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Integrability and level crossing manifolds in a quantum Hamiltonian system

Vyacheslav V. Stepanov and Gerhard Mu¨ller
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817

~Received 17 June 1998!

We consider a two-spin model, representedclassicallyby a nonlinear autonomous Hamiltonian system with
two degrees of freedom and a nontrivial integrability condition, andquantum mechanicallyby a real symmetric
Hamiltonian matrix with invariant blocks of dimensionalitiesK5

1
2 l ( l 11), l 51,2,... . In the six-dimensional

parameter space of this model, classical integrability is satisfied on a five-dimensional hypersurface, and level
crossings occur on four-dimensional manifolds that are completely embedded in the integrability hypersurface
except for some lower-dimensional submanifolds. Under mild assumptions, the classical integrability condition
can be reconstructed from a purely quantum mechanical study of level degeneracies in finite-dimensional
invariant blocks of the Hamiltonian matrix. Our conclusions are based on rigorous results forK53 and on
numerical results forK56,10. @S1063-651X~98!13711-X#

PACS number~s!: 05.45.1b, 75.10.Hk, 75.10.Jm

I. INTRODUCTION

One of the most widely studied indicators of quantum
chaos can be obtained via the statistical analysis of energy
level spacings. Generically, the level spacings of quantized
integrable systems tend to be well described by an exponen-
tial distribution ~Poisson statistics!, whereas quantized non-
integrable systems tend to have a distribution in which the
probability of very small spacings is suppressed~Wigner sta-
tistics! due to the phenomenon of level repulsion. The level
turbulence such as exists in quantized nonintegrable systems
can be simulated by the eigenvalues of random matrices with
specific distributions of elements~e.g., Gaussian orthogonal
ensemble! @1,2#.

The statistical nature of this indicator precludes its use for
mapping out the regions of integrability in the parameter
space of Hamiltonian systems. However, determining the
conditions for the occurrence of level degeneracies, on which
the outcome of the statistical analysis depends, proves to be
useful for precisely that purpose.

Here we show for a specific model system how the
~known! classical integrability condition in a six-dimensional
~6D! parameter space can be reconstructed, under mild as-
sumptions, from a purely quantum mechanical study of the
manifolds~in the same parameter space! where at least two
energy levels are degenerate.

Practical considerations dictate that we use a model sys-
tem where the Hilbert space splits into finite-dimensional
invariant subspaces. However, the significance of the results
presented here transcends this restriction and suggests that
the concept of integrability remains meaningful albeit more
subtle for quantum systems with few degrees of freedom
@3,4#.

We consider two quantum spinsS1 , S2 in biaxial orien-
tational potentials interacting via a biaxial exchange cou-
pling. The Hamiltonian reads

H5 (
a5xyz

H 2JaS1
aS2

a1
1

2
Aa@~S1

a!21~S2
a!2#J . ~1!

The spin operatorsSl5(Sl
x ,Sl

y ,Sl
z) satisfy the commutation

relations @Sl
a ,Sl 8

b
#5 i\d l l 8(geabgSl

g . Their time evolution
is governed by the Heisenberg equation

dSl

dt
5

i

\
@H,Sl #, l 51,2. ~2!

If both spins have the same quantum mechanical length
As(s11) (s5 1

2 ,1,32 , . . . ), thediscrete symmetry group of
the Hamiltonian~1! is D2^ S2 , whereD2 contains all the
twofold rotationsC2

a , a5x,y,z about the coordinate axes,
andS5(E,P) is the permutation group of the two spins. The
characters of this group are displayed in Table I@5#.

The use of symmetry-adapted basis vectors with transfor-
mation properties corresponding to the eight different irre-
ducible representationsR of D2^ S2 brings the Hamiltonian
matrix into block-diagonal form:

H5 %

R,s
HR

s . ~3!

There exist invariant subspaces with dimensionalitiesK
51,3,6,10,... in 16 different realizations for four different
values of the spin quantum numbers as illustrated in Table
II. The caseK51 is exceptional.

TABLE I. The characters of the irreducible representationsR of
the groupD2^ S2 .

D2^ S2 E C2
z C2

y C2
x P PC2

z PC2
y PC2

x

A1S 1 1 1 1 1 1 1 1
A1A 1 1 1 1 21 21 21 21
B1S 1 1 21 21 1 1 21 21
B1A 1 1 21 21 21 21 1 1
B2S 1 21 1 21 1 21 1 21
B2A 1 21 1 21 21 1 21 1
B3S 1 21 21 1 1 21 21 1
B3A 1 21 21 1 21 1 1 21
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II. CLASSICAL INTEGRABILITY MANIFOLD

In the limit \→0, s→`, \As(s11)5s, the operators
Sl

a become the components of the classical spin vector with
fixed lengths @6#,

Sl5~Sl
x ,Sl

y ,Sl
z!5s~sin q l cosw l ,sin q l sin w l ,cosq l !,

~4!

and Eq.~2! turns into Hamilton’s equation,

dSl

dt
52Sl3

]H

]Sl
5$H,Sl%, l 51,2 ~5!

where $Sl
a ,Sl 8

b %52d l l 8(geabgSl
g are the Poisson brackets

for spin variables. Each classical spin~4! is expressible in
terms of two canonical coordinates

pl5s cosq l , ql5w l , l 51,2. ~6!

The Hamiltonian~1!, now interpreted as a classical en-
ergy function, thus specifies an autonomous system with two
degrees of freedom. Integrability of that system requires the
existence of a second integral of the motion, i.e., an analytic
function I of the spin componentsSl

a with the property
$I ,H%50.

A systematic search for a second invariant in the form of
a degree-two polynomial yielded two distinct nontrivial so-
lutions, provided the six parameters satisfy the condition@7#

~Ax2Ay!~Ay2Az!~Az2Ax!1 (
abg5cycl~xyz!

Ja
2~Ab2Ag!50.

~7!

If there is no single-site anisotropy,Ax5Ay5Az , then the
second integral of motion reads

I 52 (
abg5cycl~xyz!

JaJbS1
gS2

g1
1

2 (
a5xyz

Ja
2@~S1

a!21~S2
a!2#,

~8!

otherwise it has the form

I 5 (
a5xyz

gaS1
aS2

a ,

ga5Ja~Ja1Jb1Jg!1~Aa2Ab!Jg1~Aa2Ag!Jb

2~Aa2Ab!~Aa2Ag!, abg5cycl~xyz!. ~9!

Hence, in the 6D parameter space of this two-spin model
the classical integrability condition is satisfied on a 5D mani-
fold. Integrals of the motion of higher-degree polynomial
form or of nonpolynomial form cannot be ruled out, but it is
unlikely that any other hypersurface of integrability would
have escaped the numerical studies of this model@7,8#. Ad-
ditional integrability manifolds of dimensionalities four or
less remain an intriguing possibility but do not interfere with
any conclusions reached in this study.

III. LEVEL-CROSSING MANIFOLDS

Does the integrability condition~7! of the classical two-
spin model~1! have any bearing on the presence or absence
of level degeneracies in low-dimensional invariant subspaces
of the corresponding quantum two-spin model? The sub-
spaces with a single energy level (K51), which are realized
for s<2, are uninteresting in this context. The next lowest
subspace dimensionality isK53. The occurrence of level
degeneracies for the parametric Hamiltonian~1! will now be
analyzed on a rigorous basis for all 16 invariant subspaces
with K53. Their entries are highlighted in Table II.

A. Parametric representation for K53

The most general real symmetric 333 matrix has six in-
dependent elements. For the purpose of studying level de-
generacies, it is sufficient to consider matrices with zero
trace:

M5S 2h b d

b e2h c

d c 2e2h
D . ~10!

That leaves five independent elementsb,c,d,e,h and thus
simplifies the analysis because the characteristic polynomial
now has a vanishing quadratic term:

uM2xEu5x32Bx1C50. ~11!

The discriminant has the form

D54B3227C2, ~12!

with coefficients

B5b21c21d21e213h2,
~13!

C5h~2e212c22b22d222h2!1e~d22b2!22bcd.

The zeros ofD coincide with the points of level degeneracy
in M . This is evident in the product form

D5)
i ,k

~xi2xk!
2 ~14!

TABLE II. DimensionalitiesK of the invariant subspaces per-
taining to the eight symmetry classesR of eigenstates for spin quan-
tum numberss<4.

R\s 1
2 1 3

2 2 5
2 3 7

2 4

A1S 3 1 6 3 10 6 15
A1A 1 3 1 6 3 10 6
B1S 1 1 3 3 6 6 10 10
B1A 1 1 3 3 6 6 10
B2S 1 1 3 3 6 6 10 10
B2A 1 1 3 3 6 6 10
B3S 1 1 3 3 6 6 10 10
B3A 1 1 3 3 6 6 10
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of the discriminant in terms of the rootsxi of Eq. ~11!. Since
D is non-negative and depends smoothly onb,c,d,e,h, its
partial derivatives must also vanish at all points of level de-
generacy:

]D

]b
512B22b254C~22bh22eb22cd!50,

]D

]c
512B22c254C~4hc22bd!50,

]D

]d
512B22d254C~22dh12ed22cb!50, ~15!

]D

]e
512B22e254C~4eh1d22b2!50,

]D

]h
512B26h254C~2e212c22b22d226h2!50.

These additional conditions simplify the search for zeros of
D. C50 implies B50 and vice versa. This case describes
the threefold level degeneracy atb5c5d5e5h50. Hence-
forth we assumeBÞ0 andCÞ0 with no loss of generality.
The five relations~15! can then be written in the more com-
pact form

2B2

9C
5

2bh2be2cd

b
5

2hc2bd

c
5

2dh1ed2bc

d

5
4eh1d22b2

2e
5

2e212c22b22d226h2

6h
. ~16!

Inspection shows that only two of the relations~16! are
independent, and thatD50 holds wherever Eq.~16! is sat-
isfied. The points of level crossing are thus confined to a 3D
manifold in (b,c,d,e,h) space. This manifold can be param-
etrized by three of the five elements. ForeÞ0 andbÞ6d
we have

c5
2bde

b22d2 , h5
b22d2

6e F12
2e2~b21d2!

~b22d2!2 G . ~17!

Viewed on any of the five 4D coordinate hyperplanes,
where one of the elementsb,c,d,e,h is equal to zero, the
level-crossing manifold reduces to two or three 2D surfaces.
Parametric representations of all eight such surfaces are
given in Table III.

B. Level crossing labels

In a three-level system, any twofold degeneracy either
involves the upper two levels or the lower two levels. How
does this distinction manifest itself in the structure of the
level crossing manifold? The eigenvalues of the matrixM
for points on the level crossing manifold can be written in
the form

~x1 ,x2 ,x3!5S j,2
1

2
j,2

1

2
j D , ~18!

where

j5
4

3 Fe~b21d2!

b22d2 1
b22d2

4e G . ~19!

If j.0 (j,0) then it is the highest~lowest! level that re-
mains nondegenerate. A threefold degeneracy (j50) occurs
only at the pointb5c5d5e5h50.

Do the points withj.0 and the points withj,0 form
connected regions on the level crossing manifold? To inves-
tigate this issue we consider the map described by Eq.~17!
between the (b,d,e) space and the 3D level crossing mani-
fold in (b,c,d,e,h) space. This map is singular on the three
planese50, b1d50, b2d50, which divide the (b,d,e)
space into octants. Octants which share a face~one quadrant
of a coordinate plane! have j values of opposite sign, and
octants which share only an edge~half a coordinate axis!
havej values of equal sign.

For a point (b,d,e) approaching any one of the three
planes that separate octants, the image in (b,c,d,e,h) space
diverges, but for a point (b,d,e) approaching a line where
any two of the three separating planes intersect, the image
may or may not diverge.

Consider smooth trajectories of points (b,d,e) that con-
nect two octants across one of these special lines. Inspection
shows that any trajectory connecting octants with a common
face has a divergent image. However, there do exist trajec-
tories with nondivergent and continuous images between any
two octants that have only an edge in common.

For example, setb1d.0 and consider trajectoriese
→0, b2d→0 with e/(b2d)5uÞ0 toward the edge of four
octants. Along such a trajectory we have

c5bu, h5
b

3u
2

bu

3
, j5

4bu

3
1

2b

3u
. ~20!

Octants that are diagonally across the edge have either both
u.0 or u,0. Hence they are connected by trajectories with
finite c,h and with no change of sign inj. No such trajecto-
ries exist between adjacent octants.

TABLE III. 2D intersections of the 3D level-crossing manifold
~17! with the 4D coordinate hyperplanes. The two elements of Eq.
~10! which play the role of parameters in each case are marked by
asterisks.

b c d e h

0 0 * * 2e22d2

6e

0 * 0 * 6
1
3Ae21c2

* 0 0 *
b222e2

6e

* * 6b 0 6
b22c2

3c

* 6
&bd

Ab21d2
* 6

1

&

b22d2

Ab21d2
0
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All this demonstrates that the 3D level crossing manifold
consists of one sheet forj,0 and one sheet forj.0, con-
nected only at the pointb5c5d5e5h50.

C. Embedment in classical integrability manifold

These results can now be used to locate all level crossings
in the invariant blocks of Eq.~3! with K53. Table II iden-
tifies 16 such blocks, two for each symmetry class. The three
eigenvalues ofHR

s on the level crossing manifold are then

~E1 ,E2 ,E3!5S j,2
1

2
j,2

1

2
j D1lR

s , ~21!

with j given in Eq.~19!. Table IV expresseslR
s5Tr HR

s and
the matrix elementsa,b,c,d,e,h in terms of the six Hamil-
tonian parameters for four of the 16 invariant subspaces of
Eq. ~3! with K53.

Consider, for example, the matrixHA1A
3 pertaining to the

symmetry classA1A for spin quantum numbers53. If we
take one of the relations~16! which must be satisfied at all
points of level crossing,

c~2e212c22b22d226h2!56h~2ch2bd!, ~22!

and express the matrix elements in terms of the Hamiltonian
parameters forHA1A

3 , we find that it is equivalent to the
classical integrability condition~7!. Hence no level crossings
occur inHA1A

3 if the classical system is nonintegrable. In the
6D parameter space of Eq.~1!, the points of level degeneracy
pertaining toHA1A

3 are thus confined to a 4D manifold which
is determined, according to Eq.~17!, by the two relations

Ax2Ay5
~Jx

22Jy
2!Jz

2

JxJyJz
,

~23!

Ax1Ay22Az5
2Jx

2Jy
22~Jx

21Jy
2!Jz

2

JxJyJz
.

Either relation can be replaced by the classical integrability
condition ~7!.

We have determined that in all 16 invariant subspaces
with K53 the conditions~17! for the occurrence of a level
degeneracy imply that the classical integrability condition~7!
is satisfied. Geometrically speaking, the classical integrabil-
ity condition is satisfied on a 5D hypersurface in 6D param-
eter space. In each of the 16 invariantK53 subspaces ofH,
level crossings occur on a distinct 4D manifold. The result of
our calculation is that all 16 4Dlevel-crossing manifoldsare
embedded in the 5Dclassical integrability hypersurfaceof
the 6D parameter space.

D. Shape forK53

For a graphical representation of the level crossing mani-
folds embedded in the integrability manifold we use the re-
duced 3D parameter space spanned byJy ,Jz ,Ax2Ay[2A at
Jx51, Ax1Ay50, Az50 @9#. Here the integrability condi-
tion ~7! reads

A~11Jy
222Jz

222A2!50 ~24!

and is satisfied on two intersecting 2D surfaces—the plane
A50 and a hyperboloid. In any planeAÞ0, integrability
thus holds on a pair of hyperbolic curves. Several such lines
are shown in Fig. 1. The two intersecting straight lines per-
tain to A561/&.

The level-crossing manifolds are lines in (Jy ,Jz ,A)
space, embedded in the 2D integrability manifold~24!. Table
V gives parametric representations of the level-crossing lines
in (Jy ,Jz ,A) space for four of the 16HR

s blocks with K
53.

The dashed curves in Fig. 1 represent projections onto the
(Jy ,Jz) plane of the pairs of level-crossing lines pertaining
to the invariant blocksHA1A

3 and HB1S
2 of Eq. ~3!. In

FIG. 1. The dashed curves are level crossing lines in the reduced
parameter space (Jy ,Jz ,A) projected onto the (Jy ,Jz) plane for
two invariant blocksHR

s with K53: HA1A
3 ~circles! and HB1S

2

~squares!. The solid lines represent the integrability hyperboloid at
uAu50,0.3,0.5,0.6,0.7,1/&,0.9,1.1,1.4. The pentagons mark sym-
metry points ofH.

TABLE IV. Dependence oflR
s5Tr HR

s and of the five indepen-
dent matrix elements ofM5HR

s2lR
s on the six parameters of Eq.

~1! for four invariant blocks of Eq.~3! with K53.

l52(Ax1Ay1Az)/3
HA1S

1 b52(Jx1Jy)/& c5(Ax2Ay)/2
d5(Jy2Jx)/& e52Jz

h5(Ax1Ay)/62Az/3

l54(Ax1Ay1Az)
HA1A

3 b523(Jx1Jy)/& c53(Ax2Ay)/2
d53(Jy2Jx)/& e53Jz

h5(Ax1Ay)/22Az

l511(Ax1Ay)/617Az/325Jz/3
HB1S

2 b52)(Jx1Jy) c5)(Ax2Ay)/2
d5Jy2Jx e5(Ax1Ay)/22Az12Jz

h5(Ax1Ay)/322Az/31Jz/3

l511(Ax1Ay)/617Az/315Jz/3
HB1A

2 b5)(Jy2Jx) c5)(Ax2Ay)/2
d52Jx2Jy e5(Ax1Ay)/22Az22Jz

h5(Ax1Ay)/322Az/32Jz/3
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(Jy ,Jz ,A) space, the two lines of each pair wrap around the
integrability hyperboloid in such a way that one is the reflec-
tion image of the other with respect to theJy axis. Points of
intersection of the level crossing lines with planesA5const
are marked as full~open! symbols forA.0 (A,0).

We have investigated the level crossing manifolds for all
16 invariant blocks ofHR

s with K53 in the reduced param-
eter space. There exists exactly one level crossing line with
j.0 and one withj,0 in each case. All lines are infinite
and different from each other. Each line crosses the plane
A50 at two of the four symmetry points (Jy ,Jz)5(61,
61),(61,71). These are the only points withA50 where
degenerate levels exist. Each level crossing line thus repre-
sents the 1D slice in (Jy ,Jz ,A) space of the sheet withj
.0 or j,0 of one of the 16 4D level crossing manifolds for
K53.

E. Dimensionality for arbitrary K

Higher-dimensional Hamiltonian matrices exist in the
two-spin model~1! as invariant blocks of Eq.~3! for K
56,10,15, . . . in 16 different realizations each. A real sym-
metricK3K matrix B has1

2 K(K11) independent elements.
On the level crossing manifoldL of dimensionalitydL ~to be
determined!, two or more of theK eigenvalues are degener-
ate. The manifoldL maps onto a manifoldZ of dimension-
ality dZ5dL21, where at least two eigenvalues are zero.

Two vanishing eigenvalues imply that all minorsumi j u of
the determinantuBu are zero, which yieldsK2 relations
among the matrix elementsBi j that must be satisfied. Not all
relations are independent. The requirementumi j u5umji u ren-
ders 1

2 K(K21) relations redundant. ForK.2 anotherK
relations are redundant because of the condition
( iBi j (21)i 1 j umi j u5uBu50 @10#. That leaves1

2 K(K21) in-
dependent relations for a guaranteed pair of zero-energy lev-
els. Consequently, we havedZ5K, i.e., dL5K11. For K
53 we thus recover the results of the explicit calculation,
namely, a 4D level crossing manifold in a 6D space of inde-
pendent matrix elements. Both dimensionalities are reduced
by one if we impose the condition of zero trace.

In an alternative approach, the matrixB has two vanish-
ing eigenvalues if the two lowest-order coefficients,C0 and

C1 , in the characteristic polynomial

uB2lEu5 (
k51

K

Ckl
k ~25!

vanish @11#. They are sums of products of up toK and K
21 matrix elements, respectively. This condition is equiva-
lent to the1

2 K(K21) conditions that all minorsumi j u vanish.
The equivalence of the two alternative criteria alerts us to the
fact that the conditionsC05C150 are compound condi-
tions, each one equivalent to multiple conditions of the kind
umi j u50 @12#.

In the context of the two-spin model, all matrix elements
are functions of six Hamiltonian parameters. Not all1

2 K(K
21)21 relations which determine the level-crossing mani-
fold are independent any more. All evidence suggests that
there remain exactly two independent relations, which then
describe a 4D manifold on the 5D integrability surface in 6D
parameter space, no matter what the matrix dimensionalityK
is.

It is expected that the level crossing manifold of a system
with K levels (E1<E2<¯<EK) consists ofK21 distinct
4D sheets where levelsk and k11 are degenerate. In the
caseK53 we have indeed identified two sheets and labeled
them by the sign of the energy parameterj.

The two independent relations among the Hamiltonian pa-
rameters which determine the 4D level crossing manifolds
involve polynomials of degrees}K. The shape of the level
crossing manifolds thus becomes increasingly convoluted as
K grows larger. Any randomly picked path on the integrabil-
ity manifold will thus intersect a given 4D sheet of a level-
crossing manifold more and more frequently. As a conse-
quence, the number of level crossing lines in the reduced
parameter space will increase more rapidly than the numbers
of levels present.

F. Shape forK56,10

Figure 2 depicts the level crossing manifold for the invari-
ant blockHA1A

4 of Eq. ~3! with K56 levels in the reduced
parameter space (Jy ,Jz ,A). The representation is similar to
that used in Fig. 1 forK53. The data shown here are mainly
the results of a numerical search for level crossings, but
some of the level degeneracies thus identified can be cor-
roborated analytically. The configuration of level crossing
lines is reflection symmetric with respect to the linesJy5A
50 andJz5A50.

Among the six levels with energiesE1<E2<¯<E6 ,
any occurrence of a level crossing can be characterized by
the position@k,k11# of the two degenerate levels in the
level sequence@13#. This label thus distinguishes five differ-
ent kinds of level crossings. All level crossing lines shown in
Fig. 2 are labeled accordingly. In the integrability planeA
50, level crossings occur at the four symmetry points
(Jy ,Jz)5(61,61),(61,71) as was already the case for
K53, and along the two~dot-dashed! lines Jy50 and Jz
50.

On the integrability hyperboloid we have identified ten
level crossing lines~dashed curves! as compared to just two
lines forK53. All ten lines are infinite. Eight of them inter-
sect the integrability plane at the four symmetry points men-

TABLE V. Level crossing lines withj.0 ~upper sign! and j
,0 ~lower sign! in the reduced parameter space (Jy ,Jz ,A) of four
invariant blocks of Eq.~3! with K53.

HA1S
1 Jz5

6&Jy

A11Jy
2

A5
6~12Jy

2!

A2~11Jy
2!

HA1A
3 Jz5

7&Jy

A11Jy
2

A5
6~12Jy

2!

A2~11Jy
2!

HB1S
2 Jz5

6~114Jy1Jy
2!

A10116Jy110Jy
2

A5
62~12Jy

2!

A10116Jy110Jy
2

HB1A
2 Jz5

7~124Jy1Jy
2!

A10216Jy110Jy
2

A5
62~12Jy

2!

A10216Jy110Jy
2
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tioned previously, where multiple degeneracies occur and are
well understood@14#. The intersection points~Jy50, Jz
561/&! for the remaining two lines do not involve mul-
tiple level degeneracies.

Thus far the structure of the observed level-crossing
manifold is in full accord with the scenario outlined in Sec.
III E. However, there also exist two straight lines of level
degeneracy oriented perpendicular to the (Jy ,Jz) plane at
~Jy561, Jz50!. These two level crossing lines are not con-
fined to the integrability manifold. They involve a degen-
eracy @3,4# at energyE50 @5,15#. Most important in the
context of our study is the dimensionality of this anomalous
level crossing submanifold. Unlike the other level crossing
lines in the reduced parameter space, which are slices of 4D
structures in the full 6D parameter space, they remain lower
dimensional.

The data for the invariant blockHA1A
5 of Eq. ~3!, which

hasK510 levels, confirm all the essential features that we
have already identified for the casesK53,6. New features
that would necessitate any change in interpretation have not
been observed. Figure 3 shows that the number of level
crossing lines has increased to ten on the integrability plane
A50 ~dot-dashed lines! and to 30 on the integrability hyper-
boloid ~solid lines atA.0, dashed lines atA,0!. As pre-
dicted, this increase exceeds the increase in the number of
levels significantly.

Every level crossing line on the hyperboloid intersects the
plane A50 at least once, either at one of the symmetry
points or at the intersection with a level crossing line in the
plane. The two anomalous level crossing lines observed for
K56 at ~Jy561, Jz50! are present again. All level cross-
ing lines except the anomalous ones represent slices of what
must beK2159 distinct sheets that make up the 4D level
crossing manifold in 6D parameter space. This manifold re-
mains fully embedded in the 5D classical integrability hyper-
surface~7!. Only the anomalous submanifold sticks out into
the classically nonintegrable region.

IV. QUANTUM INTEGRABILITY MANIFOLD

The picture that emerges from this study of level degen-
eracies in a quantum Hamiltonian system with a nontrivial
classical integrability condition may be summarized as fol-
lows. ~i! In the 6D parameter space of the two-spin model
~1!, level degeneracies occur predominantly on smooth 4D
structures.~ii ! For any given invariant blockHR

s with K lev-
els of the Hamiltonian matrix~3!, this 4D structure consists
of K21 sheets, where each sheet represents one pair@k,k
11# of degenerate levels in the sequenceE1<E2<¯

<EK . ~iii ! In addition to these 4D level crossing sheets there
also exist lower-D structures in the 6D phase space on which
level degeneracies take place.~iv! Level degeneracies in-
volving more than two states, likewise, occur only on
lower-D structures. For the most part they are observed at
symmetry points of the Hamiltonian.~v! All K21 4D level
crossing sheets pertaining to any invariant blockHR

s are
completely embedded in the 5D hypersurface on which the
classical integrability condition~7! is satisfied. Only lower-D
structures of the level crossing manifold exist elsewhere in
parameter space.

These observations are remarkable in the context of the
elusive concept of quantum integrability. One might argue
that integrability in the sense of analytic solvability has no
meaning for any matrixHR

s because algorithms that diago-
nalize real symmetricK3K matrices operate without any
restrictions. The fact is, however, that a universal switch is
encoded in allHR

s matrices that permits an abundance of
level degeneracies on a smooth 5D hypersurface in 6D pa-
rameter space and prohibits them almost everywhere else,
i.e., strictly everywhere else forK53 and everywhere else
except on lower-D submanifolds forK.3. As we carry out
the analysis for more and more invariant blocksHR

s , the
shape of this 5D hypersurface emerges with growing defini-
tion as the smooth interpolation of an ever increasing set of
4D level crossing sheets.

FIG. 2. The dashed curves are level crossing lines in (Jy ,Jz ,A)
space projected onto the (Jy ,Jz) plane for the invariant blockHA1A

4

with K56: The solid lines represent the integrability hyperboloid at
A50,0.5,1/&,0.9,1.4. The full~open! symbols mark degeneracies
between levelsk and k11 ~see legend! at A.0 (A,0). Level-
crossing lines@3,4# in the integrability planeA50 are shown dot-
dashed. The pentagons mark the positions of two anomalous lines
of @3,4# degeneracy perpendicular to the (Jy ,Jz) plane.

FIG. 3. Level crossing lines in (Jy ,Jz ,A) space for the invariant
block HA1A

5 with K510. The solid~dashed! lines are projections
onto the (Jy ,Jz) plane of 30 level crossing lines atA.0 (A,0) on
the integrability hyperboloid. The dot-dashed lines are ten level
crossing lines in the integrability planeA50. The thick lines out-
line the projected hyperboloid. The pentagons mark the positions of
two anomalous lines of level degeneracy perpendicular to the
(Jy ,Jz) plane.
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There is noa priori reason why the classical integrability
condition ~7! should have any such clear-cut bearing on the
spectral properties of low-dimensional irreducible quantum
representations of the two-spin model~1!. On the basis of the
correspondence principle, one might surmise that the 5D
classical integrability hypersurface is only relevant quantum
mechanically in an asymptotic sense, i.e., for systems with
s→`. The fact is, however, that in some representations
with as few asK53 levels the classical integrability condi-
tion results naturally as one of two conditions that, in com-
bination, guarantee a level degeneracy. Another fact is that
~under mild assumptions! the classical integrability condition
~7! can be reconstructed analytically from the quantum me-
chanical condition for the occurrence of level degeneracies
within low-K invariant subspaces.

If the level crossing manifolds are described by polyno-
mial equations among the Hamiltonian parameters as is the
case here, then their compatibility with an integrability con-
dition that is also described by a polynomial is restricted.
Bézout’s theorem@16# states~effectively! that the maximum
number of independent 4D manifolds which are embedded
simultaneously in two different 5D degree-n polynomial hy-
persurfaces in projective space isn2. Hence, the 16 indepen-
dent 4D level-crossing manifolds in 6D parameter space that
we have determined analytically forK53 representations in
Eq. ~3! uniquely determine the 5D integrability manifold if it
is described by a polynomial of degree less thanA1654. For
the situation at hand, the classical integrability manifold is

thus the only degree-three polynomial that can accommodate
all 16 level crossing manifolds forK53. When we add the
polynomial level crossing manifolds forK56,10,... to the
set of embedded manifolds, the uniqueness of the integrabil-
ity manifold applies to polynomials of higher and higher
degree.

The relation~7! among the six Hamiltonian parameters is
thus no less relevant for the quantum mechanical properties
than it is for the classical mechanical properties of the two-
spin model~1!. It plays the role of aquantum integrability
manifold as much as it represents the classical integrability
manifold.

The fact that almost all level crossings are confined to this
5D hypersurface in 6D parameter space is a compelling in-
dicator thatquantum integrabilityis a meaningful concept
for systems with few degrees of freedom. However, its es-
sence has yet to be elucidated. A different indicator of quan-
tum integrability and nonintegrability, which is based on
tracking individual eigenvectors along closed paths through
parameter space, is the subject of a study currently in
progress and promises to shed further light on this issue@17#.
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	Integrability and Level Crossing Manifolds in a Quantum Hamiltonian System
	Citation/Publisher Attribution

	Integrability and Level Crossing Manifolds in a Quantum Hamiltonian System
	Publisher Statement
	Terms of Use


	tmp.1392133117.pdf.VctpG

