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 2 

Abstract 18 

Blooms caused by the green macroalga Ulva pose a serious threat to coastal ecosystems 19 

around the world. Despite numerous studies of the causes and consequences of these blooms, we 20 

still have a limited understanding of Ulva bloom species richness and abundance due to 21 

difficulties in identifying Ulva species using morphological features. Along the northeastern U.S. 22 

coastline, all blooms of distromatic Ulva blades were previously identified as U. lactuca. Recent 23 

molecular sequencing, however, discovered the presence of additional distromatic Ulva species. 24 

Therefore, in order to determine the relative abundance of Ulva species within blooms, we 25 

conducted monthly surveys at four Narragansett Bay, RI, sites representing a gradient of bloom 26 

severity. We found that the biomass of Ulva within blooms was a mix of U. compressa and U. 27 

rigida, not U. lactuca as previously reported. In contrast, sites not impacted by blooms that were 28 

located near the mouth of Narragansett Bay were dominated by U. lactuca. We also observed 29 

spatial and temporal differences in Ulva and total macroalgal diversity between bloom-impacted 30 

sites, indicating that Ulva bloom composition can be radically different between similar sites 31 

within close proximity. We discuss our results in the context of Ulva blooms worldwide, 32 

highlighting the need to definitively determine bloom species composition in order to fully 33 

understand bloom dynamics. 34 

 35 

Key words: biomass, diversity, eutrophication, macroalgal bloom, survey, Ulva 36 

 37 

1. Introduction 38 

The formation of blooms of filamentous and/or thin foliose macroalgae are frequently a 39 

consequence of coastal eutrophication (Fletcher, 1996; Valiela et al., 1997; Morand and 40 
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Merceron, 2005; Ye et al., 2011). Macroalgae with these morphologies have a high surface area 41 

to volume ratio that enables them to rapidly uptake nutrients for greatly increased growth (Littler 42 

and Littler, 1980; Hein et al., 1995; Pedersen and Borum, 1996), provided favorable bathymetric, 43 

temperature, and light conditions exist (Rivers and Peckol, 1995; Taylor et al., 2001; Cohen and 44 

Fong, 2004; Sousa et al., 2007; Liu et al., 2010).  45 

Bloom macroalgae often form large floating mats in the water column, in which 46 

individual thalli grow, fragment, and asexually reproduce via zoospores (Gao et al., 2010; Ye et 47 

al., 2011). These floating mats of algae alter coastal light, nutrient, and water flow conditions, 48 

causing decreases in perennial algae, seagrasses, and benthic invertebrates (Valiela et al., 1997; 49 

Hauxwell et al., 1998, 2001; Thomsen and McGlathery, 2006; Worm and Lotze, 2006). Nightly 50 

respiration and decomposition of bloom macroalgae contribute to hypoxic events (Valiela et al., 51 

1997; Raffaelli et al., 1998) that can result in substantial mortality of invertebrates and fishes 52 

(Deacutis et al., 2006; Berezina et al., 2007). In addition, several species produce toxins that 53 

negatively impact co-occurring organisms (Nelson et al., 2003a; Eklund et al., 2005; Van 54 

Alstyne et al., 2006). Moreover, blooms interfere with coastal commercial and recreational 55 

activities (Lee and Olsen, 1985; Thomsen and McGlathery, 2006; Deacutis, 2008; Leliaert et al., 56 

2009).  57 

Bloom-forming macroalgal species can be found within the phyla Chlorophyta, 58 

Heterokontophyta, and Rhodophyta, but most macroalgal blooms, including the largest ever 59 

recorded, are caused by Chlorophyta species, such as those within the genus Ulva Linnaeus 60 

(Fletcher, 1996; Valiela et al., 1997; Morand and Merceron, 2005). For example, the 2008 bloom 61 

of Ulva prolifera offshore of Qingdao, China contained an estimated 20 million wet tons of algae 62 

spanning approximately 13,000 km2 in the Yellow Sea. This bloom required the removal of more 63 
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than 1 million tons of U. prolifera from the shoreline, at a cost of over $100 million US dollars 64 

(Leliaert et al., 2009; Gao et al., 2010).   65 

Ulva species are notoriously difficult to identify due to a lack of distinguishing 66 

morphological features among species and a tremendous degree of phenotypic plasticity within 67 

species (Blomster et al., 1999; Blomster et al., 2002; Leskinen et al., 2004). Until recently, this 68 

morphological uncertainty hindered our ability to accurately assess species richness within Ulva 69 

blooms. In the last decade, however, numerous molecular studies from bloom and non-bloom 70 

impacted habitats around the world have greatly increased our understanding of Ulva richness 71 

(e.g. Hayden et al., 2003; Leliaert et al., 2009; Kraft et al., 2010; Liu et al., 2010). However, 72 

detailed surveys of the relative abundance of different Ulva species, as well as physiological and 73 

ecological studies utilizing molecularly confirmed Ulva species, remain lacking (but see Liu et 74 

al., 2010; Yokoyama and Ishihi, 2010; Kim et al., 2011). These knowledge gaps pose a serious 75 

barrier in our ability to understand Ulva bloom dynamics, and consequently hinder the 76 

development of macroalgal bloom risk assessments and well-informed coastal management 77 

practices.  78 

We conducted extensive surveys at four Narragansett Bay, Rhode Island sites (Figure 1), 79 

to determine: 1) which Ulva species is (are) the main contributor(s) to Ulva blooms in 80 

Narragansett Bay; 2) if bloom-forming Ulva species are found throughout Narragansett Bay or 81 

only in bloom-impacted areas; and 3) how the species richness and relative abundance of all 82 

macroalgal species varies amongst bloom and non-bloom sites. We discuss our results in the 83 

context of previously studied Ulva bloom systems and highlight the importance of determining 84 

their species composition for understanding bloom dynamics.  85 

 86 
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2. Methods 87 

2.1. Study locale and species 88 

Narragansett Bay is a well-studied estuary in which annual blooms of distromatic Ulva 89 

blades and, less often, monostromatic tubular Ulva spp. (formerly Enteromorpha, Hayden et al., 90 

2003) and Gracilaria spp. occur in the anthropogenically impacted northern portions of the bay 91 

(Granger et al., 2000; Calabretta and Oviatt, 2008; Deacutis, 2008; Oczkowski et al., 2008; 92 

Thornber and Guidone, unpublished data). While tubular Ulva species in Rhode Island cannot be 93 

identified to the species level based on morphological features alone, significant progress has 94 

been made in distinguishing between Ulva blades in this region. Originally identified as 95 

monospecific blooms of U. lactuca, molecular sequencing of Ulva blades within Narragansett 96 

Bay and along the outer Rhode Island coast detected three species of Ulva blades: U. compressa 97 

Linnaeus, U. lactuca Linnaeus, and U. rigida C. Agardh (Guidone et al., unpublished data). 98 

Similar results were found in molecular assessments of Ulva in the Great Bay Estuarine System 99 

in New Hampshire and Maine (Hofmann et al. 2010). These blade-forming species can be 100 

reliably distinguished based on a suite of cellular features including cell size, shape, and 101 

arrangement, chloroplast position, and pyrenoid number (Guidone et al., unpublished data; 102 

Hofmann et al., 2010).  103 

 104 

2.2. Survey methodology  105 

We first assessed the biomass of Ulva compressa, U. lactuca, and U. rigida, and the 106 

percent cover of all algal species throughout Narragansett Bay by conducting monthly surveys 107 

from May-September 2009 at four field sites: Brushneck Cove and Chepiwanoxet, Warwick, RI 108 

and The Graduate School of Oceanography (GSO) and Pier 5, Narragansett, RI (Figure 1). 109 
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Brushneck Cove and Chepiwanoxet are located in Greenwich Bay, a subestuary of Narragansett 110 

Bay that experiences annual Ulva blooms (Granger et al., 2000; Thornber and Guidone, 111 

unpublished data). Both Brushneck Cove and Chepiwanoxet are intertidal mud flats bordered by 112 

fringing salt marshes; however, Chepiwanoxet has a longer water residence time (1.5 days versus 113 

0.3 days), a greater mean depth, and experiences lower temperatures and a greater incidence of 114 

hypoxic events (Granger et al., 2000; Thornber and Guidone, unpublished data). These sites were 115 

contrasted to GSO and Pier 5 (Figure 1), which are near the mouth of Narragansett Bay and are 116 

not impacted by annual Ulva blooms. GSO is a narrow beach of mixed sand and cobblestone, 117 

while Pier 5 is a boulder field.  118 

For comparison across seasons, additional surveys were conducted in February and May 119 

2010 at all four sites. Monthly surveys were subsequently continued at the two bloom-impacted 120 

sites from June 2010 to November 2011. 121 

We conducted all surveys during spring low tides. For each survey, at each site, we 122 

placed two 10 m transects parallel to the shore; transects were at least 30 m apart and placed at 123 

the same tidal height. Transect positioning corresponded to the tidal height where Ulva wrack 124 

was most commonly observed at low tide; this was directly below the fringing marsh at 125 

Brushneck Cove and Chepiwanoxet, and directly above the waterline at GSO and Pier 5. For our 126 

initial May-September surveys, we used a 0.25 m2 quadrat to calculate the percent cover of all 127 

algal taxa at one meter intervals along each transect, for a total of twenty replicate samples per 128 

site and sampling month. Subsequent surveys assessed percent cover at two-meter intervals, for a 129 

total of ten replicate samples per site and sampling month. Due to the overlap of macroalgal 130 

thalli within drift mats, the total percent cover of all species often totaled more than 100%. Algae 131 

were identified to the lowest taxonomic unit possible in the field. The Ulva blades within each 132 
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quadrat were collected and returned to the laboratory. Additionally, beginning in February 2010 133 

we collected Ulva tubes from the bloom-impacted sites for biomass comparison to Ulva blades. 134 

In the laboratory, we identified each blade to species using distinguishing cellular features 135 

determined from molecularly confirmed voucher specimens (Guidone et al., unpublished data). 136 

Following identification, blades were spun to a constant weight using a salad spinner and then 137 

weighed.  138 

 139 

2.3 Statistical analyses 140 

 We analyzed Ulva bloom biomass data for our 2009-2010 survey and our bloom-141 

impacted sties (2010-2011) using fully factorial nested ANOVAs with fixed factors for month-142 

year, site, species, and transect nested within site (JMP, version 8, SAS Institute Inc., North 143 

Carolina, USA). We were unable to normalize our data via transformation, however the analysis 144 

of variance test is robust to departures from normality and homogeneity of variances when 145 

datasets are large. In this instance, our datasets were sufficiently large to ensure that our results 146 

were not impacted by violating these assumptions (Underwood, 1997).  147 

Percent cover data for our 2009-2010 and 2010-2011 surveys were used to calculate the 148 

average Shannon-diversity  index  (H’)  and  Pielou’s  evenness  (J’)  for  each  site.  Additionally,  algal  149 

percent cover was assessed for differences in taxa among sites and sampling months using a two-150 

way crossed analysis of similarity (ANOSIM). The contribution of each taxon to the average 151 

similarity and dissimilarity among sites and months was determined using a similarity of 152 

percentages analysis (SIMPER). Prior to ANOSIM and SIMPER analysis, data were fourth-root 153 

transformed to increase the importance of rare species; all analyses were conducted on Bray-154 
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Curtis similarities. Non-parametric analyses were conducted using Primer-E (version 6, Primer-E 155 

Ltd., Plymouth UK). 156 

  157 

3. Results 158 

3.1. Ulva species richness and relative abundance 159 

 Ulva lactuca was the dominant blade forming Ulva species at non-bloom sites, while U. 160 

compressa and U. rigida dominated at bloom sites. Overall, Ulva species biomass varied 161 

significantly amongst sites and months (Table 1). In 2009-2010, U. lactuca was the only blade 162 

species found at the non-bloom impacted Pier 5, with peak mean wet biomass of 75.48 g/m2 in 163 

May 2010 (Figure 2a). Ulva lactuca also dominated at GSO, where we only found small 164 

fragments (< 0.4 g per piece) of U. compressa and U. rigida during three of the seven survey 165 

months (Figure 2b).  166 

In contrast, over the entire course of this study (2009-2011), U. lactuca was rarely found 167 

at either of our bloom-impacted sites, while U. compressa and U. rigida were consistently 168 

present at both sites (Figure 3). The mean Ulva biomass was significantly greater at Brushneck 169 

Cove than the other three sites during 2009-2010 (Tukey post-hoc test, p < 0.05); there was no 170 

significant difference in biomass between Brushneck Cove and Chepiwanoxet in 2010-2011 171 

(Table 1b). Additionally, while we observed no impact of transect placement during our 2009-172 

2010 surveys, transect did have a significant impact on biomass at our bloom sites during 2010-173 

2011 (Table 1).  174 

At both bloom-impacted sites, biomass consistently peaked during June-July with 175 

subsequent crashes in August (Figure 3). One exception to this pattern occurred during 2009 at 176 

Brushneck Cove, which saw continued high biomass through September 2009 (Figure 3b). Total 177 
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mean wet biomass was greatest during June 2009 (882.80 g/m2; maximum observation 1,662.24 178 

g/m2) at Brushneck Cove and July 2010 (665.88 g/m2; maximum observation 1,804.60 g/m2) at 179 

Chepiwanoxet.  180 

Throughout our surveys from 2009-2011, U. compressa was nearly always the largest 181 

component of Ulva mats at Chepiwanoxet, except during April 2011, May of each year, and 182 

Sept. 2009, when Ulva tubes dominated (Figures 3-5). By contrast, U. rigida biomass was 183 

greater than U. compressa during 2009 and 2010 at Brushneck Cove, while summer peaks in 184 

June and July 2011 were dominated by U. compressa. Low densities of tubular Ulva species 185 

were only present at Brushneck Cove during May of each year and April 2011 (Figures 3-5).  186 

 Despite having reliable morphological descriptions for our three targeted Ulva species, 187 

we were occasionally (< 12% of samples) unable to identify Ulva blades to species level. 188 

Unidentifiable blades were more frequently encountered at Brushneck Cove and were more 189 

abundant during the spring months (Figure 3).  190 

 191 

3.2. Total macroalgal species richness and abundance 192 

3.2.1. 2009-2010 survey 193 

 A total of 34 taxonomic groups were observed throughout our 2009-2010 surveys (Figure 194 

4, Table 2). Species diversity (Shannon H') was highest at non-bloom Pier 5 and lowest at 195 

bloom-impacted Brushneck Cove (Table 3; one-way ANOVA F3, 456 = 91.40, p < 0.0001, Tukey 196 

post-hoc p < 0.05). However, no clear correlation between bloom-impacted and non-impacted 197 

sites was evident, as diversity was higher at bloom-impacted Chepiwanoxet than at GSO. In 198 

addition,  evenness  (Pielou’s  J’)  was  highest  at  Chepiwanoxet.  Of  the  34 taxa recorded, 22 were 199 

found at only one or both of the lower-bay sites (Table 2). No individual taxa were unique to the 200 
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two bloom-impacted sites; however, Chepiwanoxet was the only site that contained mats of 201 

intertwined Agardhiella subulata, Ceramium virgatum, Gracilaria spp., and Polysiphonia spp. 202 

(hereafter ACGP mats). While these mats could reach greater than 50% cover, the thalli within 203 

them were often small fragments, making separation of the component species impracticable. 204 

Therefore, we considered these mats as a unique entity for this study. 205 

Taxon assemblages were significantly different amongst all sites and sampling months 206 

(ANOSIM, p = 0.001; Table 4). In concurrence with the Shannon diversity index, the largest 207 

difference in algal composition was observed between bloom-impacted Brushneck Cove and 208 

non-bloom Pier 5 (Table 4a), while the smallest difference was between bloom-impacted 209 

Chepiwanoxet and non-bloom GSO. However, the high R-value and significance (p = 0.001) of 210 

all pairwise tests between sites indicates strong separation of algal communities among all sites 211 

(Table 4a). Differences in algal composition between the bloom and non-bloom impacted sites 212 

were largely due to the greater percent cover of Ulva blades at the bloom impacted sites and the 213 

presence of Chondrus crispus at the non-bloom sites (Figure 4, Table 5). In addition, while Ulva 214 

tubes were found at all four sites, their occurrence and percent cover varied temporally (Figure 4, 215 

Table 5). 216 

 Amongst months, the largest differences in flora were between February and August; the 217 

smallest differences were between July and August (Table 4b). Seasonal shifts in algal 218 

composition were apparent from June to July, August to September, and September to February 219 

(Figure 4, Table 4b). 220 

 221 

3.2.2. 2010-2011 survey of bloom-impacted sites  222 
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 As in the 2009-2010 survey, algal composition from June 2010-November 2011 differed 223 

significantly between the two bloom-impacted sites (ANOSIM global R = 0.272, p = 0.001), 224 

with a greater diversity at Chepiwanoxet than at Brushneck Cove (Table 3). The dominant taxa at 225 

both sites were also similar to 2009-2010, with Ulva blades dominating the algal community at 226 

Brushneck Cove during all months except January-May 2011; Ulva blades, Ulva tubes, and 227 

ACGP mats dominated at Chepiwanoxet (Figures 4, 5, Table 2). Taxa observed in 2010-2011 228 

that were not previously observed during 2009-2010 included Ectocarpus spp., Porphyra spp., 229 

Cladophora spp., and Scytosiphon lomentaria (Table 2). 230 

 231 

4. Discussion 232 

4.1. Ulva in Narragansett Bay 233 

4.1.1. Species distribution  234 

 Our results demonstrate that U. compressa and U. rigida are responsible for the blooms 235 

of Ulva blades in the northern portions of Narragansett Bay, RI. Neither of these bloom-forming 236 

species was found at Pier 5, our field site closest to the open coast. In contrast, U. lactuca was 237 

regularly observed at the two non-bloom sites near the mouth of Narragansett Bay and rarely 238 

found at the bloom-impacted sites.  239 

In a molecular assessment of Ulva species within the Great Bay Estuarine System of New 240 

Hampshire and Maine, USA, Hofmann et al. (2010) found a similar distributional pattern for 241 

these three species, with U. compressa and U. rigida typically occurring together at inner 242 

estuarine sites and U. lactuca, along with U. pertusa, occurring at higher salinity sites closer to 243 

the open coast. Their results, in conjunction with our own, suggest that U. compressa and U. 244 

rigida are more physiologically and/or ecologically similar to each other than either is to U. 245 
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lactuca. Based on the distributional pattern of these species in Narragansett Bay and the Great 246 

Bay Estuarine System, we hypothesize that U. lactuca is rarely found in northern Narragansett 247 

Bay bloom-impacted sites due to a lower tolerance of high water temperatures, salinity 248 

fluctuations, and/or hypoxia or other factors. Likewise, if U. compressa and U. rigida are 249 

adapted to the abiotic conditions found in shallow, low-flow eutrophic estuaries, they might be 250 

absent from open coastal areas due to nutrient limitations or intolerance to higher salinities or 251 

wave exposure.  252 

One alternate explanation exists for the distributional pattern of U. compressa. Tan et al. 253 

(1999) observed that distromatic blades of U. compressa were concentrated in low salinity areas 254 

of an estuary in Aberdeenshire, Scotland, while U. compressa with a tubular morphology was 255 

found at higher salinity sites near the North Sea. Taking this into consideration, it is possible that 256 

U. compressa in Narragansett Bay persists in lower salinity eutrophic areas as a distromatic 257 

blade and is present at lower bay and outer coast sites as a monostromatic tube. Although we did 258 

not identify tubular Ulva to species in this survey, prior molecular analysis of outer coast 259 

samples supports this hypothesis (Guidone et al., unpublished data).  260 

In addition to abiotic factors, Ulva species distribution may be restricted by differences in 261 

Ulva palatability and/or herbivore communities amongst the study sites. Nelson et al. (2008) 262 

found that Ulva and Ulvaria (both in the family Ulvaceae) differed in abiotic tolerances and 263 

palatability, causing the more palatable but stress tolerant Ulva to dominate intertidally while the 264 

unpalatable Ulvaria thrived in the herbivore populated subtidal. Similarly, blooms in the Baltic 265 

Sea were dominated by the unpalatable Pilayella littoralis when herbivores were abundant and 266 

the palatable Ulva intestinalis when herbivores were absent or nutrient levels were enriched 267 

(Lotze et al., 2000; Lotze and Worm, 2000). Although not directly quantified in this study, based 268 
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on previous studies and our own field observations, herbivore communities between our bloom 269 

and non-bloom sites can be substantially different (Guidone et al., unpublished data).  270 

 271 

4.1.2. Bloom species relative abundance  272 

While similar densities of Ulva were found at both bloom-impacted sites during the 273 

summers of 2010 and 2011, the relative abundance of each Ulva blade species, as well as the 274 

proportion of tubular Ulva species present, differed significantly. These spatial and temporal 275 

fluctuations indicate that even between eutrophic sites within close proximity (only 3.5 km 276 

apart), small abiotic or biotic differences, or stochasticity, may lead to markedly different Ulva 277 

bloom compositions. Nelson et al. (2003b) observed similar patterns amongst Ulva blades, Ulva 278 

tubes, and Ulvaria, on a slightly larger scale in the Pacific Northwest. Our observation that Ulva 279 

biomass differed amongst transects during 2010-2011 indicates that temporal changes in water 280 

flow and/or wind patterns may play an important role in Ulva bloom deposition patterns in the 281 

intertidal.  282 

 283 

4.2. Total macroalgal diversity at bloom and non-bloom sites 284 

 As we had expected, Pier 5 had the highest diversity of the four sites sampled in 2009-285 

2010. This site is closest to the open coast and likely receives drift from a large area of the lower 286 

Narragansett Bay and open ocean sites. Pier 5 also has an abundance of hard substrata available 287 

for algal attachment, unlike the other three field sites. 288 

Contrary to our expectations, we did not find a strict pattern of high diversity (H') at non-289 

bloom sites vs. low diversity at bloom-impacted sites, as Chepiwanoxet had the second highest 290 

diversity of the four sites. This is particularly perplexing in light of environmental measurements 291 
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(dissolved oxygen, water residence time; Granger et al., 2000) that indicate Chepiwanoxet is the 292 

most eutrophic of the four sites. Since the algae sampled at all sites was largely drift, it is unclear 293 

whether the diversity observed at Chepiwanoxet is representative of the site itself, or if 294 

circulation patterns deposit a wide diversity of species from adjacent areas. However, all areas 295 

within close proximity to Chepiwanoxet are also bloom-impacted, suggesting that the diversity 296 

observed at this site is truly representative of the bloom-impacted community. Furthermore, 297 

Chepiwanoxet had the highest evenness of the four sites sampled from 2009-2010, which differs 298 

from general patterns that indicate eutrophication has a larger negative impact on evenness than 299 

species richness (Hillebrand et al., 2007). Similar results were found in subestuaries of Waquoit 300 

Bay, Massachusetts, USA, where macroalgal bloom biomass (Cladophora vagabunda and 301 

Gracilaria tikvahiae) was linked to nutrient enrichment, while species richness was not (Fox et 302 

al., 2008).  303 

 304 

4.3. Narragansett Bay blooms compared to Ulva blooms around the world 305 

To our knowledge, this is the first report of Ulva bloom biomass that has extensively 306 

examined the relative contribution of cryptically co-occurring distromatic blade species 307 

following molecular confirmation of the Ulva species present within an area (Guidone et al., 308 

unpublished data). We are unaware of any previous estimates of U. compressa bloom biomass, 309 

but reports of Ulva bloom biomass based solely on morphology have identified U. rigida as the 310 

causative species of blooms in Europe (Sfriso et al., 1992; Coat et al., 1998; Balducci et al., 311 

2001; Merceron and Morand, 2004 as U. armoricana) and the Philippines (Largo et al., 2004 as 312 

U. armoricana). Ulva lactuca has been reported to bloom in North America (Lyons et al., 2009), 313 

New Zealand (Park, 1992), and South Africa (Anderson et al., 1996). The density of 314 
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Narragansett Bay blooms fall within the range of densities reported for most blooms of U. rigida 315 

and U. lactuca (150-3,000 g/m2 wet mass). One notable exception to this range is the bloom of 316 

U. rigida in the Venice Lagoon, Italy, reported to have a biomass range of 5-20 kg/m2 wet mass 317 

(Schramm, 1999). 318 

Given the difficulty in identifying Ulva species using morphology alone, and based on 319 

our observation that U. rigida and U. compressa often bloom simultaneously, it is likely that 320 

some prior reports of Ulva blooms have either misidentified the Ulva species involved or 321 

underestimated the number of species present within the bloom. For example, a recent molecular 322 

survey of Ulva in New Zealand found U. lactuca to be present at only 3 out of 195 sampled sites 323 

(Heesch et al., 2009), indicating that New Zealand blooms are likely formed by another, more 324 

abundant Ulva species. Additionally, based on a small sampling of Ulva blades within blooms in 325 

Brittany, France, Merceron and Morand (2004) tentatively identified three co-occurring ulvoid 326 

species (U. rigida as U. armoricana, U. rotundata, and Umbraulva olivascens as U. olivascens). 327 

Unfortunately, even when armed with molecularly verified species descriptions, if morphological 328 

features cannot be found to separate co-occurring species, detailed surveys of Ulva bloom 329 

diversity such as we conducted will be challenging.    330 

 331 
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Figure 1 Map of Rhode Island, USA, showing the location of our four study sites. 503 

 504 

Figure 2 Ulva biomass during the May-September 2009 and February and May 2010 surveys at 505 

A) Pier 5 and B) GSO. Error bars are ± 1 SE. 506 

 507 

Figure 3 Ulva biomass at the two bloom-impacted sites A) Chepiwanoxet and B) Brushneck 508 

Cove. Error bars are ± 1 SE. 509 

 510 

Figure 4 Algal percent cover at all sites during 2009-2010. Species comprising less than 10% 511 

cover in all months are not shown. Site abbreviations follow Table 2. ACGP refers to mixed mats 512 

of Agardhiella subulata, Ceramium virgatum, Gracilaria spp., and Polysiphonia spp. * indicates 513 

no sampling due to ice cover. 514 

 515 

Figure 5 Algal percent cover at bloom-impacted sites during 2010-2011. Species comprising 516 

less than 4% cover in all months are not shown. Site abbreviations follow Table 2. ACGP refers 517 

to mixed mats of Agardhiella subulata, Ceramium virgatum, Gracilaria spp., and Polysiphonia 518 

spp. * indicates no sampling due to storm surge. 519 

520 
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Table 1. Results of a nested ANOVA on Ulva biomass among month-year, site, transect nested 521 

within site, and species for a) all study sites from 2009-2010, and b) Brushneck Cove and 522 

Chepiwanoxet from 2010-2011. 523 

 524 

(a) 525 
Source df MS F P 
Month-Year        6   6,267.02 19.19 < 0.0001 
Site        3 24,238.75 74.21 < 0.0001 
Transect[Site]        4      109.38   0.33    0.85 
Species        3   8,006.74 24.51 < 0.0001 
Month-Year*Site      18   4,348.83 13.31 < 0.0001 
Month-Year*Transect[Site]      24   2,202.50   6.74 < 0.0001 
Month-Year*Species      18   3,645.81 11.16 < 0.0001 
Site*Species        9   5,645.93 17.28 < 0.0001 
Transect[Site]*Species      12      650.59   1.99    0.0217 
Month-Year*Site*Species      54   3,210.02   9.83 < 0.0001 
Month-Year*Transect[Site]*Species      72   1,107.17   3.39 < 0.0001 
Error 1,624      326.65   
 
(b) 

    

Source df MS F p 
Month-Year     15 12,946.93   30.22 < 0.0001 
Site       1          6.79     0.016    0.90 
Transect[Site]       2   6,889.20   16.08 < 0.0001 
Species       3 44,216.10 103.20 < 0.0001 
Month-Year*Site     15      721.90     1.68    0.048 
Month-Year*Transect[Site]     30   5,333.94   12.45 < 0.0001 
Month-Year*Species     45   8,984.53   20.97 < 0.0001 
Site*Species       3   8,087.41   18.88 < 0.0001 
Transect[Site]*Species       6   4,578.26   10.69    0.0013 
Month-Year*Site*Species     45   2,230.41     5.21 < 0.0001 
Month-Year*Transect[Site]*Species     90   4,134.88     9.65 < 0.0001 
Error 1227      428.47   
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Table 2. Taxa observed during our 2009-2010 field surveys. Site abbreviations are: P Pier 5, G GSO, C Chepiwanoxet, and B 526 

Brushneck Cove. Genera marked with an asterisk require microscopic examination for species determinations. 527 

 528 
                                                          2009                   2010 
       May      June      July   August September  February      May 
                  P G C B P G C B P G C B P G C B P G C B P G C B P G C B 
Ulva blades X X X X X  X X X X X X X X X X   X X  X X  X X X X 
Ulva tubes X X X X X  X X X X X  X X X    X    X   X X X 
Agardhiella  
 subulata 

          X    X    X   X X    X  

Ahnfeltia  
 plicata 

                     X       

Ascophyllum  
 nodosum 

X    X    X    X    X    X    X    

Bonnemaisonia  
 hamifera 

    X    X X               X    

Bryopsis  
 plumosa 

         X    X               

Ceramium  
 virgatum 

X X X X X  X  X X    X  X   X X  X   X X X X 

Chaetomorpha  
 spp.* 

        X X   X                

Champia  
 parvula 

        X X                   

Chondrus  
 crispus 

X X   X    X X   X X   X    X X   X X   

Codium fragile   
 ssp. fragile 

X        X  X  X  X    X   X X    X  

Corallina  
 officinalis 

                    X        
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Cystoclonium  
 purpureum 

X X   X                    X    

Desmarestia  
 viridis 

X    X    X                X    

Dumontia  
 contorta 

                        X X   

Ectocarpus  
 spp.  

 X            X               

Fucus  
 distichus 

    X    X    X    X    X    X    

Fucus  
 vesiculosus 

       X                     

Gracilaria   
 tikvahiae & G.   
 vermiculophylla 

 X X X   X X   X X    X   X X  X     X X 

Grateloupia  
 turuturu 

X X       X    X X        X       

Heterosiphonia  
 japonica 

                         X   

Hypnea  
 musciformis 

X                            

Leathesia  
 marina 

X                            

Mastocarpus  
 stellatus 

X    X        X            X    

Palmaria  
 palmata 

X    X    X    X    X    X    X    

Petalonia & 
Punctaria spp.* 

 X X X    X              X X   X   

Phyllophora  
 membranifolia 

            X         X       

Polyides  
 rotundus 

X    X                X    X    
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Polysiphonia & 
 Neosiphonia  
 spp.* 

X  X  X    X X   X      X X  X X    X X 

Porphyra spp.* X    X                    X X   
Saccharina  
 latissima 

X X   X    X    X    X        X    

Scytosiphon  
 lomentaria 

X                            

Ulothrix flacca                     X        
Vertebrata   
 lanosa 

X    X                    X    

 529 
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Table 3. Average  species  richness  (S),  Pielou’s  evenness  (J’),  and  Shannon  diversity  index  (H’)  530 

for our 2009-2010 and 2010-2011 field surveys. 531 

 532 
 533 

Survey  Site S J’ H’ 
2009-2010 Brushneck Cove 1.56 0.34 0.12 
 Chepiwanoxet 2.92 0.76 0.76 
 GSO 1.45 0.72 0.33 
 Pier 5 4.45 0.68 0.92 
2010-2011 Brushneck Cove 1.81 0.67 0.33 
 Chepiwanoxet 2.38 0.60 0.52 

534 
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Table 4. Results from a two-way crossed ANOSIM for differences amongst sites and months in 535 

our 2009-2010 survey. R-values close to 1.00 indicate complete separation between groups while 536 

R-values close to 0 indicate little separation between groups. All pairwise tests were significant 537 

(p = 0.001). (a) Tests for differences between site groups across all month groups. (b) Tests for 538 

differences between month groups across all site groups.  539 

 540 
(a) 541 
Global R: 0.760 Brushneck Cove Chepiwanoxet GSO Pier 5 
Brushneck Cove     
Chepiwanoxet 0.736    
GSO 0.787 0.703   
Pier 5 0.908 0.830 0.766  
 
(b) 

    

Global R: 0.470 May 
2009 

June July August September February 
2010 

May  

May 2009        
June 0.179       
July 0.481 0.518      
August 0.413 0.515 0.162     
September 0.468 0.444 0.689 0.681    
February 0.460 0.690 0.683 0.755 0.702   
May 2010 0.215 0.379 0.560 0.565 0.558 0.256  

542 
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Table 5. Results from a two-way crossed SIMPER analysis for average similarity and 543 

dissimilarity amongst sites across all months in our 2009-2010 survey. ACGP refers to mats of 544 

intertwined Agardhiella subulata, Ceramium virgatum, Gracilaria spp., and Polysiphonia spp. 545 

Site abbreviations follow Table 2. 546 

 547 
 Percent contribution Cumulative percent 
Within site similarity   
Brushneck Cove– Average similarity: 77.69   
   Ulva blades 95.74 95.74 
Chepiwanoxet – Average similarity: 65.76   
   Ulva tubes 34.73 34.73 
   Ulva blades 33.30 68.03 
   ACGP 20.71 88.74 
   Gracilaria spp. 5.47 94.21 
GSO – Average similarity: 45.89   
   Ulva tubes 58.22 58.22 
   Polysiphonia spp. 13.72 71.95 
   Ceramium virgatum 11.53 83.48 
   Chondrus crispus 7.68 91.16 
Pier 5 – Average similarity: 54.19   
   Chondrus crispus 43.58 43.58 
   Saccharina latissima 17.87 61.45 
   Ulva blades 9.77 71.22 
   Palmaria palmata 9.33 80.55 
   Ulva tubes 6.21 86.76 
   Desmarestia viridis 3.45 90.21 
  
Between site dissimilarity Percentage contribution to average dissimilarity between sites  
Taxon B-C B-G B-P C-G C-P G-P 
Ulva blades 21.87 60.42 24.08 29.66 12.58 8.43 
Ulva tubes 32.11 15.82 9.57 22.95 14.15 8.62 
ACGP 24.52 - - 14.94 10.24 - 
Ascophyllum nodosum - - - - - 2.48 
Ceramium virgatum 6.10 5.39 - 8.15 2.80 3.63 
Chondrus crispus - - 20.65 4.33 17.73 30.73 
Codium fragile ssp.  
   fragile 

- - - - 1.86 - 

Desmarestia viridis - - 2.86 - 3.17 4.20 
Fucus spp. - - 5.21 - 4.30 5.91 
Gracilaria spp. 9.72 8.01 4.31 7.86 4.89 - 
Grateloupia turuturu - - - - - 1.50 
Palmaria palmata - - 8.31 - 5.58 7.63 
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Polysiphonia spp. - 5.14 4.53 4.62 3.65 2.49 
Porphyra spp. - - - - - 2.20 
Saccharina latissima - - 10.81 - 7.84 15.75 
Ulothrix flacca - - - - 2.68 - 
       
Total contribution of 
species 

94.32 94.77 90.33 92.51 91.47 91.35 

Average between site 
dissimilarity 

57.16 92.68 85.55 82.62 83.83 87.21 

 548 
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