/mue )^2) * D0 * c_dot; 
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%% 
  
Q1_1 = -(zeta*(cos(beta)))*(A0/(4*(al^2))); 
Q1_2 =  (zeta*(sin(beta)))*(C0/(4*(al^1))); 
Q1_3 = -(rho/(mue*(k+2))) * ( (-((c^2)/(8*(al^3)))*kc*C0) - 
(((c^2)/(8*(al)))*kc*C0) -  (((c^2)/(4*(al)))*kc*C0) + 
(((c_dot)/(4*(al^2)))*A0) ); 
Q1_4 = ((Dl_A0)/(6*(al^2))) + ((Bl_A0)/(12*(al^2))) ; 
Q1 = Q1_1 + Q1_2 + Q1_3 + Q1_4; 
  
Q2_1 = -(zeta*(cos(beta)))*(C0/(4*(al^2))); 
Q2_2 = -(zeta*(sin(beta)))*(A0/(4*(al^1))); 
Q2_3 = -(rho/(mue*(k+2))) * ( (((c^2)/(8*(al^3)))*kc*A0) + 
(((c^2)/(8*(al)))*kc*A0) +  (((c^2)/(4*(al)))*kc*A0) + 
(((c_dot)/(4*(al^2)))*C0) ); 
Q2_4 = ((Dl_C0)/(6*(al^2))) + ((Bl_C0)/(12*(al^2))) ; 
Q2 = Q2_1 + Q2_2 + Q2_3 + Q2_4; 
  
Q3 = (-2/5)*(zeta/(k+2))*(1/((al^2)-(as^2)))*((B0*(sin(beta))) - 
(D0*(cos(beta))*as)); 
  
Q4 = (-2/5)*(zeta/(k+2))*(1/((al^2)-(as^2)))*((B0*(cos(beta))*as) + 
(D0*(sin(beta)))); 
  
Q5 = ((rho/(mue*(k+2))) * ( (-((c^2)/(16*(al^3)))*3*kc*A0) + 
(((c^2)/(16*(al)))*3*kc*A0) ) ) + (( Bl_C0)/(8*(al^2))); 
  
Q6 = ((rho/(mue*(k+2))) * ( (-((c^2)/(16*(al^3)))*3*kc*C0) + 
(((c^2)/(16*(al)))*3*kc*C0) ) ) - (( Bl_A0)/(8*(al^2))); 
  
R1_1 = -(zeta*(cos(beta)))*(D0/(4*(as^2))); 
R1_2 =  (zeta*(sin(beta)))*(B0/(4*(as^1))); 
R1_3 = (rho/(mue)) * ( (((c^2)/(8*(as^3)))*kc*B0) + 
(((c^2)/(8*(as)))*kc*B0) +  (((c^2)/(4*(as)))*kc*B0) - 
(((c_dot)/(4*(as^2)))*D0) ); 
R1_4 = ((Ds_D0)/(6*(as^2))) + ((Bs_D0)/(12*(as^2))) ; 
R1 = R1_1 + R1_2 + R1_3 + R1_4; 
  
R2_1 = -(zeta*(cos(beta)))*(B0/(4*(as^2))); 
R2_2 = -(zeta*(sin(beta)))*(D0/(4*(as^1))); 
R2_3 = -(rho/(mue)) * ( (((c^2)/(8*(as^3)))*kc*D0) + 
(((c^2)/(8*(as)))*kc*D0) +  (((c^2)/(4*(as)))*kc*D0) + 
(((c_dot)/(4*(as^2)))*B0) ); 
R2_4 = ((Ds_B0)/(6*(as^2))) + ((Bs_B0)/(12*(as^2))) ; 
R2 = R2_1 + R2_2 + R2_3 + R2_4; 
  
R3 = (2/5)*(zeta*k)*(1/((al^2)-(as^2)))*((C0*(sin(beta))) - 
(A0*(cos(beta))*al)); 
  
R4 = (2/5)*(zeta*k)*(1/((al^2)-(as^2)))*((C0*(cos(beta))*al) + 
(A0*(sin(beta)))); 
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R5 = ((rho/(mue)) * ( (-((c^2)/(16*(as^3)))*3*kc*D0) + 
(((c^2)/(16*(as)))*3*kc*D0) ) ) + (( Bs_B0)/(8*(as^2))); 
  
R6 = ((rho/(mue)) * ( (-((c^2)/(16*(as^3)))*3*kc*B0) + 
(((c^2)/(16*(as)))*3*kc*B0) ) ) - (( Bs_D0)/(8*(as^2))); 
  
  
S1 = (k*(1-(al^2)))+2; 
S2 = (k*(1+(al^2)))+2; 
S3 = (k*(1-(as^2)))+2; 
  
S4 = k-((al^2)*(k+2)); 
S5 = k+((al^2)*(k+2)); 
S6 = k-((as^2)*(k+2)); 
  
S7 = 1+(as^2); 
S8 = 1+(al^2); 
S9 = (as^2)-1; 
S10 = (as^2)+1; 
  
  
T1 = 1/(al^2); 
T2 = (T1-1); 
T3 = (((3*k)+2)/(k+2))*(ac/((al^2)-1)); 
T4 = ac*(((3*k)+2)/(k+2))*(1/(6*at))*(1+(zeta*crack_length)); 
T5 = (1+(zeta*crack_length)); 
  
  
  
  
%% 
  
%Expresseion for Stress 
  
r_base = 0.0001 : 0.0001 : 0.005 ; 
theta_base = -pi : (pi/180) : +pi ; 
for i = 1 : length(r_base) 
    for j = 1 : length(theta_base) 
        r(i,j) = r_base(i); 
        t(i,j) = theta_base(j); 
        x(i,j) = r(i,j)*cos(t(i,j)); 
        y(i,j) = r(i,j)*sin(t(i,j)); 
        rl(i,j) = sqrt((x(i,j)^2) + ((al*y(i,j))^2)); 
        tl(i,j) = atan2(( al * y(i,j)), x(i,j) ); 
        rs(i,j) = sqrt((x(i,j)^2) + ((as*y(i,j))^2)); 
        ts(i,j) = atan2(( as * y(i,j)),x(i,j) ); 
        x_bar(i,j)=x(i,j); 
        y_bar(i,j)=y(i,j); 
         
    end 
end 
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for i = 1 : length(r_base) 
    for j = 1 : length(theta_base) 
         
      s11_1(i,j)  = ((3*S1/4)*A0*(rl(i,j)^(-1/2))*cos(tl(i,j)/2))-
((3*S1/4)*C0*(rl(i,j)^(-1/2))*sin(tl(i,j)/2)); 
      s11_2(i,j)  = ((3*as/2)*B0*(rs(i,j)^(-
1/2))*cos(ts(i,j)/2))+((3*as/2)*D0*(rs(i,j)^(-1/2))*sin(ts(i,j)/2)); 
      s11_3(i,j)  = 
((3*Q1*S2)+(2*Q6*S1)+((15/2)*R3*al))*(rl(i,j)^(1/2))*cos(tl(i,j)/2); 
      s11_4(i,j)  = ((3*Q2*S2)-(2*Q5*S1)-
((15/2)*R4*al))*(rl(i,j)^(1/2))*sin(tl(i,j)/2); 
      s11_5(i,j)  = 
(((3/4)*Q1*S1)+(2*Q6*S2))*(rl(i,j)^(1/2))*cos(3*tl(i,j)/2); 
      s11_6(i,j)  = (((-
3/4)*Q2*S1)+(2*Q5*S2))*(rl(i,j)^(1/2))*sin(3*tl(i,j)/2); 
      s11_7(i,j)  = -((Q6/4)*S1)*(rl(i,j)^(1/2))*cos(7*tl(i,j)/2); 
      s11_8(i,j)  = -((Q5/4)*S1)*(rl(i,j)^(1/2))*sin(7*tl(i,j)/2); 
      s11_9(i,j)  = 
((4*R5*as)+((15/4)*Q4*S3))*(rs(i,j)^(1/2))*cos(ts(i,j)/2); 
      s11_10(i,j) = 
((4*R6*as)+((15/4)*Q3*S3))*(rs(i,j)^(1/2))*sin(ts(i,j)/2); 
      s11_11(i,j) = (1.5*R2*as)*(rs(i,j)^(1/2))*cos(3*ts(i,j)/2); 
      s11_12(i,j) = (1.5*R1*as)*(rs(i,j)^(1/2))*sin(3*ts(i,j)/2); 
      s11_13(i,j) = ((R5/2)*as)*(rs(i,j)^(1/2))*cos(7*ts(i,j)/2); 
      s11_14(i,j) = ((-R6/2)*as)*(rs(i,j)^(1/2))*sin(7*ts(i,j)/2); 
       
      s11_15(i,j) =  0;%2*T3*q0*((r(i,j)^(1/2)))*cos(t(i,j)/2);             
%temperature terms 
      s11_16(i,j) =  
0;%(T4*q0_dot*(rl(i,j)^(5/2)))*cos(tl(i,j)/2)*((k*((0.5*T1)+((1/32)*T
1*T2)+(1/2)+((19/32)*T2))) +(T1)+((1/16)*T1*T2)); 
      s11_17(i,j) =  
0;%(T4*q0_dot*(rl(i,j)^(5/2)))*cos(3*tl(i,j)/2)*((k*(((3/16)*T1)-
((9/128)*T1*T2)-(3/16)-((39/128)*T2))) +((3/8)*T1)-((9/64)*T1*T2)); 
      s11_18(i,j) =  
0;%(T4*q0_dot*(rl(i,j)^(5/2)))*cos(5*tl(i,j)/2)*((k*(((1/10)*T1)-
((1/16)*T1*T2)-(1/10)-((3/16)*T2))) +((1/5)*T1)-((1/8)*T1*T2)); 
      s11_19(i,j) =  
0;%(T4*q0_dot*(rl(i,j)^(5/2)))*cos(7*tl(i,j)/2)*((k*(((-
1/64)*T1*T2)+((1/64)*T2))) -((1/32)*T1*T2)); 
       
      s11_20(i,j) =  -
((3*k)+2)*ac*((q0*(r(i,j)^(1/2))*cos(t(i,j)/2))+(q1*r(i,j)*sin(t(i,j)
))+(q2*(r(i,j)^(3/2))*cos(3*t(i,j)/2))); 
      s11_21(i,j) =  -
((3*k)+2)*ac*(((1/4)*gamma*q0*(r(i,j)^(3/2))*(((sin(beta)*sin(t(i,j)/
2))-(cos(beta)*cos(t(i,j)/2)))))); 
      s11_22(i,j) =  
((3*k)+2)*ac*((T5*c)/(4*at))*((q0*(r(i,j)^(3/2))*cos(t(i,j)/2))); 
      s11_23(i,j) =  -
((3*k)+2)*ac*(T5/(6*at))*((q0_dot*(r(i,j)^(5/2))*cos(t(i,j)/2))); 
       
      s22_1(i,j)  = ((3*S4/4)*A0*(rl(i,j)^(-1/2))*cos(tl(i,j)/2))-
((3*S4/4)*C0*(rl(i,j)^(-1/2))*sin(tl(i,j)/2)); 
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      s22_2(i,j)  = -((3*as/2)*B0*(rs(i,j)^(-1/2))*cos(ts(i,j)/2))-
((3*as/2)*D0*(rs(i,j)^(-1/2))*sin(ts(i,j)/2)); 
      s22_3(i,j)  = ((3*Q1*S5)+(2*Q6*S4)-
((15/2)*R3*al))*(rl(i,j)^(1/2))*cos(tl(i,j)/2); 
      s22_4(i,j)  = ((3*Q2*S5)-
(2*Q5*S4)+((15/2)*R4*al))*(rl(i,j)^(1/2))*sin(tl(i,j)/2); 
      s22_5(i,j)  = 
(((3/4)*Q1*S4)+(2*Q6*S5))*(rl(i,j)^(1/2))*cos(3*tl(i,j)/2); 
      s22_6(i,j)  = (((-
3/4)*Q2*S4)+(2*Q5*S5))*(rl(i,j)^(1/2))*sin(3*tl(i,j)/2); 
      s22_7(i,j)  = -((Q6/4)*S4)*(rl(i,j)^(1/2))*cos(7*tl(i,j)/2); 
      s22_8(i,j)  = -((Q5/4)*S4)*(rl(i,j)^(1/2))*sin(7*tl(i,j)/2); 
      s22_9(i,j)  = ((-
4*R5*as)+((15/4)*Q4*S6))*(rs(i,j)^(1/2))*cos(ts(i,j)/2); 
      s22_10(i,j) = ((-
4*R6*as)+((15/4)*Q3*S6))*(rs(i,j)^(1/2))*sin(ts(i,j)/2); 
      s22_11(i,j) = (-1.5*R2*as)*(rs(i,j)^(1/2))*cos(3*ts(i,j)/2); 
      s22_12(i,j) = (-1.5*R1*as)*(rs(i,j)^(1/2))*sin(3*ts(i,j)/2); 
      s22_13(i,j) = ((-R5/2)*as)*(rs(i,j)^(1/2))*cos(7*ts(i,j)/2); 
      s22_14(i,j) = ((R6/2)*as)*(rs(i,j)^(1/2))*sin(7*ts(i,j)/2); 
       
      s22_15(i,j) =  0;%-2*T3*q0*((r(i,j)^(1/2)))*cos(t(i,j)/2);             
%temperature terms 
      s22_16(i,j) =  
0;%(T4*q0_dot*(rl(i,j)^(5/2)))*cos(tl(i,j)/2)*((k*((0.5*T1)+((1/32)*T
1*T2)+(1/2)+((19/32)*T2))) +(1)+((19/16)*T2)); 
      s22_17(i,j) =  
0;%(T4*q0_dot*(rl(i,j)^(5/2)))*cos(3*tl(i,j)/2)*((k*(((3/16)*T1)-
((9/128)*T1*T2)-(3/16)-((39/128)*T2))) -((3/8))-((39/64)*T2)); 
      s22_18(i,j) =  
0;%(T4*q0_dot*(rl(i,j)^(5/2)))*cos(5*tl(i,j)/2)*((k*(((1/10)*T1)-
((1/16)*T1*T2)-(1/10)-((3/16)*T2))) -((1/5))-((3/8)*T2)); 
      s22_19(i,j) =  
0;%(T4*q0_dot*(rl(i,j)^(5/2)))*cos(7*tl(i,j)/2)*((k*(((-
1/64)*T1*T2)+((1/64)*T2))) +((1/32)*T2)); 
       
      s22_20(i,j) =  -
((3*k)+2)*ac*((q0*(r(i,j)^(1/2))*cos(t(i,j)/2))+(q1*r(i,j)*sin(t(i,j)
))+(q2*(r(i,j)^(3/2))*cos(3*t(i,j)/2))); 
      s22_21(i,j) =  -
((3*k)+2)*ac*(((1/4)*gamma*q0*(r(i,j)^(3/2))*(((sin(beta)*sin(t(i,j)/
2))-(cos(beta)*cos(t(i,j)/2)))))); 
      s22_22(i,j) =  
((3*k)+2)*ac*((T5*c)/(4*at))*((q0*(r(i,j)^(3/2))*cos(t(i,j)/2))); 
      s22_23(i,j) =  -
((3*k)+2)*ac*((T5)/(6*at))*((q0_dot*(r(i,j)^(5/2))*cos(t(i,j)/2))); 
       
       
      s12_1(i,j)  = ((3*al/2)*A0*(rl(i,j)^(-
1/2))*sin(tl(i,j)/2))+((3*al/2)*C0*(rl(i,j)^(-1/2))*cos(tl(i,j)/2)); 
      s12_2(i,j)  = ((3*S7/4)*B0*(rs(i,j)^(-1/2))*sin(ts(i,j)/2))-
((3*S7/4)*D0*(rs(i,j)^(-1/2))*cos(ts(i,j)/2)); 
      s12_3(i,j)  = ((4*Q5*al)-
((15/4)*R4*S8))*(rl(i,j)^(1/2))*cos(tl(i,j)/2); 
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      s12_4(i,j)  = ((4*Q6*al)-
((15/4)*R3*S8))*(rl(i,j)^(1/2))*sin(tl(i,j)/2); 
      s12_5(i,j)  = (((3/2)*Q2*al))*(rl(i,j)^(1/2))*cos(3*tl(i,j)/2); 
      s12_6(i,j)  = (((3/2)*Q1*al))*(rl(i,j)^(1/2))*sin(3*tl(i,j)/2); 
      s12_7(i,j)  = ((Q5/2)*al)*(rl(i,j)^(1/2))*cos(7*tl(i,j)/2); 
      s12_8(i,j)  = ((-Q6/2)*al)*(rl(i,j)^(1/2))*sin(7*tl(i,j)/2); 
      s12_9(i,j)  = ((3*R1*S9)-
(2*R6*S7)+((15/2)*Q3*as))*(rs(i,j)^(1/2))*cos(ts(i,j)/2); 
      s12_10(i,j) = ((3*R2*S9)+(2*R5*S10)-
((15/2)*Q4*as))*(rs(i,j)^(1/2))*sin(ts(i,j)/2); 
      s12_11(i,j) = ((-
(3/4)*R1*S7)+(2*R6*S9))*(rs(i,j)^(1/2))*cos(3*ts(i,j)/2); 
      s12_12(i,j) = 
(((3/4)*R2*S7)+(2*R5*S9))*(rs(i,j)^(1/2))*sin(3*ts(i,j)/2); 
      s12_13(i,j) = ((R6/4)*S7)*(rs(i,j)^(1/2))*cos(7*ts(i,j)/2); 
      s12_14(i,j) = ((R5/4)*S7)*(rs(i,j)^(1/2))*sin(7*ts(i,j)/2); 
       
      s12_15(i,j) =  0;%-2*T3*q0*((r(i,j)^(1/2)))*sin(t(i,j)/2);             
%temperature terms 
      s12_16(i,j) =  
0;%((T4/al)*q0_dot*(rl(i,j)^(5/2)))*sin(tl(i,j)/2)*((1/16)*T2); 
      s12_17(i,j) =  
0;%((T4/al)*q0_dot*(rl(i,j)^(5/2)))*sin(3*tl(i,j)/2)*((3/8)+((30/128)
*T2)); 
      s12_18(i,j) =  
0;%((T4/al)*q0_dot*(rl(i,j)^(5/2)))*sin(5*tl(i,j)/2)*((1/5)+((1/8)*T2
)); 
      s12_19(i,j) =  
0;%((T4/al)*q0_dot*(rl(i,j)^(5/2)))*sin(7*tl(i,j)/2)*((-1/32)*T2); 
       
       
       
      s11a(i,j) = 
(s11_1(i,j)+s11_2(i,j)+s11_3(i,j)+s11_4(i,j)+s11_5(i,j)); 
      s11b(i,j) = 
(s11_6(i,j)+s11_7(i,j)+s11_8(i,j)+s11_9(i,j)+s11_10(i,j)); 
      s11c(i,j) = 
(s11_11(i,j)+s11_12(i,j)+s11_13(i,j)+s11_14(i,j)+s11_15(i,j)); 
      s11d(i,j) = 
(s11_16(i,j)+s11_17(i,j)+s11_18(i,j)+s11_19(i,j)+s11_20(i,j)+s11_21(i
,j)); %+s11_22(i,j)+s11_23(i,j) 
      
s11(i,j)=(mue*exp(zeta*(x_bar(i,j))))*(s11a(i,j)+s11b(i,j)+s11c(i,j)+
s11d(i,j))+(A1*K1D); 
       
       
       
      s22a(i,j) = 
(s22_1(i,j)+s22_2(i,j)+s22_3(i,j)+s22_4(i,j)+s22_5(i,j)); 
      s22b(i,j) = 
(s22_6(i,j)+s22_7(i,j)+s22_8(i,j)+s22_9(i,j)+s22_10(i,j)); 
      s22c(i,j) = 
(s22_11(i,j)+s22_12(i,j)+s22_13(i,j)+s22_14(i,j)+s22_15(i,j)); 
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      s22d(i,j) = 
(s22_16(i,j)+s22_17(i,j)+s22_18(i,j)+s22_19(i,j)+s22_20(i,j)+s22_23(i
,j));%+s22_22(i,j)+s22_23(i,j) 
      
s22(i,j)=(mue*exp(zeta*(x_bar(i,j))))*(s22a(i,j)+s22b(i,j)+s22c(i,j)+
s22d(i,j)); 
       
      s12a(i,j) = 
(s12_1(i,j)+s12_2(i,j)+s12_3(i,j)+s12_4(i,j)+s12_5(i,j)); 
      s12b(i,j) = 
(s12_6(i,j)+s12_7(i,j)+s12_8(i,j)+s12_9(i,j)+s12_10(i,j));    
      s12c(i,j) = 
(s12_11(i,j)+s12_12(i,j)+s12_13(i,j)+s12_14(i,j)+s12_15(i,j));  
      s12d(i,j) = (s12_16(i,j)+s12_17(i,j)+s12_18(i,j)+s12_19(i,j)); 
      
s12(i,j)=(mue*exp(zeta*(x_bar(i,j))))*(s12a(i,j)+s12b(i,j)+s12c(i,j)+
s12d(i,j));         
         
     tmax(i,j)=sqrt((((s11(i,j)-s22(i,j))/2)^2)+(s12(i,j)^2));        
      
      
      
      
    end 
end 
  
%  figure(1) 
%  plot(t(20,:)*180/pi,s11(20,:),'-*r'); hold  on; 
%  ylabel('\sigma_x_x (MPa)','FontName','Timesnewroman') 
%  xlabel('\theta (degrees)','FontName','Timesnewroman') 
%  title('\sigma_x_x Plot') 
%   
%  figure(2) 
%  plot(t(20,:)*180/pi,s22(20,:),'-*r'); hold  on; 
%  ylabel('\sigma_y_y (MPa)','FontName','Timesnewroman') 
%  xlabel('\theta (degrees)','FontName','Timesnewroman') 
%  title('\sigma_y_y Plot') 
%   
%  figure(3) 
%  plot(t(20,:)*180/pi,s12(20,:),'-*r'); hold  on; 
%  ylabel('\sigma_x_y (MPa)','FontName','Timesnewroman') 
%  xlabel('\theta (degrees)','FontName','Timesnewroman') 
%  title('\sigma_x_y Plot') 
  
% figure(4) 
% contour(x_bar,y_bar,tmax,50); hold on; 
% ylabel('y (m)','FontName','Timesnewroman') 
% xlabel('x (m)','FontName','Timesnewroman') 
% title('Only Homogeneous \sigma_x_x') 
% colorbar 
% line([-0.005,0],[0,0]); 
% xlim([-0.003 0.003]) 
% ylim([-0.003 0.003]) 
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% print -dtiffnocompression Only_Homogeneous_sigma_y_y ; 
%  
% figure(5) 
% contour(x_bar,y_bar,s22,50); hold on; 
% ylabel('y (m)','FontName','Timesnewroman') 
% xlabel('x (m)','FontName','Timesnewroman') 
% title('Only Homogeneous \sigma_y_y') 
% colorbar 
% line([-0.005,0],[0,0]); 
% xlim([-0.003 0.003]) 
% ylim([-0.003 0.003]) 
%  
% figure(6) 
% contour(x_bar,y_bar,s12,50); hold on; 
% ylabel('y (m)','FontName','Timesnewroman') 
% xlabel('x (m)','FontName','Timesnewroman') 
% title('Only Homogeneous \sigma_x_y') 
% colorbar 
% line([-0.005,0],[0,0]); 
% xlim([-0.003 0.003]) 
% ylim([-0.003 0.003]) 
% figure(3) 
% contour(x_bar,y_bar,s12,100); hold on; 
% ylabel('y (m)','FontName','Timesnewroman') 
% xlabel('x (m)','FontName','Timesnewroman') 
% title('Only Homogeneous \stau_x_y') 
% colorbar 
% line([-0.005,0],[0,0]); 
% xlim([-0.003 0.003]) 
% ylim([-0.003 0.003]) 
%  
% figure(4) 
% contour(x_bar,y_bar,tmax,30); hold on; 
% ylabel('y (m)','FontName','Timesnewroman') 
% xlabel('x (m)','FontName','Timesnewroman') 
% title('Only Homogeneous \stau_m_a_x') 
% colorbar 
% line([-0.005,0],[0,0]); 
% xlim([-0.003 0.003]) 
% ylim([-0.003 0.003]) 
  
  
% figure(3) 
%  plot(t(20,:)*180/pi,s12(20,:),'-o') 
%  ylabel('\tau_x_y(MPa)','FontName','Timesnewroman') 
%  xlabel('\theta(degrees)','FontName','Timesnewroman') 
%  title('Only Homogeneous \tau_x_y') 
  
% figure(9) 
%  
  
  
% figure(100) 
% plot(x_bar(:,1), s22(:,1),'-k');hold on; 
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% figure(101) 
% plot(x_bar(:,1), s12(:,1),'-k') 
   
PP = polyfit(x_bar(:,1),s22(:,1),4); 
QQ = polyfit(x_bar(:,1),(((s12(:,1))-(s12(:,361)))/2),4); 
%QQ = polyfit(x_bar(:,1),s12(:,1),4); 
  
% figure(100) 
% plot(x_bar(:,1), s22(:,1), '-k'); hold on; 
% plot(x_bar(:,1), (PP(1)*x_bar(:,1).^4 + PP(2)*x_bar(:,1).^3 + 
PP(3)*x_bar(:,1).^2 + PP(4)*x_bar(:,1) + PP(5)), 'or') 
%  
% figure(101) 
% plot(x_bar(:,1), s12(:,1), '-k'); hold on; 
% plot(x_bar(:,1), (QQ(1)*x_bar(:,1).^4 + QQ(2)*x_bar(:,1).^3 + 
QQ(3)*x_bar(:,1).^2 + QQ(4)*x_bar(:,1) + QQ(5)), 'or') 
  
L_ploy(1) = PP(1)/5; 
L_ploy(2) = PP(2)/4;   
L_ploy(3) = PP(3)/3; 
L_ploy(4) = PP(4)/2; 
L_ploy(5) = PP(5)/1; 
  
M_ploy(1) = QQ(1)/5; 
M_ploy(2) = QQ(2)/4;   
M_ploy(3) = QQ(3)/3; 
M_ploy(4) = QQ(4)/2; 
M_ploy(5) = QQ(5)/1; 
  
for i = 1 : length(x_bar(:,1)) - 1 
    Load_P2(i) = ((L_ploy(1)*x_bar(i,1)^5 + L_ploy(2)*x_bar(i,1)^4 + 
L_ploy(3)*x_bar(i,1)^3 + L_ploy(4)*x_bar(i,1)^2 + 
L_ploy(5)*x_bar(i,1)^1) ... 
    - (L_ploy(1)*x_bar(i+1,1)^5 + L_ploy(2)*x_bar(i+1,1)^4 + 
L_ploy(3)*x_bar(i+1,1)^3 + L_ploy(4)*x_bar(i+1,1)^2 + 
L_ploy(5)*x_bar(i+1,1)^1)); 
  
    Load_Q2(i) = ((M_ploy(1)*x_bar(i,1)^5 + M_ploy(2)*x_bar(i,1)^4 + 
M_ploy(3)*x_bar(i,1)^3 + M_ploy(4)*x_bar(i,1)^2 + 
M_ploy(5)*x_bar(i,1)^1) ... 
    - (M_ploy(1)*x_bar(i+1,1)^5 + M_ploy(2)*x_bar(i+1,1)^4 + 
M_ploy(3)*x_bar(i+1,1)^3 + M_ploy(4)*x_bar(i+1,1)^2 + 
M_ploy(5)*x_bar(i+1,1)^1)); 
  
    c_mid(i)=(x_bar(i,1)+x_bar(i+1,1))/2; 
    d(i) = abs(c_mid(i)); 
    
end 
for i = 1 : length(x_bar(:,1)) - 1 
PP1=polyfit(c_mid,Load_P2,4); 
QQ1=polyfit(c_mid,Load_Q2,4); 
c1(i)= (x_bar(i,1));%+x_bar(i+1,1))/2; 



 

240 

 

Load_P(i) = 
PP1(1)*c1(i).^4+PP1(2)*c1(i).^3+PP1(3)*c1(i).^2+PP1(4)*c1(i).^1+PP1(5
); 
Load_Q(i) = 
QQ1(1)*c1(i).^4+QQ1(2)*c1(i).^3+QQ1(3)*c1(i).^2+QQ1(4)*c1(i).^1+QQ1(5
); 
 d1(i) = abs(c1(i));%-0.0000000000029; 
 d1(i) = abs(c1(i));%-0.0000000000046; 
end 
% figure(301) 
% plot(x_bar(1:49,1),Load_P2); 
% plot(x_bar(1:49,1),Load_P,'k'); 
%  
% figure(302) 
% plot(x_bar(1:49,1),Load_Q,'k'); 
% plot(x_bar(1:49,1),Load_Q2); 
  
  
  
  
correction_s11_1 = zeros(length(r_base),length(theta_base)); 
sum_correction_s11_1 = zeros(length(r_base),length(theta_base)); 
correction_s22_1 = zeros(length(r_base),length(theta_base)); 
sum_correction_s22_1 = zeros(length(r_base),length(theta_base)); 
correction_s12_1 = zeros(length(r_base),length(theta_base)); 
sum_correction_s12_1 = zeros(length(r_base),length(theta_base)); 
correction_s11_2 = zeros(length(r_base),length(theta_base)); 
sum_correction_s11_2 = zeros(length(r_base),length(theta_base)); 
correction_s22_2 = zeros(length(r_base),length(theta_base)); 
sum_correction_s22_2 = zeros(length(r_base),length(theta_base)); 
correction_s12_2 = zeros(length(r_base),length(theta_base)); 
sum_correction_s12_2 = zeros(length(r_base),length(theta_base)); 
  
for m = 1 : length(Load_P) 
    b1 = d1(m);  % for sigmay 
    b2 = d1(m);   % for tauxy 
    b3 = d1(m);  %for sigmax 
     %b = -x_bar(m,1) + ((x_bar(1,1)-x_bar(2,1))/2); 
    
    for n = 1 : length(r_base) 
        for o = 1 : length(theta_base) 
            r_1_1(n,o) = sqrt( ((x_bar(n,o) + b1)^2) + (y_bar(n,o)^2) 
); 
            theta_1_1(n,o) = atan2( y_bar(n,o),(x_bar(n,o)+b1) ); 
            r_1_2(n,o) = sqrt( ((x_bar(n,o) + b2)^2) + (y_bar(n,o)^2) 
); 
            theta_1_2(n,o) = atan2( y_bar(n,o),(x_bar(n,o)+b2) ); 
             
            r_1_3(n,o) = sqrt( ((x_bar(n,o) + b3)^2) + (y_bar(n,o)^2) 
); 
            theta_1_3(n,o) = atan2( y_bar(n,o),(x_bar(n,o)+b3) ); 
%               Load_P(m) = 100; 
%               Load_Q(m) = 100; 
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            real_z_1(n,o) = (Load_P(m) * sqrt(b1)/pi)* ( 1/ 
(r_1_1(n,o)*sqrt(r(n,o)))) * cos ( theta_1_1(n,o) + t(n,o)/2 ); 
            imag_z_1(n,o) = -(Load_P(m) * sqrt(b1)/pi)* ( 1/ 
(r_1_1(n,o)*sqrt(r(n,o)))) * sin ( theta_1_1(n,o) + t(n,o)/2 ); 
            real_z_1_prime(n,o) = -(Load_P(m) * sqrt(b1)/pi) * ( 
(1/(2*r_1_1(n,o)*(r(n,o)^1.5))) * cos(theta_1_1(n,o) + 1.5*t(n,o)) +  
(1/(sqrt(r(n,o))*(r_1_1(n,o)^2)))* cos(2*theta_1_1(n,o) + t(n,o)/2)); 
            imag_z_1_prime(n,o) = (Load_P(m) * sqrt(b1)/pi) * ( 
(1/(2*r_1_1(n,o)*(r(n,o)^1.5))) * sin(theta_1_1(n,o) + 1.5*t(n,o)) +  
(1/(sqrt(r(n,o))*(r_1_1(n,o)^2)))* sin(2*theta_1_1(n,o) + t(n,o)/2)); 
            real_z_2(n,o) = (Load_Q(m) * sqrt(b2)/pi)* ( 1/ 
(r_1_2(n,o)*sqrt(r(n,o)))) * cos ( theta_1_2(n,o) + t(n,o)/2 ); 
             
            imag_z_2(n,o) = -(Load_Q(m) * sqrt(b2)/pi)* ( 1/ 
(r_1_2(n,o)*sqrt(r(n,o)))) * sin ( theta_1_2(n,o) + t(n,o)/2 ); 
             
            real_z_2_prime(n,o) = -(Load_Q(m) * sqrt(b2)/pi) * ( 
(1/(2*r_1_2(n,o)*(r(n,o)^1.5))) * cos(theta_1_2(n,o) + 1.5*t(n,o)) +  
(1/(sqrt(r(n,o))*(r_1_2(n,o)^2)))* cos(2*theta_1_2(n,o) + t(n,o)/2)); 
             
            imag_z_2_prime(n,o) = (Load_Q(m) * sqrt(b2)/pi) * ( 
(1/(2*r_1_2(n,o)*(r(n,o)^1.5))) * sin(theta_1_2(n,o) + 1.5*t(n,o)) +  
(1/(sqrt(r(n,o))*(r_1_2(n,o)^2)))* sin(2*theta_1_2(n,o) + t(n,o)/2)); 
            
           real_z_1_s11(n,o) = (Load_P(m) * sqrt(b3)/pi)* ( 1/ 
(r_1_3(n,o)*sqrt(r(n,o)))) * cos ( theta_1_3(n,o) + t(n,o)/2 ); 
           imag_z_1_s11(n,o) = -(Load_P(m) * sqrt(b3)/pi)* ( 1/ 
(r_1_3(n,o)*sqrt(r(n,o)))) * sin ( theta_1_3(n,o) + t(n,o)/2 ); 
           real_z_2_prime_s11(n,o) = -(Load_Q(m) * sqrt(b3)/pi) * ( 
(1/(2*r_1_3(n,o)*(r(n,o)^1.5))) * cos(theta_1_3(n,o) + 1.5*t(n,o)) +  
(1/(sqrt(r(n,o))*(r_1_3(n,o)^2)))* cos(2*theta_1_3(n,o) + t(n,o)/2)); 
           imag_z_2_s11(n,o) = -(Load_Q(m) * sqrt(b3)/pi)* ( 1/ 
(r_1_3(n,o)*sqrt(r(n,o)))) * sin ( theta_1_3(n,o) + t(n,o)/2 ); 
             
            correction_s11_1(n,o) = real_z_1_s11(n,o) - 
y(n,o)*imag_z_1_s11(n,o); 
            correction_s22_1(n,o) = real_z_1(n,o) + 
y(n,o)*imag_z_1(n,o); 
            correction_s12_1(n,o) = -y(n,o)*real_z_1(n,o); 
            correction_s11_2(n,o) = y(n,o)*real_z_2_prime_s11(n,o)+ 
2*imag_z_2_s11(n,o); 
            correction_s22_2(n,o) = -y(n,o)*real_z_2_prime(n,o); 
            correction_s12_2(n,o) = -y(n,o)*imag_z_2_prime(n,o) + 
real_z_2(n,o); 
             
        end 
    end 
    sum_correction_s11_1= sum_correction_s11_1 + correction_s11_1; 
    sum_correction_s22_1= sum_correction_s22_1 + correction_s22_1; 
    sum_correction_s12_1= sum_correction_s12_1 + correction_s12_1; 
    sum_correction_s11_2= sum_correction_s11_2 + correction_s11_2; 
    sum_correction_s22_2= sum_correction_s22_2 + correction_s22_2; 
    sum_correction_s12_2= sum_correction_s12_2 + correction_s12_2; 
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end 
  
% for u=1:length(sum_correction_s11_1) 
%     if t(u)<0 
%          
%     final_s22 =  
  
  
  
% figure(3002) 
% contour(x_bar,y_bar,s22 + sum_correction_s22_1 + 
sum_correction_s22_2,50) 
% colorbar 
% ylabel('y (m)','FontName','Timesnewroman') 
% xlabel('x (m)','FontName','Timesnewroman') 
% title('Only Homogeneous \sigma_y_y') 
% colorbar 
% line([-0.005,0],[0,0]); 
%  
% figure(1001) 
% plot(x_bar(:,1),  -(sum_correction_s12_2(:,4)), '-k'); hold on; 
% %plot(x_bar(:,311), -sum_correction_s12_2(:,311), '-k'); hold on; 
% %figure(1002) 
% plot(x_bar(:,1),s12(:,1)); hold on; 
% plot(x_bar(:,311),s12(:,311)); 
  
% figure(1002) 
% plot(x_bar(:,1),  -
(sum_correction_s12_1(:,1)+sum_correction_s12_2(:,1)), '-r'); hold 
on; 
% %plot(x_bar(:,311), -sum_correction_s12_2(:,311), '-k'); hold on; 
% %figure(1002) 
% plot(x_bar(:,1),s12(:,1)); hold on; 
% %plot(x_bar(:,311),s12(:,311)); 
  
% figure(1002) 
% plot(x_bar(:,1), -sum_correction_s22_2(:,1), '-k'); hold on; 
  
%Field copying from +- 3 degress from point load to the same as 3 
degress 
%one 
%sum_correction_s22_x = 
(sum_correction_s22_1(:,3)+sum_correction_s22_1(:,4))/2; 
sum_correction_s22_1(:,1)   = sum_correction_s22_1(:,3); 
 sum_correction_s22_1(:,2)   = 0.99*sum_correction_s22_1(:,3); 
 sum_correction_s22_1(:,3)   = 0.98*sum_correction_s22_1(:,3); 
% sum_correction_s22_1(:,4)   = sum_correction_s22_1(:,3); 
%sum_correction_s22_1(:,361) = sum_correction_s22_1(:,357); 
sum_correction_s22_1(:,361) = sum_correction_s22_1(:,359); 
 sum_correction_s22_1(:,360) = sum_correction_s22_1(:,359); 
% sum_correction_s22_1(:,359) = sum_correction_s22_1(:,358); 
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%Field copying from +- 3 degrees from point load to the same as of 3 
degrees 
%one 
  
sum_correction_s12_2(:,1)   = 1.14*sum_correction_s12_2(:,4); 
sum_correction_s12_2(:,2)   = 1.06*sum_correction_s12_2(:,4); 
sum_correction_s12_2(:,3)   = 1.05*sum_correction_s12_2(:,4); 
sum_correction_s12_2(:,361) = 1.14*sum_correction_s12_2(:,358); 
sum_correction_s12_2(:,360) = 1.11*sum_correction_s12_2(:,358); 
sum_correction_s12_2(:,359) = 1.1*sum_correction_s12_2(:,358); 
  
%Field copying from +- 3 degress from point load to the same as 3 
degress 
%one 
  
sum_correction_s11_1(:,1)   = sum_correction_s11_1(:,2); 
sum_correction_s11_1(:,2)   = sum_correction_s11_1(:,3); 
sum_correction_s11_1(:,3)   = sum_correction_s11_1(:,4); 
sum_correction_s11_1(:,361) = sum_correction_s11_1(:,358); 
sum_correction_s11_1(:,360) = sum_correction_s11_1(:,358); 
sum_correction_s11_1(:,359) = sum_correction_s11_1(:,358); 
  
% Reversing field of correction_Q field 
  
% for i = 1 : 181 
%     sum_correction_s12_2(:,i) = -sum_correction_s12_2(:,i); 
% end 
  
% figure(3001) 
% contour(x_bar,y_bar,sum_correction_s22_1,50) 
% colorbar 
%  
% figure(3002) 
% contour(x_bar,y_bar,sum_correction_s22_2,100) 
% colorbar 
%  
% figure(3003) 
% contour(x_bar,y_bar,sum_correction_s12_1,50) 
% colorbar 
%  
% figure(3004) 
% contour(x_bar,y_bar,sum_correction_s12_2,100) 
% colorbar 
  
% final_s22= s22 + sum_correction_s22_1 - sum_correction_s22_2 ; 
% final_s11 = s11 + sum_correction_s11_1 - sum_correction_s11_2; 
% final_s12 = s12 + sum_correction_s12_1 - sum_correction_s12_2; 
%s22(:,361) = -s22(:,361); 
%s11(:,361) = -s11(:,361); 
% for i = 1 : 181 
%     sum_correction_s12_2(:,i) = -sum_correction_s12_2(:,i); 
% end 
for (i=1:length(r_base)) 
    for (j=1:length(theta_base)) 
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    final_s11(i,j) = s11(i,j) 
+sum_correction_s11_1(i,j)+sum_correction_s11_2(i,j); 
     
    
end 
    end 
  
for (i=1:length(r_base)) 
    for (j=1:length(theta_base)) 
if t(i,j)>1.7; 
    
    final_s22(i,j) = s22(i,j) -
sum_correction_s22_1(i,j)+sum_correction_s22_2(i,j); 
     
else 
     
    final_s22(i,j) = s22(i,j) 
+sum_correction_s22_1(i,j)+sum_correction_s22_2(i,j); 
     
     
end 
    end 
end 
 for (i=1:length(r_base)) 
    for (j=1:length(theta_base)) 
if t(i,j)<-0.85; 
    
    final_s12(i,j) = s12(i,j) -
sum_correction_s12_1(i,j)+sum_correction_s12_2(i,j); 
else 
     
    final_s12(i,j) = s12(i,j) +sum_correction_s12_1(i,j)-
sum_correction_s12_2(i,j); 
     
     
end 
    end 
 end 
  for i = 1 : length(r_base) 
    for j = 1 : length(theta_base)  
     final_tmax(i,j)=sqrt((((final_s11(i,j)-
final_s22(i,j))/2)^2)+(final_s12(i,j)^2));  
     
sigma1(i,j)=((final_s11(i,j)+final_s22(i,j))/2)+sqrt((((final_s11(i,j
)-final_s22(i,j))/2)^2)+(final_s12(i,j)^2)); 
    sed(i,j)=(1/(4*(mue*exp(zeta*x_bar(i,j)))))*((1-nue)*(( 
final_s11(i,j))^2+ (final_s22(i,j))^2)-(2*nue* final_s11(i,j)* 
final_s22(i,j))+(2*(( final_s12(i,j))^2))); 
     N(i,j) = sigma1(i,j)/(1e7); 
    end 
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  end 
  %randtheta 
for (i=1:length(r_base)) 
    for (j=1:length(theta_base)) 
    
s11r(i,j)=(final_s11(i,j)*(cos(t(i,j)))^2)+(final_s22(i,j)*(sin(t(i,j
)))^2)+(2*final_s12(i,j)*(cos(t(i,j))*sin(t(i,j)))); 
    
s22r(i,j)=(final_s11(i,j)*(sin(t(i,j)))^2)+(final_s22(i,j)*(cos(t(i,j
)))^2)-(2*final_s12(i,j)*(cos(t(i,j))*sin(t(i,j)))); 
    s12r(i,j)=(-
final_s11(i,j)*(cos(t(i,j))*sin(t(i,j))))+(final_s22(i,j)*(sin(t(i,j)
)*cos(t(i,j))))+(final_s12(i,j)*((cos(t(i,j)))^2-(sin(t(i,j)))^2)); 
    N1(i,j) = s22r(i,j)/1e7; 
    end 
end 
%  figure(1) 
%  plot(t(20,:)*180/pi,final_s11(20,:),'-*r'); hold  on; 
%  ylabel('\sigma_x_x (MPa)','FontName','Timesnewroman') 
%  xlabel('\theta (degrees)','FontName','Timesnewroman') 
%  title('\sigma_x_x Plot') 
%   
%  figure(2) 
%  plot(t(20,:)*180/pi,final_s22(20,:),'-*r'); hold  on; 
%  ylabel('\sigma_y_y (MPa)','FontName','Timesnewroman') 
%  xlabel('\theta (degrees)','FontName','Timesnewroman') 
%  title('\sigma_y_y Plot') 
%   
%  figure(3) 
%  plot(t(20,:)*180/pi,final_s12(20,:),'-*r'); hold  on; 
%  ylabel('\sigma_x_y (MPa)','FontName','Timesnewroman') 
%  xlabel('\theta (degrees)','FontName','Timesnewroman') 
%  title('\sigma_x_y Plot') 
  
% figure(9004) 
% plot(x_bar(:,361),  (sum_correction_s12_2(:,361)), '-k'); hold on; 
% plot(x_bar(:,1),  (sum_correction_s12_2(:,1)), '-or'); hold on; 
% %plot(x_bar(:,311), -sum_correction_s12_2(:,311), '-k'); hold on; 
% %figure(1002) 
% plot(x_bar(:,1),s12(:,1)); hold on; 
% plot(x_bar(:,361),s12(:,361),'r'); hold on; 
%  
% plot(x_bar(:,311),s12(:,311));    
% figure(9001) 
% plot(x_bar(:,361),  (sum_correction_s12_2(:,361)), '-k'); hold on; 
% plot(x_bar(:,1),  (sum_correction_s12_2(:,1)), '-or'); hold on; 
% %plot(x_bar(:,311), -sum_correction_s12_2(:,311), '-k'); hold on; 
% %figure(1002) 
% plot(x_bar(:,1),s22(:,361)); hold on; 
% %plot(x_bar(:,311),s12(:,311)); 
%  
% figure(9002) 
% plot(x_bar(:,361),  (sum_correction_s12_2(:,361)), '-k'); hold on; 
% plot(x_bar(:,361),  (sum_correction_s12_1(:,361)), '-or'); hold on; 
% %plot(x_bar(:,311), -sum_correction_s12_2(:,311), '-k'); hold on; 



 

246 

 

% %figure(1002) 
% plot(x_bar(:,1),s12(:,361)); hold on; 
% %plot(x_bar(:,311),s12(:,311)); 
%  
% figure(9003) 
% plot(x_bar(:,361),  (sum_correction_s11_2(:,361)), '-k'); hold on; 
% plot(x_bar(:,361),  (sum_correction_s11_1(:,361)), '-or'); hold on; 
% %plot(x_bar(:,311), -sum_correction_s12_2(:,311), '-k'); hold on; 
% %figure(1002) 
% plot(x_bar(:,1),s11(:,361)); hold on; 
% %plot(x_bar(:,311),s12(:,311)); 
  
%    figure(5001) 
%    plot(t(20,:)*180/pi,s22(20,:),'-o'); hold on; 
% %   plot(t(20,:)*180/pi,sum_correction_s22_1(20,:)); hold on; 
% %   plot(t(20,:)*180/pi,sum_correction_s22_2(20,:),'r'); hold on; 
%     plot(t(20,:)*180/pi,final_s22(20,:),'-or'); hold on; 
% %  ylabel('\sigma_y_y (MPa)','FontName','Timesnewroman') 
% %  xlabel('\theta (degrees)','FontName','Timesnewroman') 
% %  title('\sigma_y_y Plot') 
%   
%   
%  figure(5002) 
%  plot(t(20,:)*180/pi,s12(20,:),'-o');hold on; 
%  plot(t(20,:)*180/pi,final_s12(20,:),'-or'); hold  on; 
%  plot(t(20,:)*180/pi,sum_correction_s12_1(20,:)); hold on; 
%  plot(t(20,:)*180/pi,sum_correction_s12_2(20,:),'or'); hold on; 
%  ylabel('\tau_x_y (MPa)','FontName','Timesnewroman') 
%  xlabel('\theta (degrees)','FontName','Timesnewroman') 
%  title('\tau_x_y Plot') 
%   
%   figure(5003) 
% %  plot(t(20,:)*180/pi,s12(20,:),'-o');hold on; 
%   
plot(t(20,1:361)*180/pi,(final_tmax(20,1:361)/(Kef/sqrt(2*pi*0.002)))
,'-o'); hold  on; 
% %  plot(t(20,:)*180/pi,sum_correction_s12_1(20,:)); hold on; 
% %  plot(t(20,:)*180/pi,sum_correction_s12_2(20,:),'or'); hold on; 
% %  plot(t(20,:)*180/pi,final_s12(20,:),'or'); hold on; 
%   ylabel('\tau_m_a_x / (K_e_f_f / 
\surd(2\pir))','FontName','Timesnewroman','FontSize',16) 
%   xlabel('\theta 
(degrees)','FontName','Timesnewroman','FontSize',16) 
%    xlim([-180 180]) 
%   %ylim([0 1.41]) 
% %  
legend('k=20,\beta=20^o','k=40,\beta=20^o','k=60,\beta=20^o','FontNam
e','Timesnewroman','FontSize',12); 
%    
legend('q_0=0','q_0=1000','q_0=2000');%,'k=20,\beta=20');%,'C/C_s=0.6
','C/C_s=0.4'); 
%  figure(2001) 
%  
 figure(5004) 
%plot(t(20,:)*180/pi,s12(20,:),'-o');hold on; 
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plot(t(20,1:361)*180/pi,(sigma1(20,1:361)/(Kef/sqrt(2*pi*0.002))),':g
','Linewidth',1.5); hold  on; 
 %plot(t(20,:)*180/pi,sum_correction_s12_1(20,:)); hold on; 
 %plot(t(20,:)*180/pi,sum_correction_s12_2(20,:),'or'); hold on; 
  ylabel('\sigma_1 / (K_e_f_f / 
\surd(2\pir))','FontName','Timesnewroman','FontSize',16) 
  xlabel('\theta (degrees)','FontName','Timesnewroman','FontSize',16) 
  xlim([-180 180]) 
  %ylim([-0.5 2.5]) 
 
%legend('k=20,\beta=20^o','k=40,\beta=20^o','k=60,\beta=20^o','FontNa
me','Timesnewroman','FontSize',12); 
  
legend('q_0=0','q_0=100','q_0=200');%,'k=20,\beta=20');%,'C/C_s=0.6',
'C/C_s=0.4'); 
  
  figure(5005) 
%plot(t(20,:)*180/pi,s12(20,:),'-o');hold on; 
  plot(t(20,1:361)*180/pi,(s22r(20,1:361)/(Kef/sqrt(2*pi*0.002))),'--
k','Linewidth',1.5); hold  on; 
 %plot(t(20,:)*180/pi,sum_correction_s12_1(20,:)); hold on; 
 %plot(t(20,:)*180/pi,sum_correction_s12_2(20,:),'or'); hold on; 
  ylabel('\sigma_\theta_\theta / (K_e_f_f / 
\surd(2\pir))','FontName','Timesnewroman','FontSize',16) 
  xlabel('\theta (degrees)','FontName','Timesnewroman','FontSize',16) 
  xlim([-180 180]) 
  %ylim([-0.5 2.5]) 
 
%legend('k=20,\beta=20^o','k=40,\beta=20^o','k=60,\beta=20^o','FontNa
me','Timesnewroman','FontSize',12); 
  
legend('q_0=0','q_0=100','q_0=200');%,'k=20,\beta=20');%,'C/C_s=0.6',
'C/C_s=0.4'); 
  
  figure(5006) 
% plot(t(20,:)*180/pi,s12(20,:),'-o');hold on; 
 plot(t(20,1:361)*180/pi,(sed(20,1:361)),'-^'); hold  on; 
 %plot(t(20,:)*180/pi,sum_correction_s12_1(20,:)); hold on; 
 %plot(t(20,:)*180/pi,sum_correction_s12_2(20,:),'or'); hold on; 
 ylabel('S (N.m/m^3)','FontName','Timesnewroman','FontSize',14) 
 xlabel('\theta (degrees)','FontName','Timesnewroman','FontSize',14) 
 xlim([-180 180]) 
% ylim([0 18e5]) 
 %legend('k=20,\beta=20^o','k=40,\beta=20^o','k=60,\beta=20^o'); 
 legend('\zeta = -0.4','\zeta = 0','\zeta = 0.4'); 
 % 
legend('q_0=0','q_0=1000','q_0=2000');%,'k=20,\beta=20');%,'C/C_s=0.6
','C/C_s=0.4'); 
  
  % contour(x_bar,y_bar,final_s22,100); hold on; 
% ylabel('y (m)','FontName','Timesnewroman') 
% xlabel('x (m)','FontName','Timesnewroman') 
% title('Only Homogeneous \sigma_y_y') 
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% colorbar 
% line([-0.005,0],[0,0]); 
% xlim([-0.003 0.003]) 
% ylim([-0.003 0.003]) 
% %print -dtiffnocompression Only_Homogeneous_sigma_y_y ; 
  
% figure(3001) 
% contour(x_bar,y_bar,final_s12,100); hold on; 
% ylabel('y (m)','FontName','Timesnewroman') 
% xlabel('x (m)','FontName','Timesnewroman') 
% title('Only Homogeneous \stau_x_y') 
% colorbar 
% line([-0.005,0],[0,0]); 
% xlim([-0.003 0.003]) 
% ylim([-0.003 0.003]) 
%  
% figure(4001) 
% [cc,h] = contour(x_bar,y_bar,final_tmax,30); hold on; 
% ylabel('\zeta_2 (m)','FontName','Timesnewroman') 
% xlabel('\zeta_1 (m)','FontName','Timesnewroman') 
% title('\Tau_m_a_x') 
% colorbar 
% line([-0.005,0],[0,0]); 
% xlim([-0.003 0.003]) 
% ylim([-0.003 0.003]) 
% H=clabel(cc,h,'manual'); 
% set(H,'FontSize',10,'FontWeight','bold','Color','red') 
% axis square; 
% grid on; 
  
figure(6001) 
%v = [30]; 
v = [1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 30 40 50];   
[cc,h] = contour(x_bar/0.003,y_bar/0.003,N,v); hold on; 
ylabel('\zeta_2/h ','FontName','Timesnewroman','FontSize',14) 
xlabel('\zeta_1/h ','FontName','Timesnewroman','FontSize',14) 
%title('\sigma_1') 
%colorbar 
line([-1,0],[0,0],'LineWidth',5,'Color','black'); 
xlim([-1 1]) 
ylim([-1 1]) 
H=clabel(cc,h,'manual'); 
set(H,'FontSize',10,'FontWeight','bold','Color','red') 
axis square; 
grid on; 
  
figure(6002) 
%v1 = [30]; 
v1 = [1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 30 40 50]; 
[cc,h] = contour(x_bar/0.003,y_bar/0.003,N1,v1); hold on; 
ylabel('\zeta_2/h ','FontName','Timesnewroman','FontSize',14) 
xlabel('\zeta_1/h ','FontName','Timesnewroman','FontSize',14) 
%title('\sigma_theta_theta') 
%colorbar 
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line([-1,0],[0,0],'LineWidth',5,'Color','black'); 
xlim([-1 1]) 
ylim([-1 1]) 
H=clabel(cc,h,'manual'); 
set(H,'FontSize',10,'FontWeight','bold','Color','red') 
axis square; 
grid on; 
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APPENDIX E: ASTM STANDARDS 

 

ASTM E 9 – 89a 

Standard Test Methods of Compression Testing of Metallic Materials ar Room 

Temperature 
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