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Line-shape predictions via Bethe ansatz for the one-dimensional spin-1
2 Heisenberg antiferromagnet

in a magnetic field

Michael Karbach1 and Gerhard Mu¨ller2

1Bergische Universita¨t Wuppertal, Fachbereich Physik, D-42097 Wuppertal, Germany
2Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817

~Received 10 May 2000!

The spin fluctuations parallel to the external magnetic field in the ground state of the one-dimensional~1D!
s5

1
2 Heisenberg antiferromagnet are dominated by a two-parameter set of collective excitations. In a cyclic

chain ofN sites and magnetization 0,Mz,N/2, the ground state, which contains 2Mz spinons, is reconfigured
as the physical vacuum for a different species of quasiparticles, identifiable in the framework of the coordinate
Bethe ansatz by characteristic configurations of Bethe quantum numbers. The dynamically dominant excita-
tions are found to be scattering states of two such quasiparticles. ForN→`, these collective excitations form
a continuum in (q,v) space with an incommensurate soft mode. Their matrix elements in the dynamic spin
structure factorSzz(q,v) are calculated directly from the Bethe wave functions for finiteN. The resulting line-
shape predictions forN→` complement the exact results previously derived via algebraic analysis for the
exact two-spinon part ofSzz(q,v) in the zero-field limit. They are relevant for neutron-scattering experiments
on quasi-1D antiferromagnetic compounds in a strong magnetic field.

I. INTRODUCTION

Advances in experimental techniques combined with im-
provements in sample preparation make it possible to pro-
duce data of ever increasing resolution for the quantum fluc-
tuations and the underlying collective excitations in quasi-
one-dimensional~1D! magnetic compounds. Advances in the
theoretical analysis of relevant model systems combined
with progress in the computational treatment of aspects that
remain elusive to exact analysis make it possible to gain an
ever more profound understanding of the observable collec-
tive excitations in terms of a small number of constituent
quasiparticles.

There is scarcely a better case for illustrating this multi-
track advancement of understanding quantum fluctuations
than the 1Ds5 1

2 Heisenberg antiferromagnet and the grow-
ing number of materials that have been discovered to be
physical realizations of this model system. The Hamiltonian
for N spins 1

2 arranged in a cyclic chain with isotropic ex-
change couplingJ between nearest neighbors and a uniform
magnetic fieldh,

H5 (
n51

N

@JSn•Sn112hSn
z#, ~1!

is amenable to exact analysis via Bethe ansatz1,2 and displays
dynamical properties of intriguing complexity. The fieldh is
a controllable continuous parameter, which leaves the eigen-
vectors unaltered, but changes the nature of the ground state
via level crossings and thus has a strong impact on the dy-
namical properties, in particular at low temperatures.

At h>hS52J the ground state ofH has all spins aligned
in field direction:uF&[u↑↑¯↑& is the reference state of the
coordinate Bethe ansatz, and all eigenstates are described as
excitations of interacting magnons, a species of spin-1 qua-
siparticles. HenceuF& plays the role of the magnon vacuum.
The ground stateuA& of H at h50 containsN/2 magnons.

The Bethe ansatz enables us to reconfigure this state as the
physical vacuum for a different species of quasiparticles—
the spinons, which have spin12. The entire spectrum of the
Heisenberg model~1! can also be generated as composites of
interacting spinons.3

Both descriptions are valid throughout the spectrum, but
the magnon interpretation is more useful near the magnon
vacuum, and the spinon picture is more useful near the spi-
non vacuum. The interaction energy of magnon scattering
states or spinon scattering states is ofO(N21) as long as the
number of quasiparticles in the collective excitations is of
O(1).4,28 In a macroscopic system, the spectrum of such
states is thus indistinguishable from the corresponding free
quasiparticle states. Even under these simplifying circum-
stances, however, the interaction of the quasiparticles re-
mains important in the make-up of collective wave functions,
and is likely to strongly affect the transition rates and line
shapes.

At intermediate values 0,h,hS of the magnetic field,
the number of magnons or spinons contained in the ground
state ofH is of O(N), implying that the interaction energy
for either quasiparticle species remains nonzero forN→` in
the ground state and in all low-lying excitations. This ob-
scures the role of individual magnons or spinons in the col-
lective excitations and obstructs the interpretation of spectral
data obtained by experimental or computational probes.

We can circumvent this problem by configuring the
ground stateuG& at 0,Mz /N, 1

2 as the physical vacuum for
yet a different species of quasiparticles. From the new van-
tage point, the dynamically relevant collective excitations are
then again scattering states of few quasiparticles with an in-
teraction energy ofO(N21), which greatly facilitates the
interpretation of the spectra probed experimentally or com-
putationally.

II. DYNAMIC STRUCTURE FACTOR

In an inelastic neutron-scattering experiment performed at
low temperature, the observable scattering events predomi-
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nantly involve transitions from the ground state to a subset of
collective excitations filtered from the rest by selection rules
and transition rates. Under idealized circumstances, the scat-
tering cross section is proportional to theT50 dynamic spin
structure factor

Smm~q,v!52p(
l

u^GuSq
mul&u2d~v2vl!, ~2!

whereSq
m5N21/2(neiqnSn

m , m5x,y,z is the spin fluctuation
operator. In a macroscopic system, the aggregate of spectral
lines in Eq.~2! pertaining to scattering events with energy
transfervl[El2EG , momentum transferq[kl2kG , and
transition rateu^GuSq

mul&u2 form characteristic patterns of
spectral weight in (q,v) space. The shape of the spectral
weight distribution provides key information on how the dy-
namically relevant collective excitations are composed of
quasiparticles with specific energy-momentum relations.

Experimentally it is possible, at least in principle, to sepa-
rate the information contained in the dynamic structure fac-
tors of the spin components parallel and perpendicular to the
field direction, i.e., the functionsSzz(q,v) and Sxx(q,v)
5 1

4 @S12(q,v)1S21(q,v)#, respectively, for the fluctua-
tion operatorsSq

z andSq
65Sq

x6 iSq
y . At h50 the additional

symmetry of H dictates that Szz(q,v)5 1
2 S12(q,v)

5 1
2 S21(q,v).
An anchor point for the new results presented in the fol-

lowing is the exact two-spinon dynamic spin structure factor
at T50, which was determined recently via algebraic analy-
sis and shown to contribute 73% of the total intensity in
Szz(q,v) at h50.5 Given the energy-momentum relation2

esp~p!5
p

2
J sinp, 0<p<p, ~3!

of the spinon quasiparticle, the two-spinon states with wave
numbersq5p11p2 and energyv5esp(p1)1esp(p2) form
a continuum confined by the boundaries6,7

eL~q!5
p

2
Jusinqu, eU~q!5pJUsin

q

2U, ~4!

as illustrated in Fig. 1~inset!. The main plot shows the exact
two-spinon line shapes ofSzz(q,v) at q5p/2,3p/4,p. The
most detailed experimental data available for testing these
results pertain to KCuF3.

8

We shall see that the magnetic field causes dramatic
changes in both the spectrum and the line shapes. At the root
of these changes is a change in the nature of the relevant
quasiparticles. Two compounds suitable for studying
magnetic-field effects on spectrum and line shapes are
Cu~C6D5COO!2•3D2O and Cu~C4H4N2!~NO3!2.

9,10

III. BETHE ANSATZ EQUATIONS

The Bethe ansatz1 is an exact method for the calculation
of eigenvectors of integrable quantum many-body systems.
The Bethe wave function of any eigenstate of Eq.~1! in the
invariant subspace withr 5N/22Mz reversed spins relative
to the magnon vacuum

uc&5 (
1<n1,¯,nr<N

a~n1 ,...,nr !Sn1

2
¯Snr

2 uF&, ~5!

has coefficients of the form

a~n1 ,...,nr !5 (PeSr

expS i (
j 51

r

kPj
nj1

i

2 (
i , j

r

uPiPj D ~6!

determined byr magnon momentaki and one phase angle
u i j 52u j i for each magnon pair. The sumPPSr is over the
permutations of the labels$1,2,...,r %.

The consistency requirements for the coefficients
a(n1 ,...,nr) inferred from the eigenvalue equationHuc&
5Euc& and the requirements imposed by translational in-
variance lead to a set of coupled nonlinear equations for the
ki and u i j . A computationally convenient rendition of the
Bethe ansatz equations has the form

Nf~zi !52pI i1(
j Þ i

f@~zi2zj !/2#, i 51,...,r , ~7!

wheref(z)[2 arctanz, ki5p2f(zi) andu i j 5p sgn@Re(zi
2zj)#2f@(zi2zj)/2#. Every real solution of Eq.~7! is speci-
fied by a set of Bethe quantum numbersI 1,I 2,...,I r ,
which assume integer values for oddr and half-integer val-
ues for evenr. The energy and wave number of the eigen-
vector thus determined are

E2EF

J
52(

i 5 i

r
2

11zi
2

, k5pr 2
2p

N (
i 51

r

I i , ~8!

whereEF5JN/4 is the energy of the magnon vacuum.
We consider the classKr of eigenstates whose Bethe

quantum numbers comprise, for 0<r<N/2 and 0<m<N/2
2r , all configurations

2
r

2
1

1

2
2m<I 1,I 2,•••,I r<

r

2
2

1

2
1m. ~9!

Here we employ the solutions$zi% of the Bethe ansatz
equations not only to generate spectral data via Eq.~8!,

FIG. 1. Exact two-spinon line shapes atq5p/2,3p/4,p of
Szz(q,v) at T50 for Hamiltonian~1! at h50 as determined via
algebraic analysis. The inset shows the boundaries~4! of the two-
spinon spectrum.
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which is standard practice, but also to evaluate transition
rates u^GuSq

mul&u2 for the dynamic structure factor~2! di-
rectly from the normalized Bethe wave functionsul&
[uc&/ici . The computational aspects of this method are
discussed elsewhere.11

IV. PHYSICAL VACUUM AND QUASIPARTICLES

The ground-state wave functionuG& at 0<Mz<N/2 is
specified by the set ofr 5N/22Mz Bethe quantum
numbers12

$I i%G5H 2
N

4
1

Mz

2
1

1

2
,...,

N

4
2

Mz

2
2

1

2J . ~10!

As the magnetic field increases fromh50 to hS52J, the
magnetizationMz increases in units of one from zero toN/2.
A sequence of level crossings produces a magnetization
curve ~Mz /N versush! in the form of a staircase withN/2
steps of height 1/N, which converges toward a smooth line
asN→`.13–15

Depending on the reference state used for the character-
ization of the ground stateuG&, it can be regarded as a scat-
tering state ofN/22Mz magnons excited from the magnon
vacuumuF& or as a scattering state of 2Mz spinons excited
from the spinon vacuumuA&. To illustrate the distinct roles
played by the two species of quasiparticles in the class-Kr
states, we show in Fig. 2 the configuration of Bethe quantum
numbers foruG& in a system withN58 and all values ofMz
realized betweenh50 andh5hS . The positions of the mag-
nons~d! are determined by the set~10! of I i ’s and the po-
sitions of the spinons~s! by the vacancies across the full
range of theI i ’s allowed by Eq.~9! for classKr states.

Henceforth we treatuG& as the new physical vacuum. At
h50 ~top row in Fig. 2! it coincides with the spinon vacuum,
a state withN/2 magnons. Ath5hS ~bottom row! it coin-
cides with the magnon vacuum, a state containingN spinons.
All states within classKr are generated fromuG& by rearrang-
ing the magnons or~equivalently! the spinons into all al-
lowed configurations.

For r 5N/2 ~top row! and r 50 ~bottom row! the state
shown is the only possible configuration within classKr . In
the fourth row, the lone magnon can be moved across the
array of spinons, generating a branch~one-parameter set! of
one-magnon excitations forN→`. In the second row, the
two spinons can be moved independently across the array of
magnons, generating a continuum~two-parameter set! of
two-spinon excitations forN→` with boundaries~4! as

shown in Fig. 1. The center row in Fig. 2 pertains to the field
at half the saturation magnetization (Mz5r 5N/4), the case
we shall investigate extensively for various system sizes.
Here uG& contains twice as many spinons as it contains mag-
nons.

The integerm with range 0,m<Mz used in ~9! is a
convenient quantum number for the subdivision of the
classesKr . Every state ofKr at fixedm can then be regarded
as a scattering state ofm pairs of spinonlike quasiparticles.
To distinguish them from the spinons, we name the new
quasiparticles ‘‘psinons.’’

The ground stateuG&, the only state withm50, is the
psinon vacuum. Here the magnons form a single array
flanked by two arrays of spinons~see Fig. 2!. Relaxing the
constraint in~9! from m50 to m51 yields a two-parameter
set of states—the two-psinon excitations. Here the array of
magnons breaks into three clusters separated by the two in-
nermost spinons, which now assume the role of psinons. The
remaining 2Mz22 spinons stay sidelined. In the four-psinon
states (m52), two additional spinons have been mobilized
into psinons. By this prescription, we can systematically gen-
erate sets of 2m-psinon excitations for 0<m<Mz .

To illustrate the quasiparticle role of the psinons in the
class-Kr collective states we have plotted in Fig. 3 energy
versus wave number of all two-psinon states~circles! and
four-psinon states~squares! at Mz5N/4 for N516. Also
shown are the spectral boundaries of two-psinon and four-
psinon states forN→` as inferred from solutions of Eq.~7!
for N52048. The two-psinon continuum, outlined by thick
lines, is confined to the intervaluqu<qs , where

qs[p~122Mz /N! ~11!

denotes the wave number of an incommensurate soft mode.
The lower four-psinon spectral boundary is the same as the
two-psinon lower boundary but extended periodically over

FIG. 2. Physical vacuumuG& for a chain ofN58 spins at mag-
netizationMz50,1,...,4. The values of the Bethe quantum numbers
I i are given by the positions of the magnons~d!. The spinons~s!
correspond to vacancies in theI i configurations.

FIG. 3. Spectrum of two-psinon excitations~circles! and four-
psinon excitations~squares! for Mz5N/4 and N516. The states
marked by full symbols are dynamically dominant inSzz(q,v). The
spectral ranges of the two-psinon states~thick lines! and four-
psinon states~thin lines! for N→` are inferred from data forN
52048. The inset shows the psinon energy momentum relation
ec(p).
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the entire Brillouin zone. The upper four-psinon boundary is
related to the upper two-psinon boundary by a scale transfor-
mation (q→2q,v→2v).

The relationship between the ranges in (q,v)-space of the
two-psinon states and the four-psinon states does indeed re-
flect that fact that they are scattering states of two or four
quasiparticles, respectively, of the same species. Similar to
the spinon, the psinon is not observable in isolation via neu-
tron scattering, but its energy momentum relationec(p),
2p/4<p<p/4, can be inferred from the data of Fig. 3~see
inset!.

If there were no psinon interaction, the wave number and
energy of a 2m-psinon state would beq5( i 51

2m pi , v
5( i 51

2m ec(pi). The N516 data make it quite clear that the
finite-size energy correction caused by the psinon interaction
is stronger in the four-psinon states than in the two-psinon
states. In both sets of collective states, the interaction energy
goes to zero as the scattering events become less and less
frequent in a chain of increasing length. However, it takes
longer chains for finite-N four-psinon data to reach compa-
rable convergence toward the spectral boundaries predicted
for N→`, because for fixedN, the scattering events between
psinons are more numerous in a typical four-psinon state
than in a typical two-psinon state.

If instead of the psinon vacuum we had used the spinon
vacuum as the reference state atMz5N/4, then both the
two-psinon states and the four-psinon states would have to
be described as scattering states ofN/2 spinons. Although we
know the energy-momentum relation of a spinon, Eq.~3!, it
is of little use to determine the spectral threshold in Fig. 3.
Since the two-psinon and four-psinon states maintain a finite
density of spinons in the limitN→`, the spinon interaction
energy remains significant. This problem does not arise at
Mz50. In the two-spinon scattering states depicted in Fig. 1,
the spinon interaction energy vanishes forN→` just as the
psinon interaction energy does in the two-psinon and four-
psinon scattering states depicted in Fig. 3.16,29

V. DYNAMICALLY RELEVANT EXCITATIONS

At Mz50 the spectral weight in the dynamic spin struc-
ture factor Szz(q,v) is dominated by the two-spinon
excitations.5 Our task here is to determine how the spectral
weight of Szz(q,v) at MzÞ0 is distributed among the
2m-psinon excitations. In investigating this question, we fol-
low the strategy of an older study17 but with vastly improved
conceptual and numerical tools.

We begin by exploring, in a chain ofN516 spins at
Mz /N5 1

4 , the transition rates between the ground stateuG&
and all 2m-psinon excitations form50,1,2,3,4. The Bethe
quantum numbers of the states withm50,1 are shown in
Fig. 4. The first row represents the psinon vacuum with its
four magnons sandwiched by two sets of four spinons. The
two innermost spinons~marked gray! become psinons when
at least one of them is moved to another position. In the rows
underneath, the psinons are moved systematically across the
array of magnons while the remaining spinons stay frozen in
place. These eight configurations describe all two-psinon
states withq>0.

The wave numbers, energies, and transition rates of the
states shown in Fig. 4 are listed in Table I. Remarkably,

almost the entire two-psinon spectral weight is concentrated
in the lowest excitation for any givenq. The dynamically
dominant two-psinon states are marked by solid circles in
Fig. 3. In a macroscopic system, they form the lower bound-
ary of the two-psinon continuum.

Next we calculate the transition ratesu^GuSq
zul&u2 for the

complete set of four-psinon states. Interestingly, we observe
that most of the four-psinon spectral weight is again carried
by a single branch of excitations. The dynamically dominant
four-psinon states forN516 are shown as full squares in
Fig. 3. For largeN they form a branch adjacent to the two-
psinon spectral threshold.

An investigation of the remaining 2m-psinon states shows
that there exists one dynamically dominant branch of
2m-psinon excitations for 0,m<Mz . The configurations of
Bethe quantum numbers pertaining to the four branches for
N516, each consisting ofN/22Mz54 states~at q.0!, are
shown in Fig. 5. The energies, wave numbers, and transition
rates of these excitations are listed in Table II. All other
2m-psinon excitations have transition rates that are smaller
by at least two orders of magnitude atq,p/2, and still by
more than one order of magnitude atq>p/2.

Inspection of Fig. 5 reveals an interesting pattern, indica-
tive of the composition of the dynamically relevant collec-
tive excitations. They form a two-parameter set. The two
parameters are highlighted by gray circles. Hitherto we have

FIG. 4. Psinon vacuumuG& for N516, Mz54 and two-psinon
states withq>0. The I i values are marked by the positions of the
magnons~small circles!. The spinons~large circles! mark I i vacan-
cies. A subset of the spinons are called psinons~gray circles!.

TABLE I. Ground stateuG& and two-psinon excitations forN
516, Mz54, and wave numbersq[k2kG>0 ~in units of 2p/N!.
The ground state haskG50 andEG5211.5121346862.

2I i k2kG E2EG u^GuSq
zul&u2

23211113 0 0.0000000000 1.0000000000
25211113 1 0.3504534152 0.0484825989
25231113 2 0.5271937189 0.0587154211
25232113 3 0.5002699273 0.0773592284
25232111 4 0.2722787522 0.1257902349
25211115 0 0.7060324808 0.0000000000
25231115 1 0.8908215652 0.0000064288
25232115 2 0.8738923064 0.0000312622
25231315 0 1.0855897189 0.0000000000
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interpreted each group of four configurations as a branch of
2m-psinon excitations, which are seemingly arbitrary one-
parameter subsets taken from 2m-parameter sets of states. In
a macroscopic system, all but the lowest such branches con-
tain a macroscopic number of psinons. Hence the range of

the dynamically relevant excitations in (q,v) space cannot
be inferred from the psinon energy-momentum relation alone
as was possible for the two-psinon and four-psinon continua,
because the psinon interaction energy will remain non-
negligible in most of these states forN→`, just as the spi-
non interaction energy was non-negligible in the two-psinon
and four-psinon scattering states atMzÞ0.

A more natural interpretation of the pattern on display in
Fig. 5 identifies one of the two parameters as a psinon~large
gray circle! as before and the other parameter as a new qua-
siparticle ~small gray circle!. The latter is represented by a
hole in what was one of two spinon arrays in the psinon
vacuum. Instead of focusing on the cascade of psinons~mo-
bile spinons! which this hole has knocked out of the vacuum,
we focus on the hole itself, which has properties commonly
attributed to antiparticles. The psinon~c! and the antipsinon
(c* ) exist in disjunct parts of the psinon vacuum, namely in
the magnon and spinon arrays, respectively. When they meet
at the border of the two arrays, they undergo a mutual anni-
hilation, represented by the step from the second row to the
top row in Fig. 5.

We could have interpreted the small gray circle as a mag-
non ~spin-one quasiparticle!, but when we do that we must
take into account that it then coexists in the magnon vacuum
with a macroscopic number of fellow magnons~small black
circles!. From this perspective, the collective excitation must
be viewed as containing a finite density of magnons~for N
→`!, in which the magnon interaction remains energetically
significant for scattering states. The nonzero interaction en-
ergy obscures the role of individual magnons.

On the other hand, when the small gray circle is inter-
preted as an antipsinon, then it lives in the psinon vacuum,
i.e., almost in isolation. The only other particle present is a
psinon~large gray circle!. In a macroscopic system, the in-
teraction energy in a psinon-antipsinon (cc* ) scattering
state becomes negligible. Therefore, the identity of both qua-
siparticles is easily recognizable in the spectrum.

The energies versus the wave numbers of the 16cc*
states listed in Table II are shown in Fig. 6~a! as large sym-
bols. The four branches from bottom to top pertain tom

FIG. 5. Psinon vacuumuG& for N516, Mz54 and set ofcc*
states with 0<q<p. The I i are given by the positions of the mag-
nons~small circles! in each row. The spinons~large circles! corre-
spond toI i vacancies. The psinon~c! and the antipsinon (c* ) are
marked by a large and a small gray circle, respectively.

TABLE II. Ground state and dynamically dominant excitations
for ~N516, r 54! among 2m-psinon states (m50,1,...,4). The lat-
ter form thecc* continuum in the limitN→`. The wave numbers
q[k2kG>0 are in units of 2p/N.

2I i 2m q E2EG u^GuSq
zul&u2

23211113 0 0 0.0000000000 1.0000000000
25211113 2 1 0.3504534152 0.0484825989
25231113 2 2 0.5271937189 0.0587154211
25232113 2 3 0.5002699273 0.0773592284
25232111 2 4 0.2722787522 0.1257902349
27211113 4 2 0.7981588810 0.0426892576
27231113 4 3 0.9653287066 0.0552255878
27232113 4 4 0.9301340415 0.0743667351
27232111 4 5 0.6966798553 0.1253357676
29211113 6 3 1.2708459328 0.0345439774
29231113 6 4 1.4285177129 0.0516860817
29232113 6 5 1.3858078992 0.0753564030
29232111 6 6 1.1488426600 0.1406415212
211211113 8 4 1.6819046570 0.0235815843
211231113 8 5 1.8257803105 0.0443726010
211232113 8 6 1.7724601200 0.0744641955
211232111 8 7 1.5309413164 0.1686893882

FIG. 6. ~a! cc* excitations atMz /N5
1
4 for N516 ~circles,

squares, diamonds, triangles form51,2,3,4, respectively! and N
5256 ~dots!. ~b! Integrated intensitySzz(q) ~inset! and relative
cc* contribution~main plot! for N512,16,20,24,28,32. The lines
connect theN532 data points.
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51,...,4. Also shown in the same plot are thecc* states for
N5256. The lower boundary of thecc* continuum emerg-
ing in the limit N→` touches down to zero frequency atq
50 andq5qs5p/2. Betweenqs andp, it rises monotoni-
cally and reaches the valueE2EG5h. A direct observation
of the incommensurate soft mode atqs was made in a
neutron-scattering experiment on Cu~C6D5COO!2•3D2O
~copper benzoate!.9

Figure 6~b! shows the relative integrated intensity of the
cc* excitations for variousN at fixedMz /N5 1

4 . At q&qs

5p/2, virtually all spectral weight ofSzz(q,v) originates
from cc* fluctuations. An extrapolation of the data points at
q5p/2 suggests that the relativecc* spectral weight is in
excess of 93%.

At q*qs the cc* contribution to the integrated intensity
decreases monotonically but stays dominant over more than
half the distance to the zone boundary. The width of thecc*
continuum vanishes linearly on approach ofq5p, and the
relative spectral weight more slowly:Szz(q);(p2q)g, g
.0.3. This enhances the observability of thecc* excita-
tions in the narrow energy range near the Brillouin zone in
spite of the low absolute intensity. Finite-N data for the in-
tegrated intensitySzz(q) are shown in the inset to Fig. 6~b!.
This function is peaked atq5qs , where thecc* spectral
weight is overwhelmingly predominant.

When we lowerMz , the soft mode atqs moves to the
right, the number of 2m-psinon branches that contribute to
thecc* continuum shrinks but each branch gains additional
states. AtMz51 we are left with one two-psinon branch
extending over the interior of the entire Brillouin zone. This
branch is equal to the lowest branch of two-spinon states
with dispersioneL(q), Eq. ~4!. However, even for this case
the psinon vacuum is different from the spinon vacuum. The
former is the lowest-energy two-spinon state~with Mz51!,
whereas the latter is a state withMz50. The wave number of
the two vacua differ byp. At Mz50 the cc* excitations
disappear altogether. The limith→0 of the infinite chain is
very subtle and will be discussed elsewhere.18

When we increaseMz toward the saturation value, the
soft mode moves to the left, and the number of 2m-psinon
branches increases, but each branch becomes shorter. At
Mz5N/221, the two-parameter set collapses into a one-
parameter set consisting of one 2m-psinon state each form
51,2,...,N/221. These states are more naturally interpreted
as a branch of one-magnon excitations with dispersion
e1(q)5J(12cosq). Their relative spectral weight in
Szz(q,v) is now 100%, but the absolute intensity forqÞ0 is
only of O(N21).

To further illustrate the roles of the psinon and the antip-
sinon as the relevant quasiparticles in the collective excita-
tions dominating the spectral weight inSzz(q,v), we com-
pare in Fig. 7 the energies between thecc* scattering states
for N564 and the corresponding~fictitious! freecc* super-
positions. The vertical displacement of any~s! from the
associated~1! reflects the interaction energy between the
two quasiparticles. This energy approaches zero for all states
of this class asN→`.

The energy-momentum relations of the two quasiparticles
can be accurately inferred fromN52048 data for the spec-
tral thresholds of thecc* states as illustrated in the inset to

Fig. 7. The psinon dispersionec(p) is confined to the inter-
val at upu<p/4 ~solid line! and the antipsinon dispersion
ec* (p) to p/4<upu<3p/4 ~dashed line!. The different
ranges of momentum which the two quasiparticles are al-
lowed to have correspond to the different regions in Fig. 5
across which the circles pertaining to them can be varied.

The lower boundary of thecc* continuum is defined by
collective states in which one of the two particles has zero
energy: the psinon foruqu<p/2 and the antipsinon forp/2
<uqu<p. The upper boundary consists of three distinct seg-
ments.

For 0<q&0.3935 the highest-energycc* state is made
up of a zero-energy psinon with momentumpc52p/4 and
an antipsinon with momentumpc* 5p/41q. Here the shape
of the continuum boundary is that of the psinon dispersion.
Likewise, for 3p/4<q<p, the states along the upper con-
tinuum boundary are made up of a maximum-energy antip-
sinon ~with momentumpc* 53p/4 and a psinon with mo-
mentumpc523p/41q. Here the shape of the continuum
boundary is that of the psinon dispersion.

When these two delimiting curves are extended into the
middle segment, 0.3935&q<3p/4, they join in a cusp sin-
gularity atq5p/2. Here the highestcc* state does not in-
volve any zero-energy quasiparticles. The maximum of
ec(pc)1ec* (pc* ) subject to the constraintpc1pc* 5q
does not occur at the end point of any quasiparticle disper-
sion curve. Consequently, thecc* continuum is partially
folded about the upper continuum boundary along the middle
segment.

VI. LINE SHAPES

To calculate the lineshapes relevant for fixed-q scans in
an inelastic neutron-scattering experiment from the spectrum
and matrix elements obtained via Bethe ansatz, we exploit
key properties of transition rates and densities of states of
sets of excitations that form two-parameter continua in
(q,v) space forN→`. Thecc* transition rates~scaled by

N! form a continuous functionMzz
cc* (q,v) for N→`.

FIG. 7. Energy versus wave number of allcc* scattering states
at q>0 for N564(s) in comparison with the corresponding free
cc* states~1!. The inset shows the energy-momentum relations of
the psinon (upu<p/4) and the antipsinon (p/4<upu<3p/4) as
inferred from fromcc* data forN52048.
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The cc* density of states~scaled byN21! becomes a
continuous functionDcc* (q,v) for N→`. The cc*

spectral-weight distribution is then the productSzz
cc* (q,v)

5Dcc* (q,v)Mzz
cc* (q,v).19,30 In the following, we consider

three wave numbers atMz5N/4.
At q5p/2, thecc* continuum is gapless and the relative

cc* spectral weight inSzz(q,v) has a maximum. The
scaled density ofcc* states is generated fromN52048 data
of the set of points

Dcc* ~q,vn* ![
2p/N

vn* 112vn*
, ~12!

wheren* 5m marks the antipsinon quantum number in the
cc* continuum and picks the dynamically relevant branch
from the set of 2m-psinon states. The psinon quantum num-
bern is adjusted to keep the wave numberq of thecc* state
fixed. This choice of labels produces an ordered sequence of
levels. Starting atv50, the graph ofDcc* (p/2,vn* ) rises
from a nonzero value very slowly up to near the upper band
edge, where it bends into a square-root divergence as shown
in Fig. 8~a!. The divergence is produced by a maximum of
the sequencevn* at the fold of thecc* continuum.20

In Fig. 8~b! we show finite-N data atq5p/2 for the
scaled transition rates

Mzz
cc* ~q,vn* ![Nu^GuSq

zun* &u2. ~13!

These data compellingly suggest the existence of a smooth

function Mzz
cc* (p/2,v) for the cc* transition rates in the

limit N→`, which further highlights the physical signifi-
cance of the psinon and the antipsinon as relevant quasipar-

ticles in this situation. The functionMzz
cc* (p/2,v) is mono-

tonically decreasing with a divergence atv50 and a cusp
singularity at the upper band edgevU.1.679J.

The product of the transition rate function and the~inter-
polated! density of states is shown in Fig. 8~c!.21 The curve
fitted through the data points represents thecc* line shape
at q5p/2 in Szz(q,v). Its most distinctive feature is the
double peak due to apparent divergences at both band edges.

The divergence atv50, which is caused by the matrix
elements, is a power law,v2a, with an exponent that is
exactly known from field theoretic studies of the Heisenberg
model.22–24 For the situation at hand, the value isa
50.4688 . . . . Thedivergence atvU is caused by the di-
verging density of states but is weakened if the cusp singu-

larity of Mzz
cc* (p/2,v) starts from zero atv5vU . The ex-

pectation is a power-law singularity, (vU2v)2b with an
exponent 0<b< 1

2 .
It is interesting to compare thecc* transition rate func-

tion Mzz
cc* (p/2,v) at Mz5N/4 inferred from the Bethe an-

satz with the two-spinon transition rate functionMzz
(2)(p,v)

at Mz50 calculated via algebraic analysis.5 The shape of
both functions is similar, but there are some differences:
Mzz

(2)(p,v) has a stronger power-law divergence atv50
and it approaches zero more rapidly at the upper band edge.
As a result it produces a monotonically decreasing spectral-
weight distributionSzz

(2)(p,v) ~see Fig. 1! notwithstanding
the fact that the two-spinon density of states is also a mono-
tonically increasing function terminating in a square-root di-
vergence.

At q5p/4 the integrated intensitySzz(q) is only a third
of what it was atq5p/2, but spread over a narrower range
of frequencies~see Fig. 6!. The bandwidth has shrunk to less
than a third of the value it had atq5p/2. The relativecc*
contribution to the intensity is even larger than atq5p/2,
almost 100%. In this application, the method of analysis is
stretched more closely to its limits becauseq5p/4 exists in
fewer manageable system sizes. However, the data still make
reliable line shape predictions possible.

The density of statesDzz
cc* (p/4,v), plotted in Fig. 9~a!,

rises discontinuously from zero to a finite value at the spec-
tral threshold,DE.0.379J. From there it increases gradu-
ally with gradually increasing slope and ends in a cusp sin-
gularity at the upper band edge.25 The finite-N data for the
scaled transition rates shown in Fig. 9~b! again suggest a
smoothv dependence in the form of a monotonically de-
creasing curve with enhanced steepness near both band
edges. However, the countertrend of the density of states at

FIG. 8. ~a! Density ofcc* states atq5p/2 evaluated via Eq.
~12! from Bethe ansatz data forN52048.~b! Transition rates~13!
between the psinon vacuum and thecc* states atq5p/2 for N
512,16,20,24,28,32.~c! Line shape atq5p/2 of the cc* contri-
bution toSzz(q,v). All results are forMz5N/4.

FIG. 9. ~a! Density ofcc* states atq5p/4,3p/4 evaluated via
Eq. ~12! from Bethe ansatz data forN52048. ~b! Transition rates
~13! between the psinon vacuum and thecc* states at q
5p/4,3p/4 for N516,24,32.~c! Line shape atq5p/4,3p/4 of the
cc* contribution toSzz(q,v). All results are forMz5N/4.
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the upper band edge is of sufficient strength to produce a
second maximum in the line shape again.

Also shown in Fig. 9 are the corresponding data for the
cc* density of states, transition rates, and line shape atq
53p/4. Here the relative spectral weight carried by thecc*
excitations is only 83% of the value atq5p/2, but that frac-
tion is concentrated over a frequency band that has shrunk to
65% of the width atq5p/2, while the absolute intensity
remains fairly high~87% of the value atq5p/2!. Both quan-
tities, which determine thecc* line shape, exhibit similar
frequency dependences as we have already observed for the
other two fixed-q scans. The density of states is divergent
again at the upper boundary. The energy gap is now much
larger, DE.0.899J. The fact that the lower continuum
boundary atq53p/4 coincides with the upper continuum
boundary atq5p/4 is a consequence of the quasiparticle
dispersions as discussed previously.

VII. CONCLUSION

The spectrum of the completely integrable 1Ds5 1
2

Heisenberg antiferromagnet~1! can be generated in more
than one way from multiple excitations of quasiparticles. The
external magnetic field controls the nature of the ground
state. In strong fields, it becomes the vacuum of magnons
and in zero field the vacuum of spinons. The dynamically
relevant collective excitations of specific quantum fluctua-
tions in the two cases are then naturally described as com-
posites of quasiparticles from the respective species and are
likely to involve only a small number of quasiparticles.

In intermediate magnetic fields, neither the magnons nor
the spinons provide a useful interpretation of dynamically
relevant collective excitations for the same fluctuation opera-
tors. The ground state itself contains a macroscopic number
of quasiparticles from one or the other of the two species.
However, when it is reconfigured as the physical vacuum for
psinons and antipsinons, then it turns out that the spin fluc-
tuation operatorSq

z induces predominantly transitions to
cc* states, which contain just one particle from each kind.

Similar to the magnon and the spinon, the psinon and the
antipsinon are interacting quasiparticles in the Heisenberg
model ~1!. In the cc* scattering states, the interaction en-
ergy of the psinon and the antipsinon is of orderO(N21)
whereas the interaction energy among magnons or spinons is
of orderO(1). Hence, forN→`, thecc* states join up in
(q,v) space to form a two-parameter continuum whose
spectral boundaries and density of states are fully determined
by the energy-momentum relations of the psinon and the

antipsinon. Moreover, the scaledcc* transition rates con-
verge forN→` toward a smooth function ofq andv.

We have exploited these asymptotic quasi-particle prop-
erties to extract line shape information for the dynamic struc-
ture factorSzz(q,v), which probes the spin fluctuations par-
allel to the applied magnetic field. The same quasiparticles
will also play a dominant role in the spin fluctuations per-
pendicular to the field, but here different combinations of
them make up the composition of the dynamically relevant
collective excitations. In the dynamic spin structure factor
S21(q,v), for example, the spectral weight is almost com-
pletely carried by two-psinon excitations.18

In all likelihood, the psinon quasiparticles will also be
useful for the analysis of thermal spin fluctuations in this
model system. The peculiar spectral weight distributions
found in recent complete diagonalization studies26,27 of
Szz(q,v) at h50 andT.0, for example, indicate the pres-
ence of stringent selection rules between collective states
coupled by the spin fluctuation operatorSq

z . In zero field,
psinon vacua are densely spread across the entire energy
range of the model. Each psinon vacuum can be used as the
reference state of a 2m-psinon expansion~9!. If there are
general selection rules related to psinon quasiparticles among
transition ratesu^l8uSq

zul&u2 within a given classKr of Bethe
ansatz solutions, they will have a strong impact on the spec-
tral weight distribution inSzz(q,v) at all temperatures.

A question of considerable interest concerns the fate of
the psinon and antipsinon quasiparticles in the presence of an
interchain coupling, which is an inevitable complication in
all physical realizations of spin chains. Any such interaction,
even if treated summarily as a~mean! staggered field, is all
but certain to destroy the exact solvability of the model and
is likely to produce energy gaps and magnetization plateaus.
One promising method for studying the effect of a staggered
field on the spectrum and the dynamics of the Heisenberg
model employs a rigorous set of evolution differential equa-
tions for the excitation energies and transition matrix ele-
ments, for which exact results such as established here via
Bethe ansatz play the role of initial conditions.31,32
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