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Static and dynamic structure factors in the Haldane phase
of the bilinear-biquadratic spin-1 chain

Andreas Schmitt and Karl-Heinz \her
Department of Physics, University of Wuppertal, D-42097 Wuppertal, Germany

Michael KarbacH, Yongmin Yu, and Gerhard Mier
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817
(Received 11 March 1998

The excitation spectra of th€=0 dynamic structure factors for the spin, dimer, and trimer fluctuation
operators as well as for the center fluctuation operator in the one-dimenSierfalHeisenberg model with
isotropic bilinear § cos#) and biquadratic J sin ) exchange are investigated via the recursion method for
systems with up t& =18 sites over the predicted ranges/4< 6= /4, of the topologically ordered Haldane
phase. The four static and dynamic structure factors probe the ordering tendencies in the various coupling

regimes and the elementary and composite excitations which dominafe=tBedynamics. At0=arctar§
(valence-bond solid point the dynamically relevant spectra in the invariant subspaces with totalSpin
=0,1,2 are dominated by a branch of magnon stafys=(L), by continua of two-magnon scattering states
(Sr=0,1,2), and by discrete branches of two-magnon bound states with positive interaction eBergy (
=0,2). The dimer and trimer spectra @t 7 are found to consist of single modes witindependent
excitation energies?/|e,| =5 andw,/|ey| =6, whereey=E, /N is the ground-state energy per site. The basic
structure of the dynamically relevant excitation spectrum remains the same over a substantial parameter range
within the Haldane phase. At the transition to the dimerized phase-w/4), the two-magnon excitations

turn into two-spinon excitation$S0163-18208)00233-]

[. INTRODUCTION for a set of fluctuation operatoP;f. Among them should be
the operators which, for specific wave numbgtsdescribe
The zero-temperature phase diagram of the onethe known or suspected order parameters. Further fluctuation
dimensional(1D) S=1 Heisenberg model with bilinear and operators may be chosen according to specific symmetry
biguadratic exchange, properties ofH,, which entail special selection rules.
Each dynamic structure factor calculated for the same pa-
N rameter valued has its own dynamically relevant excitation
Ha=JE [COSA(S-S 1) +SINI(S-S .12, (1.1 spectrum and its own §pectrg|—weight distribution. Each fluc-
=1 tuation operator acts like a filter on the complete eigenvalue
spectrum, and the associated dynamic structure factor high-
lights a particular subset of excitations. Looking at fhe
=0 dynamics ofH, through a series of such filters reveals
many interesting features that are not readily accessible by
any other means. The composite structure of parts of the
excitation spectrum and the nature of the underlying elemen-
tary excitations, for example, may be recognized only if ob-
served through the right set of filters.
For some questions, it is useful to investigate the corre-
sponding static structure factors,

—mw<#<m, as is widely accepted today* consists of a
phase with ferromagnetic long-range ordeé<{(—3w/4 or
0> m/2), a phase with dimer long-range order §7/4< 0

< —1/4), the Haldane phase with hidden topological long-
range order ¢ w/4< #<w/4), and a somewhat obscure “tri-
merized” phase §/4< 6</2). H, is Bethe ansatz solvable
at 9= — 7/4,° and atd= 7/4,° and for part of the eigenvalue
spectrum also a#= — /2. Within the Haldane phase, at

the parameter valué, gs=arctan;=0.1024r, the ground-
state wave function oH, is a realization of the{efgplicitly ) to de
known) valence-bond solidvBS) wave functiorf . Saa(Q)=(FAFS >:f —Sua(q, ), (1.3
In spite of numerous theoretical and computational stud- —e 27T

ies of this model system, there are still many blank spots on

the map, especially with respect to dynamical properties. Avhich are more likely amenable to a finite-size scaling analy-
panoramic view of the various ordering tendencies and of th&is. All these quantities can be computed from the finite-size
dominant quantum fluctuations &t=0 can be gained from a ground-state wave functior§,,(q) directly as an expecta-

study of the dynamic structure factors, tion value and Spa(q,w) indirectly via the recursion
method'1?
The fluctuation operators used in this study and their re-
T ety eA At lation to different order parameters are introduced in Sec. Il
SAA(qlw)E dtelw<Fq(t)Fq >1 (12) . p . o
—w The static and dynamic structure factors which probe the
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different kinds of fluctuations are investigated in Sec. Ill for  (iv) Our finiteN data indicate that in the same parameter
the VBS point and in Sec. IV for the surrounding parts of therange,w/4< §< =/2, where the trimer order-parameter fluc-
Haldane phase. The continuation of this study for the paramtuations are strong, the spin fluctuations are significantly

eter values at the two critical poin®= = 7/4 and in the
phases beyond these points will be reported elsewtere.

Il. FLUCTUATION OPERATORS
AND ORDER PARAMETERS

For the study of the model systefh.1) we introduce four
different fluctuation operators of the general form

1 N
Fo=—=2, YA, 2.1
A= T €A 2.
where the operatoA, acts locally at lattice sité and (in
some casgsalso on one or two neighboring sites.
(i) The spin fluctuations are probed by the operaﬁ:ﬁ
with

10 0
s=s=|0 0 0 2.2
00 -1

stronger, and the fluctuations of a modified spin operator,
which tunes into existing period-three patterns of local up-
zero-down (+,0,—) or down-zero-up {,0,+) spin states
are even stronger. Theenterfluctuation operatoFg is con-
structed from the matrices

ei271'/3 0 0
z=z=| 0 1 0
0 0 e—i271'/3

J3

— H 3 Z 3 Z\ 2
=1+ 5 §—5(S)?,
|

(2.7)

which is an element of the §8) center*® The center order
parameter has the same wave numiet2=/3, as the tri-
mer order parameter. A= /4 the excitation spectrum of
H, is rigorously known to be gapless for this wave number.

In the Appendix we discuss the static spin, dimer, trimer,
and center correlation functions in special states constructed
such as to reflect pure Mk dimer, trimer, or center long-
range order.

All four fluctuation operatorshfﬁ are invariant undedis-

Forg=0 they represent ferromagnetic order-parameter flucgetg translations in real space and undeontinuous rota-
tuations and forq=m Neel order-parameter fluctuations. tions about the 3 axis in spin space. The resulting selection

Ferromagnetic long-range order does exist in this model, by,

les for the excited states that may contribute to any of the

Neel long-range order does not. The élerder-parameter four dynamic structure factorSaa(q, ) are Ak=gq for the

fluctuations are expected to be strongest at the critical poi

NWave number anaS3=0 for the 3 component of the total

6= —/4, which marks the disappearance of topologicalg.,
long-range order, the only point in the phase diagram where" o o of the fluctuation operators are fully rotationally

the q= 7 spin excitations are known to be gapless.

(ii) Thedimerfluctuations are characterized by the opera-

tor Fy with**

Di=S-5+1-(S-S+1)- (2.3

The dimer order-parameter fluctuations, probedF|5§/, are
expected to be strongest at the same critical point,

invariant,[F{ ,S;]=[Fg,S;]=0 for i=1,2,3 and arbitrary

g. This produces the additional selection ruleS;=0 for

the magnitude of the total spin in the dynamic dimer and
trimer structure factors. The corresponding selection rules for
the dynamic spin and center structure factors &8y =0,1

and AS;=0,1,2, respectively, with the further restriction
that transitions between singletS{{=0 statey are prohib-

= —/4, which also marks the onset of dimer long-rangeited.

order.

In the nonferromagnetic parameter range 3m/4<6

(iii) For the study oftrimer fluctuations, we use the op- < /2), where the finiteN ground state is a nondegenerate

eratorF ; with

T=P/—(P[) (2.4
constructed from projection operators
Pl=[[1,1+ 1]+ 21,1 +1]+2]| (2.5
onto local trimer states
I[1,2,3])= ! (| +0=)+|0—+)+|—+0)
149 - \/6
—|=0+)—]0+—)—|+—0)), (2.6

singlet, the dynamic structure factor§yp(q,) and
Sr1(g,w) thus couple exclusively to th&;=0 excitation
spectrum, an®sd q,w) exclusively to theS;=1 excitation
spectrum, whereaS,,(q,w) couples to theS;=1 and S;
=2 spectra.

To calculate Sya(q,0) we employ the recursion
method”!! in combination with a finite-size continued-
fraction analysig? The recursion algorithm in the present
context is based on an orthogonal expansion of the wave
function [W4(t))=F4(—1)|G), where|G) is the finiteN
ground state. It produces a double sequence of continued-
fraction coefficientga,(q),b(q)} for the function

which are completely antisymmetric states with total spin i

S;=0.1° The state(2.6) is, in fact, the (nondegeneraje
ground state ofH, with N=3 for arctarg<#<m/2. This

observation was interpreted as suggesting that a phase with

trimer long-range order might exist fod—oc. The trimer
order-parameter fluctuations are probedrdy, ;.

do™(a.0) = a0
1

b2(q)

{—axq)— ...
(2.9

{—ap(q)—
{—ay(q)—
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FIG. 1. Static structure factors for the fluctuation operatays=g (spin, (b) Fg (centet, (c) Fg (dimen, (d) F (trimer) in the VBS

ground state oH, at fygs= arctan% for N=12 (@), N=15 (A), N=18 (M) with periodic boundary conditions, and fdr=« (solid
lines).

which is the Laplace transform of the correlation functioneach lattice site is expressed as a spin-1/2 pair in a triplet
(FQ(t)FQT>, and from which the dynamic structure factor State. The singlet-pair forming valence bond involves one
(1.2 can be directly recovered via the relation fictitious spin 1/2 from each of two neighboring lattice sites.
The VBS state can then be regarded as a chain of valence
SAA(q,w)=2<FQFQT>Iim REdAA(Q,0+i€)]. (2.9 bor_}?]s Iinlgir;glosu.cces%ve_ spin-1/2 pairs in this manner.
€0 e spiny~ dimer;® trimer, and center order-parameter
correlation functions and the associated static structure fac-

The finite-size continued-fraction analysis expresses the d%rs can be determined exactly:

namic structure factor in the form

2(2(=1)"
ZoZ _ _
SAA(q,w)=; WAS(w— ), (2.10 (S§'Sn)= 5(—3n| no), (3.13
where the sum runs over all the dynamically relevant excita- 2(1—cosq)
tions |\) with frequency wf and spectral weightw; Ssdq)= 513 cosq (3.1b
=2m|(G|F4|\)|2. For the excitations which carry the bulk
of the spectral weight both? andW,' can be extracted quite 2 2
accurately from a finite number of continued-fraction coeffi- (DIDyyn)= g%0: Soo(@=g: (3.2
cients.
We begin our study of the static and dynamic structure Ji2 1
factors ofH, at the VBS point, where each of the four or- (TiTi4n)= —m So1+ o= (S + 1), (3.33
dering tendencies introduced previougeel, dimer, trimer, 20 40
centejy is imperceptibly weak, and where some relevant L
static quantities are exactly known.
q Y Sr(a) = 55(V12+ cosq); (3.3
Il. VBS STATE
. (="
A. Static structure factors (217, 0)= W S,,(q)= 573 c05q" (3.4

The ground-state wave function bf, at #=arctar} can
be constructed for arbitraril as follows®1° The spin 1 at Figure 1 shows finitéN data and the exact result fo
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FIG. 2. Frequencyuf versus wave numbaer of the finiteN excitationsfN=12 (@), N=15 (O), N=18 (H)] which carry most of
the spectral weight in th&=0 dynamic structure factorS,a(q,w) for (a) the spin,(b) the center,(c) the dimer, andd) the trimer
fluctuations ofH, with J=1 at = arctan%. The three sizes of symbols used distinguish excitations with relative spectral weight in the
rangeswf>0.5 (large), O.5>w§‘> 0.1 (medium, 0.]>w’§>0.001(smalb. The solid and dashed lines represent one-magnon dispersions and
two-magnon continuum boundaries as explained in the text.

= of each static structure factor. At tlipvalues realized made of magnon pairs will be probed from different angles
for N=12,15,18, only the trimer dafpanel(d)] are subject by the four fluctuation operatoEQ.

to finite-size corrections. . In Fig. 2 we displayw’ versusq of the dynamically rel-
At the VBS point, no trace exists of any of the four or- eyant spin, center, dimer, and trimer excitation spectra as

dering tendencies which become important in one or thgptained from the finite-size continued-fraction analysis for
other part of the parameter space. The dimer and trimer CO=12.15.18112 The relative spectral  weight w2
b L] . )\

relations are zero for distancés|=1 and|n|=2, respec- ., A R . .
tively, while the spin and center correlations are nonzero buFWX/SAA(q) is indicated by the size of the data points. Al

have a very short correlation lengtti<In 3=1.098 . . . ). our spectra are different from each other, but the spin and
The topological long-range order in the VBS stit8,de- center spectréoapels(a) and(b)] share some features as do
scribed by a string correlation function, is a different mattertn® dimer and trimer spectfpanels(c) and(d)]. The com-

not discussed here. monalities and differences yield important clues about the
composition of each spectrum.

The low-frequency region aj= 7/2 in the spin and cen-
ter spectra is dominated by a branch of one-magnon states,
The topological long-range order known to be strongest invhich haveS;=1 and, therefore, do not make their appear-

the VBS state provides an environment, as we shall se@nce in the dimer and trimer spectra. && /2 the one-
where pointlike elementary excitations can propagate freelynagnon states overlap in energy with what will be identified
and corresponding stationary statesagnongform a branch  as a continuum of two-magnon states. Here the magnon in-
with well-defined dispersion. In the following, these elemen-teraction precludes the observation of individual one-
tary excitations and several kinds of composite excitationsnagnon states. Outside the region of overlap, i.e., dor

B. Dynamic structure factors
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=712, the one-magnon states carry more than 95% of tha noninteracting two-magnon singfétlts energy is signifi-

spectral weight irSs{q, w) andSzz(q,w). cantly lower than the single-mode predictionS"()
=(10/9),/10J.
C. Single-mode approximation We now use the exact two-magnon excitation energy,

w+(m)=wp, in conjunction with the extrapolated value,
ﬁuM(W) =0.664 33(2), of the one-magnon excitation gap to
construct a modified one-magnon dispersion of the form

An exact single-mode spectrum at any givgnvalue
would lead to a spontaneous termination of the recursio
algorithm in the first iteration. Terminating it forcibly by
sgtting bi(q)zo in E_q. (2_.8) is equivalent to_ inyoking th_e wy(q)=J(a+b cosq) (3.9
single-mode approximation. In general, this is a dubious
scheme, but it may have some merit if the spectral-weighwith a=\/5/2=1.58113. .. an#=0.916 812), which still
distribution is known to be dominated by a single mode. Insatisfies the symmetry propert8.8). This dispersion is
the present context, the exact calculation of the firsshown as a solid line in panels), (b) of Fig. 2 and the
continued-fraction coefficient in Eq2.8) yields the follow-  resulting two-magnon continuu3.6) with boundaries
ing single-mode dispersion of the VBS magndfis:

+(9)=2J

q
— axbco 3.1
SM 10 %) ( O)
o™ (q)=J—5-(5+3 cosq). (3.5 o .
9 as a shaded region in panédg—(d). The finiteN data for the
one-magnon states are fitted almost perfectly by Bcp).

This prediction, which is shown as a dashed curve in panelﬁ,he energies of alN=18 states that can be clearly identified

El'ar)1 andl(b) oisliﬂi)g. Z}Eiis(;h?eogn;t;N da:cta less thalm perfect;y. as one-magnon excitations are listed in Table I. The relative
e valuewy™(m)/J=0. -+ Torexample, exceeds  geyjation of the single-mode predictiai8.5) and the im-

the value wy(m)/J=0.66433(2) of the extrapolatéd proved one-magnon dispersi¢®.9) from these finiteN data
finite-size spin excitation energy by more than 5%. are listed for comparison.

There are three kinds of two-magnon scattering states Tne jower two-magnon boundary_(q) is now in much
formed by pairs of one-magnon triplets: states W8=1,  petter agreement with the finité- two-magnon spectral
which contribute t08s{q, ) andSzz(q, ), states WithSr  hresholds in the invariant subspaces wh=0,1,2. Only
=0, which contribute t0Spp(q,w) and Srr(q,@), and ¢4 q< 7 do we observe finitdd excitations with significant
states withSy=2, which are observable i8;2(q,®) only.  gpeciral weight which stray below the predicted two-magnon
The magnon interaction is different in eafy subspace. region in all four panels. Here the spectral threshold of the
Free two-magnon states form a two-parameter continuum three-magnon continuum as inferred from E89) is lower

than the two-magnon continuum, with a minimum energy
wam(K, Q)= 0 (a/2—K) + oy(q/2+k), (3.6 30, (7)/J=2.0 atq= . However, since the stray states are
Ipcated near the lower two-magnon boundary, it is more
kely that they are interacting two-magnon states than three-
magnon states. The nonzero two-magnon bandwidtlq at
=1 in the S;=1 subspace as observed in the finitedata
of panels(a) and (b) is perhaps the most compelling evi-

in (q,w) space. The continuum boundaries are determine
by the solution ofdw,y /dk=0. The boundaries thus pre-
dicted by the single-mode dispersi@@5),

2\/E q dence of the magnon interaction in this region
()= Sk, 0n =g - J(Srscosz—), e g glon of.4)
(3.7 A curious phenomenon occurs in tisg=0 spectrum of

_ . the trimer fluctuations as shown in parid). At g# = all
are shown dashed in all four panels of Fig. 2. The coalesgynamically relevant excitations are identical to those ob-
cence of this two-magnon continuum into one spectral line afeyeq in the dimer fluctuations, understandably with differ-
q=m is a consequence of the nongeneric symmetry propertynt matrix elements. A=, the trimer spectrum collapses
into a single spectral line as does the dimer spectrum, but the
wpm(Qq)+ oy (7—q)=const (3.8

TABLE I. One-magnon excitation energies dfi, at 6
=arctar§ for wave numberg|=(27/N)\ and relative deviation of
the predictiong3.5) and(3.9).

of the single-mode one-magnon dispersiofj™(q).

D. Improved one-magnon dispersion

SM

The key to a significant improvement of the one-magnon A o9 oir (@), 1 om(@/y—1
dispersion and the two-magnon continuum boundaries 3 2.0922) 0.091 —0.025
over the single-mode prediction8.5 and (3.7) can be 4 1.6492) 0.176 +0.055
found in the dimer spectrum, i.e., in Figc2 This spectrum 5 1.423%2) 0.106 —0.001
does indeed collapse into a single spectral ling=atr. The 6 1.140092) 0.079 —0.015
finite-N analysis demonstrates beyond ambiguity that 7 0.890712) 0.066 —0.013
there exists an exact eigenstatd))=F>|G) with an 8 0.723142) 0.060 —0.005
N-independent excitation energy,=/10J, which carries g 0.664382) 0.058 Used to fi(3.9)

all the spectral weight o8y (7,w). We interpret this to be
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trimer line has a higher enerquT/J=12/\/F), which is TABLE II. Selected excitations with energigyaf1A2 and wave
againN independent. Here we have another exact eigenstatgimberq in the spin, center, dimer, and trimer spectra-of with
|T)=FI|G). Since|T) is necessarily orthogonal {®), the ~ J=1, #=arctan; for N=18 in comparison with the corresponding
former state cannot contribute to the dimer fluctuationsfree two-magnon combinations at energy, + w,, and the same
(G|F2|Ty=0, and the latter not to the trimer fluctuations, wave number.

<G|FI—|D>:O- Y 4 N/2 s z D,T
The energy of the stald) is evidently beyond the range 12 “nT@,  ANEm - @, Oy O
of the two-magnon continuum. If it is formed by two mag- 99 1.329 0 1.35
nons, then it must be a bound state with positive interaction 89 1.387 1 1.39
energy?” The data shown in panétl) indicate that the domi- 88 1.446 2 1.47 1.48
nantSy=2 contribution toS, ,( 7w, w) comes from a state that 79 1.555 2 1.55
is degenerate with the lone trimer excitatigr). 69 1.804 3 1.75 1.76
E. Two-magnon scattering states and bound states 8 1.614 3 1.60 164
59 2.088 4 2.01
In their density matrix renormalization gropMRG) 68 1.863 4 1.94 1.92
study of selected excited states ldf, for 6=0, White and 77 1.781 4 1.81
Husé® observed that afj nears the magnon interaction is 49 2314 5 2131 231
attractive for two-magnon states with=1 and repulsive 58 2147 5 209 210
for two-magnon states witB;=0 andS;=2. The finiteN 67 2031 5 206
data for@=arctarg in Fig. 2 exhibit trends that are similarin 39 2.757 6 2.78
some respects yet different in others. 48 2.373 6 2.37
Near the bottom of the two-magnon region, the interac- 57 2.314 6 2.35 2.35
tion is found to be very weak in all thre®; subspaces, and 66 2280 6 2.30
neither uniformly attractive nor uniformly repulsive in any 33 4.185 6 4.15
St subspace. At higher energies, the interaction is stronger 3g 2816 7 285
and repulsive in all three subspaces. The observation that the 4 2 540 7 255
dynamically relevant excitations in panéls, (c), (d) spread 56 3.073 7 297
to higher energies than those in paf@l indicates that the 34 3.742 7 3.78
(positive interaction energy is considerably larger 8¢ 37 2983 8 3.02
=0,2 than forS;=1. 46 2790 8 265
Several excitations, mainly near the bottom of the shaded ' '
P . o 55 2.847 8 291 2.92
areas in Fig. 2, can be identified as almost free two-magnon . 3516 8 3.62
states. There are 28 two-magnon combinations of the one- : :
magnon states listed in Table I. All of them can be found 44 3.299 8 3.33
with appreciable spectral weight in at least one of the four 36 3.233 9 3.19 320
5 2.564 9 2.44 2.44

excitation spectra within a 5% margin of interaction energy.
In Table Il we have listed the excitation energies and inter-
action energies of these states. Inevitably, some of the as- . . .
signments made are ambiguous. The uncertainty in any dfitations are arranged in contrasting patterns. In peete
the excitation energies listed is estimated to be under 0.5941aV€ an arrangement of points which is typical of a two-
The number of states belonging to a two-parameter conParameter continuum. A¥ increases, more points are added
tinuum is of ON?), i.e., of ON) for fixed g. If the inte- and spread roughly evenly along the frequengy axis. In pan.el
grated intensityS,A(q) is finite and nonzero for any particu- (b), by contrast, the data points are arranged in branches with
lar q, and if the continuum is to carry a nonzero fraction of an almosiN-independent separa_tlon. . .
the spectral weight i15, A(q, ), then the average transition The_number of states belonging to a discrete branch is of
rate of the continuum states must scale INe'. Whereas O(N), i.e., one state per wave number over _the range of the
this particular scaling behavior cannot be verified reliably onbranch. The transition rate of such a state W'I.I converge to a
the basis of the available data, we have been able to tradko"Z€"0 value _""N_’Oc for any br_anch t_hat carries a nonzero
several of the nearly free two-magnon stategaP /3 over raction of the integrated intensity. This convergence can be

the four system sizebl=9,12,15,18 and to show that the o ] ]
transition rate tends to converge to zero. TABLE lll. Excitation energy and relative spectral weight of

The excitation energy and the relative spectral weight of"€ Zﬁn/i;eN t"‘(’jo'magnc/’g continuum state as observed in
one such state as observed in the dynamic dimer and trimgpp(27/3©) andSrr(27/3.0).

structure factors are listed in Table . N 5 5 = =
The strong repulsive magnon interaction ®=0 and O ) O o)
S;=2 as indicated by our data, raises the possibility that 9 2.34 0.112 2.34 0.249
discrete branches of bound two-magnon states split off the 12 2.31 0.042 2.31 0.095
top of the two-magnon continuum in these two subspaces. 15 230 0.020 230 0.046
Comparing panel¢a) and (b) of Fig. 2 at frequencies 3 18 230 0.015 230 0.031

= w/J=<5, we see that the dynamically relevant finMeex-
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TABLE IV. Excitation energy and spectral weight as observedFig. 3. The finiteN effects are minute except for=2=/3 at
in Szz(27/3,w), Spp(27/3,w), or Sr1(2w/3,w) of several finite- g~ /4 and forq= at §<0.
N excited states that seem to belong to discrete branches in the limit | the long-wavelength limig— 0, the functionSs{q) is
N—o. observed to vanish for al values covered in Fig. 3, whereas
N z 7 D D T T Spp(g) vanishes only a¥=0, S;z(q) only at 6= — =/4,
Wy Wy Wy Wx Oy Wy . .
and S;(q) not at all. These properties are the result of dif-
9 3259 0.050 2723 0486 2723 0.475 ferent conservation laws:
12 3.369 0.082 2.654 0.540 2.654 0.611 The z component of the total SpifS%-EZ|S|Z. is a con-
15 3215 0112 2654 0525 2654 0.595 stant of the motion for alk values, and it has eigenvalue
18 3265 0117 2661 0532 2660 0.594 gzero in the singlet ground state. At=0, the operatoD+
9 3571 0151 4317 0150 4317 0181 =3,D, with D, as defined in Eq(2.9 can be written as
12 3786 0108 419 0160 4179 0.132 D;=(H—-Ey/J) and is, therefore, a constant of the motion
15 3.736 0.110 4.114 0.185 4.233 0.108 with zero eigenvalue.
18 3.812 0.114 4078 0.193 4.313  0.091 The operatorZ;==,Z, with Z, as defined in Eq(2.7)
commutes wittH _,,. Furthermore, the Bethe ansatz demon-

L strates that all eigenvectors 6f ., have definite numbers
demonstrated most convincingly for the one-magnon state eHl’ n,, N of up, zero, and down spins, respectively, on the

qzzw(g, because it IS far removed in energy from any OtherN sites of the lattice. The ground state hag=n,=n;
state in the same invariant subspace. Our data Nor —N/3. which implies thaZ- has eigenvalue z6ro
=9,12,15,18 yieldw, /J—1.140 091), w;—0.951 241), ' P T 9 N

7 As 6 decreases from the valuggs, the spin and dimer
w;—0.535 072).

| hiaher Ivi . y hich fluctuations atq=m experience a gradual enhancement,
Several higher lying states &;(2m/3,») which appear  ich reflects a continuous increase in the spin and dimer

to be part of discrete branches have been tracked over ﬂl%rrelation length& On approach of the phase boundary at
system sizetN=9,12,15,18. Their transition rates also tend 9=— /4, these correlation lengths diverge. At — /4

to converge to a nonzero value. The data for two such stateg, spectra wittS;=0,1 are gapless, and the static spin and

are compiled in Table IV. dimer structure factors exhibit cusp si iti
o . p singularitiexyat 7.
The arrangement of points in panét3 and(d) of Fig. 2 At this critical point, the spin and dimer ordering tenden-

looks more irregular. Evidence for the layered ;tructure typ'.'cies are in competition. A perturbation Hf_ _;, can produce
cal of discrete branches can be discerned at high frequenci | long-range order or dimer long-range order. Uniaxial

(w/J=5). Al lower frequencies, some Of .the dynamically exchange anisotropy, for example, is likely to produceINe
relevant states have already been identified as nearly fre]Sng-range order, whereas the further strengthening of the

two-magnon continuum states. But then we can also Observtﬁquadratic exchangeds — mr/4) is almost certain to pro-
states with a fairly large spectral weight whosledepen- duce dimer long-range order

dence indicates that they belong to a discrete branch. In the regime— m/4< 6= 6,55 of the Haldane phase, the

_The most p_romment such_branch n p?‘@'has_ its end- center structure factor exhibits properties very similar to
point atq= in the exact dimer eXC'“%“O*m dl_scussed those of the spin and dimer structure factors. It remains to be
pfe"'ous'y: A.correspondlng branch V.Vh'Ch end; in the exackoen whether thg= 7 enhancement in the center structure
trimer excitation|T) atq= can be discerned in pan(ij). factor is due primarily due to th&;=1 excitations, which

. It may well bTe the case that the wave functlop of th.ealso dominate the spin structure factor or whether $he
(a_|geqstate$T>_= Fz/G) has bound—statg character Wgh Posl- — 5 spectrum contributes significantly to the spectral inten-
tive interaction energy and the eigenstd®)=F7|G) ity The trimer structure factor, by contrast, remains feature-

scattering-state charactewith zero interaction energy A |ess throughout this regime. The conclusion is that there are
clearcut distinction between the wave functions of boundyg significant trimer fluctuations in this part of the phase

states and scattering states is known to exist even for fifite giagram.
in the s=1/2 Heisenberg ferromagnet, for example, and can

In the regimeé,gs=< < /4, it is the dimer fluctuations

be described in the framework of the Bethe anshtz. that remain insignificant and the dimer structure factor that
remains featureless. Here the prevailing ordering tendencies
IV. HALDANE PHASE are captured by the spin, center and trimer structure factors.

In all three of them a distinct enhancement in intensity at
=2m/3 emerges a® increases toward the Lai-Sutherland
Any change of the Hamiltonian parametgéraway from point = /4.
the valuefygs in the interior of the Haldane phase toward The DMRG study of Schollvick et al* showed that ag
lower or higher values softens the topological long-rangdncreases fromdygs the spin correlations start to become
order and thus enhances specific quantum fluctuations in thecommensurate and that the correlation length increases
ground state. The contrasting enhancements of fluctuatiorgradually. The underlying periodicity moves gradually from
for decreasing or increasing values, which reflect the dif- q= at 6\gs to q=27/3 at or befored_s. Because of the
ferent ordering tendencies near the predicted phase boundhort-range nature of the spin correlations, the change of
aries atd= — w/4 and =< m/4, respectively, can be observed periodicity in real space is not fully synchronized with the
to a certain extent in the finith- static structure factors for movement of the peak of the static structure factor in recip-
the spin, center, dimer, and trimer correlations, as shown inocal space.

A. Static structure factors
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FIG. 3. Static structure factors for the fluctuation opera(a)quS (spin), (b) Fé (centey, (c) Fg (dimen), (d) Fg (trimer) plotted versus
g and # for N=12 over the range- w/4< < /4. The dotted lines represeNt= 18 data forq=2=/3,7.

The phase a#> 7/4 has been named “trimerized” phase turns out that in this parameter regime the lowest excitation
with no compelling evidence in support of trimer ordering, at q=2/3 is not a state witls;=0, which could contribute
mainly because the dominant fluctuations have period thrego S;(q,w), nor is it a state wittS;=1, which could con-
However, there is evidence that the dominant fluctuations atibute to Ssdq,»). From Ref. 1 we know that it is a state
q=2m/3 are not those that are probed by the trimer fluctuawith S;=2, and our dynamics data show that this excitation

tion operator. _ _ _ contributes taS,,(q,w) with a large transition rate.
One piece of evidence is provided by tNedependence

of the static spin, trimer, and center structure factors in the

vicinity of the phase boundary &< w/4, whose exact posi- B. One-magnon and two-magnon states

tion is not firmly established. These values are listed in Table n _ ) )

V. The trimer intensities extrapolate downward, whereas the 1€ finiteN data for the dynamic spin, center, dimer, and

spin and center intensities extrapolate upward. The highedfimer structure factors throughout the Haldane phase indi-

intensity is observed in the center structure faéfor. cate that we must distinguish two regimes. Fys< 6
Further evidence which speaks against the trimer naturs 7/4, the structure of the low-lying excitations as seen

of the phase a®>w/4 can be inferred from the finitd- through the lenses of all four dynamic structure factors un-

excitation spectrum atj=2w/3, where the trimer order- dergoes a major metamorphosis. The analysis of this spec-

parameter fluctuations are expected to become dominant. itum and its relation to the prevailing ordering tendency will

be the focus of a separate study that uses the exactly solvable

TABLE V. Static spin, trimer, and center structure factors atcasef= m/4 as the starting poirtt

g=2/3 for finiteN and extrapolated valugRef. 20. Over much of the range- w/4<#<6yps, the dynami-
cally relevant spectrum continues to be dominated by one-
N Ssq2/3) Sri(27/3) Sz2(27I3) magnon and two-magnon states with properties that connect

dnw 020 0.25 0.20 0.25 0.20 0.25 seamlessly to the results fah,gg established in Sec. lIl.
However, atf< 65, the two-parameter ansai2.9) for the

9 1338 1.2068 0.5803 0.6288 1.8166 1.8102 one-magnon dispersion is now inadequate because the sym-
12 14366 1.2507 0.5390 0.6049 1.8899 1.8761 metry (3.8 is no longer supported by the finité-data. The

15 1.5145 1.2825 0.5151 0.5952 1.9440 1.9237 absence of this symmetry 8K 6\gs is also indicated by the

18 1.5778 1.3070 0.4984 05906 1.9854 1.9606 manifestly nonzero width aj= = of the two-magnon con-

o 2153) 1.763) 0.442) 0.582) 2.281) 2.645) tinua.

We propose to use instead the three-parameter ansatz
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FIG. 4. Frequency»} versus wave numbe of the finiteN excitationg N=12 andN=15] which carry most of the spectral weight in
the T=0 dynamic structure factoiS,,(q, ) for the spin @), center @), dimer (O), and trimer (J) fluctuations ofH , with J=1 at(a)
6/ w=0.05, (b) 6/7=0, (c) 8/m=—0.05, (d) 8/7=—0.10. The symbol sizes are explained in the caption of Fig. 2. The solid lines
represent the one-magnon dispers{drl) and the associated two-magnon boundaries with parameter @uas-2.18, b;=2.09, b,
=-0.92,(b) a=2.70, b,;=2.66, b,=—2.13,(c) a=3.25, b, =3.22, b,= —2.55, (d) a=3.61, b;=3.58, b,= —3.49.

wu(q)=J(a+b;cosq)(a+b,cosq) (4.1)  disorder point, where the spin fluctuations are minimally
correlated?”?° such as is also the case at the VBS point of
with a>0 and|b,|,|b,|<a as an interpolation formula be- the spin-1 chair(1.1).
tween 6=6ygs, Where we havea=.5/2, b;=b,=b The deformation of the one-magnon dispersion over the
=0.916 81(2) as discussed previously, are=— /4, range — w/4< < Oygs has a strong effect on the shape of
where Eq.(4.1) with a=b,;=—b,=7 describes magnon the associated two-magnon continuum. Of special interest
states having turned into spinon states that are amenable tcage the excitation gaps gt=0 andg= . Their dependence
rigorous analysis in the framework of the Bethe ansatz.  on the parametera,b;,b, is
Interestingly, the three-parameter dispersion is already

known to have at least two exact realizations in the dynamics w+(0)=Jv(axh;)(axh,), (4.43
of spin chains.(i) The magnon dispersion of the classical
spins XY Zantiferromagnet with,=J,=>J, is given by’ w,(m)=2Ja, (4.4b
oy AQ)=25\(J,—Jycosq) (I, +,c05q). (4.2 w_(m)=J[J(atby)(a+by)+(a—b;)(a—by)].
(i) The one-particle dispersion in the fermion representation (4.49
of the s=1/2 XY model with couplings).. = %(JXin) and The adequacy of the three-parameter dispersion for the
magnetic fieldh, is given by® description of the dynamically dominant excitation spectrum

must be judged on the two requiremefitsthat it yields a
o{(q)=(h,+J, cosq)?+J° sir q, (4.3  reasonable fit of the one-magnon energies @ndthat the
associated two-magnon continuum covers the range of the
which is, for restrictech,,J.. , equivalent to Eq(4.1). Inthe  corresponding finite-chain data, especially near the spectral
XY model, the special cad&®=J% —J? , where Eq.(4.9  threshold.
becomes a linear function of apshas been identified as a  The finiteN data shown in Fig. 4 for four values of
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betweenédgs and — 7r/4 confirm that the excitations domi- 1 _

nating theT=0 dynamical properties in this regime remain D)= —=(|PT)+e'PK D)), (A7)
well described in terms of a branch one-magnon states and a V2

continuum of two-magnon scattering states.

T)=—(|®H+9 D)+ 2k p ), A8
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The work at URI was supported by NSF Grant DMR-93- 1
12252 and by the Max Kade Foundation. 1Z0= ﬁ(|d>f>+e‘q2k|¢>§>+e2‘qzk|q>§>), (A9)

APPENDIX: STATES WITH MAXIMUM NE EL, DIMER,
TRIMER, OR CENTER LONG-RANGE ORDER

The order parameters associated with the four fluctuation Ca% *(N)=(AdAA | A — (A AIANAA oA

The correlation functions

operatorsFy (spin), Fg (dimen, Fg (timer), FZ (centey (A10)
introduced in Sec. II can be written in the form in the symmetry-restored eigenvectors of the order param-
1 N eters are found to be independentko&ind exhibit the char-
A:N Z eldalA | (A1)  acteristic asymptotic behavior
whereqs=qp= 7, andqr=qz=2/3. Their exact nature is AkAk(n) _ cos{qAn)OA (A11)

best illustrated by those eigenvectors of each oper@or
with an eigenvalue of maximum magnitude. Every such vecif the stateA, corresponds to the operatar HereO, is the
tor |®g), k=1,2, ... represents the long-range order asso-saturation value of the order paramefy: O2=1, O3
ciated with order parametd?, in its purest form. For each =1, O;=2(2/3)°, O,=1. In all cases it turns out that the
operatorP , there must be at least two such vectors for it toasymptotic behavior is reached already at small distances
qualify as an order parameter. (In|=3).

(i) There are twd\eel states with eigenvalues exg): If the stateA, does not correspond to the operaforiin
Eqg. (A10), such as im§k§k(n), then these correlation func-
tions are found to vanish for all pairs of spins with=3.

(i) There are two dimer states with eigenvalues There are two exceptions to that rule:
expgpk)/2:

(O =]+ =+ =), [9H=|—+—+ ). (A2

2
CZk(n)= =cogq,n), Al2
®)=[[12[34]- ), |9D)=I[23][45] --), (A3 55 ()= 5004z (A12
where |[I,I+1])=(|+—)+|—+)—|00))/{3 represents a 3
singlet state formed by two spins 1 on neighboring sites. CI*(n)=Scogggn). (A13)
(i) There are threetrimer states with eigenvalues 4
explark)/3: This anomaly tells us that the spin-fluctuation opera&gr

does not only probe N# long-range ordefatq= ) but also

center long-range orddat q=2m/3) as defined in this pa-
|®1)=|[345][678]- - -), (A4)  Per. Likewise, the center fluctuation opera_ﬁﬁ, designed _

here to probe a particular type of fluctuation and potential
where|[l,I +1]+2]) as given in Eq(2.6) represents a sin- ordering, does not only see center long-range ofder
glet state formed by three spins 1 on consecutive sites.  =27/3) when such order exists but also éldong-range
(iv) There are sixenterstates with eigenvalues exg¢k):  order(at q= ) when that is present.
The main purpose of introducing the center fluctuation

|b1)=[123][456]---), |D])=|[234][567]--),

Z\ _ Z\ _
[PD=[0—+---), [PF=|+0—---), operator, which couples to th;=1 andS;=2 excitation
2 spectra, has been to illuminate aspects of the predominant
[@5)=[-+0---). (A5)  fluctuations in the parameter rangéd< o< /2, which are

Al these vectors represent nonstationary Symmetryinvisible to any of the other three fluctuation operators,
. . . which all couple either to th&;=1 spectrun(spin) or to the
breaking states in the context of the Hamilton{aril). None P & P mspiny

. 0 spectrum(dimer, trime). This distinctive property of
of the order parameterB, commutes withH,. The four Sy=0 spectrundi ime). This distinctive property

FZ is of vital importance in view of the fact that the lowest-
types of long-range order are also reflected in the orthonol ing finite-N excitations in this parameter range have total
mal linear combination§A,) of the vectorg®f) which re- ying P g

. spin S;=2. It may well be the case that a different fluctua-
f;?rﬁothe translational symmetry. Fik—c they have the tion operator, which does not see théeNing-range order

and whose characteristic long-range order is not picked up

1 by the spin-fluctuation operator provides a better description

1Sy = —=(|D5) + el d3)), (Ag)  of the predominant fluctuations in this regime. However, a
\/— suitable candidate has yet to be found.
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Nontrivial realizations of the fully ordered ground states iii) It can be shown that the trimer statés4) are eigen-
are known at least three of the four order parametérhe  states of the Hamiltonian
Neel stategA2) are stabilized in the 1B=1/2 XY Z model
with 0<J,=—J,<J,.%" (i) The s=1 dimer states(A3) N
haves=1/2 counterparts, which are constructed from corre- Hr=> [P
sponding singlet statesfl,|+1])=(|71)—|/1))/V2. The n=1
dimer ground states are realized in the=1/2

H f rl">29 1
Hamiltoniarr® - gpn,n+27)n+l,n+3_ gpn+l,n+27)n,n+3 )

1
n,n+1+ Epn,n+2+ an,n+3

N
H=, Pan+1t 573n,n+2 , (A14)  with eigenvalues- N/2. The permutation operator expressed
n=1 in terms of spin-1 operators reads
with nearest and next-nearest neighbor interactions, here ex-
pressed in terms of permutation operators Pam=SnSn+ (S Sm)?—1. (A16)

1 Finite-N data indicate that the trimer eigenstates are, in fact,
Prm=5*25: S (AL5) ground states.
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