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Line-shape predictions via Bethe ansatz for the one-dimensional spinHeisenberg antiferromagnet
in a magnetic field

Michael Karbach and Gerhard Miler?
Bergische UniversitaWuppertal, Fachbereich Physik, D-42097 Wuppertal, Germany
°Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817
(Received 10 May 2000

The spin fluctuations parallel to the external magnetic field in the ground state of the one-dimefidipnal
s:% Heisenberg antiferromagnet are dominated by a two-parameter set of collective excitations. In a cyclic
chain ofN sites and magnetization<OM ,<<N/2, the ground state, which containM2 spinons, is reconfigured
as the physical vacuum for a different species of quasipatrticles, identifiable in the framework of the coordinate
Bethe ansatz by characteristic configurations of Bethe quantum numbers. The dynamically dominant excita-
tions are found to be scattering states of two such quasiparticle®N-For, these collective excitations form
a continuum in ¢,») space with an incommensurate soft mode. Their matrix elements in the dynamic spin
structure factofS,(q,w) are calculated directly from the Bethe wave functions for fibit& he resulting line-
shape predictions foN—co~ complement the exact results previously derived via algebraic analysis for the
exact two-spinon part d§,(q, ) in the zero-field limit. They are relevant for neutron-scattering experiments
on quasi-1D antiferromagnetic compounds in a strong magnetic field.

I. INTRODUCTION The Bethe ansatz enables us to reconfigure this state as the
physical vacuum for a different species of quasiparticles—
Advances in experimental techniques combined with im-the spinons, which have spi The entire spectrum of the

provements in sample preparation make it possible to prokeisenberg modefll) can also be generated as composites of

duce data of ever increasing resolution for the quantum fluctntéracting spinons. ]

tuations and the underlying collective excitations in quasi- BOth descriptions are valid throughout the spectrum, but

one-dimensional1D) magnetic compounds. Advances in the tN€ magnon interpretation is more useful near the magnon

theoretical analysis of relevant model systems combinelf@cuum, and the spinon picture is more useful near the spi-

with progress in the computational treatment of aspects thdton vacuum. The interaction energy of magnon scattering

: ; ; -1
remain elusive to exact analysis make it possible to gain aRtates or spinon scattering states ISGN ) as long as the

ever more profound understanding of the observable ColleCr]umber of quasiparticles in the collective excitations is of

tive excitations in terms of a small number of constituento(l)“L28 In a macroscopic system, the spectrum of such
quasiparticles states is thus indistinguishable from the corresponding free

. . . . . quasiparticle states. Even under these simplifying circum-
There is scarcely a better case for lllustrating this mu_lt"stances, however, the interaction of the quasiparticles re-
track advancement of understanding quantum fluctuationg,ains important in the make-up of collective wave functions,

than the 1Ds= 3 Heisenberg antiferromagnet and the grow-anq s likely to strongly affect the transition rates and line
ing number of materials that have been discovered to bghapes.
physical realizations of this model system. The Hamiltonian At intermediate values €h< hg of the magnetic field,
for N spins 3 arranged in a cyclic chain with isotropic ex- the number of magnons or spinons contained in the ground
change coupling between nearest neighbors and a uniformstate ofH is of O(N), implying that the interaction energy
magnetic fieldh, for either quasiparticle species remains nonzerd\fers in

the ground state and in all low-lying excitations. This ob-

. scures the role of individual magnons or spinons in the col-
H :nzl [ISy Sh1—hSil, 1) lective excitations and obstructs the interpretation of spectral
data obtained by experimental or computational probes.
is amenable to exact analysis via Bethe artszand displays We can circumvent this problem by configuring the

dynamical properties of intriguing complexity. The fi?lds  ground statéG) at 0<M,/N<3 as the physical vacuum for

a controllable continuous parameter, which leaves the eigeryet a different species of quasiparticles. From the new van-

vectors unaltered, but changes the nature of the ground stati@ge point, the dynamically relevant collective excitations are

via level crossings and thus has a strong impact on the dythen again scattering states of few quasiparticles with an in-

namical properties, in particular at low temperatures. teraction energy ofO(N™%), which greatly facilitates the
At h=hg=2J the ground state dfi has all spins aligned ntérpretation of the spectra probed experimentally or com-

in field direction:|F)=|11---1) is the reference state of the Putationally.

coo_rd|r_1ate Be?he ansatz, and all eigenstates are de_scnbed as Il. DYNAMIC STRUCTURE FACTOR

excitations of interacting magnons, a species of spin-1 qua-

siparticles. HencéF) plays the role of the magnon vacuum. In an inelastic neutron-scattering experiment performed at

The ground stat¢A) of H at h=0 containsN/2 magnons. low temperature, the observable scattering events predomi-
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nantly involve transitions from the ground state to a subset of 4 . . -
collective excitations filtered from the rest by selection rules 3F ' 7
and transition rates. Under idealized circumstances, the sca
tering cross section is proportional to the=0 dynamic spin 3r = zr )
structure factor ° ]
El
Ag 2+ 0 L
Suu(@@) =212 [(GI$)PPo0-w), @  F 0o 05 1
— q/TC
whereSi=N"125 €4S}, u=x,y,z is the spin fluctuation 1r
operator. In a macroscopic system, the aggregate of spectr: \
lines in Eq.(2) pertaining to scattering events with energy
transferw, =E, — Eg, momentum transfeg=k, — ks, and 0 : : :
transition rate|(G|S{|\)|? form characteristic patterns of 0 ! 2 3
spectral weight in §,») space. The shape of the spectral o/J

weight distribution provides key information on how the dy-
namically relevant collective excitations are composed ofSZ
quasipar_ticles With. s_,pecific_energy-momentgm _relations. algebraic analysis. The inset shows the boundddesf the two-
Exper!mentally itis posslble,_at least in prl_nC|pIe, to S€Pa-gpinon spectrum.
rate the information contained in the dynamic structure fac-
tors of the spin components parallel and perpendicular to the
field direction, i.e., the function§,(q,w) and S.,(q,) |y = 2 a(ng,...,n)S, ---S, |F), (5)
=3[S, _(g,0)+S_.(q,w)], respectively, for the fluctua- l=np<--<n=<N ! '
tion operatorsS; andS; =S;+iS{. At h=0 the additional has coefficients of the form
sy[nmetry of H dictates that S,[(q,w)=3S,_(q,w) ) )
=33 +(qvw) . . I
An anchor point for the new results presented in the fol- a(”lv---”r):; ex 'Zl Kp,nj+ EZ_ Opp. | (6
lowing is the exact two-spinon dynamic spin structure factor << = -
at T=0, which was determined recently via algebraic analy-determined byr magnon moment&; and one phase angle
sis and shown to contribute 73% of the total intensity in#;;=— 6;; for each magnon pair. The suRe S; is over the
S,(q,») ath=025 Given the energy-momentum relaton ~ permutations of the labeld,2,...r}.
The consistency requirements for the coefficients
T a(ny,...,n,) inferred from the eigenvalue equatid|)
€sp(p)= 5 Jsinp, O<p=m, (3 =E|y) and the requirements imposed by translational in-
variance lead to a set of coupled nonlinear equations for the
of the spinon quasiparticle, the two-spinon states with wavé and ¢;;. A computationally convenient rendition of the

a continuum confined by the boundafiés

FIG. 1. Exact two-spinon line shapes qt 7/2,37/4,7m of
AQ,0) at T=0 for Hamiltonian(1) at h=0 as determined via

Np(z)=2mli+ > ¢l(z—z)/2], i=1,..r, (7
j#i

. g
sing

S5 @

77- .
el(q)=5J[sing|, ey(q)=mJ

where ¢(z)=2 arctarg, kj=m7— ¢(z) and 6;;= 7 sgriRe(
—z)]—-¢{(3—7z)/2]. Every real solution of Eq(7) is speci-
as illustrated in Fig. linsed. The main plot shows the exact fied by a set of Bethe quantum numbérs<|,<...<lI,,
two-spinon line shapes &, (q,w) atq=n/2,3w/4,m. The  which assume integer values for od@nd half-integer val-
most detailed experimental data available for testing thesges for everr. The energy and wave number of the eigen-

results pertain to KCuf® vector thus determined are
We shall see that the magnetic field causes dramatic
changes in both the spectrum and the line shapes. At the root E-E¢ ! 2 27 <
of these changes is a change in the nature of the relevant 3 —; 142’ k=1 — Wz‘l i, (8)
1

guasiparticles. Two compounds suitable for studying

magnetic-field effects on spectrum and line shapes ar@hereE-=JN/4 is the energy of the magnon vacuum.

CU(C4DsCO0),-3D,0 and CUC,H,4N)(NOy),. > We consider the clas&, of eigenstates whose Bethe
quantum numbers comprise, fo0 <N/2 and O=m=N/2

Ill. BETHE ANSATZ EQUATIONS —r, all configurations

The Bethe ansatzs an exact method for the calculation r1 r 1
of eigenvectors of integrable quantum many-body systems. Tty ms li<lp<---<li< > ptm ©
The Bethe wave function of any eigenstate of Ek.in the
invariant subspace with=N/2— M, reversed spins relative Here we employ the solution;} of the Bethe ansatz

to the magnon vacuum equations not only to generate spectral data via @4.
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FIG. 2. Physical vacuurfG) for a chain ofN=8 spins at mag- o o E/Zﬁ O oo o g o
netizationM,=0,1,...,4. The values of the Bethe quantum numbers e e - Uehb . ~_ g %o
I; are given by the positions of the magnd®). The spinongO) u @ ° ° @ l\
correspond to vacancies in tihgconfigurations. / u . o u N
] .

which is standard practice, but also to evaluate transition 0
rates |(G|S}[\)|? for the dynamic structure facto®@) di- 1 05 0 05 1
rectly from the normalized Bethe wave functiora)

=|y)l||¥. The computational aspects of this method are o
discussed elsewheté. FIG. 3. Spectrum of two-psinon excitatiofsircles and four-
psinon excitationgsquares for M,=N/4 and N=16. The states
IV. PHYSICAL VACUUM AND QUASIPARTICLES marked by full symbols are dynamically dominantSs(q,»). The

spectral ranges of the two-psinon statgsick lines and four-
The ground-state wave functiofG) at 0<M,<N/2 is  psinon stategthin lineg for N—o are inferred from data foN
specified by the set ofr=N/2—M, Bethe quantum =2048. The inset shows the psinon energy momentum relation

numbers? €y(p)-
N M, 1 N M, 1 shown in Fig. 1. The center row in Fig. 2 pertains to the field
Ude={—2t5 t5775 3 (0  athalf the saturation magnetizatioh{=r =N/4), the case

we shall investigate extensively for various system sizes.

As the magnetic field increases from=0 to hs=2J, the  Here|G) contains twice as many spinons as it contains mag-
magnetizatiorM, increases in units of one from zerokg2.  nons.
A sequence of level crossings produces a magnetization The integerm with range 6<m=<M, used in(9) is a
curve (M, /N versush) in the form of a staircase withl/2 ~ convenient quantum number for the subdivision of the
steps of height N, which converges toward a smooth line classeX, . Every state oK, at fixedm can then be regarded
asN— o0 13715 as a scattering state afi pairs of spinonlike quasiparticles.

Depending on the reference state used for the charactefo distinguish them from the spinons, we name the new
ization of the ground stats), it can be regarded as a scat- quasiparticles “psinons.”
tering state ofN/2— M, magnons excited from the magnon  The ground statéG), the only state withm=0, is the
vacuum|F) or as a scattering state ofVg, spinons excited psinon vacuum. Here the magnons form a single array
from the spinon vacuun®). To illustrate the distinct roles flanked by two arrays of spinor(see Fig. 2 Relaxing the
played by the two species of quasiparticles in the ckyss- constraint in(9) from m=0 to m=1 yields a two-parameter
states, we show in Fig. 2 the configuration of Bethe quantunset of states—the two-psinon excitations. Here the array of
numbers folG) in a system witiN=8 and all values oM, = magnons breaks into three clusters separated by the two in-
realized betweeh=0 andh=hg. The positions of the mag- Nnermost spinons, which now assume the role of psinons. The
nons (@) are determined by the sét0) of |I;’s and the po- remaining M ,— 2 spinons stay sidelined. In the four-psinon
sitions of the spinongO) by the vacancies across the full states (n=2), two additional spinons have been mobilized
range of thd;'s allowed by Eq.(9) for classK, states. into psinons. By this prescription, we can systematically gen-

Henceforth we trealG) as the new physical vacuum. At erate sets of @-psinon excitations for &ms=M,.
h=0 (top row in Fig. 3 it coincides with the spinon vacuum, To illustrate the quasiparticle role of the psinons in the
a state withN/2 magnons. Ath=hg (bottom row it coin-  classK, collective states we have plotted in Fig. 3 energy
cides with the magnon vacuum, a state contaimirgpinons.  versus wave number of all two-psinon statescles and
All states within clas¥, are generated fron®) by rearrang- ~ four-psinon stategsquarep at M,=N/4 for N=16. Also
ing the magnons ofequivalently the spinons into all al- shown are the spectral boundaries of two-psinon and four-

lowed configurations. psinon states foN— o as inferred from solutions of Eq7)
For r=N/2 (top row) andr=0 (bottom row the state for N=2048. The two-psinon continuum, outlined by thick

shown is the only possible configuration within clags. In  lines, is confined to the intervifj| <qs, where

the fourth row, the lone magnon can be moved across the

array of spinons, generating a braricme-parameter seof gs=m(1—-2M,/N) (11

one-magnon excitations fdd— . In the second row, the

two spinons can be moved independently across the array denotes the wave number of an incommensurate soft mode.
magnons, generating a continuu(two-parameter sgtof  The lower four-psinon spectral boundary is the same as the
two-spinon excitations foN—oc with boundaries(4) as  two-psinon lower boundary but extended periodically over
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the entire Brillouin zone. The upper four-psinon boundaryis 1 9 7 5 3 1 1 3 5 7 9 1
related to the upper two-psinon boundary by a scale transfor- ' 2 2 2 2 2 2 2 2 2 2 2 2
mation @—2q,0—2w).

The relationship between the rangesndg)-space of the OCOOO0 e e e ¢ 0000
two-psinon states and the four-psinon states does indeed re- OO O e O e @06 O OOO0
flect that fact that they are scattering states of two or four OO0 0O e e @0 ¢ @0 OO0
guasiparticles, respectively, of the same species. Similar to O0O e e 6@ @0 0O
the spinon, the psinon is not observable in isolation via neu-
tron scattering, but its energy momentum relatiey(p), OO0 e e e e 00O0O0O0
— wl4<p=<=/4, can be inferred from the data of Fig(&e OOOC e O e e O0ee OO0OO
inse. OO O e ¢ e 0 e O0OO

If there were no psinon interaction, the wave number and OOOC e e ¢ 00 e OOO
energy of a In-psinon state would beq=2i2£‘1pi, w OO 0O @€ @ O O @606 OOO
=Zi2£‘16¢,(pi). The N=16 data make it quite clear that the _ _

FIG. 4. Psinon vacuunG) for N=16, M,=4 and two-psinon

finite-size energy correction caused by the psinon in'[eractiont ‘ tha=0. Thel. val ked by th it £ th
is stronger in the four-psinon states than in the two-psinoﬁ ates withg=0. _ne’; vaiues are marked by the positions of the

. . . magnongsmall circles. The spinonglarge circles mark|; vacan-
states. In both sets of collective states, the interaction ener

. Ples. A subset of the spinons are called psinaray circles.
goes to zero as the scattering events become less and less P psinray 3

rrequenthm. a <;ha|fr_1 .‘i;}r}creas'r.'g Ier:jgtth. tHowevcra]r, It tal(esalmost the entire two-psinon spectral weight is concentrated
onger chains for fini our-psinon data 1o réach compa- j, e |owest excitation for any giveg. The dynamically
rable convergence toward the spectral boundaries predict

for N b for fixedll. th . b minant two-psinon states are marked by solid circles in
or N—¢o, because for fixedl, the scattering events between Fig. 3. In a macroscopic system, they form the lower bound-
psinons are more numerous in a typical four-psinon stat

. . . Qry of the two-psinon continuum.
than in a typical two-psinon state.

If instead of the psinon vacuum we had used the Spinor& Next we calculate the transition ratk{§|53|)\>|2 for the
vacuum as the reference state My—N/4, then both the omplete set of four-psinon states. Interestingly, we observe

two-psinon states and the four-psinon states would have tthat most of the four-psinon spectral weight is again carried

be described as scattering statedlé spinons. Although we By a single branch of excitations. The dynamically dominant

know the energy-momentum relation of a spinon, &, it four-psinon states foN=16 are shown as full squares in
is of little use to determine the spectral threshold in Fig. 3.F|g. 3. For largeN they form a branch adjacent to the two-

Since the two-psinon and four-psinon states maintain a finit«gSinon spectral threshold.

densitv of s inzns in the limi P % the spinon interaction An investigation of the remainingr@-psinon states shows
Y Pt L o P . at there exists one dynamically dominant branch of

energy remains significant. This problem does not arise

M.—0. In the two-spinon scattering states depicted in Eia. 1. m-psinon excitations for &m=<M,. The configurations of
z - . P 9 P! 9- Bethe guantum numbers pertaining to the four branches for
the spinon interaction energy vanishes o> just as the

psinon interaction energy does in the two-psinon and four!\lzlt‘)’.eac.h consisting dﬁ/_2—M2=4 statesat q>0), are .
psinon scattering states depicted in Fig®& shown in Fig. 5. Thg energies, wave n_umbers, and transition

T rates of these excitations are listed in Table Il. All other
2m-psinon excitations have transition rates that are smaller
by at least two orders of magnitude @ 7/2, and still by
more than one order of magnitudeget /2.

Inspection of Fig. 5 reveals an interesting pattern, indica-
tive of the composition of the dynamically relevant collec-
tive excitations. They form a two-parameter set. The two
I_parameters are highlighted by gray circles. Hitherto we have

V. DYNAMICALLY RELEVANT EXCITATIONS

At M,=0 the spectral weight in the dynamic spin struc-
ture factor S,(q,w) is dominated by the two-spinon
excitations> Our task here is to determine how the spectral
weight of S,(q,w) at M,#0 is distributed among the
2m-psinon excitations. In investigating this question, we fo
low the strategy of an older stutfybut with vastly improved
conceptual and numerical tools.

We begin by exploring, in a chain dil=16 spins at
M,/N=%, the transition rates between the ground si@e

TABLE |. Ground statgG) and two-psinon excitations fax
=16, M,=4, and wave numberg=k—kgs=0 (in units of 27/N).
The ground state hdg;=0 andEg=—11.5121346862.

and all 2n-psinon excitations fomz_ 0,1,2,3,4. The Bethe 21, k—kg E—Ee (GISEIN)[2
guantum numbers of the states witti=0,1 are shown in
Fig. 4. The first row represents the psinon vacuum with its=3—1+1+3 0 0.0000000000  1.0000000000
four magnons sandwiched by two sets of four spinons. The-5—1+1+3 1 0.3504534152  0.0484825989
two innermost spinonémarked gray become psinons when —5-3+1+3 2 0.5271937189  0.0587154211
at least one of them is moved to another position. In the rows-5—-3-1+3 3 0.5002699273  0.0773592284
underneath, the psinons are moved systematically across thes—3—-1+1 4 0.2722787522  0.1257902349
array of magnons while the remaining spinons stay frozen in-5—-1+1+5 0 0.7060324808  0.0000000000
place. These eight configurations describe all two-psinon-5—3+1+5 1 0.8908215652  0.0000064288
states withg=0. —5-3-1+5 2 0.8738923064  0.0000312622
The wave numbers, energies, and transition rates of theg_34+3+5 0 1.0855897189 0.0000000000

states shown in Fig. 4 are listed in Table I. Remarkably




PRB 62

LINE-SHAPE PREDICTIONS VIA BETHE ANSATZ F®&.. ..

L9 7.5 3.1 1 3 5 7 9 1
PRI B S I
OO0 0O o e ¢ 06 OO OO
OO O e @e ¢ ¢ OO OO
OO 0O e e @ e ¢ OO OO
OO0 e e ¢ @ ¢ OO OO
OO0 e e ¢ 0o @ OO OO
OO e OO0 e ¢ ¢ OO OO
OO e Oe e ¢ OO OO
OO e Oe @@ OOOO
OO e Oe o@e6®OOO0OO
Oe OO 0@ e ¢ ¢ OO OO
O e OO e @ e ¢ OO OO
O e OO e ¢ @ ¢ OO OO
O e OO e ¢ ¢ ® OO OO
@ OO O 0@ e ¢ ¢ OO OO
@ O OO e @ e ¢ OO OO
@ OO O e @ @ ¢ OO OO
@ OO O e o @¢6 @ OO OO
FIG. 5. Psinon vacuunG) for N=16, M,=4 and set ofyy*

states with B=q=. Thel; are given by the positions of the mag-

nons(small circle$ in each row. The spinondarge circle$ corre-
spond tol; vacancies. The psinof) and the antipsinong*) are
marked by a large and a small gray circle, respectively.

14 875
2 1 —
(b)
=
g
o ¢
E 1 . = 05+ 3
2y s 02}
@01t
0 1
ok 0 0 05 1
0 0.5 1 0 0.5 1

q/n q/n

FIG. 6. () 4* excitations atM,/N=3% for N=16 (circles,
squares, diamonds, triangles for=1,2,3,4, respectivejyand N
=256 (dotg. (b) Integrated intensityS,(q) (inse) and relative
Yy contribution(main ploy for N=12,16,20,24,28,32. The lines
connect theN= 32 data points.

the dynamically relevant excitations i) space cannot
be inferred from the psinon energy-momentum relation alone
as was possible for the two-psinon and four-psinon continua,
because the psinon interaction energy will remain non-
negligible in most of these states fr— o, just as the spi-
non interaction energy was non-negligible in the two-psinon
and four-psinon scattering stateshat+# 0.

A more natural interpretation of the pattern on display in
Fig. 5 identifies one of the two parameters as a psiitemge

interpreted each group of four configurations as a branch dafray circlg as before and the other parameter as a new qua-
2m-psinon excitations, which are seemingly arbitrary one-siparticle (small gray circlg. The latter is represented by a
parameter subsets taken fromzparameter sets of states. In hole in what was one of two spinon arrays in the psinon
a macroscopic system, all but the lowest such branches coacuum. Instead of focusing on the cascade of psirors

tain a macroscopic number of psinons. Hence the range diile spinongwhich this hole has knocked out of the vacuum,

TABLE II. Ground state and dynamically dominant excitations

for (N=16, r=4) among 2n-psinon statesrt=0,1,...,4). The lat-
ter form theyy* continuum in the limitN—oco. The wave numbers
gq=k—kg=0 are in units of 2r/N.

2l 2m ¢ E-Eg [(GIsgIn)[?
—-3-1+1+3 0 0  0.0000000000 1.0000000000
—-5-1+1+3 2 1 0.3504534152 0.0484825989
—5-3+1+3 2 2 0.5271937189 0.0587154211
—5—-3-1+3 2 3 0.5002699273 0.0773592284
-5-3-1+1 2 4 0.2722787522  0.1257902349
—-7-1+1+3 4 2 0.7981588810 0.0426892576
-7-3+1+3 4 3 0.9653287066  0.0552255878
—-7-3-1+3 4 4 0.9301340415 0.0743667351
—-7-3-1+1 4 5 0.6966798553  0.1253357676
—-9-1+1+3 6 3 1.2708459328 0.0345439774
—9-3+1+3 6 4 1.4285177129 0.0516860817
—-9-3-1+3 6 5 1.3858078992 0.0753564030
—9-3-1+1 6 6 1.1488426600 0.1406415212
-11-1+1+3 8 4 1.6819046570 0.0235815843
—-11-3+1+3 8 5 1.8257803105 0.0443726010
—-11-3-1+3 8 6 1.7724601200 0.0744641955
-11-3-1+1 8 7 1.5309413164  0.1686893882

we focus on the hole itself, which has properties commonly
attributed to antiparticles. The psing¢#) and the antipsinon
(*) exist in disjunct parts of the psinon vacuum, namely in
the magnon and spinon arrays, respectively. When they meet
at the border of the two arrays, they undergo a mutual anni-
hilation, represented by the step from the second row to the
top row in Fig. 5.

We could have interpreted the small gray circle as a mag-
non (spin-one quasiparticlebut when we do that we must
take into account that it then coexists in the magnon vacuum
with a macroscopic number of fellow magnofssnall black
circles. From this perspective, the collective excitation must
be viewed as containing a finite density of magndios N
—o0), in which the magnon interaction remains energetically
significant for scattering states. The nonzero interaction en-
ergy obscures the role of individual magnons.

On the other hand, when the small gray circle is inter-
preted as an antipsinon, then it lives in the psinon vacuum,
i.e., almost in isolation. The only other particle present is a
psinon(large gray circle In a macroscopic system, the in-
teraction energy in a psinon-antipsinogy*) scattering
state becomes negligible. Therefore, the identity of both qua-
siparticles is easily recognizable in the spectrum.

The energies versus the wave numbers of theyl/6
states listed in Table Il are shown in Figabas large sym-
bols. The four branches from bottom to top pertainnto
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=1,...,4. Also shown in the same plot are the* states for 2 — : : '
N=256. The lower boundary of thé* continuum emerg- v §
ing in the limit N—oc touches down to zero frequency gt 2t R
=0 andg=qs=7/2. Betweenqs and m, it rises monotoni- \
cally and reaches the vallie- Eg=h. A direct observation 05
of the incommensurate soft mode @f was made in a
neutron-scattering experiment on (@yDsCOO),-3D,0
(copper benzoajé

Figure Gb) shows the relative integrated intensity of the
Yy* excitations for variousN at fixedM,/N=3%. At q=q;
= /2, virtually all spectral weight ofS,(q,w) originates
from ¢¢* fluctuations. An extrapolation of the data points at 0
g= /2 suggests that the relativiy/* spectral weight is in 0
excess of 93%. q/n

At q=qs the ¢¢* contribution to the integrated intensity
decreases monotonically but stays dominant over more than FIG. 7. Energy versus wave number of #i}* scattering states

half the distance to the zone boundary. The width ofjiié atg=0 for N:64(Q) in comparison with the corresponding free
continuum vanishes linearly on approachepf 7, and the Yy* stateg+). The inset shows the energy-momentum relations of

. . the psinon [p|</4) and the antipsinon#/4<|p|<3w/4) as
relative spectral weight more slowhB,,(q)~(7—q)?, v . (pl = /4) P 4=|pl=3m/4)

! - . inferred from fromy* data forN=2048.

=0.3. This enhances the observability of th&* excita-
tions in the narrow energy range near the Brillouin zone in
spite of the low absolute intensity. Finii¢-data for the in-
tegrated intensitys,(q) are shown in the inset to Fig(19).
This function is peaked aj=qs, where they* spectral
weight is overwhelmingly predominant.

When we lowerM,, the soft mode atjs moves to the
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Fig. 7. The psinon dispersios),(p) is confined to the inter-
val at |p|<m/4 (solid line) and the antipsinon dispersion
€+(p) to ml4<|p|<3w/4 (dashed ling The different
ranges of momentum which the two quasiparticles are al-
lowed to have correspond to the different regions in Fig. 5

right, the number of @-psinon branches that contribute to across which the circles pertaining to them can be varied.

. . ; .
the r* continuum shrinks but each branch gains additional The_ lower bou_ndary_ of thekyy™ continuum IS defined by

- . . collective states in which one of the two particles has zero
states. AtM,=1 we are left with one two-psinon branch

extending over the interior of the entire Brillouin zone. This energy: the psinon fofg|</2 and the antipsinon for/2

branch is equal to the lowest branch of two-spinon state?'qlgw' The upper boundary consists of three distinct seg-
ents.

with dispersione, (q), Eq. (4). However, even for this case . * .
the psinon vacuum is different from the spinon vacuum. The Fcf)r 0535063?35 th?n hllg\?v?t?-r?]nerrrlgaf siat_e |74mer11((jje
former is the lowest-energy two-spinon stéegth M,=1), P Of & ZEro-energy psino omentypy= — m/4 a

whereas the latter is a state with,=0. The wave number of an antipsinpn with momentum,» = m/4+q. nge the_ shap(_a
the two vacua differ byr. At M,=0 the y* excitations of the continuum boundary is that of the psinon dispersion.
. Z_

disappear altogether. The limit—0 of the infinite chain is L_|keW|se, for dmf4<q<m, the states a'o'_”g the upper con-

very subtle and will be discussed elsewhEe. tinuum boundary are made up of a maximum-energy antip-
When we increasé/, toward the saturation value, the SnOn With _rnome;1tump¢*=37r/]4 a?]d a pilnrc])n with mo-

soft mode moves to the left, and the number ai-gsinon mentump,, = —3w/4+q. Here the shape of the continuum

branches increases, but each branch becomes shorter. l}&c%undary is that of the psinon dispersion. .
M,=N/2—1, the two-parameter set collapses into a one- When these two delimiting curves are extended into the

parameter set consisting of onenzgbpsinon state each fan middle segment, 0.3935q<3/4, they join in a cusp sin-

. N ! * o
=1,2,...N/2—1. These states are more naturally interpretedJUIarIty atq=m/2. Here the highespy™ state does not in

o . : -~ volve any zero-ener uasiparticles. The maximum of
as a branch of one-magnon excitations with dispersion y 9y 9 b

€,(q)=J(1—cosg). Their relative spectral weight in €y(Py) + €,x(py+) Subject to the constrainp,+p,:=d

S,.(q,®) is now 100%, but the absolute intensity fp# 0 is does not occur at the end point of any quasiparticle disper-
only (,)fO(N*l) ' sion curve. Consequently, thg* continuum is partially

To further illustrate the roles of the psinon and the antip-ggﬁ]deﬁ?om the upper continuum boundary along the middie

sinon as the relevant quasiparticles in the collective excita-
tions dominating the spectral weight 8)(q,»), we com-

pare in Fig. 7 the energies between th¢* scattering states VI. LINE SHAPES
for N=64 and the correspondirijctitious) free /* super- ) ] )
positions. The vertical displacement of af) from the To calculate the lineshapes relevant for fixgdeans in

associated +) reflects the interaction energy between thean inelastic neutron-scattering experiment from the spectrum

two quasiparticles. This energy approaches zero for all state&d matrix elements obtained via Bethe ansatz, we exploit

of this class ad\— . key properties of transition rates and densities of states of
The energy-momentum relations of the two quasiparticle§€ts of excitations that form two-parameter continua in

can be accurately inferred frol=2048 data for the spec- (@) space foN—o. The J4* transition rategscaled by

tral thresholds of theyy* states as illustrated in the inset to N) form a continuous functionM??" (q,w) for N—co.
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FIG. 8. (a) Density of y/* states aty= =/2 evaluated via Eq. FIG. 9. (a) Density of ryy* states atj= m/4,3m/4 evaluated via

(12) from Bethe ansatz data fo¥=2048.(b) Transition rateg13) ~ Ed. (12) from Bethe ansatz data fo¢=2048. (b) Transition rates
between the psinon vacuum and titg* states ag=m/2 for N (13 between the psinon vacuum and they* states atq

=12,16,20,24,28,32c) Line shape atj= /2 of the y4* contri- = 77/4,377/4 for. N=16,24,32(c) Line shape atj= 7/4,37/4 of the
bution t0S, (g, ). All results are forM ,= N/4. Y contribution toS,(q,w). All results are forM ,=N/4.

: -1 . . .
The yy* density of states(scaled byN™") becomes a  The divergence ai=0, which is caused by the matrix

continuous functionD?/*(q,w) for N—w=. The y*  elements, is a power lawy ™%, with an exponent that is
spectral-weight distribution is then the prodLEgtz‘”*(q,w) exactly known from field theoretic studies of the Heisenberg
=D"* (q,0)M YY" (g, 0).2%%In the following, we consider model?~* For the situation at hand, the value is_
three wave numbers & ,=N/4. =0.468 ... . Thedivergence atw is caused by the di-

At q= /2, theyry* continuum is gapless and the relative Verging density of states but is weakened if the cusp singu-
Jy* spectral weight inS,(q,w) has a maximum. The larity of MY/ (7/2,0) starts from zero ab=w, . The ex-
scaled density ofy* states is generated fromt=2048 data  pectation is a power-law singularityw(;,— ») ~# with an

of the set of points exponent B< 8<3.
2N It is interesting to compare thgy* transition rate func-
DY ()= 77—, (12)  tion M (m/2,0) at M,=N/4 inferred from the Bethe an-

@px 417 W satz with the two-spinon transition rate functidhi2)( 7, w)

where v* =m marks the antipsinon quantum number in theat M,=0 calculated via algebraic analySiShe shape of
Jr* continuum and picks the dynamically relevant branchboth functions is similar, but there are some differences:
from the set of 2Zn-psinon states. The psinon quantum num-M(ZZZ)(Tr,w) has a stronger power-law divergence aat 0

ber v is adjusted to keep the wave numloesf the s* state  and it approaches zero more rapidly at the upper band edge.
fixed. This choice of labels produces an ordered sequence @éfs a result it produces a monotonically decreasing spectral-
levels. Starting ato=0, the graph oD """ (m/2,w,«) rises  weight distributionS{2(,») (see Fig. 1 notwithstanding
from a nonzero value very slowly up to near the upper bandhe fact that the two-spinon density of states is also a mono-
edge, where it bends into a square-root divergence as shovi@nically increasing function terminating in a square-root di-
in Fig. 8@). The divergence is produced by a maximum ofvergence.

the sequence ,« at the fold of theyy* continuum?® At q= /4 the integrated intensit$,{q) is only a third
In Fig. 8b) we show finiteN data atq==/2 for the of what it was atg= /2, but spread over a narrower range
scaled transition rates of frequenciegsee Fig. 6 The bandwidth has shrunk to less

than a third of the value it had at=7/2. The relativeyy*

MY (0, 0,+) =N[(G| S| v*) 2. (13)  contribution to the intensity is even larger thancgt /2,

, . almost 100%. In this application, the method of analysis is

These data Eompelhngly suggest the existence of a Smoolyeched more closely to its limits becage /4 exists in
function MYY" (m/2,w) for the yy* transition rates in the fewer manageable system sizes. However, the data still make
limit N—oo, which further highlights the physical signifi- reliable line shape predictions possible.
cance of the psinon and the antlpsmoiw as relevant quasipar- The density of state® ! (w/4,0), plotted in Fig. %a),
ticles in this situation. The functioM??” (7/2,0) is mono-  rises discontinuously from zero to a finite value at the spec-
tonically decreasing with a divergence @=0 and a cusp tral threshold AE=0.379. From there it increases gradu-
singularity at the upper band edgg,=1.679. ally with gradually increasing slope and ends in a cusp sin-

The product of the transition rate function and tier-  gularity at the upper band edgeThe finiteN data for the
polated density of states is shown in Fig(#.?! The curve scaled transition rates shown in Fig(b9 again suggest a
fitted through the data points represents ¢hg* line shape smoothw dependence in the form of a monotonically de-
at q=7/2 in S,(q,w). lts most distinctive feature is the creasing curve with enhanced steepness near both band
double peak due to apparent divergences at both band edgeslges. However, the countertrend of the density of states at
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the upper band edge is of sufficient strength to produce antipsinon. Moreover, the scale/* transition rates con-
second maximum in the line shape again. verge forN—o toward a smooth function af and w.

Also shown in Fig. 9 are the corresponding data for the We have exploited these asymptotic quasi-particle prop-
Yp* density of states, transition rates, and line shapg at erties to extract line shape information for the dynamic struc-
=3m/4. Here the relative spectral weight carried by #hg* ture factorS,,(q, ), which probes the spin fluctuations par-
excitations is only 83% of the value gt /2, but that frac-  allel to the applied magnetic field. The same quasiparticles
tion is concentrated over a frequency band that has shrunk wwill also play a dominant role in the spin fluctuations per-
65% of the width atg= /2, while the absolute intensity pendicular to the field, but here different combinations of
remains fairly high(87% of the value afj= 7/2). Both quan- them make up the composition of the dynamically relevant
tities, which determine thes* line shape, exhibit similar collective excitations. In the dynamic spin structure factor
frequency dependences as we have already observed for tBe , (g, ), for example, the spectral weight is almost com-
other two fixedg scans. The density of states is divergentpletely carried by two-psinon excitatioh$.
again at the upper boundary. The energy gap is now much In all likelihood, the psinon quasiparticles will also be
larger, AE=0.899). The fact that the lower continuum useful for the analysis of thermal spin fluctuations in this
boundary atq=3w/4 coincides with the upper continuum model system. The peculiar spectral weight distributions
boundary atq= /4 is a consequence of the quasiparticlefound in recent complete diagonalization stuéié$ of

dispersions as discussed previously. S,(q,w) ath=0 andT>0, for example, indicate the pres-
ence of stringent selection rules between collective states
VIl. CONCLUSION coupled by the spin fluctuation operatﬁg. In zero field,

. N psinon vacua are densely spread across the entire energy
The spectrum of the completely integrable 187  range of the model. Each psinon vacuum can be used as the
Heisenberg antiferromagnét) can be generated in more reference state of ar@-psinon expansior9). If there are
thatm onle way frotm rpullgple e€<C||tat![<r)]ns oftquaS'I?catr:]'deS- Thf‘feneral selection rules related to psinon quasiparticles among
external magnetic field controls the nature of the groun I . ;
state. In strogn fields, it becomes the vacuum of m% non ransition rat_e$<)\’|8§||)\>|_2 within a given qlas:t(r of Bethe
: 9 : : 9NoNZnsatz solutions, they will have a strong impact on the spec-
and in zero field the vacuum of spinons. The dynamically, o \eight distribution inS, (q, ) at all temperatures.
relevant collective excitations of specific quantum fluctua- A question of considerable interest concerns the fate of

tions in the two cases are then naturally described as compe heinon and antipsinon quasiparticles in the presence of an
posites of quasiparticles from the respective species and afgerchain coupling, which is an inevitable complication in
likely to involve only a small number of quasiparticles.

. ) - ; all physical realizations of spin chains. Any such interaction,
In mtermedlatg magnetic f|ellds, nelthgr the magnons NOg, e if treated summarily as(anear) staggered field, is all
the spinons provide a useful interpretation of dynamicallyp,  certain to destroy the exact solvability of the model and
relevant collective excitations for the same fluctuation operayg likely to produce energy gaps and magnetization plateaus.
tors. The ground state itself contains a macroscopic numb ne promising method for studying the effect of a staggered
of quasiparticles_ f.rom one or the other of the wo Speciesfield on the spectrum and the dynamics of the Heisenberg
However, when it is reconfigured as the physical vacuum for, o1 employs a rigorous set of evolution differential equa-
psinons and antlpzsnjons, then it turns out that the_ Spin fluhions for the excitation energies and transition matrix ele-
tuation operatorS, induces predominantly transitions 10 ments for which exact results such as established here via
Yy states, which contain just one particle from each kind.ggthe ansatz play the role of initial conditioHs2

Similar to the magnon and the spinon, the psinon and the

antipsinon are interacting quasiparticles in the Heisenberg
model (1). In the * scattering states, the interaction en-
ergy of the psinon and the antipsinon is of ord®fN 1) We thank Andreas Kimper, Klaus Fabricius, and Alex-
whereas the interaction energy among magnons or spinons ander Meyerovich for interesting and useful discussions. Fi-
of orderO(1). Hence, forN—<x, the ¢s¢* states join up in  nancial support from the URI Research Offiéer G.M.) and
(g,w) space to form a two-parameter continuum whosefrom the DFG Schwerpunkt Kollektive Quantenzustea in
spectral boundaries and density of states are fully determineglektronischen 1D Ubergangsmetallverbindungen M.K.)

by the energy-momentum relations of the psinon and thés gratefully acknowledged.
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