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The Newsvendor Problem: Review and

Directions for Future Research

Abstract

In this paper, we review the contributions to date for analyzing the newsvendor problem.

Our focus is on examining the specific extensions for analyzing this problem in the context

of modeling customer demand, supplier costs, and the buyer risk profile. More specifically,

we analyze the impact of market price, marketing effort, and stocking quantity on customer

demand; how supplier prices can serve as a coordination mechanism in a supply chain setting;

integrating alternative supplier pricing policies within the newsvendor framework; and how the

buyer’s risk profile moderates the newsvendor order quantity decision. For each of these areas,

we summarize the current literature and develop extensions. Finally, we also propose directions

for future research.

1 Introduction

The newsvendor problem is one of the classical problems in the literature on inventory management

([7] [43]). Key insights stemming from an analysis of this problem have wide ranging implications

for managing inventory decisions for organizations in, for example, the hospitality, airline, and

fashion goods industries. A generic contemporary setting in which this problem could be framed is

as follows. Consider a three-node supply chain consisting of a supplier, a buyer, and customers. At

the beginning of a single period, the buyer is interested in determining an “optimal” stocking policy

(Q) to satisfy total customer demand for a single product. This customer demand is assumed to be

stochastic and characterized by a random variable x with the probability density function f(x) and

cumulative distribution function F (x). The quantity Q is purchased by the buyer from the supplier

for a fixed price per unit v. The supplier is assumed to operate with no capacity restrictions and

zero lead time of supply and thus, an order placed by the buyer with the supplier at the beginning

of a period is immediately filled. Sales of the product occur during (or at the end of) the single

period and: (a) if Q ≥ x, then Q−x units which are left over at the end of the period are salvaged

by the buyer for a per unit revenue of g1; and (b) if Q < x, then x−Q units which represent “lost”

sales cost the buyer B per unit. Assuming a fixed market price of p, then the actual end of period

profit for the buyer is:

Π(Q, x) =

{

px − vQ + g(Q− x) if Q ≥ x
pQ − vQ − B(x − Q) if Q < x

(1)

1For obvious reasons, it is generally assumed that g < v.
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Since the demand has not been realized at the beginning of the period, the buyer cannot observe

the actual profit. Hence, the traditional approach to analyze the problem is based on assuming

a risk neutral buyer who makes the optimal quantity decision at the beginning of the period by

maximizing total expected profits. These profits are:

E[Π(Q)] =

∫ Q

0
[px − vQ + g(Q− x)]f(x)dx +

∫ ∞

Q
[pQ− vQ− B(x − Q)]f(x)dx

= (p− g)µ− (v − g)Q− (p − g + B)ES(Q) (2)

where E[·] is the expectation operator, µ is the mean demand, and ES(Q) represents the expected

units short assuming Q units are stocked and can be determined as
∫∞
Q (x−Q)f(x)dx. It is relatively

easy to show that equation (2) is strictly concave in Q (Silver, Pyke, and Peterson [43]) and hence,

the first order conditions (FOCs) are necessary and sufficient to determine the value of Q which

maximizes equation (2). This optimal order quantity (Q∗) is set such that:

F (Q∗) =
p − v + B

p − g + B
(3)

and the corresponding profit for the buyer is:

E[Π(Q∗)] = (p− g)µ− (p− g + B)

∫ ∞

Q∗

xf(x)dx (4)

Prior researchers have sometimes adopted an “overage” (co) and “underage” (cu) cost perspective

in analyzing the model from an expected cost perspective. In this case, F (Q∗) = cu

co+cu where

cu = p−v +B and co = v−g and E[Π(Q)] = (p−v)µ−co

∫ Q
0 (Q−x)f(x)dx−cu

∫ ∞
Q (x−Q)f(x)dx.

In the last decade, Khouja [30] has also reviewed the extensive contributions to the newsvendor

problem. We extend this prior review by considering several specific extensions in our paper such as

integrating marketing effort, stock dependent demand, and buyer risk profiles and how they all play

a role in determining the optimal newsvendor order quantity. In addition, we also review 20 plus

additional contributions since the review by Khouja [30]. We also refer the reader to a review of

the newsvendor problem in supply chain settings with a primary focus on contractual mechanisms

which is available in Cachon [15]. The motivation for our review, critique, and extensions stems

from the fact that key parametric assumptions drive the relatively straightforward analysis for

the single period newsvendor problem. In essence, our intent is on reviewing and examining how

changes in the assumptions related to key parameters might moderate the current set of results.

More specifically, this paper focuses on reviewing prior work and developing extensions related to

the following:

1. Customer Demand: This is typically treated as an exogenous parameter in the prior analysis.

However, depending upon the context, it could be argued that:
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• Customer demand x and price p are interrelated;

• Customer demand x could be influenced by marketing effort e expended by the buyer;

and

• Customer demand x could be influenced by the quantity stocked Q by the buyer.

2. Supplier Pricing Policies: A fixed supplier price per unit (v) quoted by the supplier is the

standard assumption in the newsvendor setting. However, current practice (see, for exam-

ple, Burke, Carrillo, and Vakharia [11]) indicates suppliers tend to quote quantity discount

schemes to generate larger order quantities from the buyer. Thus, it would be interesting

to examine how alternative supplier price discounting schemes might moderate the buyer’s

optimal quantity decision.

3. Buyer Risk Profile: The assumption underlying the basic structural result for the newsvendor

model is that the buyer is risk neutral and thus, would choose to optimize expected profits.

Given that sourcing practice often indicates that buyers are risk averse (Burke and Vakharia

[13]) and/or “risk” takers, we focus on how such risk profiles would moderate the sourcing

decision in a newsvendor setting.

The remainder of this paper is organized as follows. In the next section, we start by analyzing the

impact of alternative customer demand related changes in a newsvendor setting; section 3 focuses

on examining the impact of alternative supplier pricing schemes; and section 4 describes how the

risk profile of the buyer impacts optimal decision making in this setting. Finally, implications and

directions for future research are discussed in Section 5.

2 Customer Demand

The analysis in this section focuses on how the optimal order quantity in a newsvendor setting

would be impacted if demand was a function of: (a) market price; (b) marketing effort; and (c)

stocking quantity.

2.1 Demand and Market Price

In a classic Newsvendor problem, selling price is considered as exogenous, over which the retailer has

absolutely no control. This is true in a perfectly competitive market where buyers are mere price-

takers. In practice, however, retailers may adjust the current selling price in order to increase or

reduce demand. Whitin [50], Mills [36] and Karlin and Carr [28] are three of the early publications
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that investigated the effects of different demand processes on the seller’s pricing and ordering

decisions.

Whitin [50] provided necessary optimality conditions for two models, an economic order quantity

(EOQ) model and a style goods model. In contrast to the well-known EOQ approach which

assumes an infinite planning horizon, a style goods model focuses on environments where there is

a relatively short selling season with a well defined beginning and end. Although Whitin [50] only

provided the closed-form solution for a style goods model with a rectangular demand distribution,

he believed that structural solutions are possible for other cases provided the price-dependent

demand distribution can be expressed as an explicit function of the expected demand.

Mills [36] assumed that the price-dependent demand (x) is affected additively by a random term,

ε, independent of price, i.e. x = µ(p) + ε where µ(p) is the mean demand as a function of market

price p. In contrast to the deterministic demand model that optimizes at the price which equates

riskless marginal revenue and marginal cost, the model under stochastic demand is optimized at the

price which equates riskless marginal revenue to marginal cost plus an additional non-zero term. He

concluded that the direction of change in the magnitude of the optimal price in the risky situation

depends on the shape of the marginal cost curve and showed that this optimal price cannot be

higher than it would be in the riskless case for a constant marginal cost. A contrary result was

obtained by Karlin and Carr [28] for the case of a multiplicative model in which the stochastic

demand x = µ(p)ε. The demand model employed in Mills [36] is referred to as the additive demand

form and the one in Karlin and Carr [28] as the multiplicative demand form. In what follows,

we will first derive some simple results for these two special demand-price relationships, and then

review the analysis which leads to the results mentioned above.

In the additive demand case, assume that demand x = µ(p) + ε, where µ(p) = a − bp. In

this case, a and b are both positive constants, p is the market price, and ε is a random variable

with a probability density function h(·) and cumulative distribution function H(·) with a mean of

zero. The expected profit function is now a bivariate function with price and order quantity as the

decision variables and can be expressed in terms of overage and underage costs as:

E[Π(p, Q)] = (p − v)µ(p)− co ·E[Q− x]+ − cu ·E[x− Q]+ (5)

where E[Q−x]+ is the expected number of units overstocked and E[x−Q]+ is the expected number

of units understocked. By observing that x = a+bp+ ε, it is easy to show that (Petruzzi and Dada

[39]):

E[Q− x]+ =
∫ Q−a+bp
0 H(ε)dε
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E[x− Q]+ =
∫ +∞
Q−a+bp[1 − H(ε)]dε

This expected profit can be interpreted as being equal to riskless profit minus expected cost. Next,

let’s consider the partial derivatives of the expected profit function with respect to Q and p. Dif-

ferentiating E[Π(p, Q)] with respect to Q, we obtain

∂E[Π(p, Q)]

∂Q
= cu − (co + cu)H(Q− a + bp)

∂2E[Π(p, Q)]

∂Q2
= −(co + cu)h(Q− a + bp)

Clearly, ∂2E[Π(p,Q)]
∂Q2 ≤ 0, which indicates that the expected profit function is concave in Q for a

given p. We can then solve for the optimal order quantity for a given p by setting the FOC equal

to zero. This results in:

H(Q∗(p) − a + bp) =
cu

co + cu
(6)

where Q∗(p) is the optimal order quantity2 for a given price p. After substituting Q∗(p) =

H−1[ cu

co+cu
] + a − bp (obtained from equation (6)) into the expected profit function (equation 5),

we can reduce the bivariate objective function into a univariate function of p as follows:

E[Π(Q∗(p))] = (p− v)µ(p)− co · E[Q∗(p) − x]+ − cu · E[x− Q∗(p)]+

= (p− v)(a− bp) − [co

∫ Q∗(p)−a+bp

0
H(ε)dε]− [cu

∫ +∞

Q∗(p)−a+bp
[1 − H(ε)]dε]

where Q∗(p) = H−1[ cu

co+cu
] + a − bp. Differentiating E[Π(Q∗(p))] with respect to p gives us the

following FOC and second order condition:

dE[Π(Q∗(p))]

dp
= a − 2bp + bv − [co ·H(Q∗(p)− a + bp) · (b +

dQ∗(p)

dp
)]

−E[x− Q∗(p)]+ + {cu · [1 − H(Q∗(p)− a + bp)] · (b +
dQ∗(p)

dp
)}

= a − 2bp− ES[Q∗(p)] + bv

d2E[Π(Q∗(p))]

dp2
= −2b +

1

h(Q∗(p)− a + bp)
·

(v − g)2

(p − g + B)3

where ES[Q∗(p)] = E[x − Q∗(p)]+. The sign of the second-order derivative d2E[Π(Q∗(p))]
dp2 depends

on the demand distribution and parameter values assumed. If d2E[Π(Q∗(p))]
dp2 < 0, by setting the

first-order condition to zero, we can get

p∗ =
1

2b
(a + bv − ES[Q∗(p∗)]) (7)

2The concavity result guarantees the existence of Q∗(p). However, the existence of a unique value of Q∗(p) requires

the assumption that H(ε) is also continuous and differentiable.
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It is worth noting that in the additive deterministic demand case (i.e., x = a + bp), the optimal

price is given by the expression a+bv
2b . Since we know that ES[Q∗(p∗)] ≥ 0, we can conclude that the

optimal price in the stochastic setting is always lower than the optimal price in the deterministic

setting. Finally, it is also worth noting that Petruzzi and Dada [39] approached the same problem

by expressing expected profit as a univariate function of quantity Q. They point out that a unique

Q∗ exists for an optimal price p∗ if the distribution of the random term ε satisfies the inequality

2r2(ε) + ∂r(ε)
∂ε > 0 for ε ∈ [A, M ], where r(·) ≡ h(·)/[1 − H(·)] and a − b(v − 2M) + A > 0,

where A (M) is the minimum (maximum) possible value of ε. The first inequality generalizes

the conditions for which optimal solutions to single period newsvendor pricing problems can be

identified analytically. Zhan and Shen [51] achieved the same results as above under the linear

additive demand form and developed an iterative algorithm and a simulation based algorithm to

find the optimal solution. In contrast to the previous papers discussed so far, the authors treated

this problem as a nonlinear system with two variables, instead of reducing the bivariate objective

function to a univariate function.

In the multiplicative demand case, assume that x = µ(p)ε, where µ(p) = ap−b. Similar to the

additive demand setting, a and b are both positive constants with the additional restriction that

b > 1, p is the market price, and ε is a random variable with a cumulative distribution function

H1(·) with a mean of 1. The expected profit function is again a bivariate function of price and order

quantity as given by equation (5). The only difference is that the terms E[Q− x]+ and E[x−Q]+

are redefined as follows (Karlin and Carr [28]):

E[Q− x]+ =
∫ Qa−1pb

0 H1(ε)ap−bdε

E[x− Q]+ =
∫ +∞
Qa−1pb[1 − H1(ε)]ap−bdε

By applying the same procedure as in the additive case, we are able to show that the expected

profit function is again concave in Q for a given p and that:

H1(Q
∗(p)a−1pb) =

cu

cu + co
(8)

After substituting Q∗(p) = H−1
1 [ cu

cu+co
]ap−b (obtained from equation (8)) into the expected profit

function equation (5) with the terms E[Q− x]+ and E[x− Q]+ redefined as above, we can reduce

the bivariate objective function into a univariate function of p. Differentiating E[Π(Q∗(p))] with

respect to p gives us the following FOC3:

dE[Π(Q∗(p))]

dp
= [1 − b(1 − p−1v)]ap−bµε + bp−1(v − g) · EL[Q∗(p)] −

−[1 − bp−1(p − v + B)] · ES[Q∗(p)]

3As before, it is necessary to assume that H1(ε) is continuous and differentiable.
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where EL[Q∗(p)] =
∫ Q∗(p)a−1pb

0 H1(ε)ap−bdε and ES[Q∗(p)] =
∫ +∞
Q∗(p)a−1pb[1 − H1(ε)]ap−bdε. If

d2E[Π(Q∗(p))]
dp2 ≤ 0, then p∗ = bv

b−1 + ∆, where

∆ =
a−1bp∗b[B ·ES(Q∗(p∗)) + (v − g) ·EL(Q∗(p∗))]

(b − 1)(1− a−1p∗b · ES(Q∗(p∗)))
(9)

In the multiplicative deterministic demand case (i.e., x = ap−b), the optimal price is given by the

expression p∗ = bv
b−1 . Since ∆ ≥ 0, we can conclude that the optimal price in the stochastic setting

is always greater than the optimal price in the deterministic setting. This is in direct contrast to the

result for the additive price dependent demand setting. Finally, it is also worth noting that Petruzzi

and Dada [39] approached the same problem by expressing expected profit as a univariate function

of quantity Q. They pointed out that a unique Q∗ exists provided the distribution of the random

term satisfies the inequality 2r2(ε) +
dr(ε)
dε > 0 for ε ∈ [A, M ] and b > 2. A possible explanation

is also given in their paper regarding the relative magnitudes of riskless and risky optimal prices

under different demand forms in terms of demand variance and demand coefficient of variation.

Lau and Lau [32] examined the pricing and ordering policies of a newsvendor facing with a

random price-dependent demand under two different objectives, (1) the objective of maximizing

the expected profit, and (2) the objective of maximizing the probability of achieving a certain

profit level. Two price-demand forms are considered in this paper, an additive form as assumed in

our analysis above with a homoscedastic and normally distributed random term (model A), and

a relationship fitted with a four-parameter beta distribution based on subjective estimates (model

B). In scenario (1A), where model A is considered under objective (1), a numerical example is

used to illustrate the effects of price sensitivity and demand variation on the pricing and ordering

decisions. The authors showed that lower price sensitivity and demand variation lead to higher

optimal price but lower optimal order quantity. In scenario (2A) with zero shortage cost, a counter-

intuitive result is obtained that more uncertainty in demand may actually increase the probability

of achieving a certain profit level. In this paper, numerical solution procedures are provided in each

scenario, (1A), (1B), (2A) and (2B), while analytical results are restricted to scenarios (1A) and

(2A) with zero shortage cost.

Polatoḡlu [40] investigated the joint pricing and ordering decisions under general demand uncer-

tainty, aimed to reveal the fundamental properties independent of demand pattern. Unimodality of

the expected profit function that traces the best price trajectory over the order-up-to decision was

proved under the assumptions that the mean demand is a monotone decreasing function of price

and that the riskless revenue function, which is equal to price times mean demand, is uni-modal.

Polatoḡlu [40] also approached the same results proven by Whitin [50], Mills [36] and Karlin and

Carr [28], regarding the relative magnitudes of the optimal prices in additive and multiplicative
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models.

Chen, Yan and Yao [17] investigated the price-dependent newsvendor model in a competitive

environment. The general demand is stochastic and price-dependent and the firm uses price to

compete for the demand. They proved and showed the conditions for the existence of the pure-

strategy Nash equilibrium and its uniqueness. Raising individual prices at any equilibrium of the

game could increase the total system profit, but no single firm would follow this strategy since

it has already optimized its own profit conditioned on the other firms’ pricing schemes. At the

cooperative equilibrium, each self-interested firm has an incentive to lower its price to grab more

demand. They concluded that competition leads to a lower equilibrium price and higher stock

levels in all firms.

Arcelus, Kumar and Srinivasan [5] studied the pricing and ordering policies of a profit-maximizing

newsvendor that faces trade incentives offered by the supplier (i.e., wholesale price discount to the

newsvendor and direct rebate to the end customers) and stochastic price-dependent demand. Let

(v, R) denote the supplier’s pricing/rebate policy, where v is the wholesale price and R is the direct

rebate to end customers. Suppose the original wholesale price is v0. The newsvendor receives an of-

fer (v0−d, 0) under the price discount policy and (v0, R) under the direct rebate policy. No specific

functional form is assumed for the deterministic component of the demand and both additive-error

and multiplicative-error demands are considered in this paper. The authors derived the demand

conditions under which the results obtained in Petruzzi and Dada [39] regarding the relative magni-

tude of the retail prices in riskless and risky cases still hold in this setting. The effectiveness of the

two trade incentives on the newsvendor’s decisions is then measured and contrasted by the pass-

through ratio, defined as δ = dp
dv , under the price-discount policy, and the claw-back ratio, defined

as λ = dp
dR , under the direct-rebate policy. They showed analytically that the pass-through ratio

is always greater than the claw-back ratio for any deterministic demand and that the claw-back

ratio in the risky case is smaller than that in the riskless case for demand forms with additive-error

and linear deterministic component. It is worth noting that negative claw-back ratio is possible,

that is, the newsvendor may offer a lower retail price to the end customers in spite of the rebate

the consumers have already received from the supplier. However, no further analytical results are

obtained concerning the impact of demand uncertainty on the newsvendor’s optimal order quantity

in this setting. Numerical analysis is conducted under the assumption of uniformly distributed

error term. Observations include the dominance of the pass-through ratio over the claw-back ratio

in the risky case and the improved newsvendor’s expected profits under either trade incentive.
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2.2 Demand and Marketing Effort

Customer demand can often be influenced by a number of marketing activities (e.g., advertising,

sales calls, and in-store displays). Kraiseburd, Narayanan and Raman [31] studied a model that

incorporates such an aspect in the newsvendor scenario. Their setting is as follows. Let e represent

the marketing “effort” expended by the buyer. Mean customer demand is modeled as a non-

decreasing function of e (i.e., dµ(e)
de ≥ 0 and d2µ(e)

de2 < 0) while the variance in customer demand

(i.e., σ2) is assumed to be independent of the marketing effort e. c(e) represents the cost per unit

of effort and is assumed to be convex in e. In this case, the optimal marketing effort for the firm

(i.e., e∗) can be determined by solving the following FOC:

(p− v)
dµ(e)

de
−

dc(e)

de
= 0 (10)

The optimal order quantity Q∗ can then be found by setting F (Q∗) = p−v+B
p−g+B where the cumulative

distribution function of demand4 has a mean µ(e∗).

The analysis presented above could also be easily extended to a situation where marketing

effort affects demand in a way that demand variance decreases as more effort is made in the selling

season. Gerchak and Mossman [22] examined the effects of demand randomness on optimal order

quantities and the associated expected costs by applying mean-preserving transformations to the

demand variable. They considered the family of random variables xα representing demand as

follows:

xα = αx + (1− α)µ

where α ≥ 0 is an arbitrary constant. Obviously, E(xα) = µ for all α. We note that if for some

constants α1 > α2, then xα1 is more variable than xα2 and using this property the authors are able

to show that:

Q∗
α = αQ∗ + (1− α)µ

Cα(Q∗
α) = αC(Q∗)

where C(Q∗) represents the expected cost associated with an optimal order quantity of Q∗ under

demand x, and Cα(Q∗
α) represents the expected cost associated with an optimal order quantity Q∗

α

under demand xα.

4For example, if demand is normally distributed with mean µ(e∗) and standard deviation σ, then Q∗ = µ(e∗)+zσ

where z is the unit normal deviate such that F (z) = p−v+B

p−g+B
.
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To analyze the case in which demand uncertainty is affected by marketing effort, replace α with

α(e) in the above three equations. Assume that α(e) is a monotone decreasing function of e and

that α(0) = 1, and α(+∞) = 0. The equation α(+∞) = 0 simply says that demand uncertainty

may be eliminated by tremendous marketing effort, which is impossible in practice due to the

unbearable cost of those marketing activities. Also assume that c(0) = 0.

After substituting and rearranging, we obtain

Q∗
α(e∗) = α(e∗)Q∗ + (1 − α(e∗))µ (11)

Consider the relative magnitudes of Q∗
α(e∗) and Q∗. As

dQ∗
α(e)

de
=

dα(e)

de
(Q∗ − µ), (12)

the optimal order quantity increases in marketing effort e if and only if Q∗ < µ, i.e., F (µ) > p−v+B
p−g+B .

The maximum expected profit for a specific marketing effort e can be expressed as

E[Π(Q∗
α(e), e)] = (p− v)µ − Cα(e)(Q

∗
α(e), e)− c(e)

= (p− v)µ − α(e)C(Q∗) − c(e) (13)

Differentiating E[Π(Q∗
α(e))] with respect to e, we get

dE[Π(Q∗
α(e))]

de
= −

dα(e)

de
C(Q∗)−

dc(e)

de
(14)

d2E[Π(Q∗
α(e))]

de2
= −

d2α(e)

de2
C(Q∗) −

d2c(e)

de2
(15)

If
d2E[Π(Q∗

α(e)
)]

de2 < 0, we can derive the optimal marketing effort e∗ by setting the partial derivative
dE[Π(Q∗

α(e)
)]

de equal to zero, which determines the optimal order quantity of the buyer. Clearly, the

second-order condition holds for a concavely decreasing α(e) and a convexly increasing c(e). In this

case, e∗ can be characterized by the following equation:

dα(e)

de
C(Q∗) +

dc(e)

de
= 0. (16)

For this setting (i.e., demand is influenced by marketing effort), our analysis indicates that an

increase (decrease) in mean demand (with demand variability unchanged) due to marketing effort

leads to an increase (decrease) in the optimal stocking quantity Q∗. On the other hand, the impact

of a decrease in demand variability (with mean demand unchanged) due to marketing effort is

not as clear. However, we can identify parametric conditions under which a decrease in demand

variability due to marketing effort will lead to increases in the optimal stocking quantity Q∗.
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2.3 Demand and Stocking Quantity

Marketing researchers often argue that quantity displayed can have a positive impact on demand

and thus, ultimate sales. In essence two types of stimuli that impact demand positively due to the

quantity displayed are: (a) a selective effect; and (b) an advertising effect. There is a significant

body of literature on inventory systems where demand is positively impacted by stock level. These

stock dependent inventory models developed so far can be classified into two categories. Models

in the first category dealt with demand that is a function of the initial stock level, while the

others assumed that demand is dependent on the instantaneous stock level and may thus vary over

time. We will focus on newsvendor models with stock-dependent demand. Readers who are also

interested in other inventory systems may refer to Urban [45] for a comprehensive review of the

stock-level-dependent periodic-review models.

Baker and Urban [8] studied a deterministic single-period model in which demand at time t,

x(t), is a polynomial function of the instantaneous stock level, i(t), and solved for the optimal

order quantity (Q), which is also the initial stock level, under the objective of maximizing the total

profit. Specifically, they assumed a demand function x(t) = a[i(t)]1−b, where a > 0, 1 > b > 0.

The constant parameter b is constrained to be some value between zero and one to ensure that the

marginal increase in demand decreases as the stock level increases. Sensitivity analysis conducted

in this paper showed that failing to consider the stimulating effect of stock on demand when it

exists may lead to miserable optimization results, since the model is quite sensitive to changes

in b. Urban and Baker [46] investigated a similar deterministic newsvendor problem with stock-

dependent, price sensitive and time proportional demand. They expressed the demand rate as

x(p, t, i) = ap−ktr−1i1−b, where a > 0, k > 0, r > 0 and 1 > b > 0. Although no structural results

were obtained for the general case, sensitivity analysis performed regarding the effects of price, time

and stock level on demand reassured the importance of recognizing the correct demand pattern.

Urban [44] also examined a stock-dependent newsvendor model. Demand in this paper takes

the same polynomial function as in Baker and Urban [8], but with the total stock level i(t) replaced

by the observed stock level ϕ(t) assuming that customers are only influenced by the displayed

products. That is, x(ϕ(t)) = a[ϕ(t)]1−b, a > 0, 1 > b > 0, where ϕ(t) = min(s, i(t)) and s denotes

the shelf space allocated to that product. With the further assumption of the quasi-concavity

of the profit function, Urban derived the closed form expressions for the optimal order quantity

Q∗, which is equal to i∗(0), and the optimal shelf space s∗ and investigated the interdependency

between the two decisions. The relationship between Q∗ and s∗ can be characterized by the equation

s∗

Q∗
= (1−b)(p−c)

(1−b)(p−c)+v , where v is the unit shelf-space cost. Urban also pointed out that the holding

cost, which can be considered as the negative salvage cost in our setting, has an equal impact on
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the optimal values of the two decision variables.

Most of the inventory models where demand is assumed to be a function of instantaneous

stock level seldom incorporate the uncertainty of demand due to technical complexity. Similarly,

when stochastic stock-dependent demand is considered in an inventory system, researchers usually

interpret the word “stock” as “initial stock”, which can be viewed as “order quantity” in a single

period newsvendor model. In the rest of the section, some simple results will first be derived for

a special case of the stochastic newsvendor model that uses initial stock level as an independent

variable, followed by a brief literature review of stochastic stock-dependent newsvendor models.

Assume that customer demand is linearly increasing in the buyer’s stocks as follows5: x(Q) =

a + bQ + ε, a > 0, 0 < b < 1, where ε is a random variable with probability density function h2(·)

and cumulative distribution function H2(·)
6. Assuming that the buyer is risk neutral and would

like to maximize the expected profit, the objective function for this setting is as follows:

E[Π(p, Q)] = (p − v)(a + bQ + µε)− co ·E[Q− x(Q)]+ − cu · E[x(Q)− Q]+ (17)

where

E[Q− x(Q)]+ =

∫ (1−b)Q−a

0
H2(ε)dε

E[x(Q)− Q]+ =

∫ +∞

(1−b)Q−a
[1 − H2(ε)]dε

It is quite straightforward to show that the expected profit function is concave in Q. By equating

the first order derivative of the objective function with respect to Q to zero, we obtain

H2((1− b)Q∗ − a) =
p−v
1−b + B

p − g + B
(18)

Note that H2((1 − b)Q − a) = P ((1 − b)Q − a ≤ ε) = P (Q ≤ x(Q)). Since 0 < b < 1, the fractile

value given by
p−v
1−b

+B

p−g+B is greater than the critical fractile value p−v+B
p−g+B for the classic newsvendor

model. Hence, we can conclude that the stock-dependent demand in an additive form causes an

increase in the order quantity as compared to the classic newsvendor model.

Dana and Petruzzi [19] investigated an extension of the classic newsvendor model where each

customer is interested in maximizing her own expected utility and chooses whether to visit the

firm or go for an outside option, u, based on the firm’s price and initial stock level she observes

5The assumption of linearity is made for tractability but the results hold as long as demand is non-decreasing in

quantity.
6The mean of the random term ε is not required to be zero for the linear additive demand form.
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as well as her own valuations of the product and the outside option. Given these assumptions

of consumer behavior, the firm faces uncertain aggregate demand which can be modeled as a

multiplicative function of both its price and its initial stock level. The authors considered two

cases: the exogenous price case for a firm that is merely a price taker and the endogenous price

case where price can be chosen optimally. Both the benchmark policy, which ignores the effect

of stock on demand, and the optimal policy are determined in each case. The uniqueness of

the optimal policies again requires specific restrictions on the distribution of consumers’ outside

options and/or the distribution of aggregate demand as mentioned in the previous section. The

result of a comparison between the optimal policy and its corresponding benchmark policy is that

if a firm internalizes the effect of stock on demand, it usually holds more stock, provides higher

service level and earns higher expected profit no matter it is a price taker or price setter. It is also

worth mentioning that sequential optimization of price and stocking quantity can be applied in the

endogenous price case.

Balakrishnan, Pangburn and Stavrulaki [9] generalized the newsvendor model to incorporate

the stochastic and initial-stock-level dependent demand. The authors proposed a general stochastic

demand model via an inverse fractile function to capture the stimulating effect of stock on demand.

Let f(Q, x) denote the probability density function (pdf) of x(Q) and l(Q) denote the stock-

dependent lower support of the pdf. The corresponding inverse fractile function is defined as

φ(Q, ρ) = F−1(Q, ρ), where ρ is some given fractile value between 0 and 1. To ensure that demand

increases at a decreasing rate with the initial stock level, φ(Q, ρ) is assumed to be a concavely

increasing function of Q, which is later shown to be the sufficient condition for the concavity of the

profit function. Applying a variable transformation x = φ(Q, ρ), the expected sales for a given order

quantity Q can be expressed as S(Q) =
∫ F (Q,Q)
0 φ(Q, ρ)dρ+Q(1−F (Q, Q)). The marginal expected

sales S ′(Q) was found to consist of two parts, 1−F (Q, Q) and
∫ F (Q,Q)
0 φ′(Q, ρ)dρ. The former was

interpreted as the availability effect of stocking higher quantities and the latter as the promotional

effect of stocking more. When the stock stimulating effect is ignored, the term representing the

promotional effect drops out in the optimality condition. By observing so, the authors extended,

from a multiplicative demand form to a general demand form, the conclusion reached in Dana and

Petruzzi [19] that the consideration of the demand-stimulating effect of stock leads to higher initial

stock levels and higher fill rates.
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3 Supplier Pricing Policies and Stocking Quantity

Quantity discounts are a wildly adopted pricing scheme in practice. Basically, the notion is that the

larger the order quantity, the lower the unit procurement cost and the justification for its popularity

includes, but not limited to, costs transfer, price discrimination and channel coordination. When

a supplier has a high fixed cost, s/he may choose to offer quantity discounts to encourage larger

orders, which helps achieve economies of scale. Given that the risk of larger orders is mainly

carried by the buyer, suppliers are often more than willing to practice quantity discounts when

inventory costs are high. As for price discrimination, quantity discounts helps suppliers to identify

price-insensitive retailers from price-sensitive ones and charge higher prices (if possible) to retailers

who are willing to pay more. In this area, there are two interrelated streams of literature which

are of relevance: (a) using different supplier pricing policies to coordinate a supply chain; and (b)

modifying the traditional newsvendor analysis to handle different types of supplier pricing policies.

Research contributions in each area are discussed in this section.

3.1 Coordination in a Supply Chain through supplier pricing policies

Consider a supply chain (SC) with a single supplier (S) and a single newsvendor-type retailer

(R) facing uncertain demand. Assume that the two channel members have full information about

demand and each other’s cost structure and that the retailer places an order at the beginning of

the selling season. Then, the retailer’s expected profit (E[ΠR(Q)]) can be expressed as

E[ΠR(Q)] = (p − v)µ − (p − v + B)E[x− Q]+ − (v − g)E[Q− x]+ (19)

and based on the order placed by the retailer (Q) and a supplier variable production cost (c), the

supplier’s expected profit (E[ΠS]) is:

E[ΠS] = (v − c)Q (20)

respectively. Since the supplier will not operate with negative or zero profit, it is reasonable to

assume v > c. The expected supply chain profit (E[ΠSC]), which is the sum of the retailer’s and

supplier’s profits, is

E[ΠSC] = (p− c)µ − (p − c + B)E[x − Q]+ − (c− g)E[Q− x]+ (21)

When the channel members are only interested in maximizing their own profits, the retailer will

place an order of F−1(p−v+B
p−g+B ) units, which is smaller than the order quantity F−1( p−c+B

p−g+B ) that
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maximizes the channel profit. Hence, offering some form of a quantity discount to the retailer,

which results in a lower wholesale price, can be a feasible solution to achieving channel coordination.

However, it must be made clear that not all forms of quantity discounts can help obtain channel

coordination.

According to Jeuland and Shugan [26], among various quantity discounts, only those that make

channel members’ profit maximizing incentives consistent with overall channel profit maximization

can coordinate the supply chain. This implies that channel members’ profit functions should be

some fixed linear function of the channel profit under the channel-coordinating quantity discount.

Define x(p) as a price-dependent demand function such that demand is decreasing in price (thus,

p(x) is the inverse of x(p)), k1 (0 < k1 < 1) as some fraction of total supply chain profits received

by the supplier (hence, the retailer receives 1 − k1), k2 as some fixed amount of total supply chain

profit allocated to the supplier, and c (C) as the variable per unit cost for the supplier (retailer).

Based on this, one possible form of a quantity discounted price v(x) which can coordinate the

supply chain is v(x) = k1(p(x)− C − c) + (k2
x ) + C.

Ingene and Parry [24] showed the existence of a two-part tariff wholesale pricing policy that

coordinates a supply chain with a single supplier and multiple independent retailers. It is assumed

that the deterministic demand faced by each retailer is unique and concavely decreasing in retail

price. The number of retailers who choose to participate (by obtaining non-negative profits) can

also be considered as a decision in this problem. Let v(Qi) denote the unit payment by retailer

i for an order of size Qi and c denote the supplier’s marginal cost. Utilizing marginal analysis

techniques, the authors showed that a two-part tariff7 in which v(Qi) = c + φc/Qi coordinates the

supply chain, where φc is a fixed fee paid by each participating retailer to the supplier. The number

of participating retailers under this type of pricing policy, denoted by N ∗
c , should be no more than

the number of participating retailers in the integrated system since each retailer in the decentralized

system has a non-negative φc to cover. Finally, it is shown that this type of coordinating two-part

tariff policy is different from the two-part tariff policy that maximizes the supplier’s profit except

in the following two cases: the supply chain consists of a single retailer, or the sales of the retailer

that achieves exactly zero profit from participation is equal to the total sales divided by the number

of participating retailers.

Weng [48] studied the coordination issues of a single-supplier-single-distributor system under

price-dependent stochastic demand. A two-part tariff policy, a fixed payment plus the wholesale

price, was shown to be sufficient to achieve the coordination. The author assumed that all demand

7A two-part tariff can be considered a special case of a quantity discount where for any quantity purchased, the

retailer is required to pay a fixed fee plus a per unit fee.
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must be satisfied and a second order is allowed at a higher cost when demand exceeds the initial

order quantity. Decisions to be made include the distributor’s selling price and initial order quantity

as well as the supplier’s unit profit margin. The supplier’s selling price is equal to the sum of the

unit profit margin and the unit production cost. In the absence of coordination, it is assumed

that the supplier may not know the distributor’s actual response to its wholesale price and thus

determines the unit profit margin based on its estimated order quantity, which may deviate from

the distributor’s actual order quantity. When coordination is enabled, the supplier has complete

information about the distributor’s response. The price-dependent random demand is modeled

by a generalized phase-type distribution, i.e., F (x|p) = 1 − e−x/µ(p) ∑+∞
n=1 an

∑n−1
i=0

(x/µ(p))i

i! , where

an, n = 1, 2, . . . ,∞ is some appropriately-chosen discrete probability distribution and µ(p) = dp−k,

d > 0, k > 1. The parameter k represents the sensitivity of demand to price. The optimal

pricing and ordering policies with and without coordination are then characterized and constrasted

under previous assumptions. It is shown analytically that the optimal initial order quantity with

coordination is always greater than the optimal initial order quantity without coordination and the

gap increases in k. Two effects of coordination are found to contribute to the above result, the

reduction in the unit overage and underage costs and the reduction in the supplier’s selling price.

Numerical analysis demonstrated the necessity of coordination for both parties when demand is

highly sensitive to the distributor’s selling price. The author also developed a two-part tariff policy

to coordinate the system in which the supplier sets its selling price equal to its unit production cost

and the distributor makes a fixed payment to the supplier.

In Weng [49], a generalized newsvendor model was developed to examine the effect of coordi-

nation for a single-supplier-single-retailer supply chain under stochastic demand and an all-units

quantity discount was designed to coordinate the system. The only decision included in this model

is the buyer’s order size. No specific distribution is assumed for the demand. Unfilled demand may

be backordered at a cost and a second order may be placed to the supplier depending on whether

the additional order generates positive profits for both parties. Let b denote the unit backorder

cost, t2 denote the ordering cost for the second order and s2 be the supplier’s setup cost for the

second run. The buyer is willing to place a second order if the unfilled demand, q, satisfies the

inequality (p − v − b)q − (t2 + s2) + Bq ≥ 0, where the sum of the first two terms is the profit

to be obtained from placing a second order and the last term is the shortage cost incurred if a

second order is not placed (recall that B is the per unit shortage/lost sales cost). This modeling of

unfilled demand can be used to cover situations in which all demand must be satisfied by setting

B → +∞ or no re-supply is available from the supplier by letting b = p − v + B. Analytically,

the author showed that, for an increasing concave demand distribution function, the supply chain’s

optimal order quantity (Q∗
SC) is always larger than the retailer’s optimal order quantity, Q∗

R when
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coordination is not implemented. Let cmin(Q∗
SC , ρ) (where ρ is some non-negative constant) denote

the supplier’s lowest acceptable per unit price v satisfying E[ΠS(Q∗
SC)] ≥ (1+ρ)E[ΠS(Q∗

R)], where

E[ΠS(·)] refers to the supplier’s expected profit with a particular order quantity. Let cmax(Q∗
R, γ)

(where γ is some non-negative constant) denote the retailer’s highest acceptable per unit price v

satisfying E[ΠR(Q∗
SC)] ≥ (1 + γ)E[ΠR(Q∗

R)]. If cmax(Q
∗
R, γ) ≥ cmin(Q∗

SC , ρ), the author argued

that an all-units quantity discount in which the single price break quantity and the corresponding

unit price be set to Q∗
SC and cmax(Q∗

R, γ), respectively, can coordinate the system since both parties

are no worse off. The two parameters ρ and γ can be interpreted as specifying the allocation of

the increased system profit due to coordination. For example, if ρ = 0, then all increases in supply

chain profits are allocated to the buyer, while if γ = 0, then all increases in supply chain profits

are allocated to the supplier.

Cachon and Lariviere [16] focused on the use of revenue-sharing contracts in supply chain coor-

dination and offered comparisons between revenue-sharing and other contracts including quantity

discounts. Again, consider a single-supplier-single-retailer supply chain. The profit-maximizing

retailer makes two decisions, order quantity and retail price (shortage cost is not included). Let

S(Q, p) be the expected sales for the quantity-price pair (Q, p), c be the unit production cost of

the supplier and C be the retailer’s unit operating cost. The retailer’s expected revenue can then

be expressed as R(Q, p) + gQ, where R(Q, p) = (p − g)S(Q, p), and the expected system profit

E[ΠSC(Q, p)] = R(Q, p)− (c+C−g)Q. Let (Q∗, p∗) denote the quantity-price pair that maximizes

the expected system profit. The authors demonstrated that, for a fixed retail price p∗, the quantity

discount scheme v(Q) = (1 − α)R(Q,p∗)
Q + α(c + C) + (1 − α)g − C can also coordinate the supply

chain. However, this specific quantity discount may fail to coordinate the system when the retail

price deviates from p∗, while the linear relationship between the retailer’s expected profit and the

system’s expected profit maintains under revenue sharing. Furthermore, as R(Q, p) is included in

v(Q), quantity discounts may only apply to a multi-retailer situation where the retailers have the

same revenue function.

3.2 Alternative pricing policies and the newsvendor analysis

Three common types of quantity discount supplier pricing are:

• Linear quantity discount (LD). A linear discount scheme assumes that the supplier offers a

per unit price vLD(Q) decreasing in the quantity Q ordered by the retailer. The specific linear

discount scheme we consider is vLD(Q) = vf − tQ where t is some per unit constant discount

rate, and vf is the base price.
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• All-units (AU) quantity discount. As with the linear discount scheme, under the all-units

quantity discount policy the supplier also offers a per unit price vAU (Q) which is declining in

the quantity Q ordered by the retailer. The key difference is that the price per unit decline

is a step function and is specified as follows. Define wi (i = 1, . . . , n) as alternative per unit

prices such that w1 > w2 > . . . > wn and corresponding maximum quantities to each per unit

price as qi+1 (i = 1, . . . , n) such that q1 < q2 < . . . < qn (in general, q1 is assumed to be 0).

Then under the all-units discount scheme, the per unit price charged by the supplier is: wi

for qi < Q ≤ qi+1 (i = 1, . . . , n) where Q is the quantity ordered by the retailer.

• Incremental-units (IU) quantity discount. In comparison to the all-units quantity discount

scheme, under the incremental-units policy the price quoted by the supplier only applies to

incremental units ordered by the retailer. Hence, under this pricing scheme, the per unit

average price charged by the supplier is: w1 for q1 < Q ≤ q2, (w1q2 + w3(Q − q2))/Q for

q2 < Q ≤ q3, (w1q2 + w3(q3 − q2) + w3(Q − q3))/Q for q3 < Q ≤ q4, and so on.

The cost per unit (vLD(Q), vAU (Q), and vIU (Q)) and the total cost of each policy is illustrated in

Figure 1. Assuming the retailer operates as a newsvendor, the impact of each of these schemes on

the optimal order quantity for each of these schemes is as follows.

Insert Figure 1 about here

Assuming a risk-neutral retailer facing with a linear quantity discount, the retailer’s expected

profit function can be attained by simply replacing v with v(Q) = vf − tQ in its expected profit

function in the basic case.

E[ΠR] = (p− v(Q))µ− (p − v(Q) + B)E[x− Q]+ − (v(Q)− g)E[Q− x]+ (22)

By imposing certain parametric restrictions 8, the optimal order quantity Q∗
LD is characterized as

follows:

F (Q∗
LD) =

p − v0 + B

p − g + B
+

2tQ

p − g + B
. (23)

Given that 2tQ
p−g+B > 0, it is obvious that the buyer would be induced to order more under linear

discounting scheme as compared to the fixed price scheme. While a closed form expression for Q∗
LD

cannot be derived for an arbitrary demand distribution, the optimal value of Q∗
LD can be found

via a simple uni-dimension search algorithm.

8These restrictions are: 0 < t < min[0.5f(Q)(p− g + B), (v − g)Q−1] for all possible values of Q.
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To solve the buyer’s optimal order quantity decision (Q∗
AU ) assuming that the supplier offers

an all-units quantity discount, the algorithm in Figure 2 can be used. To solve the buyer’s optimal

order quantity decision (Q∗
IU) assuming that the supplier offers an incremental quantity discount,

the algorithm shown in Figure 3 can be used.9

Insert Figures 2 and 3 about here

Jucker and Rosenblatt [27] studied the implications of quantity discounts for both the retailer

and supplier in the context of the newsvendor problem. Consider a profit maximizing retailer

that faces deterministic demand and an all-units quantity discount offered by the supplier. The

authors showed that the retailer orders up to di units if the amount of units she must purchase,

denoted by Q′, falls into the interval [di, qi+1), and orders exactly Q′ units if Q′ is in [qi, di), where

di = qi+1
wi+1+g
wi+g . di can be interpreted as the breakeven point at which the marginal cost remains

the same between ordering di and qi+1 units. Since this kind of behavior reflects zero marginal cost

of units in the interval [di, qi+1), the all-units quantity discount can be characterized by a marginal

profit function which equals wi for qi ≤ Q < di and 0 for di ≤ Q < qi+1. Incremental quantity

discounts can be modeled as a special case where di = qi+1. Using marginal analysis, the authors

then proposed a new solution procedure for newsvendor problems with all-units quantity discount.

Traditionally, the global maximum is found through the algorithm outlined earlier. However, the

authors suggested that, for cases in which the marginal profit of an additional unit equals wi cannot

be solved analytically, it be better to first compare the values of the marginal cost function and

marginal revenue function from the lowest price break quantity to locate the intersections if exist.

While price break quantities can be candidates for the global optimum in the case of all-units

quantity discount, the paper mentioned that we only need to pay attention to the intersections

when an incremental quantity discount is considered.

Pantumsinchai and Knowles [37] presented solution algorithms to the standard container size

discounts in the newsvendor environment. The newsvendor determines the optimal order quantity

and the number of different standard containers to make up the order under random demand.

Suppose that there are m standard container sizes available with q1 > q2 > . . . > qm. The unit

purchase costs associated with container sizes satisfy the inequality 0 < p1 ≤ p2 ≤ . . . ≤ pm. Let

I denote the newsvendor’s initial inventory level and yi denote the optimal order-up-to level that

minimizes G(yi, I), the purchase cost if applicable plus the expected overage and underage cost when

only the ith container size is available. Define ni = (yi − I)/qi, i = 1, 2, . . . , m. The authors showed

9The process is similar to that of the all-units quantity discount except that in this case, we only compute the

expected profit when order quantities are in the feasible range.
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that the newsvendor should not order when I ≥ y1. In the case where I < y1, the optimal order

quantity Q∗ is bounded by nuqu and (nu + 1)qu, where nu = (yu − I)/qu and u is chosen such that

ni = 0, i = 1, . . . , u−1 and G1((n1+1)q1+I, I) ≥ G2((n2+1)q2+I, I) ≥ . . . ≥ Gu((nu+1)qu +I, I).

Solution algorithms are then proposed for solving the general case and the restricted case where

the newsvendor is required to use successively smaller container sizes. In addition, when a fixed

cost K is incurred for placing an order, the authors suggested comparing G(y∗, I)+K with G(I, I)

and ordering if G(I, I) is larger.

Lin and Kroll [35] considered both all-units quantity discount and incremental discount in the

newsvendor problem with dual performance measures: “maximize the expected profit subject to

a constraint that the probability of achieving a target profit level is no less than a predetermined

risk level”. The retailer’s ordering decision was analyzed under four models: Model 1: all-units

discount with zero shortage cost; Model 2: incremental discount with zero shortage cost; Model

3: all-units discount with positive shortage cost; and Model 4: incremental discount with positive

shortage cost. For Model 1, using results from Lau [34], the authors showed that the constraint

Prob(Π ≥ T ) ≥ θ, where Π is the actual profit, T is the target profit level, and θ is the predetermined

risk level, actually imposes another feasible condition on Q associated with wi, i.e., T/(p − wi) ≤

Q ≤ ((p − g)F−1(1 − θ) − T )/(wi − g). Therefore, the feasible interval for Q corresponding to wi

can be obtained by combining this interval with the interval [qi, qi+1) in this case. The optimal

order quantity can be found by solving the newsvendor model with an all-units quantity discount

scheme using the algorithm described earlier. For Model 2, the decision variable Q has the same

feasible interval as for Model 1 for each wi and closed-form expression for the optimal solution can

be derived. For the other two models with positive shortage cost, again using the results from Lau

[34], the constraint on the risk level can be replaced by the inequality F (D2i −F (D1i)) ≥ θ, where

D2i = [T + (wi − g)Qi]/(p − g) and D1i = [(p − vi + B)Qi − T ]/B where Qi is the feasible order

quantity in the interval [qi, qi+1]. Since the constraint is nonlinear, no closed form solution can be

obtained in these two cases.

Burnetas, Gilbert and Smith [14] addressed a pricing-policy design problem of a profit-maximizing

supplier that has less demand information than the newsvendor-type buyer does. The optimal

all-units discount and the optimal incremental discount were also contrasted in terms of the ef-

fectiveness of increasing the supplier’s expected profit in this paper. The authors modeled infor-

mation asymmetry by considering n buyer types that have different demand distribution Fi(x),

i = 1, 2, . . . , n, but the same cost structure. For the supplier, each type i has a probability of pi

to be the real type of the buyer. And it is assumed that Fj(x) stochastically dominates Fi(x) for
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j > i10. The buyer has an outside supply source to purchase the products at a price of u, c < u < p.

In such an environment, following the revelation principle, the pricing mechanism design problem

can be formulated as maximizing the supplier’s expected profit subject to constraints that each

buyer type prefers the quantity-price option intended for him and accepting the intended option

should yield at least as much expected profit as resorting to the outside supply source. The solution

to this problem is referred to as the fixed-package pricing policy (i.e., a pricing policy that specifies

a quantity-price pair). The optimal all-units discount and the optimal incremental discount can

be obtained by solving a similar problem. The authors were able to show that, both analytically

and numerically, the fixed-package pricing policy dominates the optimal all-units discount, which

in term outperforms the optimal incremental discount, when expected profit is concerned.

Altintas, Erhun and Tayur [3] addressed the problem of designing the optimal all-units quantity

discount with a single price break from the perspective of a supplier that faces a newsvendor-type

buyer in a multiple-period setting. It is assumed that, for every period in the planning horizon

except the last one, leftover units at the end of one period will be carried over to the next period

and unfilled demand will be backlogged at a cost. At the end of the planning horizon, leftover

units must be disposed and unfilled demand must be satisfied from an outside supply source. The

supplier is concerned with maximizing its own profit, which is the amount of money coming from

the retailer less the trucking cost. The trucking cost for each order of size Q can be expressed as

K
⌈

Q
C

⌉

, where K is the fixed operating cost per truck and C is the capacity of each truck. The

buyer seeks to minimize her average cost. The authors first considered a single period model that

allows positive initial inventory level y. Let ki denote the critical fractile value corresponding to the

whole sale price vi, i = 0, 1. Define Si = F−1(ki), i = 0, 1, and S01 as some value that equates the

resulting expected costs of ordering q1 or ordering up to S0 if necessary. The authors demonstrated

that a three-index policy with indices (S0, S1, S01) can be the buyer’s optimal ordering policy.

To be specific, order max {S1 − y, q1} if the initial inventory level y is less than S01 and order

max{S0−y, 0} otherwise. However, this three-index policy does not apply to a multi-period model

according to the numerical study. One interesting finding is that demand variance and the variance

of orders not including the orders of size 0 may move in opposite directions, since the buyer may

follow polices with fewer indices under more variant demand. For the supplier’s problem, fixing v1

and treating v0 and q1 as variables, the authors were able to show numerically that the supplier

should offer quantity discounts that can act as minimum order quantity schemes to reduce the

order variance when the fixed cost K is high.

10Stochastic dominance implies that the cumulative density function of demand for buyer i is strictly greater than

the cumulative density function for buyer j for all possible values of x ([38]).
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Lau, Lau and Wang [33] investigated the design of a supplier’s wholesale pricing policy in the

form of an all-units discount with a single price-break point. They considered a supply chain with

a single Stackelberg-leader supplier and numerous heterogeneous newsvendor-type retailers. Each

retailer i faces a normally distributed demand with mean µi and standard deviation σi, where

σi = kµi (where k is a common scale parameter across all retailers) and all µi’s follow another

stochastic distribution H3(·) by assumption. According to the authors, all demand characteristics

are to be estimated from empirical data and they assumed that the parameters k, p (market

price) and c (retailer specific cost) are identical for all retailers. Based on a numerical analysis,

they concluded that for a Stackelberg-leader supplier whose only objective is profit maximization,

the optimal all-units quantity discount dominates the optimal single wholesale price scheme and

that retailers’ heterogeneity, indicated by the standard deviation of H3(·), adversely affects the

effectiveness of the quantity discount scheme. In addition, for a profit-maximizing supplier that

is also concerned with allocating a certain amount of profits to the retailers, the optimal quantity

discount again performs better than the optimal single wholesale price scheme in terms of the

supplier’s expected profit.

4 Buyer Risk Profile

This part of the paper is mainly devoted to the analysis of the ordering policies of newsvendors

with various risk preferences, including, but not limited to, risk-averse and risk-seeking preferences.

Motivated by empirical and experimental observations, alternative risk preferences (such as loss-

aversion, and stock-out aversion) have been analyzed in the context of the newsvendor setting.

General utility functions, mean-variance, and coherent risk measures are the three most popu-

lar approaches to date. In what follows, we will introduce some general results for a risk-averse

newsvendor derived and provide a detailed review of other contributions in this domain.

Eeckhoudt, Gollier and Schlesinger [20] provided a detailed investigation of the effects of risk,

risk aversion and changes in various price and cost parameters for a risk-averse retailer. One

important assumption that simplifies the analysis is that all demand must be satisfied. To be

specific, when the initial order is insufficient to fulfill the demand, the retailer purchases additional

products at a cost of v̂, which is higher than the initial order cost v. The profit function can then

be reformulated as

Π(x, Q) =

{

Π−(x, Q) = w0 + px − vQ + g(Q− x), x ≤ Q;
Π+(x, Q) = w0 + pQ − vQ− v̂(x − Q), x > Q

where w0 is the newsvendor’s initial wealth. Obviously, for a given Q, profit increases in demand x,
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which is defined in the interval [0, T ]. For a risk-averse newsvendor, the objective is to maximize the

expected utility of the random profit. Let u(·) denote the increasing and concave utility function.

The problem can be stated as max E[u(Π(x, Q))], where

E[u(Π(x, Q))] =

∫ Q

0
u[Π−(x, Q)]f(x)dx+

∫ T

Q
u[Π+(x, Q)]f(x)dx (24)

The first and second derivatives of the objective function with respect to Q are as follows.

∂E[u(Π(x, Q))]

∂Q
= (g − v)

∫ Q

0
u′[Π−(x, Q)]f(x)dx+ (v̂ − v)

∫ T

Q
u′[Π+(x, Q)]f(x)dx

∂2E[u(Π(x, Q))]

∂2Q
= (g − v)2

∫ Q

0
u′′[Π−(x, Q)]f(x)dx− (v̂ − g)u′[pQ− vQ]f(Q)

+(v̂ − v)2
∫ T

Q
u′′[Π+(x, Q)]f(x)dx

It is relatively easy to show that the objective function E[u(Π(x, Q))] is concave in Q and thus

the optimal order quantity can be determined by first-order condition. Let Q∗
N and Q∗

A denote the

risk-neutral and risk-averse optimal order quantities, respectively. Since

u′[Π−(x, Q)] ≥ u′[pQ− vQ], x ≤ Q;

u′[Π+(x, Q)] < u′[pQ− vQ], x > Q,

we get:

∂E[u(Π(x, Q∗
A))]

∂Q
= (g − v)

∫ Q∗

N

0
u′[Π−(x, Q∗

N)]f(x)dx

+(v̂ − v)

∫ T

Q∗

A

u′[Π+(x, Q∗
A)]f(x)dx

< u′(pQ∗
N − vQ∗

N) · [(g − v)

∫ Q∗

A

0
f(x)dx + (v̂ − v)

∫ T

Q∗

N

f(x)dx]

= 0

This indicates that a risk-averse newsvendor orders less than a risk-neutral newsvendor in this

setting. Keren and Pliskin [29] also showed that, under uniformly distributed demand, the optimal

order quantity decreases in the degree of risk aversion even if penalty is incurred for lost sales.

As an increase in risk aversion can be modeled by a concave transformation of the current utility

function, it is not so difficult to show that Q∗
A decreases in the degree of risk aversion. Eeckhoudt,

Gollier and Schlesinger [20] showed that increases in the salvage value and the re-order cost both

leads to a larger initial order, while the effect of changes in the initial order cost v on Q∗
A is still
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ambiguous. As for the changes in retail price, the authors showed that Q∗
A increases in p if the

retailer’s preference displays decreasing partial relative risk aversion. The effects of increases in two

types of risk were examined in this paper, risk associated with the initial wealth and demand risk.

It is shown that the optimal size of the initial order is unaffected by the additional risk if the utility

is quadratic or exhibits constant absolute risk aversion, decreases if the utility displays decreasing

absolute risk aversion. Riskier demand is described by a probability distribution G which is a

mean-preserving with an increase in risk (MIR) of F . Let Q∗
AF and Q∗

AG denote the optimal order

quantity associated with demand distribution F and G, respectively. The authors were able to

prove that (1) Q∗
AF > Q∗

AG if an MIR is restricted to [0, Q∗
AF ] or G and F satisfies the inequality

[G(x)− F (x)][Q− x] ≥ 0, (2) Q∗
AF < Q∗

AG if MIR is restricted to [Q∗
AF , T ].

Lau [34] provided solution procedures for solving the newsvendor problems under two alter-

native optimization objectives, maximizing expected utility and maximizing the probability of

achieving a target profit level. Let A denote the actual sales of the newsvendor. The profit can

be expressed as Π(x, Q) = (p − g + B)A − Bx − (v − g)Q, where A = min (x, Q). When only

the tradeoff between mean and standard deviation of the profit is considered, the optimization

problem becomes max E[Π(x, Q)]− k
√

var(Π(x, Q)), where k is some constant that reflects the

decision maker’s degree of risk aversion. The author demonstrated that the optimal solution to

the classic newsvendor problem always serves as an upper bound on the optimal order quantity in

this scenario. Besides, he suggested determining the optimal solution value numerically due to the

complexity of the first-order condition. For the case in which the decision maker is concerned with

maximizing the profit’s expected utility, the author considered a utility function approximated by

an nth degree polynomial, u(Π(x, Q)) =
∑n

i=0 aiΠ
i(x, Q) and derived the corresponding first-order

condition. Under the objective of maximizing the probability of achieving a target profit level T ,

i.e., max prob(Π(x, Q) ≥ T ), the optimal order quantity is equal to T/(p − v) when B = 0, which

is independent of demand distribution. When B > 0, the first order condition can be expressed

as f(D1)
f(D2)

= (p−v+B)(p−g)
B(v−g) , where D1 and D2 are the two demand realizations that generates the

target profit level T. However, no conclusion can be reached regarding the behavior of the objective

function for an arbitrary demand distribution.

Bouakiz and Sobel [10] showed the optimality of a base-stock policy for a multi-period newsven-

dor problem in which the newsvendor’s risk attitude can be described by an exponential utility

function. Specifically, they assumed a utility function u(C(N )) = −e−τC(N), where τ is some posi-

tive constant measuring the risk-aversion degree of the retailer and C(N ) is the present value of the

total cost incurred in the N-period planning horizon. Let r denote the discount factor. With the

infinite-horizon model, the authors proved the existence of a functions y(·) that gives the optimal
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base stock level for period i in the form of y(ri−1τ), which eventually approaches the optimal base

stock level for a risk-neutral retailer.

Agrawal and Seshadri [1] considered a similar problem as Eeckhoudt, Gollier and Schlesinger

[20] except that the demand now depends on the retail price. Assuming that the mean demand

is equal to a(p), which is a decreasing and concave function of p, the authors modeled the effect

of price on demand in two ways: (1) x = a(p)ε1, where ε1 is a random variable with unity mean;

(2) x = a(p) + ε2, where ε2 is a random variable with zero mean. The authors first reduce the

bivariate objective function to a univariate function through a graphical analysis of price p versus all

possible demand realizations, and then examine the impact of risk aversion on the retailer’s pricing

and ordering decisions. With the multiplicative demand model (model 1), it is demonstrated that

the optimal retail price increases in the degree of risk aversion, while the optimal size of the initial

order decreases. With the additive demand model (model 2), a more risk-averse retailer will choose

a lower retailer price, but the effect of risk aversion on the optimal initial order quantity cannot be

precisely identified.

Schweitzer and Cachon [42] provided a complete investigation of the relationship between the

newsvendor’s profit-maximizing order quantity and optimal order quantities under various alter-

native objectives. A symmetric demand distribution and zero shortage cost are assumed in the

analysis. Let w0 denote the initial wealth. For a loss-averse newsvendor, the authors considered

a utility function in which u(w) is equal to w for w ≥ w0 and λw otherwise, where λ is a mea-

sure of the newsvendor’s degree of loss aversion. It is proved that the optimal order quantity of

a loss-averse newsvendor is smaller than the profit-maximizing order quantity and decreases in λ.

For a newsvendor with preference for waste-aversion (dislike of excess inventory), stock-out aver-

sion, or minimizing ex-post inventory error (minimizing absolute differences between Q and x),

the authors modeled the respective utilities as expected profit less the cost incurred by the corre-

sponding deviation. They showed that a waste-averse newsvendor orders less than a risk-neutral

newsvendor, while a stockout-averse newsvendor orders more. By defining products with the criti-

cal fractile greater than 1/2 as high-profit products and as low-profit products otherwise, then to

minimize ex-post inventory error, the newsvendor tends to order less than profit-maximizing quan-

tity for high-profit products and more for low-profit products. The same ordering policy applies to

newsvendors adopting an anchoring policy in which the decision maker anchors on mean demand

and adjusts the profit-maximizing order quantity. The results derived from the last two situations

are exactly what the authors observed in their experiments.

Arcelus, Kumar and Srinivasan [6] investigated the pricing, ordering and promotion policies

of a risk-sensitive (risk-averse or risk-seeking) newsvendor under price-dependent and stochastic
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demand. Three promotion schemes are considered in this paper: rebate, advertising and the

simultaneous use of the previous two schemes. It is assumed that the price and promotion decisions

(i.e., rebate’s face value and advertising expenditure) only affect the deterministic part of demand.

To be specific, price and rebate decisions have an exponential relationship with demand, while

advertising enters in logarithmic form. Both additive and multiplicative demand errors are allowed

in this model. It is also worth mentioning that in contrast to most of the previous papers we have

reviewed, risk preferences are included in this model by introducing a risk-adjustment factor λ for

the stochastic part of the expected profit. λ > 1 for risk-averse newsvendors and λ < 1 for risk-

seeking decision makers. Necessary optimality conditions are derived for all the possible decisions to

be made for both additive error and multiplicative error. It is demonstrated that both the optimal

order quantity and the optimal price are independent of the advertising expenditure. Since no

closed form solution can be achieved due to technical complexity, numerical analysis is conducted

for an example with uniformly distributed demand. One observation is that if no promotion scheme

is available, price and expected profit increases in the value of λ, but order quantity falls.

Many researchers have considered the use of financial pricing and risk measures in inventory

problems. Anvari [4] argued that the mean-variance approach proposed in Lau [34] may not apply

to a decision maker facing with multiple investment options since the effect of covariance cannot

be captured by the mean-variance approach. The author hence suggested the use of the capital

asset pricing model (CAPM) in the inventory models and thus optimizing from the perspective of

the shareholders, instead of the managers, to avoid agency problem. Consider a newsvendor with

two investment options, the inventory investment option (purchase Q units at a price of v) and the

option representing all the other investment opportunities other than the inventory option with a

random return rate. It is assumed that B = 0 and that investment is made at the beginning of the

single period while returns will be collected at the end of the period. Let C denote the total capital

available for investment. The objective is now to determine Q maximizing the shareholder’s wealth

represented by [E[D(Q)]− ΩCov(D(Q), M)]/(1+ rf) − C, where D(Q) is the random liquidating

dividend, Ω is the market price per unit of risk, M is the value of the market portfolio at the

end of period and rf is the risk-free rate. The behavior of Cov(D(Q), M) was examined in this

paper under the assumption that the joint distribution of demand x and M is bivariate normal.

(A solution procedure was developed in Chung [18] for this special case. ) Moreover, the author

showed that the proposed model can be reduced to the classic newsvendor model by: (1) setting

rf = 0; (2) dropping out the term Cov(D(Q), M) since risk is not considered in the classic setting;

and (3) ignoring the return from the other investment option.

Gaur and Seshadri [21] investigated the problem of hedging operational risk using financial
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instruments in the newsvendor environment. Demand is assumed to be correlated with the price

of a financial asset in a complete financial market with a unique risk-neutral pricing measure.

No penalty is considered for lost sales. The decision maker makes the inventory decision at time

0 and sells the products at time T . Let ST denote the price of the financial asset at time T .

Demand is modeled as x = a + bST when demand is perfectly correlated with the asset price and

as x = a + bST + ε when demand is only partially correlated. ε is the decision maker’s subjective

forecast error. The authors were able to show that, for a risk-neutral decision maker, the optimal

order quantity is not affected by the hedging decision in both cases. However, hedging transactions

enable greater reduction in risk when demand is more correlated with the price of the asset. Under

certain conditions on the structure of the hedging portfolio and the decision maker’s utility function,

financial hedging increases the optimal order quantity if a risk-averse decision maker is willing to

invest in inventory rather than put all the money in the financial market.

Ahmed, Cakmak and Shapiro [2] suggested the use of coherent risk measures in inventory

problems to obtain convex objective function. They analyzed a multi-period inventory problem

with linear costs. The total cost for the single-period problem is expressed as C(Q) = vQ−γg(Q−

x) + B[x − Q]+ + h[Q − x]+, where γ is a discount parameter within the interval (0, 1] and h is

the holding cost for each unit left. Let ρ(·) denote a coherent risk measure. When risk aversion

is considered, the problem can be formulated as min ρ(C(Q)). For an arbitrary coherent risk

measure, the authors proved its one-to-one correspondence with the min-max formulation. Using

a mean-absolute deviation risk measure in the form of ρ(z) = E[z] + λE[|z − E[z]|], λ ∈ [0, 1/2],

the structure of the optimal solution is found to be similar to that of the risk-neutral case for the

multi-period problem.

Gotoh and Takano [23] investigated the risk-sensitive newsvendor problem under the objective

of minimizing the conditional value-at-risk (CVaR), which is a coherent risk measure. Let ∆(x, Q)

denote a particular loss function of interest and α denote some pre-specified target level of the

loss function. The CVaR minimization problem formulated in this paper is to find the minimizing

Q and α values of the function α + 1
1−βE[[∆(x, Q)− α]+] for a given β. The objective function

is introduced in Rockafellar and Uryasev [41]. The parameter β refers to the probability of the

loss function exceeding the infimum of all the α values that satisfy the inequality Φ(α|Q) ≥ β,

where Φ(·) is defined as the distribution function of ∆(x, Q). Two loss functions are considered

in this paper, the net loss −Π(Q) and the total cost C(Q). The authors proved the convexity of

the objective function and derived closed form expressions for Q and α in both cases. The two

CVaR minimization problems are shown to be generalizations of the classic newsvendor problem.

However, unlike what happens in the classic newsvendor case where maximizing profit is equivalent
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to minimizing cost, the two sets of (Q∗, α∗) can be very different from each other. Analytical

results are also obtained with the mean-risk criterion where risk is measured by the net loss CVaR.

A linear programming formulation is also developed for scenarios where the decision maker has

multiple products to handle.

Jammernegg and Kischka [25] analyzed the ordering policy and its corresponding performance

measures, such as cycle service level (CSL)and probability of loss, of a risk-sensitive newsvendor

under the mean-deviation criterion. No penalty cost is considered. The problem is formulated as

max(Q,α)
λ−α
1−α CV aRα(Q)+ 1−λ

1−αE[Π(Q)], where CV aRα(Q) = E[Π(Q)|Π(Q) ≤ F−1(α)], 0 < α ≤ 1,

0 ≤ λ ≤ 1. This objective applies to a risk-neutral newsvendor if α = λ, a risk-averse newsvendor if

α < λ, and to a risk-seeking newsvendor if α > λ. The closed form expression for the optimal order

quantity is also derived under this criterion. Specifically, Q∗ = F−1(p−v
p−g + α−λ

1−λ · v−g
p−g ) for λ ≤ p−v

p−g ,

and F−1(p−v
p−g ·

α
λ ), otherwise. The conclusion is reached that a risk-averse (risk-seeking) newsvendor

orders less (more) than a risk-neutral newsvendor does. The cycle service level, probability of loss,

defined as P (Π(Q∗) ≤ 0), and expected loss, defined as E[Π(Q∗)|Π(Q∗) ≤ 0], increase in α and

decrease in λ. In addition to the conditional expected value approach discussed above, the authors

also suggested using performance measures to model the decision maker’s risk preference. For

example, a decision maker is risk averse (risk-seeing) if his/her self-specified CSL is less (greater)

than the optimal CSL in the classic newsvendor scenario.

Wang and Webster [47] examined the ordering policy of a loss-averse newsvendor. They used

the same utility function to describe the loss-aversion preference as in Schweitzer and Cachon

[42] but assumed a positive shortage cost. Let q1(Q) = (v − g)Q and q2(Q) = p−v+B
B Q. The

objective function can be written as E[u(Π(Q, x))] = E[Π(Q, x)]+ (λ− 1)[
∫ q1(Q)
0 Π−(x, Q)dF (x)+

∫ supI
q2(Q) Π+(x, Q)dF (x)], where I is the feasible interval for demand x and λ ≥ 1 is the degree of loss

aversion. The two integrals in the objective function represent the expected underage and overage

losses and have been explictly defined earlier in the discussion of Eeckhoudt, Gollier and Schlesinger

[20]. Define (p − v + B)(1 − F (q2(Q))) as the marginal underage loss and (v − g)F (q1(Q)) as the

marginal overage cost. The authors showed that, for λ > 1, whether a loss-averse newsvendor orders

more or less than a risk-neutral newsvendor depends on the relative magnitude of the marginal

underage and overage losses, which in terms depends on the demand distribution and the values of

the price and cost parameters. If the marginal underage loss exceeds the marginal overage loss, the

loss-averse newsvendor tends to order more than a risk-neutral decision maker. However, when the

shortage cost is lower than some threshold value, the loss-averse optimal order quantity is always

less than the profit-maximizing order quantity and decreases in the degree of loss-aversion. And it

is not surprising to know that the loss-averse optimal order quantity increases in the shortage cost.
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5 Conclusions and Directions for Future Research

In this paper, we have summarized the existing contributions on the newsvendor problem for

managing inventories. Over and above synthesizing, summarizing, and extending the current con-

tributions, we also find that there are several opportunities for future research. These are as follows:

• Supplier capacity constraints are generally not considered in the newsvendor setting. More

recently, Burke, Carrillo, and Vakharia [11] have examined how a fixed capacity constraint

would moderate the newsvendor’s ordering decision. However, what has not been addressed

is how the supplier could moderate the capacity decision (i.e., increase or decrease capacity)

in this setting.

• One extension which has of late been receiving greater interest is that of integrating both

stochastic demand and stochastic supply in newsvendor ordering decisions. A first attempt

to address this issue is the research of Burke, Carrillo, and Vakharia [12] where the authors

show that under assumptions of uniformly distributed demand, closed form solutions could

be obtained regardless of the underlying distribution of supplier reliabilities. It would be

interesting to examine whether their analysis holds for other demand distributions and also

whether, it can be extended to multiple stochastic demand sources.

• The idea of zero supplier lead time of supply is another assumption in the newsvendor set-

ting. Given that stochastic lead times are quite common in certain settings (e.g., sourcing of

seasonal goods), how these lead times impact the buyer’s ordering decision is another area

for future research.

• There has been some prior research on the multi-period newsvendor’s ordering decision (see

[43] for a review of this problem). However, this has not addressed the dynamics of pricing

decisions, marketing effort, and/or buyer penalties in changing ordering quantities which are

obviously relevant in an applied setting.

In addition to the suggestions noted above, it is obvious that future research opportunities

which integrate these distinct areas are also relevant for future research. For example, practical

settings where capacity and supplier price are related would obviously moderate the ordering policy

for a newsvendor. Further, it might also be worthwhile to investigate settings where buyers are

charged a penalty for accepting quantities which are lower than those previously agreed upon since

this would tend to increase supplier prices.
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Figure 1: Graphical Illustration of Alternative Pricing Schemes 

Linear Discount (LD) All-Units Discount (AU) Incremental-Units Discount (IU) 
     

     



Figure 2: Algorithm for the All-Units discount scheme

Set j = 0;

while j < n do

j = j + 1;

Compute Q(wj) = F−1(
p−wj+B
p−g+B );

if qj ≤ Q(wj) < qj+1 then

set Qj = Q(wj);

else

if Q(wj) < qj then

set Qj = qj;

else

set Qj = qj+1;

end

end

Compute the expected profit for the buyer (E[Π(Qj, w(j)]) using equation (2) after

substituting v = wj;

end

Identify j∗ such that E[Π(Qj∗, w(j∗)] = max1≤k≤nE[Π(Qk, w(k)]. Then the optimal order

quantity for the buyer is Q∗
AU = Qj∗ .
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Figure 3: Algorithm for the Incremental-Units discount scheme

Set j = 0;

while j < n do

j = j + 1;

Compute Q(wj) = F−1(
p−wj+B
p−g+B );

if qj ≤ Q(wj) < qj+1 then

set set Qj = Q(wj);

else

if j > 1 then

set v =
{w1q1+wj [Q(wj)]−qj]+

∑j−1

k=2
wk(qk+1−qk)}

Q(wj)
;

else
set v = w1;

end

end

compute the expected profit for the buyer (E[Π(Qj, w(j)]) using equation (2) after

substituting v;

end

Identify j∗ such that E[Π(Qj∗, w(j∗)] = max1≤k≤nE[Π(Qk, w(k)]. Then the optimal order

quantity for the buyer is Q∗
IU = Qj∗ .
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