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ABSTRACT

First deployed in the U.S. in 1957, Loran-C dominated
radio-based navigation for many years. In 2000 the
FAA began a significant recapitalization of Loran in
the U.S.; the 2001 Volpe report on the vulnerability
of the GPS reinforced the need for a revamped Loran.
What emerged was an enhanced or evolved version, so
called “eLoran,” aiming to achieve, for example, 10-
20 meter absolute positioning accuracy, RNP 0.3 mile
required navigation performance, and stratum 1 time.
After 10 years of development, in 2010, this U.S. effort
was halted and the U.S. transmitters were silenced;
since that time, eLoran is still being developed in Eu-
rope and deployed in Asia.

Earlier this year U.S. Government interest in eLoran
has again stirred (evidenced by a U.S. Army request
for information and a U.S. Dept. of Transportation
request for public comment); the first of these initiated
much conversation at the 2015 ION ITM.

The prior U.S. (and continuing European) develop-
ment of eLoran kept many of the 1950’s system design
choices so as to be compatible with legacy Loran re-
ceivers. These include the pulse shape, groups, chains,

rates, phase codes, emission delays, etc. Chosen to
suit 1950’s technology, many of these restrictions are
no longer necessary given the advances in transmitter
and receiver technology (e.g. software defined radio)
over the last half century. It is the opinion of these
authors that as Loran, per se, no longer exists in the
U.S., any re-emergence of a low frequency radio navi-
gation system need not be held to these performance
limiting constraints.

In prior work these authors have promoted more sig-
nificant changes to eLoran to improve system perfor-
mance; specifically, single-rating all stations, reconfig-
uring the chain/rate structure within the continental
U.S., and changing the phase codes. The current paper
expands on these prior efforts. Specifically, we propose
putting all of the eLoran transmitters on the same
repetition period and employing unique phase codes
for each transmitter. To effectively choose new phase
codes for eLoran, and assess their performance, we rely
on the auto- and cross-correlation metrics. These met-
rics describe how well a receiver can both acquire and
track a specific signal when contaminated by multi-
path interference, the existence of other signals, and
noise. While a “perfect” auto-correlation function,
large at zero lag corresponding to the actual arrival of
the signal and zero elsewhere, and a “perfect” cross-
correlation function, zero for all lags, are preferred, it
is impossible to find such codes. However, limiting
the size of the window for which we require perfect
auto- and cross-correlations, such codes can be found.
To create such codes for eLoran we adapt results from
the CDMA literature on complementary sequences and
Large Area Synchronized (LAS) codes.

This paper begins with a brief review of the relevant
characteristics of Loran-C, including a discussion of
the effects of sky wave and cross rate interference.
This is followed by a survey of previously published
ideas/concepts on how elements of the system could
be changed so as to improve performance. Finally, de-
tails on the proposed rate/chain/phase code structure
are presented.

The reader should recognize that these ideas and re-
sults are not intended to define what the best eLoran
system would be; rather, if eLoran soars again in the
U.S., we hope to initiate a dialogue that looks beyond
the decisions made in the 1950’s.
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INTRODUCTION

Loran-C is a radio-navigation signal first deployed in
the U.S. in 1957. Initially provided as a service for
the U.S. Navy, Loran dominated coastal navigation for
many years; in the mid-1970s, additional Loran trans-
mitters were erected to provide positioning service over
the continental U.S. Loran has also been deployed in
Europe, Asia, and the Middle East; the Russians de-
veloped a compatible system, Chayka. The year 2000
saw a significant recapitalization effort in the U.S.,
with the resulting eLoran being seen as a potential
backup to the GPS. In 2010 this effort was halted and
the U.S. Loran transmitters were silenced; since that
time, eLoran is still being developed in Europe and
deployed in Asia.

Recently it appears that interest in a low fre-
quency, pulsed, radio-navigation system might be re-
emerging within the U.S. In January of 2015 the U.S.
Army issued a request for information for eLoran re-
ceivers; this announcement spiked much conversation
on eLoran at the 2015 ION ITM. In March of 2015 the
U.S. Dept. of Transportation requested public com-
ment on eLoran.

The prior U.S. (and continuing European) develop-
ment of eLoran kept many of the design choices orig-
inally made in the 1950’s so as to provide backwards
compatibility to legacy Loran receivers. These include
(and are further described below) chains of nearby Lo-
ran transmitters, some of them dual-rated, employ-
ing coding/emission delays to implement time divi-
sion multiplexing of groups of Loran pulses repeat-
edly transmitted at specific group repetition intervals
with their polarities set by master and secondary phase
codes (on the phase code interval) to mitigate skywave
and cross rate interference. Many of these system
characteristics were chosen based upon the level of
technology available in the 1950’s and are no longer
necessary. Some system characteristics of Loran-C
were changed for eLoran; specifically, ones that would
improve performance for modern receivers, but would
not negatively impact the legacy user.

In prior work these authors (and others) have pro-
moted more significant changes to eLoran to improve
system performance, arguing that the legacy receiver
community was sparse. Notably, these addressed mod-
ifying the pulse shape, single-rating all transmitters,
re-defining the chains and rates, and modifying the
phase codes. These prior efforts are reviewed in the
third section of this paper.

The current paper expands on these prior efforts on
changing rates, chains, and phase codes. Specifically,
while we assume that the signal still consists of discrete
Loran pulses spaced a minimum of 1 millisecond apart,

we propose putting all of the eLoran transmitters on
the same repetition period and employing unique pulse
patterns (which we will still call phase codes) for each
transmitter. To effectively choose new phase codes for
eLoran, and assess their performance, we rely on the
auto- and cross-correlation metrics. These metrics de-
scribe how well a receiver can both acquire and track
a specific signal when contaminated by multipath in-
terference, the existence of other eLoran signals, and
noise. The goal is to have a “perfect” auto-correlation
function, large at zero lag corresponding to the ac-
tual arrival of the signal and zero elsewhere, and a
“perfect” cross-correlation function, zero for all lags.
Not surprisingly these are opposing characteristics; it
is impossible to find such codes. However, by limit-
ing the size of the window about zero lag for which
we require perfect auto- and cross-correlation, such
codes can be found. For example, the current Loran
master and secondary phase codes satisfy this for lags
less than 10,000 µsec. Similarly, the phase codes that
we presented in [1] met these same limited character-
istics; unfortunately with only four of them (and no
knowledge on how to find more at that time) we did
not further develop the concept. To increase the num-
ber of codes to the 15-30 necessary for CONUS-wide
coverage, we exploit previously published results for
CDMA systems on complementary sequences [2] and
Large Area Synchronized (LAS) codes [3].

This paper is organized as follows:

• The next section of this paper contains a brief
review of the relevant characteristics of Loran-C
with a brief discussion of the changes in eLoran.
This section includes a discussion on how sky wave
and cross rate interference are determined by the
rates, chains, and phase codes.

• The third section of this paper briefly reviews pre-
viously published ideas and concepts on how other
elements of the Loran system could be changed so
as to improve performance.

• The paper next includes details on the proposed
rate/chain/phase code structure, a review of the
methods for designing the codes, and examples for
a 8 station system (i.e. 8 codewords).

• The paper closes with comments with further di-
rections for the presented ideas.

The reader should recognize that the ideas and re-
sults herein are not intended to define what the best
eLoran system would be; rather, if eLoran soars again
in the U.S., we hope that these remarks initiate a di-
alogue that looks beyond the decisions made in the
1950’s.
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Figure 1: Loran stations in North America, without
Alaska, circa 2010.

Figure 2: The Loran pulse, p(t).

THE BASICS OF LORAN

There have been a number of papers over the years
that have described the history of the Loran system
in great detail and the interested reader is referred to
the archives of the Wild Goose Association, later the
Int’l Loran Association (www.loran.org), and the In-
stitute of Navigation. For the technical details of the
Loran transmission, consult the Loran Signal Specifi-
cation [4] and other reports on the U.S. Coast Guard’s
NavCen website (www.navcen.uscg.gov). Some basics
of the system are described here in order to provide
a framework and some notation for understanding the
rest of this work.

Loran is a high power, low frequency, long range radio-
navigation system. When discontinued in 2010 the
North American Loran-C system consisted of 18 U.S.
stations in the lower 48 states, 6 Canadian stations,
and 5 Alaskan stations (Figure 1 shows the geographic
layout, without Alaska).

Each station repeatedly transmits the Loran pulse,
p(t), shown in Figure 2 (normalized to unit maximum
amplitude), a teardrop shaped pulse envelope (shown

Figure 3: Loran group timing.

Figure 4: Southeast U.S. chain, from [4].

in blue) modulated by a 100 kHz carrier. The pulse
envelope rises from zero to its maximum amplitude at
65 µsec and then decays back to zero with a total dura-
tion under 300 µsec. The pulse shape was designed so
that 99% of the radiated power is within the allocated
frequency band of 90 to 110 kHz.

Each Loran station transmits 8 (or for the master sta-
tion, 9) of these pulses in a group with the pulses
spaced 1000 µsec (1 msec) apart; the group is repeated
at the group repetition interval or GRI; Figure 3 sug-
gests this timing for a station on the 9960 rate, a GRI
of 99,600 µsec.

Rather then working independently, the transmitters
are organized into collections or chains of geograph-
ically close stations which share a common GRI. For
example, Figure 4 shows the locations of the stations in
the Southeast U.S. chain. Within each chain one sta-
tion is designated as its master (denoted M, it broad-
casts first) and the other stations (between 2 and 5)
are called secondaries (designated W, X, Y, and Z in
this example) and broadcast in that particular order.
Figure 5 shows the timing for a chain with master and
three secondaries. The secondaries’ broadcasts are de-
layed (TDX, TDY, and TDZ in this diagram) to ensure
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Figure 5: Entire chain timing, from [4].

that a receiver, no matter where it is, observes the sig-
nals from the chain in this same order. This allows
a receiver to uniquely identify each secondary in the
chain and is accomplished by having each delay greater
than the time required for the prior stations’ signals
to have been received at the next transmitter. The
master is uniquely identified by sending an additional
pulse in each group.

To further distinguish master from secondary, the
pulses are polarity encoded (a multiplier of ±1 on
the envelope) by either the master or secondary phase
code. The phase codes repeat every two groups,
called the phase code interval or PCI. The phase codes
are [

+1,+1,−1,−1,+1,−1,+1,−1,+1
][

+1,−1,−1,+1,+1,+1,+1,+1,−1
]

for master and[
+1,+1,+1,+1,+1,−1,−1,+1

]
[
+1,−1,+1,−1,+1,+1,−1,−1

]
for the secondaries. Besides uniquely identifying the
master station in a chain, the Loran phase codes aid
in the rejection of multipath interference.

Finally, an individual station is assigned to either one
(single-rated) or two chains (dual-rated). For example,
the station in Malone, Florida (M in Figure 4) was
dual-rated, being the master of the shown chain and a
secondary in the Great Lakes chain.

With these system characteristics the transmitted sig-
nal for a particular rate at a particular (single-rated)
station can be written as

s(t) = A
∞∑

i=−∞

1∑
m=0

7∑
k=0

b7m+k p (t− i · PCI −m ·GRI − 1000k − ED)

for some amplitude A, emission delay ED, phase code
coefficients bk (b0 through b15), and the time related

terms in units of µsec. (As written this expression is
valid for a Loran secondary since the summation over k
indexes the 8 pulses; for a master we would increase the
upper limit on k to accommodate the additional mas-
ter pulse; a dual-rated station would have a duplicate
set of terms with a different emission delay.)

Pulse Averaging at a Receiver

The Loran signal propagates as a ground wave at
nearly the speed of light, following the curvature of
the Earth. A Loran receiver observes this signal de-
layed in time by τ (due to the propagation distance
from the transmitter), and embedded in noise

r(t) = s(t− τ) + n(t)

for some finite observation window t ∈ [0, T ]. Taking
advantage of the known periodicity of the transmis-
sion, the receiver can reduce the effect of the addi-
tive noise by shifting and averaging segments of the
received signal, correlating away the phase code, for
an estimate of the delayed pulse from one transmit-
ter

x̃(t) =
PCI

16T

T/PCI∑
i=1

1∑
m=0

7∑
k=0

b7m+k r (t+ i · PCI +m ·GRI + 1000k)

= Ap(t− ED − τ) + ñ(t)

In this expression the reciprocal of PCI
16T is the number

of pulses observed in [0, T ]. The resulting waveform
is proportional to a single Loran pulse, delayed by τ
and the emission delay of that station, in noise with a
smaller variance than the original noise

This operation is identical for each station within one

chain; hence, the resulting average x̃(t) for 0 < t <
GRI would consist of one pulse for each station in the
chain (indexed by j) with the start time of the pulse

Proc. ION GNSS+ 2015, Tampa FL, Sept. 2015



equal to its emission delay plus the delay due to the
distance from the receiver to each transmitter

x̃(t) =
∑
j

Aj p(t− EDj − τj) + ñ(t)

Since the emission delays are chosen so that the pulse
arrivals never overlap in time wherever the receiver
might be, this appears as a sequence of pulses, one
for each station in the chain, in the transmitted or-
der (master, W, X, Y, . . . ). Assuming that signals
from at least three stations are received, the Loran
receiver estimates the arrival times of these averaged
pulses and computes the receiver position using trilat-
eration.

Sky Wave Interference

Besides noise, the Loran receiver typically observes so-
called “sky wave” interference, multipath interference
due to ionospheric reflections of the desired transmis-
sion. Including amplitude scaling and additional delay
(another τ , but indexed by k) the reception from one
transmitter would be

r(t) = s(t− τ) +
∑
k

αks(t− τ − τk) + n(t)

Typically the additional sky wave delay, τk, ranges
from a minimum of about 30-50 µsec (for long range,
single hop reflections) to perhaps 2000-4000 µsec for
short range, multi-hop reflections [5]. The value of the
amplitude scaling, αk, can be smaller or larger than
one and depends upon the lengths and attenuation
characteristics of the propagation paths.

The effect of sky wave on a Loran receiver depends
upon the amount of delay:

• If τk < 250 µsec then the reflections overlap the
desired pulses (all 8 of them in a group), distorting
each pulse constructively and/or destructively. To
eliminate this interference, most Loran receivers
estimate the desired time delay τ using the third
up-going zero crossing of the Loran pulse at 30
µsec. This works well except for very early sky
wave (i.e. due to very low ionosphere), for which
other techniques are applied (and are beyond the
scope of this discussion).

• If 250 µsec < τk < 700 µsec then the reflections do
not overlap any of the desired pulses. With pulse
averaging, the receiver sees the sky wave pulse af-
ter the desired pulse within the one GRI averaging
window; it’s time of occurrence is well before the
pulses corresponding to the other stations in the
chain due to the choices of the emission delays.
In other words, this level of sky wave interference
is not a problem; the reflection response is easily
ignored.

• If 700 µsec < τk < 7300 then the reflections might
overlap later pulses in the same group (e.g. with
τk = 1000 µsec the multipath of pulse 1 hits pulse
2, the multipath of pulse 2 hits pulse 3, etc.) and
add to the averaging. The phase codes guard
against this as explained next.

To explain the suppression of longer delayed sky waves
consider the case of one reflection so that the observa-
tion is

r(t) = s(t− τ) + α1s(t− τ − τ1)

(we drop the noise for clarity). Since 700 µsec < τ1 <
7300 an overlap of 1 to 7 pulses is possible. Define the
integer d so that

τ1 = 1000 d+ τ0

with τ0 ∈ [−300, 700]. Then d ∈ {1, 2, . . . 7} and 8− d
of the pulses are contaminated by sky wave.

With the pulse averaging above, the estimate is

x̃(t) =
PCI

16T

T/PCI∑
i=1

1∑
m=0

7∑
k=0

b7m+ks (t+ i · PCI +m ·GRI + 1000k − τ)

+ α1
PCI

16T

T/PCI∑
i=1

1∑
m=0

7∑
k=0

b7m+ks (t+ i · PCI +m ·GRI + 1000k − τ − τ1)

= Ap(t− τ)

+ α1A

(
1

16

1∑
m=0

7−d∑
k=0

b7m+kb7m+k+d

)
p (t− τ − τ0)

In words, the result is the desired pulse plus a sec-
ond one delayed by an additional τ0 seconds. While
this second pulse could cause a problem because of
the range of τ0, the scalar in parentheses solves the
problem. Specifically, the value

1∑
m=0

7−d∑
k=0

b7m+kb7m+k+d =
7−d∑
k=0

bkbk+d +
15−d∑
k=8

bkbk+d

sometimes called the aperiodic autocorrelation func-
tion, can be manipulated by the choice of the phase
codes. For the Loran phase codes above, both sec-
ondary and master (if you modify the sums to work
on the 9 values), this term is identically zero for
d = 1, 2, . . . 7.

While this argument dealt with only one reflection it
extends directly to the algebraic sum of multiple reflec-
tions so that sky wave with delay up to about 10,000
µsec is completely eliminated by the current Loran
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phase codes (the window can be increased from 7300
µsec because of a 2900 µsec guard band after each
group). Further, the effect of sky wave under the use
of some other phase code is easily computed by exam-
ining the autocorrelation function of the bk.

Self-Chain Interference

The Loran receiver also observes the transmissions
(and, potentially, sky wave) from other stations in the
same chain; specifically

r(t) = sdesired(t− τ) +
∑
m

αmsothers(t− νm)

in which the νm are the delays of these other signals
and are, by definition, greater than 10,000 µsec. The
only concern is that the emission delays plus the dis-
tance based delays plus any additional sky wave delays
not be large enough to push the offending signal into
the range of the desired signal. The Loran Signal Spec-
ification’s 2900 µsec guard window between secondary
transmissions (1900 for master to the first secondary),
is long enough to eliminate these overlaps for the sky
wave delays seen in practice.

Cross-Rate Interference

If all Loran stations broadcast at the same GRI we
would be done with the list of system induced inter-
ference; however, since Loran has chains of stations
at different rates then periodically pulses from other
chains are nearly time coincident with the signals of in-
terest, creating so-called “cross rate interference.” An
analysis of cross rate and selecting rates to minimize
the effect is a difficult problem. A frequency domain
analysis from [6] can provide some insight.

In brief, recall that the Loran signal is periodic on
a PCI; hence, it can be fully described by a Fourier
series representation. To develop this representation,
start with a single Loran pulse starting at time zero
in the PCI. Ignoring the modulation by 100 kHz (we
can offset the Fourier results up by 100 kHz later, if so
desired) its Fourier series representation is

s(t) =
∞∑

n=−∞
dne

j2πnt/PCI

with PCI = 2GRI representing the repetition time,
in µsec, the integer n divided by the PCI is the shift,
in Hertz, from 100 kHz for the spectral line of interest
(in other words, spectral lines occur with a spacing of
1/PCI Hz), and the series coefficients are

dn =
653

4PCI2 (PCI + j65πn)
3

As the actual Loran signal consists of 16 repli-
cas of this pulse, shifted in time and multiplied

by the phase code [b0, b1, b2, b3, b4, b5, b6, b7] and
[b8, b9, b10, b11, b12, b13, b14, b15], the series expansion
for the full Loran transmission is of the same form
with modified coefficients

dn =
653

4PCI2 (PCI + j65πn)
3

×



(b0 ± b8) + (b1 ± b9) e−j2πn1000/PCI

+ (b2 ± b10) e−j2πn2000/PCI

+ (b3 ± b11) e−j2πn3000/PCI

+ (b4 ± b12) e−j2πn4000/PCI

+ (b5 ± b13) e−j2πn5000/PCI

+ (b6 ± b14) e−j2πn6000/PCI

+ (b7 ± b15) e−j2πn7000/PCI


where the plus signs are used for even n and the minus
signs for odd n. Note that the n = 0 term (i.e. at 100
kHz) is

d0 =
653

4PCI5

15∑
k=0

bk

For the existing Loran phase codes, both master and
secondary, we have

∑15
k=0 bk = 4 so

d0 =
653

PCI5

distinctly non-zero for all rates. Further, note that
different GRIs will share common spectral lines. In
the U.S. all GRIs were a multiple of 100 µsec, so the
PCIs were all a multiple of 200 µsec and minimally
had 200 µsec as their greatest common divisor; the
implication is that all U.S. Loran signals had common
spectral lines at multiples of 5 kHz. The amplitude at
these lines, with n = 5mPCI

1000 for integer m, was

dn =
653

4PCI2 (PCI + j65πn)
3

(
7∑
k=0

bk ±
15∑
k=8

bk

)

(again, plus for even n and minus for odd n).
This is also non-zero for the existing Loran phase
codes.

Why do we care about spectral lines? The pulse
averaging described above can be viewed as a filter
matched to the spectral characteristics of the chain of
interest. As the observation length, T , gets large then
the averaging becomes a narrow comb filter about the
spectral lines of the signal. If the interfering rate has
one or more spectral lines very close to ones of the sig-
nal of interest, then energy will leak through, create
a bias in the averaged pulse, and degrade the even-
tual positioning performance. To minimize the inter-
ference, one could choose rates so that the lines were
not too close, and this has been previously discussed
in [7]. However, the common lines at 100 ± 5m kHz
mean that some energy will always leak through the
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averaging approach. This interference at 95, 100, and
105 kHz was also noted in [8].

If two nearby chains share common spectral lines, then
simple linear averaging methods will not completely
cancel both noise and cross rate interference. A mod-
ern receiver can avoid this cross rate interference via
smart time domain blanking of data when an overlap
occurs. Specifically, a receiver could estimate occur-
rences of cross rate interference and ignore the received
data during those periods. However, the reduction in
total signal energy due to this data reduction itself re-
sults in a lessening of positioning performance. And
if the amount of cross rate interference is high, as oc-
curs in the center of the continental U.S., blanking
could mean a significant reduction. Further, blanking
destroys the ability of the phase code to completely
eliminate sky wave interference. In conclusion, we can-
not eliminate both sky wave and cross rate interference
with the chain based approach.

What’s different in eLORAN

As mentioned in the Introduction changes were made
for eLoran under the proviso that legacy Loran re-
ceivers would still function normally. Hence, chains,
rates, pulses, and phase codes were left unchanged.
The system changes include:

• Moving from SAM to TOT control – previously
chain timing was under the control of a system
area monitor with the result that the emission
times for the various stations were not directly
tied to UTC and that the chains were not jointly
synchronized. The implication was that if a re-
ceiver wanted to use signals from two or more
chains simultaneously it had to receive the signal
from a station in both chains so as to compute the
inter-chain offset. With time of transmission con-
trol the chains are all synchronized and a modern
receiver can be all-in-view meaning that it can ef-
fectively use all Loran signals that it can observe
from as many chains as possible.

Of course this change did not impact legacy re-
ceivers as they could still solve for the chain offset
(zero) and use the additional signals if master was
present.

• The Loran Data Channel (LDC) – there has been
considerable interest in adding some amount of
data carrying capacity to the Loran signal (typi-
cal payloads include a time stamp and differential
correction data). In the mid-1990’s Eurofix mod-
ulation was added to Loran transmissions in Eu-
rope to provide differential GPS corrections [9].
The method employed is pulse position modula-
tion of 6 of the 8 pulses per Loran group. The

amount of modulation was limited so as to have
minimal impact on a legacy Loran receiver (ap-
pearing like transmitter jitter), yet provide data
capacity for a modern receiver. In the 2000’s the
U.S. experimented with 9th-Pulse LDC, adding an
additional pulse at the end of the group (in the
inter-station guard interval) [10]. Again the mod-
ulation method was pulse position. And since a
legacy receiver would not be looking for an extra
pulse, the only impact it caused to legacy users
was a small increase in cross rate interference.

REVIEW OF PRIOR IDEAS

Our focus in this paper are the system characteris-
tics that have remained unchanged in eLoran: rates,
chains, and phase codes. There has been prior discus-
sion on these ideas; we review these below.

Change the Rates

This has seen considerable discussion with the aim of
decreasing cross rate [7]. No set of choices completely
removes it.

Change the Phase Codes

This is not a new idea either. In 1960 Frank replied to
early criticism of the Loran codes not being balanced,
claiming that the rejection to longer sky wave, while
not important for much of the world, still had value in
some locations and that the current phase codes were
better at CW rejection [11]. (A balanced phase code
requires that

15∑
k=0

bk = 0

and would zero out the spectral line at 100 kHz; this
is not satisfied by the current master and secondary
phase codes.) In 1974 Roland also noted the value of
balanced phase codes for reducing cross rate interfer-
ence, but at the cost of reduced immunity to longer de-
lay skywave [12]. In 1977 Gressgang et al reconsidered
the situation; besides noting the trade-off of reduced
sky wave protection versus less cross rate interference,
they also mention the need to modify receivers (ah,
the beauty of a firmware update!) if the codes were to
be changed [13]. At that point in Loran’s history, bal-
ance lost and their work aimed at choosing the rates
to minimize cross rate interference. They do report on
experiments of a balanced phase code on a Loran-D
mini-chain, showing that it does work.

In 1979 Van Etten suggested that cross rate inter-
ference could be eliminated by only tracking specific
pulses (“strobing”), essentially converting the current
phase code into a balanced subset [14]. For strobing
combined with different rates, cross rate interference
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could be much reduced. The question, of course, is how
much SNR loss and sky wave protection loss there is
by the reduction in the number of pulses.

At the 2008 IEEE/ION PLANS meeting we focused on
the Loran phase codes, arguing that while the master
and secondary phase codes completely mitigate long
delay skywave, this choice was design overkill; that
multipath delays beyond 2 or 3 milliseconds could be
safely ignored [1]. Further, we also argued in that pa-
per that the lack of balance in the phase code yielded
periodic cross-rate interference that presented itself as
a bias in the pseudorange measurements (we presented
a detailed treatment of this effect at the 2008 Interna-
tional Loran Association symposium [6]). To further
enhance overall system performance we proposed the
use of unique balanced phase codes for each chain, mu-
tually orthogonal to the others (basically a form of
code division multiplexing). Maintaining the 8 pulse
group structure for the transmission, we demonstrated
a set of 4 such codes.

Reconfigure the Chains

While retaining the geographic locations of the sta-
tions the number of chains and the assignment of spe-
cific stations to chains would be quite easy to modify
and could result in a significant reduction in cross rate
interference.

In 2006 these authors proposed “growing” the chains,
increasing the number of stations in each chain, in-
creasing the geographic area covered by each chain,
and, hence, reducing the number of chains [15]. Fewer
chains at larger distances equates to reduced cross rate
interference. Since the Master station might not be
visible to a receiver in the enlarged chain, we recog-
nized that some form of positive station ID would be
necessary and suggested at that time that it might be
achieved via a signature on the 9th Loran data chan-
nel.

Spread Spectrum Loran

In 1982 Raab proposed bringing circa 1950’s Loran-
C into the 1980’s, noting that modern receivers can
automatically acquire the signal, that spread spec-
trum modulation is widely used (e.g. in the GPS),
and that microprocessors are commonplace in receivers
[16]. He proposed staying at 100 kHz, using a 10 kbps
pseudonoise biphase modulation (a unique code for
each station), and time sequencing the transmissions
at each station (basically pulsed modulation to elim-
inate the near-far problem; he mentions 5 time slots,
but provides a figure with 4 labeled M, X, Y, and Z,
just like Loran-C). So this is basically a pulsed form
of GPS for Loran transmitters, not too different than
what is done with GPS pseudolites.

ONE CHAIN, ONE RATE, UNIQUE PHASE
CODES

As mentioned in the Introduction, we propose putting
all of the eLoran transmitters on the same repetition
period and employing unique phase codes for each
transmitter. To begin the discussion it is convenient
to think of Loran as the signal that results from modu-
lation of a ternary code. Specifically, imagine a Loran
rate of 50,000 µsec; over 1 PCI the signal consists of
pulses starting at the following multiples of 1 msec
(offset, of course, by the start time of the PCI):

0, 1, 2, 3, 4, 5, 6, 7, 50, 51, 52, 53, 54, 55, 56, 57

To view this as a codeword, break the 100 msec PCI
into 100 equal width time slots and use the ternary
symbols {+1,−1, 0} to represent a positive polarity
phase coded pulse, a negative polarity phase coded
pulse, or no pulse, respectively, in each time slot. Fig-
ure 6 shows a sample codeword, with symbols A[1]
though A[100]; the gaps consisting of 42 zeroes are the
quiet periods between groups in the Loran transmis-
sion. The codeword for individual secondaries would
be right cyclic rotations of this result (shifted by the
emission delay in msec); the master station’s codeword
would have a different set of polarities and two extra
non-zero symbols for the master pulses.

To effectively choose new phase codes for eLoran we
identify their desirable characteristics:

• A receiver must be able to acquire the signal of
interest without knowledge of the basic timing of
the signal. This will be evaluated by examining
the auto- and cross-correlations of the phase codes
across all possible lags. We want these low com-
pared to the auto-correlation peak at zero lag to
facilitate acquisition in noise.

• A receiver must be able to track each signal of
interest to provide an accurate, unbiased pseudo-
range (unaffected by multipath or interference by
the signals from other transmitters). This capa-
bility can be evaluated by requiring perfect auto-
and cross-correlations for small lags (when the sig-
nal is nearly aligned).

For length M codewords A and B with symbols A[k]
and B[k], k = 1, 2, . . .M , these metrics are the auto-
correlation

cA[k] ≡
M∑
m=1

A[m]A[m+ k]mod M

and the cross-correlation

dAB [k] ≡
M∑
m=1

A[m]B[m+ k]mod M
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c = [A[1], A[2], . . . , A[100]]

=

+1,+1,+1,+1,+1,−1,−1,+1, 0, 0, . . . 0︸ ︷︷ ︸
42 zeroes

,+1,−1,+1,−1,+1,+1,−1,−1, 0, 0, . . . 0︸ ︷︷ ︸
42 zeroes


Figure 6: Loran code.

c1 =

0, 0, . . . 0︸ ︷︷ ︸
10 zeroes

,+1,+1,+1,+1,+1,−1,−1,+1, 0, 0, . . . 0︸ ︷︷ ︸
42 zeroes

,+1,−1,+1,−1,+1,+1,−1,−1, 0, 0, . . . 0︸ ︷︷ ︸
32 zeroes


c2 =

0, 0, . . . 0︸ ︷︷ ︸
23 zeroes

,+1,+1,+1,+1,+1,−1,−1,+1, 0, 0, . . . 0︸ ︷︷ ︸
42 zeroes

,+1,−1,+1,−1,+1,+1,−1,−1, 0, 0, . . . 0︸ ︷︷ ︸
19 zeroes


Figure 7: Two Loran codewords.

for k ranging from −M/2 to M/2. As an example,
consider two Loran secondaries in a chain with emis-
sion delays of 11,000 and 24,000 µsec, respectively
(keep the GRI at 50 msec). The corresponding code-
words on the 100 slot PCI are shown in Figure 7. The
auto- and cross-correlations of these two codewords are
shown in Figure 8. This figure shows excellent auto-
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Figure 8: Correlations of two Loran codewords.

correlation characteristics, zero for lags between −42
and +42 (excluding the peak at 0), and zero cross-
correlation for lags from −29 to +13. The zero zone
about the origin of the auto-correlation function im-
plies excellent resilience to sky wave; the zero zone
of the cross-correlation is the result of the time di-
vision multiple access of the emission delays in which
(by design) signals within a chain do not interfere with
each other for small lags. Unfortunately this codeword
representation is not help in characterizing cross rate
interference.

Complementary Code Design

Unfortunately there is little known on the general con-
struction of ternary codes. While it is tempting to im-
mediately consider PRN sequences (e.g. Gold codes)
they do not appear to be the best solutions due to
their non-zero auto- and cross-correlations. Our goal
is to completely remove both sky wave and interfer-
ence from other transmitters even if their signals are
much larger (the near-far issue).

To make some headway, we previously proposed ex-
tending the group concept; specifically, each codeword
would consist of multiple blocks of pulses separated
by zero periods [1]. Instead of the two blocks, say
A1 and A2, of the existing secondary code, we con-
structed codewords having four blocks (of 8 pulses
each) before repeating. Our set of four codewords,
found by a search, displayed both excellent auto- and
cross-correlations for small lags. Unknown to us at
that time, a general design process for such codes is
possible.
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In 1972 Tseng and Liu developed procedures for con-
structing sets of mutually orthogonal complementary
codes [2]. To employ some of their methods, we review
the relevant definitions of sequences and sequence op-
erations:

• Let A be a length n, binary sequence of sym-
bols +1 and −1; as an example with n = 8,
A = [1, 1, 1, 1, 1,−1,−1, 1].

• Let Ã represent the reversal of A; for the given A,
Ã = [1,−1,−1, 1, 1, 1, 1, 1].

• Let −A be the negation of A; again, for the given
A, −A = [−1,−1,−1,−1,−1, 1, 1,−1].

Let (A1, A2, . . . Ap) represent a collection of p such se-
quences, each of length n. The collection of sequences
is called a complementary code if the aperiodic auto-
correlation sequence is perfect

c[k] ≡
p∑
i=1

n−k∑
m=1

Ai[m]Ai[m+ k]

=

{
np ; k = 0
0 ; k = 1, . . . , n− 1

We note that formulation is equivalent to the full auto-
correlation when the lag is limited to the range 0 to
n−1 and the groups are separated by zero sequences of
length n or greater. Two complementary codes of the
same size, say (A1, A2, . . . Ap) and (B1, B2, . . . Bp), are
called “mates” if the cross-correlation satisfies

dAB [k] ≡
p∑
i=1

n−k∑
m=1

Ai[m]Bi[m+ k] = 0

for k = −(n−1),−(n−2), . . . , n−1. As above, this is a
portion of the full cross-correlation assuming sufficient
length zero sequences between groups.

Tseng and Liu provided methods of constructing new
complementary sequences from old ones. They also
discussed methods for constructing mutually orthogo-
nal complementary sets. We state without proof sev-
eral of their results:

• (Application of Theorem 11) Given a complemen-

tary pair of sequences (A1, A2) then (Ã2,−Ã1) is
one of its mates. This is, in fact, exactly the case
with Loran’s master and secondary phase codes
with

A1 = [+1,+1,+1,+1,+1,−1,−1,+1]

A2 = [+1,−1,+1,−1,+1,+1,−1,−1]

• (Application of Theorem 14) If ∆ is a matrix
whose columns are mates then the columns of

∆′ =

[
∆ ∆

∆̃ −∆̃

]

Table 1: 4 codeword example.

# group 1 group 2 group 3 group 4
1 CA 9F F9 AC
2 F9 AC CA 9F
3 06 53 CA 9F
4 35 60 F9 AC

form a larger collection (twice as many) of mates

each with twice as many groups (the notation ∆̃
is defined to be the column reversal, but not a
sequence reversal, of ∆).

As an example, let’s extend the code from the first
bullet. Since ∆ is defined by

∆ =

[
A1 Ã2

A2 −Ã1

]

then

∆′ =


A1 Ã2 A1 Ã2

A2 −Ã1 A2 −Ã1

Ã2 A1 −Ã2 −A1

−Ã1 A2 Ã1 −A2


This construction takes two codes, each with two
groups of 8 values, and constructs a set of four codes,
each with four groups of 8 values and is equivalent to
the example presented in [1]. Mapping each +1 to 1
and each −1 to 0, the codewords can be written in hex-
adecimal symbols (two per group) as shown in Table
1.

Extending, we easily can construct a set of 8 codes,
each with 8 groups of 8 values, followed by 16 codes,
each with 16 groups of 8 values, and then 32 codes,
each with 32 groups of 8 values (a large enough code
set for the Loran stations in North America).

Tseng and Liu also provide other recursive recipes
for building larger sets of mutually orthogonal codes.
While also doubling the size of the code by each cy-
cle, the number of values per group also doubles (e.g.
4 codes, each with four groups of 16 values!). Our
preference here is to keep the growth smaller.

We envision the new eLoran transmission as being such
blocks of pulses, with polarities set by the values of
the complementary code. A PCI, then, would consist
of p sub-blocks, each of 8 pulses, separated by quiet
periods. The codewords, then, consist of p blocks of
±1 separated by strings of zeros. Figure 9 shows the
first codeword of Table 1.
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+1,+1,−1,−1,+1,−1,+1,−1︸ ︷︷ ︸
group “CA”

, 0, 0, . . . 0︸ ︷︷ ︸
42 zeroes

,+1,−1,−1,+1,+1,+1,+1,+1︸ ︷︷ ︸
group “9F”

, 0, 0, . . . 0︸ ︷︷ ︸
42 zeroes

,

+1,+1,+1,+1,+1,−1,−1,+1︸ ︷︷ ︸
group “F9”

, 0, 0, . . . 0︸ ︷︷ ︸
42 zeroes

,+1,−1,+1,−1,+1,+1,−1,−1︸ ︷︷ ︸
group “AC”

, 0, 0, . . . 0︸ ︷︷ ︸
42 zeroes



Figure 9: First codeword of the 4-ary code.

Performance of Complementary Codes

By design, complementary codes have perfect auto-
and cross-correlation characteristics for small lags. Of
interest is what happens for larger lags and how im-
portant the results are.

Recall that eLoran pulses travel at nearly the speed
of light. Assuming a maximum Loran station sepa-
ration of 5600 km (using existing locations, ignoring
Alaska, this is Cape Race in Northeast Canada to Mid-
dletown in Southern California, and you’ll never hear
Cape Race in California) the maximum propagation
time difference is approximately 19,000 µsec; in other
words, the first pulse in a codeword from one transmit-
ter is received within ±19 msec (±19 slots) of the first
pulse in the codeword of another transmitter (assum-
ing that the transmitters are synchronous). Hence, a
window of at least 28 slots (8 pulse periods for the
group transmission itself plus 20 more pulses periods
for the differential transmission delay) with zero cross-
correlation would suffice to eliminate multiple access
interference. In deciding the size of this zero zone we
should also account for sky wave from distant stations.
So perhaps zero cross-correlation out to 35 slots would
be preferred. As to auto-correlation, a zero window
of size 8 would suffice to eliminate sky wave interfer-
ence.

The discussion above assumes that the receiver knows
which group is which; i.e. is tracking the signal and
the zero auto- and cross-correlations imply no bias in a
TOA estimate from either sky wave or other transmit-
ters. For acquisition we care about the entire auto- and
cross-correlation sequences. At first glance it might
appear that any non-zero cross-correlation might be
a problem when acquiring weaker (more distant) sig-
nals – the near-far problem. Fortunately, given the
Loran time scale, all a receiver need do is acquire the
strongest station. Since the desired peak for the weak
station is known to be within 28 slots of this point,
zero cross-correlation out to lag 28 will allow for cor-
rect acquisition of the weaker signal.

For example, let’s consider the performance of the 4
codeword code in Table 1. Above we envisioned a GRI
of 50 msec, adding 42 zeroes between each group. For
this example, let’s do the same, creating a total PCI of
200 msec (200 slots) for the four groups of each code-
word. The relevant correlation lags, then, will be −100
to +100. Figure 10 shows the auto-correlation func-
tions for the four codewords. As expected, each has a
peak of 32 at zero lag and otherwise displays zero auto-
correlation for lags between −42 and +42 (the com-
plementary design only guaranteed −7 to +7). These
zeroes imply the elimination of sky wave with a delay
of up to 34 (42 − 8) slots. The remaining values are
bounded within −8 and +8, easing the task of acqui-
sition (versus the true peak at 32, 6 dB). Similarly,
Figure 11 shows the cross-correlations. The zero cor-
relations for lags from −42 to +42 implies that once we
acquire the strongest station, all of the others will be
found. Of concern are the perfect (value of ±32) cross
correlations between the first and second codewords
and the third and fourth. These occur because those
codewords are cyclic shifts of one another (and is a
function of the code construction procedure); the con-
cern is that a receiver might confuse the codewords.
One solution to this problem is to vary the spacing
between blocks of pulses.

Large Area (LA) Codes

In 1999 Li presented a technique for creating zero
correlation zone codes for application to CDMA [17].
The codes are ternary, consisting of symbols from
{+1,−1, 0}. The non-zero symbols of each codeword
come from an orthogonal Hadamard matrix (i.e. an
K-by-K Hadamard matrix yielding K codewords).
The individual codewords are constructed by inserting
strings of zeros between the ±1 values. Notationally,
a LA(N,M,K) code consists of K codewords, each
of length N , consisting of N − K zeros and K ±1s.
The parameter M represents the shortest length of ze-
ros in the codeword construction (all codewords follow
the same pattern). The rules for the zero insertions
are:
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Figure 10: Auto-correlations of the 4 group code.
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Figure 11: Cross-correlations of the 4 group code.

Proc. ION GNSS+ 2015, Tampa FL, Sept. 2015



+1,+1,−1,−1,+1,−1,+1,−1︸ ︷︷ ︸
group “CA”

, 0, 0, . . . 0︸ ︷︷ ︸
27 zeroes

,+1,−1,−1,+1,+1,+1,+1,+1︸ ︷︷ ︸
group “9F”

, 0, 0, . . . 0︸ ︷︷ ︸
39 zeroes

,

+1,+1,+1,+1,+1,−1,−1,+1︸ ︷︷ ︸
group “F9”

, 0, 0, . . . 0︸ ︷︷ ︸
55 zeroes

,+1,−1,+1,−1,+1,+1,−1,−1︸ ︷︷ ︸
group “AC”

, 0, 0, . . . 0︸ ︷︷ ︸
47 zeroes



Figure 12: First codeword of the 4-ary code, but with variable spacing.

• The minimum length defines the width of the
zero correlation zone; i.e. the auto- and cross-
correlations are zero from −M to M .

• All but one of the lengths should be even; only
one should be odd.

• Each length should appear only once.

• No length should be the sum of other lengths.

• While the ordering of the zero strings can be per-
muted, they should be the same for all codewords.

This construction guarantees that for any non-zero
shift (i.e. auto- or cross-correlation lag) only one
pair of pulses will align; hence, these auto- and cross-
correlations are limited to ±1 and zero. At zero lag
the auto-correlation is K and the cross-correlation is
zero by the use of a Hadamard matrix.

As an example consider the lengths 6, 8, 10, and 11.
A typical codeword would be of length 39 with for-
mat

±1, 0, 0, . . . 0︸ ︷︷ ︸
6

,±1, 0, 0, . . . 0︸ ︷︷ ︸
8

,±1, 0, 0, . . . 0︸ ︷︷ ︸
10

,±1, 0, 0, . . . 0︸ ︷︷ ︸
11

This code’s auto-correlation at zero lag is only 4 versus
±1 at a few other points; however, longer codes will
provide more gain.

LA codes can be combined with complementary se-
quences to form LAS codes [3]. For our Loran appli-
cation each group in the complementary sequence is
separated by a different length zero string. For Loran
we can think of this as having a fixed PCI with varying
GRIs within the PCI.

Let’s continue the example with the four codewords
in Table 1 using zero strings of lengths 27, 39, 55,
and 47, respectively, still resulting in a 200 slot code.
Figure 12 shows the construction of the first of the
codewords for comparison to Figure 9. Assuming that
all 4 codewords have this same staggering, the auto
and cross-correlations are shown in Figures 13 and 14.
The autocorrelations are slightly worse; while the off

peak maximum is still limited to 8, the width of the
zero zone is narrower (now only ±27) and more lags
have non-zero auto-correlation. The cross-correlations
are much better, however, dropping from a maximum
of 32 to a maximum of 8. In LA codes, the worst
case auto- (excluding zero lag) and cross-correlations
are constructed to be ±1; using these same ideas for
multiple groups, the worst case values should equal n,
8 in this case.

Going to longer (more groups) codes, with proper
selection of the zero lengths the maximum auto-
correlation increases while the auto- and cross-
correlations outside of the zero zone should still be
bounded within ±8. For example, 32 unique code-
words with 32 groups each would have a zero lag auto-
correlation of 256 (8 times 32) while the non-zero lag
auto-correlation and cross-correlations would remain
within ±8. This factor of 32 provides near-far pro-
tection for the acquisition process. And, in any case
as mentioned above, for acquisition we need only use
the strongest station for group timing recovery. Once
we know the group alignment, the zeroes in the cross-
correlation mitigate any near-far problem.

A Code with 8 Codewords

This same construction can be continued. Tseng and
Liu’s method easily yields a set of 8 unique phase
codes, each composed of 8 groups of 8 pulse ampli-
tudes. Mapped to binary (1/0) symbols, hexadecimal
representations for the codewords appear in Table 2.
Since they are mutually orthogonal complementary se-
quences, we have perfect auto- and cross-correlations
for small lags. To yield good acquisition we must find
a set of lengths for the intervening zero sequences to
eliminate overlap. Even spacing does not work well
in this case; for example, inserting blocks of 42 (or
52 or 62 . . . ) zeros results in a worst case auto-
correlation of 8 and a worst case cross-correlation of
64, not effective when compared to the zero lag auto-
correlation of 64. It is, however, possible to find a set
of varying gaps to improve matters. For example the
set {60, 69, 78, 87, 96, 105, 114, 145} achieves maximum
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Figure 13: Auto-correlations of the 4 group code using unequal group spacing.
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Figure 14: Cross-correlations of the 4 group code using unequal group spacing.
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Table 2: Code of size 8.

codeword # group 1 group 2 group 3 group 4 group 5 group 6 group 7 group 8
1 CA 9F F9 AC 35 60 F9 AC
2 F9 AC CA 9F 06 53 CA 9F
3 06 53 CA 9F F9 AC CA 9F
4 35 60 F9 AC CA 9F F9 AC
5 CA 9F 06 53 CA 9F F9 AC
6 F9 AC 35 60 F9 AC CA 9F
7 06 53 35 60 06 53 CA 9F
8 35 60 06 53 35 60 F9 AC

+1, 0, 0,+1, 0, 0,−1, 0, 0,−1, 0, 0,+1, 0, 0,−1, 0, 0,+1, 0, 0,−1, 0, 0,︸ ︷︷ ︸
group “CA”

, 0, 0, . . . 0︸ ︷︷ ︸
88 zeroes

,+1, 0, 0,−1, 0, 0, . . .



Figure 15: The start of the first codeword of from Table 2 assuming 1/3 msec pulse spacing.

(non-zero lag) auto- and cross-correlations of 8. Sum-
ming the number of slots yields a PCI of 818 (0.818
seconds assuming 1msec pulse spacing) or an average
GRI of 102.25 µsec. This is a little large, we would
prefer 15-20 groups per second.

An alternative, so as to reduce the average group du-
ration, is to allow for fractional spacing of the pulses.
Recall that the existing eLoran pulse has a duration
of approximately 300 µsec. If we imagine three time
slots per msec, then we can use this fractional spac-
ing to stagger the groups, dramatically reducing out
of group overlap. Our current construction maintains
the 1 msec minimum spacing of the pulses; equiva-
lently, every ±1 in the codeword is followed by two
0’s so that each group fills 24 slots. To exploit this
fractional spacing, consider having 8 zero sequences of
lengths

88, 175, 80, 185, 121, 224, 173, 262

With these lengths the total PCI is duration 88+175+
80+185+121+224+173+262+8∗24 = 1500 slots; at
3 slots/msec this is 500 msec for a total of 16 groups
per second. Figure 15 shows the first portion of the
first codeword to demonstrate the construction.

COMMENTS

To reiterate our view of this work – the reader should
recognize that these ideas and results are not intended
to define what the best eLoran system is; rather, if
eLoran soars again in the U.S., we hope that these
remarks initiate a dialogue that looks beyond the de-
cisions made in the 1950’s.

To close we have several comments:

• We believe that through the use of code division
multiplexing with all stations broadcasting simul-
taneously, and with the same timing, can elimi-
nate both sky wave interference as well as inter-
ference from the other transmitters, resulting in
unbiased time of arrival estimates. This is true
whether the signal is being used for position or
dissemination of precise time.

• To consider examples we kept the basic pulse
shape, pulse separation of 1 msec, binary polarity
modulation (±1), and 8 groups per group:

– A shorter pulse (< 250 µsec) would be better
in that we could stagger pulse blocks more
easily as in LA codes.

– Closer or wider spacing of the pulses could be
considered. Closer spacing would allow for
more energy transmission per second; wider
spacing could help eliminate sky wave and
reduce near-far issues.

– An obvious extension is to allow complex po-
larity (sign and phase) to ±1, ±j.

– Having 8 pulses per group should be re-
examined; we kept this for convenience only.

• The last design example resulted in 8 unique code-
words although the extension to 16 or 32 is obvi-
ous. With a smart selection of power level and
reuse, it might be possible to cover North Amer-
ica with 16 or maybe even 8 codewords.
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