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Cumulant methods and short time propagators

Rob D. Coalson

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

David L. Freeman

Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

J.D. Doll®

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 9 May 1989; accepted 22 June 1989)

The present paper clarifies a number of issues concerning the general problem of constructing
improved short time quantum mechanical propagators. Cumulant methods are shown to be a
particularly convenient tool for this task. Numerical results comparing methods based on
partial averaging and on gradient approaches are presented for simple model problems and for

many particle quantum fluids.

I. INTRODUCTION

Numerical path integral methods have been shown to be
useful tools in the analysis of many-body problems. Numer-
ous applications to problems in physics and chemistry have
been reviewed elsewhere. ' In typical path integral formula-
tions, the quantum mechanical character of the problem is
expressed by the introduction of “auxiliary” degrees of free-
dom. As emphasized by Chandler and Wolynes,’ the use of
these auxiliary degrees of freedom, in effect, turns the quan-
tum-mechanical problem into an analogous classical prob-
lem in an enlarged space. The number of auxiliary degrees of
freedom required for any given application is dictated by the
magnitude of the quantum-mechanical effects in the prob-
lem and by the particulars of the path integral formulation
used. As a practical matter, it is generally useful to minimize
the number of auxiliary variables. Efforts to minimize the
number of path integral degrees of freedom have centered
historically around improving the quality of the “short
time” propagators used.*”’ As with the related numerical
problem of propagating differential equations, the efficiency
of the overall approach is a tradeoff between “gains” from
the use of a “higher-order” algorithm vs “losses” from the
increase in numerical complexity.

In previous papers,®® we have discussed an advance in
the Fourier path integral approach to Feynman path integral
computations of quantum mechanical properties. Progress
in that work stemmed from the introduction of a device
termed “partial averaging” which enabled us to sum approx-
imately the contributions of higher-order Fourier fluctu-
ations to the quantum-mechanical paths. In fact, as more
Fourier components are explicitly retained in the path de-
scription (i.e., as fewer are “‘partially averaged” away), the
partial averaging-Fourier path integral (PA-FPI) prescrip-
tion tends towards the canonical FPI prescription (i.e., the
original version, as described by Feynman and Hibbs'?).
The latter is, of course, exact in the limit that the Feynman
paths are parametrized by an infinite number of Fourier co-
efficients. The real issue then concerns the rate of conver-
gence of the PA-FPI results with the number of Fourier se-
ries components explicitly retained in the path summation

) Present address: Department of Chemistry, Brown University, Provi-
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procedure. In this regard, it was demonstrated®® by numeri-
cal examples that partial averaging consistently produced
improvements, often dramatic, for problems in both quan-
tum thermodynamics and real time dynamics.

Part of the appeal of partial averaging arises from its
suggestive nature. In particular, in addition to the imple-
mentation primarily pursued in previous papers, the partial
averaging formalism was shown to be an elegant method for
deducing improved small argument propagators, i.e., small
B approximations to {x/|exp( — BH)|x,), which are accu-
rate for larger values of 5. Although a number of details of
partial averaging methodology have been discussed pre-
viously, it appears appropriate to consider the subject again
here. Our present purpose is twofold: first we wish to rein-
force some of the ideas developed previously in Ref. 9, and,
second, we wish to extend these ideas in ways suggested in
that work. Our presentation is structured in the following
way: In Sec. II the cumulant approach to improved small
argument propagators is reviewed. We examine the loga-
rithm of the ratio of the propagator to free particle propaga-
tor and show how to construct a power series in small argu-
ment 5. Terms through O(#?) are worked out explicitly,
and certain results are confirmed for the simple harmonic
oscillator potential. In Sec. III, the analogous treatment of
the general multidimensional case is given. In Sec. IV, we
show that the improved small argument propagator which is
accurate through order n solves the Schrodinger equation to
that order, in the sense appealed to by Feynman and Hibbs. '
Indeed, some simplifications arise in the propagator formu-
las when the criteria of Feynman and Hibbs is used to affix
the accuracy of the approximation. Finally, Sec. V presents
some illustrative numerical examples.

Il. CUMULANT APPROACH TO IMPROVED SMALL
ARGUMENT PROPAGATORS IN ONE DIMENSION

In the present section, we will review the cumulant ap-
proach for the calculation of small argument propagators.
For simplicity we will initially restrict attention to one-di-
mensional applications. The generalization to many dimen-
sions is straightforward and is considered in Sec. III.

We seek to compute the quantum-mechanical propaga-
tor in imaginary time pg (x,,%0) = {x/|exp( — BH)|x,) as-

© 1989 American Institute of Physics
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sociated with the Hamiltonian operator H =p?/
2m + V(x). According to the Fourier path integral pre-
scription, '

P (Xpx0)

Pg)(xpxo)

© P 1
f da exp(— S ai/20% —,BJ; du V(CI(u)))

k=1

Jw daexp(— i ai/ZOi)

=1

2.1
Here pf? is the free partial propagator
m 172
PE(xpx,) = [m] exp{ — m(x, — x0)*/2#B},
(2.2)
g(u) is the Fourier path
g(u) =X+ (X; — X0)u + z a, sin(kmu), (2.3)

k=1
and 0% = 2% /mm*k? determines typical fluctuations in
the k th Fourier component of free particle paths at a particu-
lar temperature. If an infinite number of Fourier coefficients
are used to represent the paths g(u), then the prescription is
formally exact. Equation (2.1) is of the form of an average of
an exponential over a probability distribution in the Fourier
path variables {a, }. Schematically,

Ps X0 _ (exp( _ﬁfo] du V(q(u))))a,

p ;}" (-x f9x0 )
where the a averages are implied by the bracket notation.

The natural cumulant structure'? of Eq. (2.4) is the
starting point for a variety of related lines of development.
One option, partial averaging, is to retain explicitly a rela-
tively small number of low-order Fourier coefficients in the
averaging process and to perform these averages with Monte
Carlo methods. Averages over the high-order terms are then
approximated, typically, but not necessarily, by means of
first-order cumulant techniques. In this approach, improved
levels of accuracy are achieved by increasing the number of
Fourier terms treated explicitly while utilizing a low-order
cumulant expansion. Another option, described in greater
detail below, is to utilize the cumulant structure of Eq. (2.4)
to eliminate explicit consideration of e/l Fourier terms. In
this approach, increased accuracy is achieved by extending
the cumulant expansion of the right-hand side of Eq. (2.4)
to higher orders. This latter approach leads directly to a
expansion of Eq. (2.4), as we now demonstrate. '

Using standard methods,'? Eq. (2.4) can be written as

X ,x 0 — m

Lalen) e § =B07,),
5 (XpX0) =1 m!

where K, is the mth-order cumulant for the function

S6du V (q(u)). The connections between the cumulants and
the associated power moments

= ([ o))

are well known. Specifically, the first few cumulants are giv-

(2.4)

(2.5)

(2.6)
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en in terms of the power moments by
K,=M, (2.7a)
K,=M,—M?, (2.7v)
K3=M3—3M1M2+2M?. (2.70)

General expressions for arbitrary order are available.!?

By inspection we see that the cumulant expression (2.5)
is almost a direct S expansion of the logarithm of the ratio of
the quantum-mechanical propagator to its free particle
counterpart. It would be a direct 8 expansion were the cu-
mulants themselves temperature independent. The cumu-
lants involve 5, however, since the size of the quantum-me-
chanical fluctuations involved are temperature dependent.
Explicitly, a gradient expansion about the reference path
qol#) = Xy + (x; — x)u in the expressions for the mo-
ments reveals that the first- and second-order cumulants are
given by

1
K, =f du{V(go(w)) + (B#/2m)V " (go(u))u(1 — u)
(4]

+ (B*H/8m)V ""(go(w))u* (1 — u)* + 0(BH)},

(2.8a)
1
K, =f du du{(B#/m)u (1 —u_ )V'(go(u))
o ,
XV'(go(u)) + O(B*)}. (2.8b)
In dériving Egs. (2.8), we have used the fact that
0 hz
S o3 sin(kmu)sin(kmu') ="—u_(1—u_ ),
= m
= (2.9)

where u _ (u_ ) is the smaller (or larger) of # and '

That the second-order cumulant begins with contribu-
tions of order Bis a special case of a more general result. The
averages over the Fourier coefficients in the cumulants in-
volve probability distributions that become arbitrarily sharp
(around g, = 0) as $—0. This sharpness in the probability
distributions implies that all cumulants beyond first order
thus vanish as 0. From this argument, we see that the
constant term in a high temperature power series expansion
of the general nth-order cumulant K,, #n> 1, must vanish.
Stated differently, the second-order cumulant cannot
contribute to a 5 expansion of the exponent of Eq. (2.5)
through order B2, the third-order cumulant through order
B etc. Retaining only the first-order cumulant term in the
exponent of the right-hand side of (2.5) thus results in the
exponent being computed accurately through order 82. The
correctness of this result, initially discussed in detail in Ref.
9, isindependent of the detailed form of the potential as long
as the cumulant expansion in Eq.(2.5) has no special patho-
logies. This point appears to have caused confusion in some
recently published work.? Its validity for the special case of
the harmonic oscillator is explicitly demonstrated below.

Using the above results, we can readily write down ap-
proximations to Eq. (2.5) correct through various orders in

B in the exponent. Specifically, through order 873,

J. Chem. Phys., Vol. 91, No. 7, 1 October 1989
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P (%%0) ( f v B#
— = — ( —_
oy~ e B, Vo) =5

1
xf duu(l —u) V”(qo(u)))
0 ,

k¥2) 1
_E# J. du w?(1 — u)?V " (go(u))
m (]

1
_,B_f_f dudu'u_(1—u,)
m Jo

X V'(go(u))V'(go(u")).

(2.10)
We note the relative ease with which the results in Eq. (2.10)
were obtained using the cumulant approach. We also note
that these results necessarily agree exactly with the corre-

pondmg third-order results quoted by Makri and Miller."

We again emphasize that the results through order 8 Zin the
exponent of the right-hand side of Eq. (2.10) arise entirely
from the first-order cumulant term while the second-order
cumulant’s contribution begins at order 3°.

Before proceeding, it is useful to consider the first-order
cumulant result in greater detail. From previous work® and
from the above discussion, we know that truncating the cu-
mulant expansion of Eq. (2.5) at first order correctly repro-
duces the exponent of the right-hand side of Eq.(2.5)
through terms of order B2 That is,

Pp (Xp%0)

pgj(xpxo)
where K, is given by [cf. Eq. (2.7a)]

1
=f du< (qo(u) + z a, sm(kn-u))) . (2.12)
(1]

k=1

=exp( — BK, + O(B?)), (2.11)

It is easy to show (cf. Refs. 8 and 9) that the infinite-dimen-
sional Gaussian average over the g, variables in Eq. (2.12)
can be reduced exactly to a single-dimensional Gaussian
average. Specifically,

1
K, =J du Vg (u), (2.13)
0
where
f dp exp( — p2/20* (1)) Vigo(w) + P)
Veﬂ'(u) = ]
j dp exp( — p2/20%(u))
- (2.14)
and where
2
A (u) = (2.15)

———u(l—u)
m

For some potentials, the Gaussian average in Eq. (2.14) can
be performed analytically. In general, however, this will not
be possible. Progress in this more general case can be made
by noting that the use of the exact first-order cumulant result
(2.11) is itself accurate only through order 3 2. Accuracy to
the same order in B is achieved if we replace V4 by an ap-
proximate result, itself accurate to order 5. From Eq.
(2.14), we find that

Vg (u) = V(go(uw)) + V" (go(w))o*(u)/2 + O(B?). (2.16)
Thus we have the result that
K, =V(x;%,) + 0(B?), (2.17)
where
o 172 -
V(xpxo) = f dw{¥V(xg (w))
—1/2
B (1 ,
+ Y™ (—4— —_ w2) V" (xg (w) )] (2.18a)
and where

xfp(w)E(x0+xf)/2+ (x; — Xxo)w. (2.18b)
Note thatin Egs. (2.18), the “time” integral has been shifted
in order to make clear that the final result is symmetrical
with respect to interchange of x, and x,. Through order 5,
Eqs. (2.18a) and (2.8a) are identical.

In order to evaluate Eq. (2.18) more explicitly, the pre-
cise functional form for ¥ must be specified. It is clear that
the ultimate structure of the right-hand side of Eq. (2.18)
will be rather complicated in general. This raises a question
concerning the utility of the “improved” small argument
propagator Pp (XpX0) =pT(xs,%0)exp[ — BV (xpx0) ]
Fortunately, there is a way to extract from ¥ in the general
case an explicit and simple effective potential such that pj is
“accurate” through O(B?). The sense in which this claim is
true is somewhat different from the current sense of counting
explicit powers of B in the exponent of the right-hand side of
Eq.(2.5). The modified criterion counts factors of (x, — x,)
as effectively O(B '/2). There is a good reason for this. With
such a counting scheme, an improved small time propagator
accurate through O(8 ") will satisfy the Schrédinger equa-
tion through O(3 ") in the manner originally considered by
Feynman to prove equivalence of his path integral formula-
tion to the Schrodinger equation. We return to this point in
Sec. IV.

To close this section, we check the result (2.18) in one
verifiable case, namely the simple harmonic oscillator. For

V(x) = mw®x*/2, Eq. (2.18) can be explicitly evaluated to

yield 1
(x7sX0) w?

Bo2r%0l e [ -B [—— 3 +x) + =

Ps (XpX0) 12

2
X (B2 — - xo)z)] ro). @19
The exact propagator is well known'*:

Pgs (xpxo)
Pg’(x/,xo)

— mw

[ 7 exp{—————,
smh(ﬂﬁw) 27 sinh(S%iw)
X [cosh(Bfiw) (x] + x7) — 2x0%,]

NE—) @220

Using standard identities

J. Chem. Phys., Vol. 91, No. 7, 1 October 1989
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_,_ ¥ .. snhy_ y
In(l1 +y)=y 2+ = +3|+5'
coshy 1 y )
e s iy
sinhy y 3 45

sinhy y 6 360

one finds that the expansion of the right-hand side of Eq.
(2.19) is recovered exactly.

Il. CUMULANT APPROACH TO IMPROVED SMALL
ARGUMENT PROPAGATORS IN N-d

In this section, the development given in Sec. II for one-
dimensional systems is extended to N degrees of freedom
systems governed by Hamiltonians of the form

N p;

H—~22

i=1

+ V(x),

where x = (x'"... x‘” ’) is an N-dimensional vector of spatial
coordinates and p; the momentum conjugate to x‘. As dis-
cussed previously,® partial averaging can easily be imple-
mented for N-dimensional systems because the averages are
over independent sets of Gaussian variables (one set for the
Fourier fluctuations in each Cartesian coordinate). Hence
one readily finds the analog of the 1D result given by Eq.

(2.5) tobe
X ,x o _ m
P/fa( ,X0) =exp( z (=B Km)'

P8 (Xr,Xg) m=1 ml
Here p} is the N-dimensional free particle propagator and
the cumulants now involve multidimensional averages over

N Gaussian variables. Specifically K, = fodu V.4 (u),
* where V4 (u) is given by

f dp exp( -/2of(u))V(qo(u) +p)
1-1

‘ J dpexp( Zp,z/Zol(u))
— i=1

3.1)

Veﬂ‘( )_

(3.2)
Following the notation adopted in the 1D case o?(u)
= (B#/m;)u(1 — u) and the ith component of q, is given
by (go)” = x§"” + (x” — x§?)u. By expanding ¥ in a mul-
tidimensional Taylor series about the free particle path g, it
is readily confirmed that

Kl = T}(xfaxo) + O(ﬁZ)’
where

_ 172 5
V(xs,%0) =f [V(xfp(w)) + z b (4 — w2)

—12 = 2m;

X Vi (Xg (w))] . (3.3a)

Here ¥}, means second derivative with respect to x‘” and the
ith component of x;,, (w) is given by
(x50 = 3(xf" + x67) + (%7 — x§)w. (3.3b)

As in the 1D case, further evaluation of ¥ depends on the
specifics of the potential function. However, again as in 1D,

4245

a simple effective potential which can be employed to give a
propagator accurate through O(82) in the Feynman-Hibbs
sense'® does exist in the general case. This will be discussed in
the next section.
Finally, we check Eq. (3.4) explicitly in the case of the
many-dimensional harmonic oscillator potential V(x)
= Ix"K-x, where K is an N X N real symmetric matrix of
force constants.
Then

1 Y Ky
V(X_,,XO) = [V(xo) + V(xf)] +— [ﬂﬁz z —_—
12 i=1 m;

— (X — Xo) Ke(x, — xo)] . (3.4)

This results in the approximate small argument propagator

Ps (XpXo)

Pg’ ( X M fy xo)
which from the arguments of the current section is seen to be
accurate through O(8?) as indicated. This result can be
checked explicitly by transforming to normal modes (dia-
gonalizing K), writing down the exact propagator as a prod-
uct of normal mode (1D harmonic oscillator) propagators,
expanding through O(8?) as in the 1D case, and transform-
ing back to displacement coordinates x. The result contained
in Eqgs. (3.4) and (3.5) is thereby recovered exactly.

=exp{ — BV (x.%,) + O(B*)},  (3.5)

IV. EXPLICIT EFFECTIVE POTENTIALS FOR SOLVING
THE SCHRODINGER EQUATION TO O(B")

The purpose of the quantum propagator is, as its name
suggests, to transform an initial wave function into a final
one according to the Schrddinger differential equation. In
coordinate space, the necessary action of the propagator can
be seen by writing

¢(X,B) = exP{ _ﬂhx}wo(-x) (4-1)
with A, the coordinate space representation of the time-inde-
pendent Hamiltonian utilized above. Clearly #(x,8) is the
solution of the Schrédinger equation — dy¥(x,8)/dpf

= h, ¢(x,B) with the value ¥,(x) at f=0. Thus for the
coordinate  space  propagator  {x/|exp{ — BH}|x,)
=pg (x;,X,) to propagate properly, it must have the proper-
ty that for any initial wave function :

ad ( - th )J
J- dxo pg (XpX0)Po(Xo) = 3 ——"f—‘

j=0

Yo(xp). (4.2)
Of course, the small argument propagators discussed in
Secs. IT and III are not exact for arbitrarily large 5. A rea-
sonable gauge of the degree of accuracy that they possess is
the highest power of B on the right-hand side of Eq. (4.2)
which they reproduce correctly. Again, the criterion utilized
by Feynman and Hibbs'® to show that their small argument
propagator [in which Vis replaced by (x,), or ¥(x ¢), or by
the symmetrized version of this, or by ¥ ( [x, + x,]/2) ] is
accurate through first order in 8 was that it reproduced the
right-hand side of Eq. (4.2) through O(f). Similar argu-
ments can be used to extract from the integral formula for ¥
deduced in this work a simple effective potential V, which
reproduces the right-hand side of Eq. (4.2) through O(82).

J. Chem. Phys., Vol. 91, No. 7, 1 October 1989
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Let us begin with some formal observations. From the
discussion of Sec. I, we know that the coordinate space pro-
pagator can be expanded exactly as

Ps(XpXo) = I lne:xp — P (x, — xp)?
s 2#B 2wt

Xexp( i ka;( (x09xf)) s 4.3)
k=1

where the f,’s are functions of x, and x, but are indepen-
dent of 8. A prescription for uniquely determining all the
f.’s was given in Sec. Il and f_; are explicitly specified in
Eq. (2.10). Once all of these functions have been deter-
mined, the right-hand side of Eq. (4.3) can be substituted
into the left-hand side of Eq. (4.2) and it will then reproduce
the right-hand side of Eq. (4.2) order by order in £ as indi-
cated.

Let us carry out this procedure in the abstract. There are
three steps:

(i) Expand the second exponential on the right-hand
side of Eq. (4.3) in its defining power series. Call this the
“potential” power series because the f, depend intimately
on the system potential and, in particular, vanish if the po-
tential does.

(ii) Write the x, dependence in both the potential power
series and the initial wave function t,(x;) as x,=x,

— (x; — x,). Expand the x, dependence of both factorsina -

Taylor series about x, as indicated.

(iii) Multiply these factors together. They now consist
of the potential and its derivatives, and the initial wave func-
tion and its derivatives, all evaluated at x, and multiplied by
various nonnegative powers of (x; — x,). All integrals over
x, are of the Gaussian moment type and can be performed.
The nth moment integrals which are nonzero (i.e., for even
n) add an additional factor of 8 *? [cf. the first exponential
in Eq. (4.3) for the relevant Gaussian ] to any B dependence
generated via the potential power series. (Note that since
130, performing the x, integration over any term in the inte-
grand can only raise the power of S associated with this
term.)

Once steps (i)—(iii) have been performed, it is simple to
collect all terms of order B/. Apart from the factor of 5/
itself, these determine a function of x, which, from the
right-hand side of Eq. (4.2), can be identified with
(= hVYho(x) /5

From this exercise we see immediately that the function
Ji will not contribute to the final expression on the right-
hand side of Eq. (4.2) until order B* (this is the lowest
power of 8 which can be associated with f, in the three step
procedure just outlined). Thus, truncation of the argument
of the potential exponential factor in Eq. (4.3) at order n,
i.e., what we called the O(S ") propagator in Sec. II, must
necessarily satisfy the right-hand side of Eq. (4.2) through
the order B ". We say that it is accurate through order 8" “in
the Feynman-Hibbs sense.”

We now apply the formal reasoning just given to deduce
V,a (B dependent) effective potential such that

P (Xpx0) =P (xpx0)exp{ — BV (x,,%0) } (4.4)

is accurate through order 8?2 in the Feynman-Hibbs sense.
We know that

Pp (X,%0) =p% (x,,x0)expl — BV (x,x0)} 4.5)
with V given in Eq. (2.18) is accurate to O(8?) in the argu-
ment of the exponential on the right-hand side, i.e.,

~— BV(x;,%,) = Bf, + B?f, in the notation of the current
section [cf. Eq. (2.10)]. We have thus just proved that the
approximate propagator utilizing ¥ in Eq. (3.3) solves the
Schrodinger equation to O(f?) in the Feynman—Hibbs
sense. The problem is that ¥ is generally unwieldy. Fortu-
nately, the preceding arguments allow us to extract from Va
simple explicit function ¥ which, although not accurate to
O(B?) inthe sense considered in Sec. II, isaccurate to O(8 %)

in the Feynman-Hibbs sense considered in this section.

To arrive at V, we simply count powers of (x; — x,)
appearing in ¥ as O(B'/%). We know that no terms higher
than O(B) in this power counting scheme can contribute to
the potential power series expansion discussed above to
O(B?) or lower. Considering the 1D case first, one finds

T/(xf,xo) =1 V(x) + Vixs)] +-1—2— B—mh—z— (xf—x(,)z] .

(4.6)

The argument of the second derivative function in this for-
mula has been vaguely notated on purpose. Evaluation at x,
or x, gives accuracy of " through O(f3) [discrepancies arise
naively at O(5%/?) 1. If we then insert the approximate small
argument propagator

Ps (Xpx0) =pp (xp.x0)exp{ — B T/(xf’xo)}

into the left-hand side of Eq. (4.2), we find that the right-
hand side of Eq. (4.2) is recovered exactly through O(8?).

Finally, let us turn to the multidimensional case. Equa-
tion (3.3) simplifies to

7 1 1 , w Vi
(x7,%0) =3 [V(xe) + V(x/)] +E By P
i=1 i

- (X/—Xo)'vll'(xf“‘xo)] . 4.7

In Eq. (4.7), V" is the N X N matrix of second derivatives.
As in the 1D case, the value at which all second derivatives
are 10 be evaluated is notated vaguely because there are
many possible alternatives which produce accuracy in Eq.
(4.2) through O(B?). The same considerations pointed
out in the 1D case apply here. In fact, when pg (X.,X,)
~pP(x,,%,)exp{ — BV(x,,x,)} is substituted into the left-
hand side of Eq.(4.2), terms on the right-hand side through
O(B?) are recovered. Moreover, this exercise leads to a
further simplification which could not be anticipated on
grounds considered above. Namely, the cross terms in V”
are found not to contribute to O(£?) on the right-hand side
of Eq. (4.2), since the factors of (x}” — x§?) (xf’ — x§”)
multiplied by the appropriate Gaussian functions integrate
to zero for i #j. Thus we arrive at our final expression for the
0(B?) effective potential appropriate to the multidimen-
sional case, namely,
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V(x,%) =% [V(xo) + V(x,)]

N 2

+ —
12 =

(4.8)

i

V. NUMERICAL EXAMPLES

We consider now the application of the methods dis-
cussed above to a number of problems. Our basic purpose
will be to compare the rates of convergence of different phys-
ical properties computed by means of various approaches.

We first examine the simple, analytic example of the
harmonic oscillator and compare the results obtained by
means of partial averaging with those obtained using the
third-order S expansion. Shown in Table I are the errors
found for a particular density matrix element (x = x' = 0)
computed by means of the two methods. The Trotter results
in Table I utilize short time propagators based on the third-
order /8 expansion described by Makri and Miller.!> The
analogous Fourier results were obtained using the partial
averaging methods (first-order cumulant) described in Sec.
IT and in greater detail in Sec. VII of Ref. 9. We see from
Table I that partial averaging is very effective at accelerating
the convergence of the final results. For a given number of
path integral degrees of freedom, the error in the density
matrix computed via partial averaging is a factor of 5 to 10
less than that obtained using the third-order A expansion.
The level of improvement found for the partial averaging
results in Table I is consistent with that seen previously® in a
number of equilibrium and dynamical applications.

. Wenow turn to many-body applications. The additional
complexity involved in such calculations has, to a degree,
limited detailed comparisons of various alternative ap-
proaches. We present in Table II results from a previously
unpublished study designed to compare the quality of results
obtained by Trotter methods with those obtained by partial
averaging approaches for a model of liquid helium.'” In or-
der to facilitate comparison with published results, the mod-
el and the thermodynamic states chosen were the same ones
studied by Pollock and Ceperley'® (po® = 0.365; k,T /e

= 5.0and 0.5). For these temperatures, the effects of parti-
cle exchange are not likely to be significant and were not
included in either the present study or in the study reported

TABLE I. Listed below are the percentage errors [ 100X (computed—ex-
act)/exact] for the (x = 0, x’ = 0) harmonic oscillator density matrix ele-
ment computed by means of the third-order f-expansion methods [Eq.
(23) of Ref. 13] (MM) and by partial averaging (PA) methods (Ref. 9).
Results are shown as a function of the number of path integral degrees of
freedom (X), a quantity that corresponds to the number of Fourier coeffi-
cients explicitly retained in the case of the Fourier results and to the Trotter
index in the case of the gradient results. Values shown are for the particular
system characterized by Bfiw = 7.

N MM P4
2 4.908 — 0.468
4, 0.363 —0.088
8 0.056 —0.013
16 0.012 — 0.002

TABLEILI. Listed below are the average potential energies per particle fora
64-particle Lennard-Jones model of *“He (e/k,; = 10.22 K, o = 2.556 A)
at two different temperatures. Energies are in units of the Lennard-Jones
well depth. The reduced density in the calculation was po® = 0.365. Results
designated by FPI (PA) were computed using Fourier path integral (par-
tial averaging) methods. The variable k., is the number of coefficients
explicitly retained in the Fourier calculations. The results of Pollock and
Ceperley (PC) (Ref. 18) are shown for comparison. The PC results are
based on a Trotter expansion (of order p) in conjunction with an improved
short time propagator obtained from a separate pair density matrix calcula-
tion. For comparison, the corresponding classical Monte Carlo results are
(V)= —1797+0.008 at T=51.1 K and (V) = —4.296 + 0.017 at
T'=5.11 K, respectively. The Fourier results typically utilized 10 000
passes consisting of one attempted Monte Carlo move for each degree of
freedom.

T=3511K
kmax ( V)FPI ( V)PA (KE )PA
2 — 1374 £ 0015 —1.658 +0.014 8.257 4+ 0.029
4 — 1421 +£0.020 — 1.583 4+ 0.009 8.234 4-0.021
8 —1.457 £ 0.019  — 1.558 4+ 0.014 8.199 1 0.019
16 —1.506 £ 0.019 —1.565 + 0.015 8.216 4+ 0.025
p Vpc {KE Ypc
2 — 1.648 + 0.006 8.51 4+ 0.01
4 — 1.680 £ 0.003 8.33 4+ 0.01
8 — 1.643 + 0.003 8.27 4 0.02
16 — 1.604 + 0.004 8.22 +0.02
T=5.11K
kmax (V)PA p (V>PC
4 —2.132 4 0.010 10 —2.081 + 0.005
8 —2.095 £ 0.017 20 — 2.068 + 0.002
16 —2.038 £ 0.011 40 —2.045 +0.001
32 —2.007 £ 0.009 80 —2.025 4 0.002

in Ref. 18. The Pollock and Ceperley results were obtained
using a conventional Trotter path integral formulation with
an improved short time propagator derived from a separate
pair density matrix calculation. According to Pollock and
Ceperley, this improved short time propagator gave “much
quicker convergence” than the corresponding first-order
propagator results. Although future studies with the im-
proved short time propagator proposed in Ref. 14 will be
required before a definitive conclusion can be drawn, it
seems unlikely that the quality of such results would surpass
that obtained using the pair density matrix approach. In fact,
aspiring even to this level of improvement might be generally
optimistic in light of Feynman’s comments'® concerning the
efficacy of including quantum-mechanical effects via such
gradient methods for typical molecular interaction poten-
tials. In Table I, we present various results obtained for a
conventional 64 particle Lennard-Jones minimum image
spherical cutoff model of “He. The results in Table II indi-
cate again that partial averaging is a very effective tool for
accelerating the convergence of numerical path integral cal-
culations. Other thermodynamic quantities for helium com-
puted using the partial averaging method have been present-
ed elsewhere.?%!
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VI. SUMMARY

The general area of numerical path integral methods is a
rapidly changing one. Although current methods already
provide an improvement tool for the analysis of many-body
phenomena, new and ultimately better methods for equilib-
rium and dynamical applications will no doubt be discov-
ered. The likelihood of such progress increases as we raise

the level of understanding concerning the connections be- .

tween various methods.

The present paper has considered a number of issues
related to the task of constructing improved short time quan-
tum-mechanical propagators. We have shown that cumu-
lant methods are an especially effective tool for this task as
well as for clarifying the connections between various alter-
native approaches. In this context, Fujiwara, et al.?* have
presented a definitive study that considers both high tem-
perature and Wigner—Kirkwood expansions.

We have presented numerical applications to one-di-
mensional as well as to many-body problems in an effort to
gain insight into the relative efficiencies of various proposed
methods. For the examples considered, we find the Fourier
partial averaging method to be a particularly effective ap-
proach.
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