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((Main Text Paragraphs))  

Biological processes are exquisitely well controlled on a spatial and temporal scale, 

and this has driven interest in drug delivery devices that can be altered on-demand to adapt 

the release profile in real time.  However, systems designed to release payload in response to 

extracorporeal or environmental cues typically exhibit considerable leakiness in drug release. 

We hypothesized that a more complete On/Off switch could be achieved with physical 

entrapment of nanoparticles within hydrogels, exploiting steric hindrance to reduce baseline 

release, and that the microarchitecture of the system could be reversibly adapted using 

ultrasound to enable switchable release. To test this, the release of PEGylated gold-

nanoparticles from ionically crosslinked alginate hydrogels was first examined and 
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demonstrated a dramatic increase in release rate in response to ultrasound. Bone 

morphogenetic protein-2 (BMP-2) conjugated gold nanoparticles could also be released from 

hydrogels with ultrasound, and maintained bioactivity following alginate encapsulation and 

ultrasound release. This approach to increasing control over local bioagent delivery should 

afford researchers and clinicians the ability to mimic and drive natural temporal responses.  

Natural biological processes (e.g., embryological development, bone generation and 

angiogenesis) are intricately controlled in the temporal and spatial domain, and systems that 

enable this type of signaling control could provide powerful research and clinical tools. One 

successful strategy to obtain spatial control is polymer-based drug delivery, as these allow 

local delivery at a specific anatomic site. These delivery systems are engineered to exhibit 

temporal control by sustaining release of bioagents over a defined period.[1] Despite the 

success and clinical translation of some of these strategies, the advantages of more precise 

release initiation or intermittent release profiles is becoming clear both in pathologic[2, 3] and 

tissue engineering applications.[4] In addition, the majority of monolithic polymeric systems 

exhibit an initial burst release.[5] A high initial drug concentration may be undesirable, and 

may also be wasteful as this coincides with the timing of the initial inflammatory response – a 

potentially harsh environment. Systems that can be instructed to deliver their payload on-

demand are favorable in many situations. For example, delayed delivery of BMP-2 can 

enhance fracture healing, when compared with immediate delivery.[6] Furthermore, increased 

control of a delivery system may allow a reduction in the bioagent payload, which could 

improve safety while reducing cost. 

Drug delivery devices can alter the drug release rate by taking information from their 

environment (e.g., temperature, pH)[7] or from non-invasive, externally modulated energy 

sources such as heat[8], magnetic[9], electrical[10], light[11] or by wirelessly communicating with 

implanted microchips.[12] Ultrasound, which is commonly employed in the clinic for 

diagnostic and therapeutic purposes, has previously been demonstrated to accelerate release of 
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bioactive agents from biomaterials.[13, 14] These systems typically alter their structure 

permanently (i.e., ultrasound destruction of the material), which results in a more permanent 

increase in release rate. However, inspired by sonophoresis[15], self-healing ionically 

crosslinked alginate hydrogels that return to a baseline release rate following the removal of 

the ultrasound stimulus were recently demonstrated.[2] A common limitation of all these 

systems is that, similar to most polymeric controlled drug delivery strategies, there can be 

relatively high baseline release rate from the material. There are many reports of responsive 

nanoparticles[16] that can respond to stimuli  such as those listed above or that are embedded 

within matrices to effect a change on the matrix, which in turn releases a drug payload; 

however, we are unaware of reports that specifically deliver bioactive nanoparticles in 

response to a stimulus.  

This project was based on the hypothesis that incorporation of nanoparticles into an 

ultrasound responsive hydrogel would largely eliminate baseline release due to steric 

hindrance, and that release of the nanoparticles could be triggered in response to ultrasound. 

The pore size of alginate hydrogels is typically in the range of several nm[17], which was 

expected to lead to physical entrapment of nanoparticles larger than 10 nm.  This system can 

additionally exploit the favorable physicochemical properties of nanoparticles, including their 

ability to co-deliver agents and their ability to enhance bioactivity.[18, 19] This approach could 

also overcome the challenge of localizing nanoparticles at defect sites, as the hydrogel depot 

can be physically placed in the desired anatomic location. The first aim of the study was to 

explore, using a model nanoparticle, the release rate of gold nanoparticles (AuNPs) in 

response to ultrasound. Next, BMP-2 was selected as a model therapeutic due to its clinical 

use and prior demonstrations of its enhanced efficacy when delivered in a delayed manner in a 

femoral fracture critical sized defect model in rats.[6] BMP-2 was conjugated to the gold 

nanoparticles and the ability of these particles to be released from the hydrogels in response to 

ultrasound, in a bioactive form, was analyzed in vitro. 
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Gold nanoparticles were prepared at four different sizes as previously described [20] 

and demonstrated a tight monophasic size distribution, with hydrodynamic diameters of: seed 

= 19 nm; ‘30 nm’ = 28 nm; ‘60 nm’ = 68 nm; and ‘100 nm’ = 99 nm (polydispersity index 

<0.1; Figure 1). As these particles are not stable in ionic media[21], they were initially coupled 

with 5 kDa poly(ethylene glycol) via thiol end groups on the PEG; this increased the 

hydrodynamic radius of particles by ~20 nm. The absorption spectra were recorded for each 

particle as a function of concentration and time to confirm the stability of the resultant 

particles and that there was a linear relationship between concentration and absorbance at 518 

nm within the ranges used in the study (see methods in Supporting Information and Figure S1 

for more information). Following mixing with 2% w v-1 alginate, gels were ionically 

crosslinked with calcium ions. The resultant gels were homogenously red in color suggesting 

an even distribution of nanoparticles throughout the gels (Figure 1b). Overnight, these gels 

released <1% of their nanoparticle payload (Figure S2). As the zeta potential of gold 

nanoparticles are negative-to-neutral with PEG [22], no interaction between the nanoparticles 

and negatively charged alginate was anticipated; the very low baseline release was attributed 

to steric hindrance alone. Next, these alginate discs were stimulated with ultrasound (2.5 min 

every hr, for 5 hr, at 9.6mW cm-2) and demonstrated a 6-fold increase in cumulative release 

over the 5 hrs when compared with diffusion only controls. The release rate during the 2.5 

min ultrasound period was accelerated 110-fold. The gels showed only a moderate, and non-

significant effect of nanoparticle size on release rate (Figure 1C) and remained 

macroscopically intact. 

We next hypothesized that increasing the surface-to-volume ratio of the hydrogels 

would increase the release rate with ultrasound, as individual nanoparticles would have a 

shorter distance to navigate prior to being freed from the gel. Calcium crosslinked alginate 

microbeads (d ~ 250 µm) containing PEG-AuNP were prepared using a nebulizer[23], and 

following overnight diffusion (<1% release), microbeads were treated with ultrasound. These 
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gels demonstrated macroscopically visible release, with the microbeads remaining intact 

following ultrasound stimulation (Figure 2). The beads released ~10-fold greater amount of 

PEG-AuNPs following ultrasound when compared with diffusion over the duration of the 

study, and the release rate during US stimulation increased ~200-fold over the diffusion-only 

rate (Figure 2c). TEM was used to image the release medium to determine whether individual 

AuNPs were being released or whether the gels were fracturing. Released nanoparticles were 

generally in isolation (Figure 2b) with no indication of gel fragments in the medium, 

suggesting that the nanoparticles were being ‘freed’ from the alginate gel in response to 

ultrasound. 

Studies were then performed to confirm that the microbeads were capable of holding 

the AuNPs for longer periods before release, while still maintaining their ability to respond to 

ultrasound. Incubation for 5 days led to 1- 4% of the nanoparticles being released by diffusion 

(Figure 2d). When these samples were treated with ultrasound after 5 days, there was 

approximately a 5,000-fold increase in release rate during the time of ultrasound application, 

and a ~10-fold increase in the cumulative amount released over the entire time. 

Next, bioactive nanoparticles were fabricated using BMP-2. Gold nanoparticles can 

bind thiol residues found in cysteine groups, and this does not typically adversely affect the 

factor’s bioactivity.[21, 24] The structure of BMP-2 reveals that it contains 7 cysteine groups 

(Figure 3). BMP-2 conjugation to gold seed (19 nm) and 30nm particles was tested (Figure 

S3), and 19nm seed AuNPs (zeta potential, ζ = -22.8 mV; Figure 3a) were then used for all 

further studies as the end hydrodynamic radius (~150 nm; ζ = -24.1 mV) more closely 

matched the PEG-AuNPs. These particles bound the BMP-2 at an efficiency of 49% (final 

concentration of 1.1µg BMP-2/mg AuNPs) and remained stable and did not aggregate when 

added to culture media.  To analyze bioactivity, free BMP-2 and BMP-2 that had been 

conjugated to nanoparticles was added to cell culture medium to examine their osteogenic 
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potential. Unconjugated BMP-2 demonstrated increased osteogenesis (as measured by 

Alkaline Phosphatase (ALP) activity) over DMEM (negative control) and osteogenic media 

(positive controls) in the range of 10 – 500ng/ml (statistically significant at BMP-2 = 500 ng 

ml-1; Figure 3c, d). PEG-AuNPs alone (added at an equimolar concentration as the highest 

BMP-AuNPs concentration tested, 2.15 nM) showed a slight – yet non-significant – increase 

in osteogenic activity over controls. However, when 100 ng ml-1 BMP-2 conjugated to AuNP 

was added to the media (2.15 nM AuNPs), measured ALP levels were equivalent to the 

maximum dose of free BMP-2 tested (500 ng ml-1; p = 1.0). 

Finally, studies were performed to examine whether BMP-2–AuNPs can be loaded 

into the alginate microbeads, stimulated with ultrasound and maintain their bioactivity 

(Figure 4).  Exposure to ultrasound did not affect the hydrodynamic radius or zeta potential 

of unencapsulated particles (Figure 4b). Following incorporation of BMP-2–AuNPs into 

alginate microparticles and subsequent stimulation with ultrasound, the resulting supernatant 

was added to mMSCs. The released BMP-2–AuNPs led to a two-fold increase in ALP activity 

over osteogenic media controls (Figure 4c), confirming the bioactivity of the NPs following 

alginate loading and US-stimulated release. The supernatant from diffusion-released AuNPs 

had no impact on ALP activity, as expected (Figure 4c). 

The results of these studies demonstrate that nanoparticles physically entrapped in 

alginate have a low basal release rate that can be dramatically increased when triggered by 

ultrasound. Growth-factor conjugated AuNPs released via ultrasound maintain their 

bioactivity, as demonstrated by maintenance of osteogenic activity. Taken together, these 

results suggest the potential of this system to provide burst release of drugs from a depot on-

demand, over multiple days. 

A striking increase in release rate with ultrasound was achieved in this study.  The 

baseline release rate of nanoparticles from the gels used in these studies was near-zero, 

leading to the ratio of US-stimulated release rate: non-US release reaching ~200-fold when 
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stimulated at 24 hrs and ~5,000-fold after waiting 5 days. A previous demonstration of protein 

and small molecule release from ultrasound-responsive alginate gels, in contrast, 

demonstrated only ~10-fold increase in release rate during ultrasound.[2] In the previous work, 

the affinity-based interactions between the hydrogel and bioactive agents resulted in a much 

higher baseline release rate, diminishing the impact of US release. Although detailed 

mechanistic studies were not performed here, it is possible that the increased relative release 

rate at 5 days was caused by a replacement of the divalent ions crosslinking the alginate with 

monovalent ions from the surrounding media, or by relaxation of stresses imposed on the gels 

by inclusion of the nanoparticles.[25] The release rate can also be controlled by increasing gel 

surface-to-volume ratio, which as shown here does not affect diffusion-only release; 

increasing the ultrasound duration; or increasing the number of repeat cycles.[2, 14] In this 

study, ultrasound treatments were limited to 2.5 mins to maintain temperatures below 37 °C. 

These studies utilized a nanoparticle whose size could be readily controlled and whose 

electrostatic interactions with anionic alginate are minimized due to their negative charge and 

PEG coating [26]. Therapeutic nanoparticles are likely to have charge interactions with alginate 

that retard release, on top of the steric hindrance, and it will likely be necessary to evaluate 

this impact for each type of nanoparticle used in the system. 

Gold nanoparticles were used for the bioactivity study due to the large volume of 

research on their biological effects, their clinical potential and use in clinical trials, and their 

ability to covalently conjugate proteins.[18, 21, 24] BMP-2 was chosen as a model drug molecule 

due to its clinical use, clinically demonstrated requirement for spatial and temporal control [27], 

and previous demonstrations of enhanced efficacy when it is released in a delayed manner.[6] 

Herein, BMP-2 was successfully conjugated to gold nanoparticles and this enhanced its 

bioactivity. This effect of nanoparticle presentation has not been demonstrated for BMP-2 

previously to our knowledge, but has been shown for other factors.[19, 28] Previous 

investigators have attached BMP-2 molecules to much larger particles (~600 nm, e.g., [29]) and 
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saw an increase in hydrodynamic radius that was consistent with the unconjugated molecule 

(~10 nm[30]). The observed larger shift in hydrodynamic radius here is consistent with other 

authors that have conjugated proteins to similar size AuNPs via thiol bonds (e.g., [24]) and is 

possibly due to biomolecule aggregation on the AuNP surface. A non-significant 

enhancement of PEG-AuNPs on osteogenesis was also observed. Previous authors have 

demonstrated the potential of bare AuNPs to stimulate osteogenic differentiation of MSCs 

through binding with cytoplasmic proteins.[31] However, it is unclear whether the addition of 

PEG to the nanoparticles in the present study inhibited this mechanism. 

This work serves as a proof-of-principle study to demonstrate a novel approach for on-

demand delivery of nanotherapeutics. Although the nanoparticle field has made dramatic 

advances in targeting and homing of nanoparticles, avoiding the reticulo-endothelial system, 

and extending circulation time, these still remain significant challenges for the field.[18] This 

work may offer an alternative approach for delivering nanotherapeutics locally in injectable 

microbeads and, as demonstrated herein, allow for their triggered release in a precise fashion. 

As the settings and materials utilized in this study are consistent with a previous report [2] that 

was shown to be efficacious in vitro and in vivo, it is expected this system should be 

translatable to in vivo applications. Furthermore, the materials and ultrasound levels used in 

this system have been previously explored for clinical use or are currently being used as part 

of clinical products. Future work will fully explore the in vivo efficacy of the system, its 

safety profile and a wider range of nanoparticles and bioactive agents. This platform for on-

demand delivery of bioactive nanoparticles is expected to provide an exciting tool for both 

researchers and clinicians to further explore the importance of temporal co-ordination of 

factor delivery. 

Supporting Information  
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Figure 1. Ultrasound releases pegylated gold nanoparticles on-demand. (a) Dynamic light 

scattering measurements of hydrodynamic diameters of gold nanoparticles (AuNPs) following 

fabrication. (b) Alginate hydrogel discs showed a characteristic red color when loaded with 

pegylated AuNPs (PEG-AuNPs; scalebar = 1cm). (c) Absorbance spectroscopy was used to 

evaluate the concentration of PEG-AuNPs in the media following ultrasound stimulated 

release  (control = 0 mW cm-2 ; US = 9.6 mW cm-2 ; 2.5 mins per hr; 5 hrs total) from 

ionically crosslinked alginate hydrogels. *** = p<0.001. 

 



     

12 
 

 

Figure 2. Increasing the surface-to-volume ratio increases the ultrasound stimulated release 

rate of the AuNPs. Alginate hydrogel microbeads loaded with PEG-AuNPs did not release 

significant NPs until stimulated with ultrasound (Left images = microbeads settled to bottom 

of container; Right images = microbeads perturbed and in suspension). (b) TEM images of 

media containing released nanoparticles (scalebar 250 nm). (c) Cumulative release of peg-

AuNPs from alginate microbeads during a 5hr period (control = 0 mW cm-2 ; US = 9.6 mW 

cm-2 ; 2.5 mins per hr) following overnight storage at 37°C. (d) Cumulative release of PEG-

AuNPs over 5 days of storage (‘5-day diffusion’) vs. cumulative release during a 5hr period in 

response to ultrasound treatment on day 5 (US = 9.6 mW cm-2; 2.5 mins per hr). ** = p<0.01; 
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*** = p<0.001. 
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Figure 3. Recombinant human-bone morphogenetic protein-2 (BMP-2) can be conjugated to 

AuNPs using thiol groups and these BMP-2–AuNPs are biologically active. (a) BMP-2 

protein and its amino acid sequence sequence, with the cysteine residues highlighted (Image 

from: Research Collaboratory for Structurual Bioinformatics Protein Data Bank, 

www.rcsb.org). (b) Thiol bonds can be used to covalently conjugate the BMP-2 to the AuNPs 

(final concentration following conjugation = 1.1 µg BMP-2/mg AuNPs; see methods in 

Supporting Information for details).  (c) Unconjugated protein (10, 100, 300 ng ml-1) or 

AuNP-conjugated protein (10, 100 ng BMP-2 ml-1) were added to medium over mouse MSCs 

(D1 cells) and osteogenic activity was analyzed via alkaline phosphatase staining (blue color) 

on day 7. DMEM only (no protein or nanoparticles), osteo media (DMEM supplemented with 

L-ascorbic acid and β-glycerophosphate) and PEG-AuNPs supplemented media, were used as 

controls. (d) Quantification of alkaline phosphatase (ALP) staining for control groups, 

unconjugated BMP-2 (10, 100, 300, 500 ng ml-1) and AuNPs (PEG and BMP-2; BMP-2 

concentrations of 10 and 100ng ml-1). ** = P<0.01. 

 



     

15 
 

 

Figure 4. BMP-2–AuNPs released from alginate gels in response to US are biologically 

active. (a) Schematic overview of approach: US is used to release BMP-2–AuNPs from the 

alginate microbeads under sterile conditions and these are subsequently added to D1 cell 

cultures; medium from diffusion only release is also tested. Alkaline Phosphatase activity at 

day 7 is used to analyze maintained bioactivity. (b) Dynamic light scattering measurements of 

hydrodynamic diameters of bare gold nanoparticles (‘seed particle’) following fabrication and 

following conjugation with BMP-2 (‘BMP-2 conjugated, 0 US’). These particles were then 
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treated with ultrasound (9.6 mW cm-2) for one (1 x 2.5 min) or two (2 x 2.5 min) rounds of 

ultrasound to test whether this stripped the BMP-2 from the AuNPs. (c) Quantification of 

alkaline phosphatase (ALP) staining for diffusion only and US-released (US = 9.6 mW cm-2; 

2.5 mins per hr for 10hrs) AuNPs from alginate beads. ** = P<0.015. 
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