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Chris Roman and Charles Reinholtz, Virginia Tech 

TOMATION, IN ITS MOST BEN- 
eficial form, should relieve humans of dan- 
gerous and boring endeavors. This philoso- 
phy has found broad application in industrial 
settings, where the environment is well-struc- 
tured and cost-to-benefit analysis or safety 
regulations can justify the expense of automa- 
tion. With the recent availability of reliable 
and inexpensive computer-vision systems and 
microcontrollers, AI system developers are 
applying automation to more complex and 
unstructured tasks, such as autonomously 
guided vehicles. The potential for reducing 
automobile accidents deatbs and injuries is, 
in itself, a compelling reason to pursue sys- 
tems that enhance driver performance and 
minimize errors due to poor judgement or 
inaccurate driver perception.‘ 

In pursuit of such systems, the Society of 
Automotive Engineers, the Association for 
Unmanned Vehicle Systems, and Oakland 
University jointly sponsor the annual Un- 
manned Ground Robotics Competition. This 
competition fosters the development of small 
robotic vehicles that can autonomously nav- 
igate an outdoor obstacle course approxi- 
mately 700 feet long. Continuous or clashed 
white or yellow boundary lines on grass or 
pavement define the course, which includes 
obstacles, a steep incline, and a sandpit. The 
vehicles must be completely autonomous, 
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PR( :TICAL AUTOL $0 fOUS ROBOTIC IEHICLES REQ TRE 
DEPENDABLE METHODS FOR ACCURATELY IDENTJFYRG COURSE 
OR ROADWY BOUNDARTES. THE AUTHORS HAVE DEVELOPED A 

METHOD TO RELLABLY EXTRACT THE BOUNDARY LliVE USlNG 

SLMPLE DYNRiMIC THRESHOLDlNG, NOISE FILTERZNG, AND BLOB 
REMOWL. THIS ARTICLE DESCRIBES THEIR EFFORTS TO APPLY 
THlS PROCEDURE lN DEVELOPliVG A N  AUTONOMOUS PTHICLE. 

meaning that all sensing, computation, con- 
trol, and power systems must be on board. 

Path following 

The major hurdle for a mobile robot’s 
vision system is in ensuring reliable percep- 
tion, which then guarantees efficient auton- 
omous navigation: “Perception robustness 
depends essentially upon the reliability of the 
road-edge extraction algorithm.”2 Further- 
more, the system must correctly identify its 
path under a wide range of light and weather 
condtions. The computer-vision-based path- 
following problem is critical for many 
mobile-robot  application^.'.^,^ In a typical 
roadway-following situation, an algorithm’s 

performance is judged based on its speed and 
consistency. Approaches based on sophisti- 
cated edge-detection methods or complex 
transforms iLequently limit controller update 
rates, which leads to navigation errors. In our 
experience, it is better to use computation- 
ally simple algorithms running at higher 
speeds. Furthermore, we find that intensity- 
based line-finding approaches are simpler 
and more robust than any edge-detection 
method. 

Our task thus far has centered on devel- 
oping a consistent method of extracting white 
or yellow lines from a grass or asphalt back- 
ground. Painted using flat latex paint, the 
lines are approximately 4-inches wide. The 
grass or asphalt background can vary widely 
in appearance, with the grass ranging from a 
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uniform green, to spotted green and yellow, 
to completely brown (see Figure l), and the 
asphalt from high-contrast black to low- 
contrast gray. In each instance, the line or 
background’s quality will likely change as 
the vehicle traverses the course. Beyond the 
lines’ pure physical quality, we must also 
account for the effect of weather conditions 
on system performance. Rain or glare from 
direct sunlight can significantly change the 
lines’ apparent quality and increase the line- 
extraction procedure’s difficulty. 

Computer-vision system 

The overall computer-vision system, im- 
plemented on a mobile robot we call Chris- 
tine, includes the hardware used to capture 
images of the vehicle path and the software 
written to process the image. The basic hard- 
ware consists of a single high-resolution black 
and white charge-coupled device (CCD) cam- 
era with an auto-iris, 3.5 to 8 mm zoom lens, 
a Current Technologies frame grabber with 
onboard digital signal processor, and a Pen- 
tium 200-MHz personal computer. As the 
sidebar shows, the camera mounts to an 
adjustable rail to allow viewing at various 
angles and heights from approximately four 
to six feet above the ground. The vision sys- 
tem’s hardware section provides an 8-bit black 
and white image that is stored on the frame- 
grabber board. We set up the frame grabber to 
capture 5 12 x 5 12-pixel images. 

Once the frame grabber obtains an image, 
the system manipulates it using both the DSP 
functions resident on the frame-grabber board 
and in the PC memory buffer. The original 
image (512 x 512 pixels) reduces to two 
regions of interest (ROIs), which are of var- 
able size and move dynamically around the 
screen following the line in the image. Re- 
ducing the processing region’s size decreases 
both the image-processing time and the time 
required to transfer the image from the frame- 
grabber image buffer to the host PC memory. 
Analyzing only the portion of the visual field 
needed for effective navigation reduces exe- 
cution timeFP Figure 2 shows a typical course 
as viewed from the CCD camera and as a 
human observor would see it. 

Boundary-detection techniques. The vision 
system’s primary goal is to determine the 
path-boundary location in the image-coordi- 
nate system. Two popular methods for this 
task are edge detection and pixel-intensity 

analysis. In either case, the algorithm’s suc- 
cess depends on its ability to 

find and locate a line in the image, 
eliminate noise or ignore noise and reflec- 
tions (large bright specular regions caused 
by the sun), and 
reduce false detection and reject obsta- 
cles that might be confused with the 
course b ~ u n d a r y . ~  

These criteria are similar to those John 
Canny developed to design and evaluate the 
performance of optimal edge-detection meth- 
o d ~ . ~ , ~  To select a method for boundary iden- 
tification, we must determine which approach 
is best suited to operate efficiently and reli- 
ably under the given conditions. 

For roadway-following problems, two dis- 
tinguishing characteristics of the boundary 
line are the presence of the line edges and the 
line’s overall intensity compared to the back- 
ground. Therefore, either edge-detection or 
pixel-intensity methods would work for find- 
ing course boundaries. Edge-detection meth- 
ods seek to find abrupt intensity transitions in 
the image, which represent an edge. An ideal 
edge is represented by a rapid change in inten- 
sity along animage contour, the most obvious 
being a step edge.7 Our experience with road- 

Figure 1. A typical line painted on grass, which shows 
the different shades of green and brown contained in 
the grass as well as the varying intcmsity of the line. 
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effects on the boundary-identification algo- 
rithm. Very small collections of high-inten- 
sity pixels caused by glare and reflection 
affect image quality most significantly. 

Figure 2. The course (a) as it would appear to a human observer and (b) as seen by the CCD camera. 

ways and obstacle courses indicates that line 
edges are often blurred and poorly defined. 

As an alternative to edge detection, we pro- 
pose a simple intensity-based method that 
relies on two key assumptions: that the 
boundary lines will be the most intense, well- 
structured line-like features in the image, and 
that the line will occupy a small percentage 
of the entire image. From our experience, the 
course’s boundary lines in most practical sit- 
uations fulfill these assumptions. Others 
working with vehicle roadway navigation 
have made similar assumptions.8 We imple- 
ment this pixel-intensity method by isolating 
pixels of a specific relative-intensity level 
using a thresholding operation. A sample 
image obtained using the vision system shows 
how we can evaluate the characteristics of the 
line edge and intensity. 

Figure 3 shows the pixel intensities for a 
single row of pixels obtained by sampling a 
typical line on a grass background using a 
125-pixel-wide ROI. The higher-intensity 
peak represents the line, and the low-inten- 
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sity fluctuations result from variation in the 
grass background and noise. This test image 
shows a definite intensity difference between 
the line and image background. It also shows 
the transition between the lower- and higher- 
intensity levels that form the line edge. In this 
situation, the edge is marked by a definite 
increase in intensity over a range of approx- 
imately five pixels. This intensity change 
would be considered a broad edge, which is 
typical of a line that has been spray-painted 
on grass or a rough asphalt ~urface.~ Although 
the edge’s quality might change, it,is unlikely 
that the edge will ever appear as a crisp, dis- 
tinct transition that would characterize an 
ideal edge. 

Aside from the image’s edge quality and 
the separation between the line and back- 
ground intensity levels, we must consider the 
amount of random noise in the image. For a 
line-identification routine to work success- 
fully, it must have reduced sensitivity to noise 
in the image. Many features in the image 
cause noise, and this noise has a variety of 

Advantages and shortcomings of edge 
detection. Although edge-detection tech- 
niques work in many different situations, 
several drawbacks limit their effectiveness 
in course- or roadway-following applica- 
tions. Both intensity-based line extraction 
and edge-detection algorithms work well 
when the images contain relatively little 
noise and the lines are sharp and distinct. 
The performance difference between the 
methods becomes apparent when the im- 
ages contain high levels of noise and vary- 
ing background intensities. System devel- 
opers often evaluate the performance of 
edge-detection algorithms on noisy images 
assuming an evenly distributed Gaussian 
white noise superimposed on a step or ramp 
edge.5,6 Although many effective edge- 
detection methods have been developed 
using this assumption, it is not the best char- 
acterization of the noise present in a typical 
outdoor environment. 

In a controlled or more structured envi- 
ronment, the Gaussian noise is a good as- 
sumption that can be mathematical charac- 
terized and used to design edge-detection 
 method^.^ The white noise adds no structure 
of its own to the edge and hence leaves the 
edge’s underlying properties unchanged. In 
the outdoor environment, however, the image 
quality usually suffers from disturbances that 
have structure, such as patchy grass or sec- 
tions of high specular reflection. 

Because simple edge-detection algori- 
thms are essential high-pass filters they are 
prone to detecting false edges in an environ- 
ment where the image contains structured 
disturbances. More sophisticated algorithms 
that are less prone to identifying false edges 
are often computationally intensive. The dan- 
ger of identifying false edges is one of the 
most critical performance characteristics in 
edge-detection algorithms?-6 

All edge-detection algorithms generate a 
second image, sometimes called an intrinsic 
image, that has high intensity in places where 
the original image had a high rate of intensity 
change. Following the application of the 
edge-detection algorithm, the intrinsic image 
must be evaluated to isolate the strongest 
responses. This most often involves selecting 
a threshold to isolate the true edges in the 
image from the background noise. Selecting 
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this thresholding value for the intrinsic image 
complicates the edge-detection procedure, 
because it must isolate the strongest responses 
and not introduce false edges. Determining a 
threshold value for the intrinsic image is dif- 
ficult because the features that show up in the 
intrinsic image are directly affected by the 
smoothing operation performed on the image 
prior to edge d e t e ~ t i o n . ~ , ~  

To look at the performance of an edge- 
detection alogorithm, we use the sobel oper- 
ator, which is a common edge-detection 
method frequently used as a basis for com- 
par i~on.~ This fist-order method is relatively 
stable in reducing image noise compared to 
second-order operators: Figure 4 shows the 
response of the sobel operator on a typical 
course-boundary image. The edge detector 
responds to the presence of the line edge in 
the image, but it also shows a response to 
typical levels of image noise. To distinguish 
between the line and the noise in the intrin- 
sic image, a threshold value must be selected 
by the algorithm. The ability to distinguish 
the response of an edge from image noise 
using a thresholding filter depends on the 
edge being relatively sharp and having a 
high contrast relative to the background. In 
the outdoor environment, we find that edge 
detection does not handle specular reflec- 
tion well.’ The reflection of sunlight on 
grass, for example, often exhibits sharper 
contrast than the course’s edges, which 
means that these edges are incorrectly con- 
sidered to be lines. 

Processing time for edge-detection algo- 
rithms is also an important consideration. 
The more robust edge-detection algorithms 
often use large convolution masks to effec- 
tively reduce the indication of false edges. 
The line quality and edge size to be detected 
govern the size of the convolution mask 
needed to identify the edge. To identify an 
edge transition that occurs over four or more 
pixels requires at least a 5 x 5-pixel convo- 
lution mask. Even so, broad edges lead to a 
much-reduced response. Only a portion of 
the edge is under the mask at one time, 
which reduces the apparent change in inten- 
sity to a fraction of that which occurs across 
the entire edge. When considering the 
presence of a broad edge in a noisy image, 
the edge detector’s response might be no 
stronger than the response generated from 
the image noise. In many cases, distin- 
guishing the noise from the broad edge with- 
out a sophisticated search of the intrinsic 
image might become impossible? 
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I Pixel number I 
Figure 3. A single row of pixel intensities for the line shown in Figure 1. (Pixel intensity is o relative value from zero to 
255. Zero represents black; 255 represents white.) 

I Pixel number I 
Figure 4. A single row of pixel intensities after o sobel filter. The two highest spikes indicate the line edges. The remain- 
der are noise. (Pixel intensity is a relotive value from zero to 255. Zero represents black; 255 relpresents white.) 

Intensity-based line 
ex t rat tion 

The primary assumption made in intensity- 
based line extraction is that collections of the 
image’s brightest pixels will indicate the 
course boundaries, In this sense, it is very 
similar to a road lane where we know that, 
under almost all conditions, the lane bound- 
aries will be the brightest and most well- 
structured markings in the immediate envi- 
ronment. Intensity-based boundary extraction 
attempts to use the image’s most stable prop- 
erty as the primary line-identification tool. 
The histogram is stable, available at low cal- 
culation cost, and shows some advantages 
over edge-detection methods “under espe- 
cially evil conditions with luminance varia- 
tion or sun shade or rain drops.”s 

Beginning with the digitized image, the 
entire line-extraction process takes four steps: 

high-frequency image-noise reduction, 
binary-image thresholding, - post-extraction noise reduction, and 
position analysis of the extracted line. 

High-frequency image-noise reduction. 
Once we have obtained the image, we would 
like to remove high-frequency noise from it. 
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The image noise comes from spurious, high- 
intensity pixels that are not part of the line. 
These pixels are generally the product of sin- 
gle-point, high-intensity light reflection off 
of the grass or asphalt course surface. De- 
pending on the environmental conditions, the 
amount of high-frequency noise and spuri- 
ous disturbances can be quite significant. 
Because the major intrinsic property of the 
line in the image is its intensity, we would 
like to attenuate the intensity of all pixels that 
do not indicate the line. We can reduce noise 
using a simple blurring 3 X 3-pixel convolu- 
tion mask. The size of the convolution mask 
used depends on the line’s relative pixel 
width. In our case, the 3 x 3 mask worked 
well for a line typically between 4 and 6 pix- 
els wide. For intensity-based line extraction, 
this operation has little affect on the ability to 
locate a line because pixells that occur in 
groups (such as those contained in the line) 
are left unchanged. Using such a blurring 
operation during the edge-detection algo- 
rithm will affect the result because the line 
edges will be “softened,” hence comphcat- 
ing the edge-detection process. 

Binary-image thresholding using a his- 
togram. The line-extraction procedure’s 
most significant operation is ithe binary thres- 
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Figure 5. The ideal histogram for thresholding contains high- and low-intensity pixel collections (Pixel intensity is a rel- 
ative value from zero to 255. Zero represents black; 255 represents white.) 

1,200 

1,000 

800 

- 8 600 

a- 400 

200 

0 

c 
r 3 

W 
.- 

51 101 151 201 251 
&bit oixel intensitv 

Figure 6. An actual image histogram with two possible thresholding values highlighted. (Pixel intensity is a relative 
value from zero to 255. Zero represents black; 255 represents white.) 

hold of the image. This procedure will iso- 
late all pixels in the ROI that have an inten- 
sity greater than a specific threshold value. 
The image’s content after the threshold is 
based on the selection of the thresholding 
value. Ideally, we would like to have only the 
pixels that represent the line remaining after 
the thresholding operation. 

In its simplest form, we use the threshold- 
ing process to separate a feature in an image 
based on apparent intensity. In our case, we 
would like to isolate the line from the remain- 
der of the image by eliminating the lower- 
intensity image background and leaving the 
higher-intensity line. A pixel-intensity his- 
togram such as the one in Figure 5 is a simple 
way to represent the specific intensity levels 
present in the image. This graph shows what 
the histogram might look like for an ideal case, 
which would be a monochromatic high-inten- 
sity line on a low-intensity background. In this 
case, we would select a value between the two 
intensity spikes on the histogram for the 
threshold. This selection would completely 
isolate the line from the background. 

Although the actual images recorded with 
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the CCD camera are not bimodal, the inten- 
sity-separation principle still applies. The 
graph in Figure 6 shows an actual histogram 
for a typical image. Although the separation 
between the line and the image background is 
not as distinct as for the ideal case, we can see 
that the higher-intensity line is represented by 
a collection of pixels at the scale’s higher end. 
The histogram’s colored portions show pos- 
sible threshold values. If the overall light 
intensity decreases due to a shadow or cloud, 
the entire pixel count on the histogram will 
shift to the left, but it will maintain the same 
general shape. To smooth out the histogram, 
adjacent columns can be averaged with min- 
imal loss in resolution. This histogram’s shape 
will also change with the use of optical filters 
and polarizers. Depending on the environ- 
mental conditions, these passive methods can 
significantly improve our ability to distinguish 
between the line and the background. 

To complete the thresholding procedure 
using the histogram, we must select a thresh- 
old intensity. In a controlled environment, we 
can do that statically. In this case, we set a sin- 
gle intensity and threshold all images using it. 

This, howevcr, does not cornpcnsate lor inten- 
sity changes that occur in the image due to 
environmental changes. Outdoors, operating 
in natural light, a static thresholding system is 
sub.ject to many problems and will not gen- 
erate consistent results. If the image’s overall 
intensity changes, there will either be more 
noise in the image or fewer pixels. For con- 
sistent results, we must use a dynamic method 
for selecting the threshold intensity to evalu- 
ate each image independently. 

The dynamic thresholding routine should 
select the thresholding intensity that sepa- 
rates the line from the image background. 
The pixels at the histogram’s highest end 
should represent the line in the image. Mov- 
ing from right to left on the histogram, the 
pixel intensity decreases and a transition 
occurs between the higher-intensity line and 
the majority of pixels composing the image 
background. To find this transition’s edge, 
we have implemented a simple gradient rou- 
tine to move across the histogram from right 
to left and look for a sharp increase in the 
pixel count between adjacent intensity val- 
ues. Once it identifies the transition’s edge, 
the routine adds an offset value to the corre- 
sponding intensity to determine the actual 
thresholding intensity. The offset value will 
move the thresholding intensity away from 
the transition region and into the higher- 
intensity line pixels. Although some line pix- 
els will be removed from the image by adding 
this offset to the threshold, the number of 
questionable or extraneous pixels that are also 
removed makes the sacrifice worthwhile. 

The parameters used to define this threshold 
selection routine are the step and the offset val- 
ues. Step refers to the gradient between two 
adjacent intensities and offset refers to the value 
added to the gradient intensity. Figure 6 showed 
the histogram with the edge transition high- 
lighted in dark gray and the shifted threshold 
value in light gray. Figure 7a shows the image 
thresholded at the value indicated in dark 
gray-that is, with zero offset. Figure 7b shows 
the same initial image thresholded with the OR- 
set value. Adding the offset clearly improves 
the processed image‘s overall quality. 

The step and offset parameters must be 
specified when the algorithm begins. The 
initial values can be set by the operator or 
determined automatically by examining sev- 
eral test images during an initialization pro- 
cedure. While the algorithm is running, the 
values for step and offset can change dynam- 
ically depending on the post-line-extraction 
image-analysis results. 

IEEE INTELLIGENT SYSTEMS 



The intensity-based line-extraction proce- 
dure we’ve described has many advantages 
over edge-detection techniques. Intensity 
transitions between different background 
colors or between shadowed regions of the 
image do not affect the line-extraction pro- 
cedure. The procedure can also effectively 
determine when there is no line in the image. 
As the vehicle traverses the course, we must 
consider the possibility that a line might 
leave the camera’s field of view. Because this 
is a monocular vision system, the inside or 
outside line might get “lost” while the vehi- 
cle makes a tight tum. It is essential to rec- 
ognize that the line is outside of the field of 
view rather than identifying noise in the 
image as a false line. 

As we’ve noted, the intensity-based line- 
extraction procedure uses an offset value to 
move the threshold away from the transition 
region. By counting the number of pixels that 
occur above the threshold, we can determine 
if no line is present in the image. The pres- 
ence of a sufficient number of pixels above 
the threshold, however, does not guarantee 
that there is a usable boundary line in the 
image. A post-line-extraction error analysis 
will help determine if the remaining pixels 
actually form a coherent line. It is important 
to monitor the pixel count and determine if a 
line could not be in the image. If there is no 
possibility of a line being in the image, we 
can abort all subsequent processing to speed 
up the entire system. 

Also, the intensity-based line-extraction 
method requires only a small amount of com- 
putational time to identify the line. In our 
testing, the intensity-based approach proved 
to be far more robust than simple edge-detec- 
tion techniques that ran in a comparable 
time-and far more efficient than broad 
edge-masking techniques. 

Post-extraction noise reduction. Once the 
binary threshold finishes, the image should 
contain a collection of points that correspond 
to the image’s most intense continuous 
regions. The implementation of two post- 
line-extraction algorithms cleans up the 
image by removing spurious pixels that were 
above the threshold value but do not indicate 
a line. The post-extraction noise reduction is 
simple for the intensity-based system. The 
thresholding procedure should leave a col- 
lection of pixels of generally consistent shape 
and density that compose the line. To clean 
up the image, we implement two filters to 
remove groups of pixels either too small or 

NOVEMBER /DECEMBER 1998 

Figure 7. Thresholded images: (a) a noisy line and (b) a clem line. 

large to be part of the line. However, in the 
case of edge detection, the intrinsic image 
has much less structure when the original 
image is very noisy. This complicates the 
ability to clean up the intrinsic image and 
extract the line. 

First, a simple convolution mask runs over 
the image to remove pixels that are isolated 
from large groups of pixels. The second algo- 
rithm runs over the image to detect and 
remove pixel collections that are too large to 
be part of a line. 

This routine successfully removes high- 
intensity obstacles that appear as large blobs 
in the image. In our current vehicle, however, 
the computer-vision system is not responsi- 
ble for detecting obstacles. Rather, we use an 
array of ultrasonic range finders placed on 
the front of the vehicle to determine the pres- 
ence of obstacles. Having completed these 
steps, the algorithm counts the pixels in the 
image and compares the result to a lower and 
upper bound to determine whether a line may 
be in the image. We select the bounds in the 
initialization procedure by evaluating several 
test images. 

Locating the extracted line in the ground 
coordinate system. At this point, the pro- 
cessed image should contain pixels that con- 
stitute the course boundary. The next step 
determines the line’s position and orientation 
in the image. To determine the line’s position 
in the image-coordinate frame, we execute a 

b. Using a total least-squares regression,‘” we 
can minimize the perpendicular error between 
pixels in the image and the fitted line. This 
procedure lets us quickly determine the line’s 
position in the image and evaluate the error 

linear fit of image pixels ;n the form y = a,v + 

associated with the fitted line. The process- 
ing region’s reduced size lets us use a linear 
fit to approximate the line due to the reduction 
in apparent curvature in the observation win- 
dow. This simple fit is also less computation- 
ally intensive and less prone to noise than 
curve approximations using higher-degree 
polynomials. 

In the summation equations to perform 
this linear fit in the described coordinate 
frame below, each pixel is dletermined by its 
position (xn, y,) in the ROI: 

y=ax+b 

b= 7 - Sign(x (x - ~ ) ( y  _- jj)) 5 x 
Once we determine the fitted line’s equa- 

tion, we can evaluate the actual error associ- 
ated with the fit and determine if the collec- 
tion of pixels represents a reasonable line. 
The acceptable error is bounded by the max- 
imum pixel width of the line: in the image. If 
the error-valuation result is above this bound, 
we discard the image. This, procedure can 
identify images that have passed all previous 
tests but contain small collections of pixels 
that do not lie on a line. 

Once we’ve determined the line’s location 

image-plane transform to determine the l ie’s  
location in the global (ground-referenced) 
coordinate system. Using a monocular vision 
system, we cannot extract a full three-dimen- 
sional representation of the lines in the 

s x  

in thc image-Goordinate plane, WG use an 



ground-coordinate system without additional 
information. We obtain this information by 
assuming that a single plane represents the 
ground in front of the vehicle and that the cam- 
era angle with respect to this plane does not 
change. Others have made similar assump- 
tions about the structure of the vehicle navi- 
gation environment to extract approximate 3D 
models of the local environment.3.x Figure 8 
shows the reference used to generate the 
ground coordinate system and the relevant 
equations to perform this transform. 

Once we’ve established the line’s position 
in the global frame, the vehicle’s navigation 
routine generates a steering angle for au- 
tonomous navigation. This transform de- 
pends on a constant value I, which represents 
the distance to the image plane. We can deter- 
mine the constant by placing an object of 
known length on the ground at the image’s 
center and measuring its apparent length in 
thexdirection. The image and ground dimen- 
sions used in these formula must have the 
same units, which requires a conversion from 
pixels to inches in the image plane. This con- 
version depends on the camera’s resolution 
and the digitized image’s aspect ratio. 

We make a final line evaluation at this 
point to determine if the line in the image is 
acceptable for navigation. Up to this point, 
a line has passed all pixel-count tests and the 

error evaluation. To further validate the line 
we can compare its current position and ori 
entation with an expected position and ori 
entation determined by the previous images 
As a vehicle traverses the course, there arc 
obvious limitations to the change in appar 
ent line position between successive images 
By comparing the current line to lines in thc 
previous images, we can determine if tht 
current line represents a physically impos 
sible change in vehicle position. We imple 
mented this check to help discard image! 
that contain a line-like pattern of glare Oi 

reflection that is brighter than the courst 
boundary line. 

Vehicle control and navigation 

Once we’ve processed the image, we’l 
know the positions of the boundary lines re1 
ative to the vehicle. At this point, a separatc 
navigation routine can generate a steering 
angle to follow the course. With the positior 
of the lines known, we can implement man) 
different navigation algorithms independen 
of the line-identification technique, The nav 
igation routine currently implemented or 
Christine uses the lines’ position and orien 
tation to generate a virtual center of thc 
course. The algorithm predicts the expectec 

Xp, YQ Ground coordinates 
X ,  Y, Image coordinates 

6 Angle of the camera to the ground 
D Distance along the camera’s 

centerline to the ground 

Image plane 

y = DY, 
g (/Sin (e) - ~ , C O S  (e)) 

\ 

\ 
L Ground - - ~- 

I YQ 

\ [ D t Y,COS (e); 
xg=x’l ~ -1 

I = O X i  (Determined during calibration ) 

I xo 
XQ I 

L 
I I c I x/ E D  

_ _ _ _ _ ~ _ _ ~  _ _  -- 
Figure 8. lop ond side view of the tomera position with image and ground planes. 

course center and generates a steering angle 
that directs thc vchicle tow;ird this point. The 
steering angle updates with each successive 
image, provided ;I navipble line has been 
extractcd. w e  havc ;LIS0 hUllt several s a f e  
guards into the algorithm to handle the situ- 
ation where several successive images fail to 
produce an acceptable line. 

Of course, implementing a successful nav- 
igation routine depends on many other fac- 
tors, including the base vehicle’s capabilities, 
the integration of other sensor information, 
and the specific operating environment. A sig- 
nificant amount of research has gone into 
computer-vision-based roadway navigation, 
and an assortment of viable navigation strate- 
gies have been developed. 

We developed the image-processing struc- 
ture and navigation algorithm presented here 
using Christine. The intensity-based line 
extraction has provided a stable computer- 
vision system capable of working in many 
different environments. We’ve tested the sys- 
tem under a variety of conditions, including 
bright, direct sunlight. In addition to the 
improved line-extraction method presented 
here, we’ve refined the pre- and postextrac- 
tion processing steps to compensate for some 
of the specific conditions that traditionally 
cause navigation problems in outdoor au- 
tonomous vehicles. To date, we’ve found no 
exceptions to the assumptions made in devel- 
oping this vision system. 

Use of passive optical devices 
for improved algorithm 
performance 

We have also experimented with various 
optical filters and polarizers to passively 
remove image noise and improve image qual- 
ity under specific conditions. We have found 
the CCD camera to be very sensitive to the 
radiation in the infrared range. Reflection of 
infrared light off the grass or asphalt increases 
the intensity of the background in the image 
and distorts the intensity separation between 
the lines and the image background. The use 
of an IR cutoff filter or hot mirror improves 
image integrity. To aid in the line-extraction 
process, we would like to use as many pas- 
sive optical iinage-processing techniques as 
possible. Reducing the image bandwidth 
before i t  is digitized reduces the overall soft- 
ware-processing time and the probability of 
error during subsequent processing. 
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COMPUTER-VISION-BASED NAVI- 
gation of autonomous robotic vehicles, edge- 
detection techniques seem to be a natural 
approach to the problem of finding roadway 
boundaries. Nevertheless, these methods have 
proven unreliable or computationally inten- 
sive and complex when extracting lines 
painted on grass or rough asphalt. System 
developers have used standard performance 
measures to compare the performance differ- 
ences between edge-detection and intensity- 
based  method^.^^^ We believe that the simple 
intensity-based approach to boundary-line 
extraction we describe in this article is func- 
tionally superior to and computationally sim- 
pler than edge detection, given the structure of 
the operating environment. Extensive testing, 
conducted on Christine, a small autonomous 
vehicle developed for the Unmanned Ground 
Robotics Competition, supports this opinion. 
We continue to develop and refine these algo- 
rithms as part of our ongoing autonomous 
vehicle program. Inexpensive color computer- 
vision systems and improved data-transport 
and processor speeds will open many new 
avenues of investigation. 0 
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a discussion of the future for nitinol- 
propelled walking robots. 
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