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ABSTRACT 

According to limb loss statistics, there are over one million leg amputees in the 

US whose lives are severely impacted by their conditions. In order to improve the 

quality of life of patients with leg amputations, neural activities have been studied by 

many researchers for intuitive prosthesis control. The neural signals collected from 

muscles are electromyographic (EMG) signals, which represent neuromuscular 

activities and are effective bioelectrical signals for expressing movement intent. EMG 

pattern recognition (PR) is a widely used method for characterizing EMG signals and 

classifying movement intent. The key to the success of neural-controlled artificial 

limbs is the neural-machine interface (NMI) that collects neural signals, interprets the 

signals, and makes accurate decisions for prosthesis control.  

This dissertation presents the design and implementation of a real-time NMI that 

recognizes user intent for control of artificial legs. To realize the NMI that can be 

carried by leg amputees in daily lives, a unique integration of the hardware and 

software of the NMI on an embedded system has been proposed, which is real-time, 

accurate, memory efficient, and reliable. The embedded NMI contains two major 

parts: a data collection module for sensing and buffering input signals and a 

computing engine for fast processing the user intent recognition (UIR) algorithm. The 

designed NMI has been completely built and tested as a working prototype. The 

system performance of the real-time experiments on both able-bodied and amputee 

subjects for recognizing multiple locomotion tasks has demonstrated the feasibility of 

a self-contained real-time NMI for artificial legs. 



 

 

One of the challenges for applying the designed PR-based NMI to clinical 

practice is the lack of practical system training methods. The traditional training 

procedure for the locomotion mode recognition (LMR) system is time consuming and 

manually conducted by experts. To address this challenge, an automatic and user-

driven training method for the LMR system has been presented in this dissertation. In 

this method, a wearable terrain detection interface based on a portable laser distance 

sensor and an inertial measurement unit is applied to detect the terrain change in front 

of the prosthesis user. The identification of terrain alterations together with the 

information of current gait phase can be used to automatically identify the transitions 

among various locomotion modes, and labels the training data with movement class in 

real-time. The pilot experimental results on an able-bodied subject have demonstrated 

that this new method can significantly simplify the LMR training system and the 

training procedure without sacrificing the system performance. 

Environmental uncertainty is another challenge to the design of NMI for artificial 

limbs. EMG signals can be easily contaminated by noise and disturbances, which may 

degrade the classification performance. The last part of the dissertation presents a real-

time implementation of a self-recovery EMG PR interface. A novel self-recovery 

module consisting of multiple sensor fault detectors and a fast linear discriminant 

analysis (LDA) based classifier retraining strategy has been developed to immediately 

recover the classification performance from signal disturbances. The self-recovery 

EMG PR system has been implemented on a real-time embedded system. The 

preliminary experimental evaluation on an able-bodied subject has shown that the 

system can maintain high accuracy in classifying multiple movement tasks while 



 

 

motion artifacts have been manually introduced. The results may propel the clinical 

use of EMG PR for multifunctional prosthesis control. 
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Abstract 

The quality of life of leg amputees can be improved dramatically by using a cyber 

physical system (CPS) that controls artificial legs based on neural signals representing 

amputees‟ intended movements. The key to the CPS is the neural-machine interface 

(NMI) that senses electromyographic (EMG) signals to make control decisions. This 

paper presents a design and implementation of a novel NMI using an embedded 

computer system to collect neural signals from a physical system - a leg amputee, 

provide adequate computational capability to interpret such signals, and make 

decisions to identify user‟s intent for prostheses control in real time. A new 

deciphering algorithm, composed of an EMG pattern classifier and a post-processing 

scheme, was developed to identify the user‟s intended lower limb movements. To deal 

with environmental uncertainty, a trust management mechanism was designed to 

handle unexpected sensor failures and signal disturbances. Integrating the neural 

deciphering algorithm with the trust management mechanism resulted in a highly 

accurate and reliable software system for neural control of artificial legs. The software 

was then embedded in a newly designed hardware platform based on an embedded 

microcontroller and a graphic processing unit (GPU) to form a complete NMI for real 

time testing. Real time experiments on a leg amputee subject and an able-bodied 

subject have been carried out to test the control accuracy of the new NMI. Our 

extensive experiments have shown promising results on both subjects, paving the way 

for clinical feasibility of neural controlled artificial legs. 
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1.1   Introduction 

There are over 32 million amputees worldwide whose lives are severely impacted 

by their condition. This number is growing as the population ages and as the incidence 

of dysvascular disease increases. Over 75% of major amputations were lower-limb, 

with nearly 17% of lower-limb amputees suffering bilateral amputations [1]. 

Therefore, there is a continued need to provide this large and growing population of 

amputees with the best care and return of function possible.  

With the rapid advances of cyber system technologies, it has in recent years 

become possible for high speed, low cost, and real time embedded computers to be 

widely applied in biomedical systems. The computerized prosthetic leg is one 

prominent example, in which motion and force sensors and a microcontroller 

embedded in the prosthesis form a close loop control and allow the user to produce 

natural gait patterns [2-3].  However, the function of such a computerized prosthesis is 

still limited. The primitive prosthesis control is based entirely on mechanical sensing 

without knowledge of user intent. Users have to “tell” the prostheses their intended 

activities manually or using body motion, which is cumbersome and does not allow 

smooth task transitions. The fundamental limitation on all existing prosthetic legs is 

lack of neural control that would allow the artificial legs to move naturally as if they 

were the patient‟s own limb.  

This paper presents a novel neural-machine interface (NMI) that makes neural 

controlled artificial legs possible. The new NMI is a cyber physical system (CPS), in 

which a complex physical system (i.e. neuromuscular control system of a leg amputee) 

is monitored and deciphered in real time by a cyber system. It senses neural control 
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signals from leg amputees, interprets such signals, and makes accurate decisions for 

prostheses control. The neural signals that our NMI senses and collects from leg 

amputees are Electromyographic (EMG) signals that represent neuromuscular activity 

and are effective biological signals for expressing movement intent [4]. EMG signals 

have been used in many engineering applications, such as EMG-based power-assisted 

wheelchair [5], biofeedback therapeutic manipulator for lower limb rehabilitation [6], 

neuro-fuzzy interference system for identifying hand motion commands [7], and 

neural controlled artificial arms [8-9]. Previous research has shown that EMG was 

effective and clinically successful for artificial upper limbs [8-9]. However, no EMG-

controlled lower limb prosthesis is currently available, and published studies in this 

area are very limited because of the following technical challenges.  

First of all, in human physiological systems, EMG signals recorded from leg 

muscles during dynamic movements are highly non-stationary. Dynamic signal 

processing strategies [10] are required for accurate decoding of user intent from such 

signals. In addition, patients with leg amputations may not have enough EMG 

recording sites available for neuromuscular information extraction due to the muscle 

loss [10]. Maximally extracting neural information from such limited signal sources is 

necessary and challenging. 

The second important challenge is that the accuracy in identifying the user‟s 

intent for artificial legs is more critical than that for upper limb prostheses. A 90% 

accuracy rate might be acceptable for control of artificial arms, but it may result in one 

stumble out of ten steps, which is clearly inadequate for safe use of artificial legs. 

Achieving high accuracy is further complicated by environmental uncertainty, such as 
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perspiration, temperature change, and movement between the residual limb and 

prosthetic socket may cause unexpected sensor failure, influence the recorded EMG 

signals, and reduce the trustworthiness of the NMI [11]. It is therefore critical to 

develop a reliable and trustworthy NMI for safe use of prosthetic legs. 

The third challenge is the compact and efficient integration of software and 

hardware in an embedded computer system in order to make the EMG-based NMIs 

practical and available to patients with leg amputations. Such an embedded system 

must provide high speed and real time computation of neural deciphering algorithm 

because any delayed decision-making from the NMI also introduces instability and 

unsafe use of prostheses. Streaming and storing multiple sensor data, deciphering user 

intent, and running sensor monitoring algorithms at the same time superimpose a great 

challenge to the design of an embedded system for the NMI of artificial legs. 

To tackle these challenges, a neural interfacing algorithm has been developed that 

takes EMG inputs from multiple EMG electrodes mounted on a user‟s lower limb, 

decodes the user‟s intended lower limb movements, and monitors sensor behaviors 

based on trust models. Our EMG pattern recognition (PR) algorithm, together with a 

post-processing scheme, effectively process non-stationary EMG signals of leg 

muscles so as to accurately decipher the user‟s intent. The neural deciphering 

algorithm consists of two phases: offline training and online testing. To ensure the 

trustworthiness of NMI in an uncertain environment, a real time trust management 

(TM) module was designed and implemented to examine the changes of the EMG 

signals and estimate the trust level of individual sensors. The trust information can be 

used to reduce the impact of untrustworthy sensors on the system performance. 
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The new deciphering algorithm was implemented on an embedded hardware 

architecture as an integrated NMI to be carried by leg amputees. The two key 

requirements for the hardware architecture were high speed processing of training 

process and real time processing of the interfacing algorithm. To meet these 

requirements, the newly designed embedded architecture consists of an embedded 

microcontroller, a flash memory, and a graphic processing unit (GPU). The embedded 

microcontroller provided necessary interfaces for AD/DA signal conversion and 

processing and computation power needed for real time control. The control algorithm 

was implemented on the bare machine with our own memory and IO managements 

without using existing OS to avoid any unpredictability and variable delays. The flash 

memory was used to store training data. EMG PR training process involved intensive 

signal processing and numerical computations, which needs to be done periodically 

when the system trust value is low. Such computations can be done efficiently using 

modern GPUs that provide supercomputing performance with very low cost. New 

parallel algorithms specifically tailored to the multi-core GPU were developed 

exploiting memory hierarchy and multithreading of the GPU. Substantial speedups of 

the GPU for training process were achieved, making the classifier training time 

tolerable in practice.  

A complete prototype has been built implementing all the software and hardware 

functionalities. The prototype was used to carry out real time testing on human 

subjects. A male patient with unilateral transfemoral amputations was recruited in our 

experiments for evaluation of the user intent identification module. The goal of our 

experiments is to use the newly designed NMI prototype to sense, collect, and decode 
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neural muscular signals of the human subject. Based on the neural signals, the NMI 

tries to interpret the subject‟s intent for sitting and standing, two basic but difficult 

tasks for patients with transfemoral amputations due to the lack of power from the 

knee joint. The trust management module was also tested on a male able-bodied 

subject by introducing motion artifacts during the subject‟s normal sitting and standing 

task transitions. The detection rate and false alarm rate for distribution detection was 

evaluated. 

Extensive experiments of our NMI on the human subjects have shown promising 

results. Among the 30 sitting-to-standing transitions and the 30 standing-to-sitting 

transitions of the amputee subject, our NMI recognized all the intended transitions 

correctly with a maximum decision delay of 400ms. Our algorithm can also filter out 

occasional signal disturbances and motion artifacts with 99.37% detection rate and 0% 

false alarm rate. The videos of our experiments can be found at 

http://www.youtube.com/watch?v=H3VrdqXfcm8                                                              

and http://www.youtube.com/watch?v=6NwtMOw0YS0. 

The paper is organized as follows: The next section presents the system 

architecture and design of the algorithms and embedded system. Section 1.3 describes 

the experimental settings for our real time testing of the NMI prototype on the 

amputee and able-bodied subjects. The results of the study are demonstrated in section 

1.4, followed by related work in section 1.5, and a conclusion in section 1.6. 

1.2   System Architectures 

1.2.1   System Architecture 

http://www.youtube.com/watch?v=H3VrdqXfcm8
http://www.youtube.com/watch?v=6NwtMOw0YS0
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The architecture of neural-machine interface is shown in Figure 1.1. Multiple 

channels of EMG signals are the system inputs. EMG signals are preprocessed and 

segmented by sliding analysis windows. EMG features that characterize individual 

EMG signals are extracted for each analysis window. The system consists of two 

major pathways: one path for classifying user movement intent and the other for 

sensor trust evaluation (the dashed blocks in Figure 1.1). To identify user intent, EMG 

features of individual channels are concatenated into one feature vector. The goal of 

pattern recognition is to discriminate among desired classes of limb movement based 

on the assumption that patterns of EMG features at each location is repeatable for a 

given motion but different between motions [9]. The output decision stream of EMG 

pattern classifier is further processed to eliminate erroneous task transitions. In the 

path for sensor trust evaluation, the behaviors of individual sensors are closely 

monitored by abnormal detectors. A trust manager evaluates the trust level of each 

Figure 1.1. Software architecture of EMG-based neural-machine interface for 

artificial legs. 
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Figure 1.2. Hardware architecture of designed neural-machine interface. 

sensor and then adjusts the operation of the classifier for reliable EMG pattern 

recognition. 

The hardware architecture of the NMI (Figure 1.2) for artificial legs consists of 

seven components: EMG electrodes, amplifier circuits, analog-to-digital converters 

(ADCs), flash memory, RAM, GPU and an embedded controller. Multiple channels of 

EMG signals are collected from different muscles on the patient‟s residual limb using 

EMG electrodes. The amplifier circuits are built to make signal polarity, amplitude 

range, and signal type (differential or single-ended) compatible with the input 

requirements of ADCs. The outputs of the amplifier circuits are converted to digital 

format by the ADCs and then stored in a flash memory or a RAM. The embedded 

hardware works in two modes: training mode and real time testing mode. In the 

training mode, a large amount of EMG data are collected and stored in the flash 

memory. These data are then processed to train the EMG pattern classifier. The PR 

algorithm for the training phase includes complex signal processing and numerical 

computations, which are done efficiently in a high performance GPU. The parameters 
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of the trained classifier are stored in the flash memory upon completion of the training 

phase. The real time testing phase is implemented on the embedded microcontroller, 

including both the PR algorithm and the TM algorithm. In the real time testing mode, 

the EMG signals are sampled continuously and stored in the RAM of the embedded 

controller. The EMG data are then sent to the trained classifier for a decision to 

identify the user‟s intended movement and at the same time each EMG sensor is 

monitored by an abnormal detector. The trust value of each sensor is evaluated by a 

trust manager.   

1.2.2   Identification of User Intent 

A dynamic EMG pattern classification strategy and post-processing methods were 

developed in this study for high decision accuracy.  

EMG Signals: EMG signals recorded from gluteal and thigh muscles of residual 

limb were considered. 

EMG Features: Four time-domain (TD) features [12] (the mean absolute value, 

the number of zero-crossings, the waveform length, and the number of slope sign 

changes) were selected for real-time operation because of their low computational 

complexity [9] compared to frequency or time-frequency domain features. The 

detailed equation and description of these four TD features can be found in [12]. 

EMG Pattern Classification: Various classification methods, such as linear 

discriminant analysis (LDA) [12], multilayer perceptron [13], Fuzzy logic [14], and 

artificial neural network [10, 15], have been applied to EMG PR. The simple LDA 

classifier was used in this study because of the comparable classification accuracy to 

more complex classifiers [9, 16-18] and the computation efficiency for real-time 
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prosthesis control [9].  

 The idea of discriminant analysis is to classify the observed data to the 

movement class in which the posteriori probability )|( fCP g  can be maximized. Let 

]),1[( GgCg   denote the movement classes and f  be the feature vector in one 

analysis window. The posteriori probability is the probability of class gC given the 

observed feature vector f and can be expressed as 

                                     )(

)()|(
)|(

fP

CPCfP
fCP

gg
g                           (1.1) 

where )( gCP  is the priori possibility, )|( gCfP  is the likelihood, and )( fP  is the 

possibility of observed feature vector f . Given the movement class gC , the observed 

feature vectors have a multivariate normal (MVN) distribution. In addition, the priori 

possibility is assumed to be equivalent for each movement class, and every class 

shares a common covariance. Hence, the maximization of posteriori possibility in 

(1.1) becomes  
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The following expression,  
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1   ,             (1.3) 

is defined as the linear discriminant function, where g  
is the mean vector and   is 

the common covariance matrix. 

During the offline training, g  
and   were estimated by feature vectors 

calculated from a large amount of training data and were stored in the flash memory.  
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where gK  is the number of observations in class gC ; kCg
f ,  is the thk  observed 

feature vector in class gC ; gF  is the feature matrix  

],...,,...,[ ,,2,1, ggggg KCkCCCg ffffF  ; gM is the mean matrix ]~,...~,~[ ggggM   

that has the same number of columns as in gF . Then, the parameters in the linear 

discriminant function (1.3) were known, i.e.  
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In the real time testing, the observed feature f  derived from each analysis 

window was fed to the classifier to calculate 
gCd

~
in (1.4) for each movement class and 

was classified into a specific class 
gC

~
 that satisfied  

                         
},...,,{},

~
{maxarg

~
21 GgCCg CCCCdC

gg
 . 

Dynamic Pattern Classification Strategy: When EMG signals are non-stationary, 

the EMG features across time show large variation within the same task mode, which 

results in overlaps of features among classes and therefore low accuracy for PR [10]. 

By assuming that the pattern of non-stationary EMGs has small variation in a short-

time window and EMG patterns are repeatable for each defined short-time phase, a 
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phase-dependent EMG classifier was designed, which was successfully applied to 

accurately and responsively recognize the user‟s locomotion modes [10]. For non-

locomotion modes such as sitting and standing, the classifier can be built in the 

movement initiation phase by the same design concept. The structure of such a 

dynamic design of the classifier can be found elsewhere [10]. 

Post-processing of Decision Stream: Majority vote was used to eliminate 

erroneous decisions from the classifier. Majority vote [9] simply removes the decision 

error by smoothing the decision output. Note that this method can further increase the 

accuracy of NMI, but may sacrifice the system response time. 

1.2.3   Trustworthy Sensor Interface 

The NMI for artificial legs must be reliable and trusted by the prosthesis users. 

The design goals of trustworthy sensor are (1) prompt and accurate detection of 

disturbances in real time applications, and (2) assessment of reliability of a 

sensor/system with potential disturbances. To achieve these goals, a trust management 

module that contains three parts: abnormal detection, trust manager, and decision 

support was designed. 

Abnormal Detection: For each EMG channel, an abnormal detector is applied to 

detect disturbances occurring in the EMG signal. Disturbances that cause sensor 

malfunctions can be diverse and unexpected. Among all these disturbances, motion 

artifacts can cause large damage and are extremely difficult to totally remove. Motion 

artifacts are also fairly common in both laboratory environment and in real systems. 

Therefore, in this paper, the focus was on the detection of motion artifacts.  

 To detect abnormality in EMG signals, a change detector that identifies changes 
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in the statistics of EMG signals was proposed. During preliminary study, it was found 

that motion artifacts can lead to changes in two time-domain (TD) features:  mean 

absolute value (increase) and the number of slope sign changes (decrease). Let meanFe  

and slopeFe  denote these two features, respectively. Positive change in meanFe  and 

negative change in slopeFe  are used as indicators of the presence of motion artifacts. 

Moreover, since the changes are in two directions, a two-sided change detector, which 

can detect both positive change and negative change, is required. 

Many statistical methods can be used to build the change detector. In this work, 

the Cumulative Sum (CUSUM) algorithm was chosen because it is reliable for 

detecting small changes, insensitive to the probabilistic distribution of the underlying 

signal, and optimal in terms of reducing the detection delay [19]. Particularly, the two-

sided CUSUM detector was adopted [20]. 

                            )ˆ)1(,0max()( 0 kxiSiS ihihi                (1.5) 

                            )ˆ)1(,0max()( 0 ilolo xkiSiS                            (1.6) 

where ix  represents the thi  data sample, 0̂  is the mean value of data without 

changes, and k  is CUSUM sensitivity parameter. The smaller the k  is, the more 

sensitive the CUSUM detector is to small changes. In (1.5) and (1.6), hiS  and loS  are 

used for detecting the positive and negative changes, respectively. If hiS (or loS ) 

exceeds a certain threshold ( Th ), a positive (or negative) change is detected. The 

initial values of hiS   and loS  were set to 0. In the real time testing, once CUSUM 

detector detects a change, it will raise an alarm and restart by setting hiS  and loS  as 0 

in order to detect the next change. By doing so, it can respond sensitively and 
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promptly to multiple changes in the EMG signal. 

The presence of a positive change in meanFe  and a negative change in 
slopeFe  at the 

same time can serve as the indicator of a motion artifact. Therefore, hiS  is applied to 

detect positive changes in meanFe  and loS  is applied to detect negative changes in 

slopeFe . When hiS  and loS  exceed their corresponding thresholds at the same time, a 

motion artifact is detected.  

In (1.5), ix  denotes the thi  sample of meanFe , and is calculated as mean of the 

absolute value of EMG signal within the thi  window. In (1.6), ix  denotes the thi  

sample of slopeFe , and is calculated as number of the slope sign changes within the 

thi window. The value 0̂  in (1.5) and (1.6) is computed as the average of ix  before 

any changes were detected. The sensitivity parameter, k , is set as 0.05, and the 

threshold Th  is set as 0.1 for both (1.5) and (1.6).  

Notice that, to promptly respond to disturbances, CUSUM detector restarts for the 

next round of disturbance detection right after it detects a disturbance. However, there 

may be a disturbance lasting for some time and CUSUM detector would detect it for 

more than once. This may lead to an inaccurate trust calculation. To avoid this 

problem, a post processing scheme is proposed to stabilize the detection result. 

Disturbances that are very close to each other are combined (i.e. within L  continuous 

windows) as one disturbance. In our real time testing, L  is set as 3, which represents 

240ms. That is, if the detector is triggered repeatedly within 240ms, we consider this 

as one disturbance.   

Trust manager: After the abnormal detector detects the disturbance in an EMG 
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signal, the EMG sensor is either permanently damaged or perfectly recoverable. To 

evaluate the trust level of the sensor, let 1p  denotes the probability that a sensor 

behaves normally after one disturbance is detected.  

Assume all disturbances are independent. The probability that a sensor is still 

normal after i  disturbances, denoted by ip , is
i

i pp 1 . The trust value is computed 

from the probability value by the entropy-based trust quantification method [21], as  
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where T  is the trust value and )( ipH  is the entropy calculated as  

                         )1(log)1()(log)( 22 iiiii pppppH  .                         (1.7) 

Different 1p  values should be set according to the nature of the disturbance. The 

larger the 1p  value, the less likely the disturbance can damage the sensor. The 

calculation of trust is extendable to the case that different disturbances are detected for 

one sensor. For example, if two disturbances, whose 1p  values are 0.8 and 0.9, 

respectively, are detected for a sensor, the ip  value in (1.7) can be replaced by 0.8 × 

0.9. In this paper, only one type of disturbance (i.e. motion artifact) was tested. The 

1p value for motion artifact is set as 0.9.  

Decision Making and Report: The trust information is provided to the user intent 

identification (UII) module to assist trust-based decisions. There are two levels of 

decisions. 

1) Sensor level: When the sensor‟s trust value drops below a threshold, this sensor 

is considered as damaged, and its reading is removed from the UII module. The 
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classifier needs to be re-trained without the damaged sensor. 

2) System level: After removing the damaged sensors, the system trust can be 

calculated by the summation of trust values of the remaining sensors. If the system 

trust is lower than a threshold, this entire UII model is not trustworthy, and actions for 

system recovery must be taken. One possible action is to re-train the classifier. 

Another possible action is to instruct the patient to manually examine the artificial leg 

system. 

1.2.4   Hardware Design 

Technical challenges in hardware design are twofold. First of all, in order to 

increase the decision accuracy, frequent training computations may often be required, 

especially in uncertain environment, where the appearance of disturbances can be 

unpredictable and frequent. A training computation needs to be done not only 

whenever the user puts on the prosthesis but also whenever the system trust level goes 

below the predetermined threshold. Training data need to be recollected in these two 

cases. In addition, when a sensor‟s trust value drops below a threshold, the classifier 

also needs to be re-trained using existing training data in the flash memory  such that 

the classifier can make decisions based on the remaining undisturbed sensors. The 

training algorithms require intensive numerical computations that take a significantly 

long time, in the range of a few minutes to hours on a general purpose computer 

system [22]. It is very important to substantially speed up this training computation to 

make the training time of our NMI tolerable and practical. The second challenge is the 

real time processing of decision making in order to have smooth control of the 

artificial legs. Such real time processing includes signal sampling, AD/DA conversion, 
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storing digital information in memory, executing PR algorithms, periodical trust 

management, and decision outputs. To meet these technical challenges, a new 

hardware design incorporating a multi-core GPU and an embedded system with a 

built-in flash memory was presented.  

High performance and low cost multi-core GPUs [23] have traditionally been 

thought of as commodity chips to drive consumer video games. However, the push for 

realism in such games along with the rapid development of semiconductor 

technologies has made GPUs capable of supercomputing performance for many 

applications at very low cost. There are many low-end to medium GPU controller 

cards available on the market for under $50. However they deliver extraordinary 

computation power in the range of several hundreds of GFLOPS. Besides high 

performance and low cost, there has also been a technology drive for reliable and low 

power GPUs alongside FPGAs and CPUs for embedded applications such as military 

systems. For example, an embedded system using the ATI Radeon HD 3650 GPU 

draws very little power but delivers performance levels of hundreds of GFLOPS. The 

next-generation mobile GPUs are expected to nearly double this performance with a 

similar power envelope. Our NMI makes the first attempt to exploit such high speed 

and low cost GPU for the purpose of speeding up complex PR training computations. 

Our design for the training of the classifier used a NVIDIA 9500GT graphic card that 

has four multiprocessors with 32 cores working at the clock rate of 1.4 GHz. Each 

multiprocessor supports 768 active threads giving rise to a total of 3072 threads that 

can execute in parallel. These threads are managed in blocks. The maximum number 

of threads per block is 512. The size of the global memory is 1 GB with bandwidth of 
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25.6 GB/s. 64 KB of the global memory is read-only constant memory. The threads in 

each block have 16 KB shared memory which is much faster than the global memory 

because it is cached. In this study, this GPU card was connected using the x16 PCI 

Express bus. Whenever the training computation was triggered, the GPU was called in 

to perform the training process and store the parameters of trained classifier in the 

flash memory to be used for real time decision-making. 

The second part of the hardware design is based on Freescale‟s MPC5566 132 

MHz 32 bits microcontroller unit (MCU) with the Power Architecture as shown in 

Figure 1.3. The MCU has 40 channels of ADCs with up to 12 bit resolution and two 

levels of memory hierarchy. The fastest memory is 32KB unified cache. The lower 

level memories include 128KB SRAM and 3MB flash memory. The default system 

clock of the MCU is 12 MHz. The frequency modulated phase locked loop (FMPLL) 

generates high speed system clocks of 128 MHz from an 8 MHz crystal oscillator. The 

Figure 1.3. Block diagram of embedded system design on MPC5566 EVB for real-

time testing. MPC5566: device modules; ADC: analog-to-digital converter; FMPLL: 

frequency modulated phase-locked loop; SRAM: internal static RAM; SIU: system 

integration unit; DMA: direct memory access. 
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direct memory access (DMA) engine transfers the commands and data between 

SRAM and ADC without direct involvement of the CPU. Minimizing the intervention 

from CPU is important for achieving optimal system response. The device system 

integration unit (SIU) configures and initializes the control of general-purpose I/Os 

(GPIOs). The real-time results of the embedded system, including the identified user 

intent, individual sensor status and trust value, are sent to the GPIO pins and displayed 

by multiple LEDs on MPC5566 EVB. 

1.3   Experiments and Prototype 

1.3.1   Evaluation of Designed Algorithm 

Assigned Tasks: To prove the design concept, the NMI system was designed to 

decipher the task transitions between sitting and standing. These tasks are the basic 

activities of daily living but difficult for patients with transfemoral amputations due to 

the lack of knee power. During the transition phase, EMG signals are non-stationary. 

The classifier was designed in the short transition phase. Although it is possible to 

activate the knee joint directly based on the magnitude of one EMG signal or force 

data recorded from the prosthetic pylon, unintentional movements of the residual limb 

in the sitting or standing position may accidently activate the knee, which in turn may 

cause a fall in leg amputees. Hence, intuitive activation of a powered artificial knee 

joint for mode transitions requires accurate decoding of EMG signals for identifying 

the user‟s intent from the brain. 

Data Collection: This study was conducted with Institutional Review Board 

(IRB) approval at the University of Rhode Island and informed consent of subjects. 

For the real time evaluation of the designed pattern recognition algorithm, one male 
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patient with a unilateral transfemoral amputation was recruited. To evaluate the sensor 

trust algorithm, one male able-bodied subject, free from orthopedic or neurological 

pathologies, was recruited. Seven surface EMG electrodes (MA-420-002, Motion Lab 

System Inc., Baton Rouge, LA) were used to record signals from gluteal and thigh 

muscles in one side of both subjects. The EMG electrodes contained a pre-amplifier 

which band-pass filtered the EMG signals between 10 Hz and 3,500 Hz with a pass-

band gain of 20. For the able-bodied subject, the gluteal and thigh muscles on the 

dominant leg were monitored. After the skin was shaved and cleaned with alcohol 

pads, the EMG electrodes were placed on the anatomical locations described in [24]. 

For the amputee subject, the muscles surrounding the residual limb and the ipsilateral 

gluteral muscles were monitored. The subject was instructed to perform hip 

movements and to imagine and execute knee flexion and extension. We placed EMG 

electrodes at the locations, where strong EMG signals can be recorded. EMG 

electrodes were embedded into a customized gel-liner system (Ohio Willow Wood, 

US) for reliable electrode-skin contact. A ground electrode was placed near the 

anterior iliac spine for both able-bodied and amputee subjects. An MA-300 system 

(Motion Lab System Inc., Baton Rouge, LA) collected 7 channels of EMG data. The 

cut-off frequency of the anti-aliasing filter was 500 Hz for EMG channels. All the 

signals were digitally sampled at a rate of 1000 Hz and synchronized.  

The states of sitting and standing were indicated by a pressure measuring mat. 

The sensors were attached to the gluteal region of the subject. During the weight 

bearing standing, the recordings of the pressure sensors were zero; during the non-

weight bearing sitting, the sensors gave non-zero readings. 
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Experiment Protocol: To evaluate the pattern recognition algorithm, before the 

real-time system testing, a training session was required in order to collect the training 

data for the classifier. During the training session, the subject was instructed to 

perform four tasks (sitting, sit-to-stand, standing, and stand-to-sit) on a chair (50 cm 

high). For sitting or standing task, the subject was required to keep the position for at 

least 10 sec. In the sitting or standing position, the subject was allowed to move the 

legs and shift the body weight. For two types of transitions, the subject performed the 

transitions without any assistance at least 5 times. During the real-time system 

evaluation testing, the subject was asked to sit and stand continuously. A total of 5 

trials were conducted. In each trial, the subject was required to sit and stand at least 

five times, respectively. Rest periods were allowed between trials in order to avoid 

fatigue.  

To evaluate the sensor trust algorithm, 13 trials of real-time disturbance detection 

testing were performed on the able-bodied subject. In each trial, motion artifacts were 

introduced randomly on one EMG electrode in each task phase for four times. To add 

motion artifacts, the experimenter tapped an EMG electrode with roughly same 

strength. Motion artifacts were introduced 159 times in the entire experiment. 

Real-time Evaluation of EMG Pattern Recognition: Four classes during the 

movement initiation phase were considered: sitting, sit-to-stand transition, standing, 

and stand-to-sit transition. Note that the classes of sitting and standing were not 

stationary because the subject was instructed to move the legs and shift the body 

weight in these positions. The output of the classifier was further combined into two 

classes (class 1: sitting and stand-to-sit transition; class 2: standing and sit-to-stand 
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transition). Four TD features defined in [12] and LDA-based classifier were used. 

Overlapped analysis windows were used in order to achieve prompt system response. 

For the real-time algorithm evaluation, 140ms window length and 80ms window 

increment were chosen. Two indicators were used to evaluate the real-time 

performance of EMG pattern classifier: classification accuracy and classification 

response time. Two types of classification response time were defined: the time delay 

(RT1) between the moment that the classification decision switched from sitting (0) 

and standing (1) and the moment that the gluteal region pressure changed from non-

zero value (non-weight bearing sitting) to zero value (weight-bearing standing); the 

time delay (RT2) between the moment that the classification decision switched from 

standing (1) to sitting (0) and the moment that the gluteal region pressure changed 

from zero value (weight-bearing standing) to non-zero value (non-weight bearing 

sitting).  

Real-Time Evaluation of Abnormal Detection and Trust Management: EMG 

electrodes recorded EMG signals under the task transitions, unintentional leg 

movements, and sensor disturbances. There were two different states: (1) normal 

movements (N), including unintentional leg movements and transitions between 

sitting and standing, the total number of which were 364, and (2) disturbances (D), the 

total number of which were 159. The detectors detected two types of results: normal 

(N) or disturbance (D).  

For the data sets with motion artifacts, the data in each trial were divided into 

analysis windows. A state (N or D) was assigned to each window. There were four 

detection results: (1) Hit (H): Truth = „D‟, Detection = „D‟; (2) False Alarm (F): Truth 



 

24 

 

= „N‟, Detection = „D‟; (3) Miss Detection (M): Truth = „D‟, Detection = „N‟; and (4) 

Correct no detection (Z): Truth = „N‟, Detection = „N‟. The performance of designed 

detector were evaluated by 

Probability of detection:  
MH

H
PD


  

Probability of false alarm:  
ZF

F
PFA


  

The trust value of sensors will also be shown. 

1.3.2   Algorithm Implementation on NMI Hardware System 

The offline PR training algorithm, the real time PR testing algorithm, and the real 

time TM algorithm were all implemented on the NMI hardware described in the 

previous section. The window length and the window increment were set to 140ms 

and 80ms, respectively. This is because the computation speed of MPC5566 is limited. 

It takes approximate 80ms to compute the EMG PR algorithm and to run the abnormal 

detection/trust evaluation algorithm on the data collected in a 140ms window. 

Therefore, the window increment should be no less than 80ms. It was observed in our 

experiments  that enlarging the window length exceeding 120ms does not affect the 

classification performance [10] but increases the decision-making time ,  which causes 

delayed system response. 

A parallel algorithm specially tailored to the GPU architecture for the 

computation intensive part of the PR training algorithm was designed using CUDA: 

Compute Unified Device Architecture, which is a parallel computing engine 

developed by NVIDIA. At the time of this experiment, our GPU was not directly 

connected to the embedded MCU. Rather, NVIDIA 9500GT graphics card plugged 
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into the PCI-Express slot of the PC server was used to do the training computation. 

The training results were then manually loaded into the flash memory of the embedded 

system board for real time testing. The GPU took inputs from 7 EMG channels, each 

of which had about 10,000 data points. The EMG data were segmented into analysis 

windows with 140ms in length. As a result, each window contained a 140×7 matrix. 

The training algorithm first extracted 4 TD features from each channel, producing a 

28×1 feature vector for each window. Our parallel algorithm on the CUDA spawned 7 

threads for each window resulting in totally 2,800 threads for 400 windows. All these 

threads were executed in parallel on the GPU to speed up the process. The resultant 

features were stored in a 28×W matrix, where W is the number of windows. The 

algorithm then set up K thread blocks, where K is the number of observed motions of 

the user. Each one of the K thread blocks had 28×14 threads, and a total of K×28×14 

threads could execute simultaneously in parallel on the GPU architecture. 

  To demonstrate the speedup provided by our parallel implementation on the 

GPU, an experiment that compared the computation times of our training algorithm on 

both the GPU system and the fully equipped 3 GHz Pentium 4 PC server was 

conducted. (The results will be shown in Section 14.3.) 

The real time testing algorithm was implemented on Freescale‟s MPC5566 

evaluation board, integrating both the PR algorithm for user intent identification and 

the TM algorithm for sensor trust evaluation. The parameters of the trained PR 

classifier, a 28×4 matrix and a 1×4 matrix, calculated during the training phase by 

GPU were stored in the built-in flash memory on the MPC5566 EVB in advance. The 

ADCs sampled raw EMG data of 7 channels at the sampling rate of 1000 Hz 
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continuously. Same as in the training phase, the EMG data were divided into windows 

of length 140ms and increment 80ms. In every analysis window, 4 TD features were 

extracted for each individual channel. During the user intent identification process, a 

28×1 feature vector was derived from each window and then fed to the trained 

classifier. After the EMG pattern classification, one movement class out of four was 

identified. The result was post-processed by the majority vote algorithm to produce a 

final decision – sitting or standing. During the sensor trust evaluation process, each 

EMG sensor was monitored by an individual abnormal detector. Only two of the four 

TD features (the mean absolute value and the number of slope sign changes) were 

used to detect motion artifacts (algorithm details in Section 1.2.3). Each abnormal 

detector monitored the changes of these two TD features to produce a status output for 

its corresponding sensor: normal or disturbed. A trust level manager then evaluated the 

trust level of individual sensor based on accumulated disturbance information. 

In the real time embedded system design, to ensure smooth control of the artificial 

legs, precise timing control and efficient memory management are two challenges due 

to the speed and memory limitations of the embedded controller. We developed our 

own hardware management mechanism on the bare machine of the MPC5566 EVB 

without depending on any real time OS to avoid unpredictability and delay variations. 

A circular buffer was designed to allow simultaneous data sampling and decision 

making. The circular buffer consisted of three memory blocks B1, B2 and B3 that were 

used to store the ADC sampling data. Each block stored the data sampled in one 

window increment (80 samples in this experiment). An additional memory block, B4, 

was used as a temporary storage during the computation of PR algorithm and TM 
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algorithm. 

Figure 1.4 shows the timing diagram of the control algorithm during the real time 

testing process. In Figure 1.4, t equals the window increment, PRt  is the execution 

time of PR algorithm, and 
TMt  is the execution time of TM algorithm. Two conditions 

need to be satisfied to ensure the smooth control of decision making without delay: (1) 

ttt PRTM   and (2) ttw  2 , where wt is the window length. At point 0t , the ADCs 

begin to sample EMG signals continuously and the digital data are stored in B1. From 

point 1t , B1 is filled up and the in-coming  data are stored in B2. At 2t , the data for the 

first window W1 are available (stored in B1 and B2), and an interrupt request is 

generated to notify the CPU that the data is ready for computation and trigger the 

computation to start.    At the same time, new data keep coming in to be stored in B3. 

After the time interval PRTM tt  , at point 3t , the PR computation and the sensor trust 

Figure 1.4. Timing control of real-time decision making. 
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computation of W1 complete. The first decision D1 is made, identifying the user‟s 

intent of window W1 whether to sit or stand, and also reporting the status and the trust 

value of each sensor. At time 4t , B3 is filled up and data for W2 as a result of sliding 

80 ms are ready for the computation again, using data partly in B2 and partly in B3. At 

this time, B1 is no longer in use so it can be replaced by new sampling data. At time 

5t , the decision D2 of window W2 is made. At time 6t , data for W3 (stored in B3 and 

B1) are available, the algorithm computation for W3 begins. At time 7t , D3 is done 

and B2 can be reused. 

1.3.3   Real-Time Testing of the NMI Prototype 

Using the NMI prototype described above, real time tests were carried out as 

described in Section 1.3.1. At the time of this experiment, our trust model focused on 

abnormal detection and the trust was evaluated at the sensor level. The communication 

between the trust manager and the classifier was not fully considered. Therefore, to 

better evaluate our system performance, a two-phase experiment was set up to 

evaluate the performance of pattern recognition and that of sensor trust management 

separately. For both phases, the subjects performed transitions between sitting and 

standing continuously. During the phase of PR evaluation, there was no motion 

artifact manually added. However, the subject‟s unintentional movements and the 

movements between the residual limb and prosthetic socket were still a factor. The 

movement decisions made by the classification system were displayed on a LED light 

and a computer monitor in real time. In our experiment, a 5-window majority vote was 

applied to the decision stream to further eliminate the classification errors. During the 

phase of sensor trust evaluation, motion artifacts were manually introduced by 
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randomly tapping an EMG electrode with roughly equal strength. The sensor status 

and the sensor trust value were monitored and displayed on a computer monitor. The 

user intent classification results were ignored during this phase. 

1.4   Results and Discussions 

1.4.1   Real-Time Performance of Pattern Recognition 

During the continuous real-time testing (more than 30 times sit-to-stand 

transitions and 30 times stand-to-sit transitions), all of the transitions between sitting 

and standing were accurately recognized. Although the subject moved the legs during 

the sitting position and shifted the body weight in the standing position, no 

classification error was observed.  

The system classification response time (RT1 and RT2) was calculated by using 

the pressure data under the gluteal region and shown in Table 1.1. 

The real-time performance of the designed NMI prototype in one representative 

trial is shown in Figure 1.5. Due to a 5-window majority vote method applied, around 

400ms decision delay for the sit-to-stand transitions were observed in Figure 1.5, 

comparing to the falling edges of pressure data. It can be clearly seen that the majority 

Table 1.1. System classification response time 

RT1 RT2 

+(364±38) ms -(875±27) ms 

Note: ‘+’ represents the classification decision was made after the event 

(non-weight bearing sitting to weight-bearing standing); ‘-’ means the 

classification decision was made before the event (weight-bearing standing to 

non-weight bearing sitting) 
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vote post-processing method significantly improved system accuracy but sacrificed 

system response time. The video of real-time system performance can be found at 

http://www.youtube.com/watch?v=H3VrdqXfcm8. 

Compared to the real-time testing results on one able-bodied subject (upper two 

photos in Figure 1.6) in our experiments [25], a similarly high classification accuracy 

and reasonable system response time were achieved on the patient with transfemoral 

amputation (lower two photos in Figure 1.6). The promising real-time performance of 

our designed NMI prototype demonstrates a great potential to allow the amputee 

patients to intuitively and efficiently control the prosthetic legs. 

1.4.2   Real-Time Performance of Sensor Trust Algorithm 

Figure 1.7 shows the performance of the designed trust management method. 

There are three subfigures. The upper figure shows the EMG signal disturbed by 

Figure 1.5. Real-time performance of the designed NMI system. The decision 

stream (0: sitting, 1: standing) is aligned with the pressure data (black solid line) 

measured under the gluteal region of the subject. 

http://www.youtube.com/watch?v=H3VrdqXfcm8
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motion artifacts. The middle one shows the CUSUM detection results, the bar 

represents the period that a motion artifact was detected. As seen in the figure, 

Figure 1.6. Real-time testing of the designed NMI prototype on human subjects. 

Lower two photos show the experiments on one patient with transfemoral 

amputation. Upper two photos show the experiments on an able-bodied subject. 

 

Figure 1.7. Real-time performance demonstration of the abnormal detector under 

motion artifacts. The representative EMG signals(upper panel), the detection 

results of CUSUM (middle panel), and the trust value (lower panel) are 

demonstrated. 
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CUSUM detector was sensitive to motion artifacts, but insensitive to the muscle 

activity due to the normal leg movements. Additionally, the CUSUM had very small 

detection delay. The bars were always present immediately after a motion artifact. The 

lower figure shows the corresponding trust value. The trust value for motion artifacts 

gradually reduced when consistent disturbances were detected. In the future work, 

other methods for trust value calculation will be explored. For instance, for sensors 

with non-perfect trust values, it can be checked whether their future readings are 

consistent with other sensors that have high trust values. By doing so, the sensors that 

experienced an occasional disturbance and were not damaged can gradually regain the 

trust. Furthermore, the performance of CUSUM detector was evaluated by calculating 

its detection rate and false alarm rate. During the real time testing experiments, 

CUSUM detector achieved 99.37% detection rate and 0% false alarm rate. The 

undetected disturbances are disturbances with either small amplitude or short duration, 

so that a small number of such disturbances were not expected to affect the NMI 

decision significantly. The video of our experiment can be found at 

http://www.youtube.com/watch?v=6NwtMOw0YS0. 

 The designed CUSUM detector is accurate and prompt. The limitations of the 

current study are that only one electrode was disturbed and the trust manager 

evaluated the trust only at the sensor level. In the next design phase, we will (1) 

consider the situation with multiple sensor failures, (2) enable the communication 

between the trust manager and the classifier, and (3) evaluate the system-level trust of 

the entire NMI.  

1.4.3   Performance of CPU vs. GPU for Training Procedure 

http://www.youtube.com/watch?v=6NwtMOw0YS0
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Table 1.2 shows the measured speedup of our parallel algorithm on the NVIDIA 

GPU over the PC server for different window sizes. It is clear from this table that our 

parallel implementation on the GPU gives over an order of magnitude speedup over 

the PC server. This order of magnitude speedup is practically significant. Consider the 

case where the training time took half hour on a PC server [22]. The same training 

algorithm takes less than a minute using our new parallel algorithm on the GPU. From 

an amputee user point of view, training for less than a minute for the purpose of 

accurate and smooth neural control of the artificial leg is fairly manageable as 

compared to training for half an hour every time training is necessary. Furthermore, 

the speedup increases as the number of windows increases (Table 2). As a result, 

parallel computation of the training algorithm on GPU helps greatly in the NMI design 

since the larger the number of windows, the higher its decision accuracy will be [25]. 

1.4.4   Discussions 

While our experiments on two subjects, one able-bodied subject and the other 

transemoral amputee subject have demonstrated promising results of the new NMI 

prototype, system performance may vary among different subjects due to the inter-

subject variations. One of our future research tasks is to recruit more amputee subjects 

with diverse age and gender groups to evaluate the performance of the new NMI  

In this presented study, only two simple tasks (sitting and standing) were tested. 

To allow the prosthesis to perform more functions, more locomotion modes during the 

Table 1.2. Speedups of the GPU parallel training algorithm over the 3GHz PC 

server. 

Window size 100 200 400 600 800 

Speedup 22.98 29.50 35.94 37.16 39.21 
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ambulation such as level ground walking, stair ascent/descent, and ramp 

ascent/descent should be considered in our future work. A phase-dependent strategy, 

which was proposed in our previous study [10], may be required for the designed 

neural-machine interface structure to handle the walking dynamics.  

Among all types of disturbances, motion artifact occurs most frequently in 

practice and therefore is the main disturbance studied in this paper. Besides motion 

artifact, there are also some other disturbances which should be considered in our 

future work, such as baseline noise amplitude change, signal saturation, sensor loss of 

contact, and etc. To handle these diverse disturbances, we may need to extend the 

work by (1) applying the abnormal detection on more EMG features and (2) 

modifying the trust manager so that the trust value is determined not only by how 

many times disturbances occur but also by more complex factors, such as disturbance 

type, duration, severe level and etc.    

1.5   Related Work 

Real-time EMG pattern recognition has been designed to increase the information 

extracted from EMG signals and improve the dexterity of myoelectric control for 

upper limb prosthetics [9, 26]. However, no EMG-controlled lower-limb prostheses 

are currently available. Recently, the need for neural control of prosthetic legs has 

brought the idea of EMG-based control back to attention. Two previous studies have 

attempted to use EMG signals to identify locomotion modes for prosthetic leg control 

[10, 27]. Jin et al. [27] used features extracted from EMG signals from a complete 

stride cycle. Using such features, the algorithm results in a time delay of one stride 

cycle in real-time. In practical application, this is inadequate for safe prosthesis use. 
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Our previous study designed a phase-dependent EMG pattern recognition method 

[10], which is a dynamic classifier over time. The result indicated over 90% 

classification accuracy, which can be applied for real time NMI. While both studies 

demonstrated that EMG information recorded from transfemoral amputees is sufficient 

for accurate identification of user intent, there has been no experimental study on 

design and implementation of embedded system to realize the NMI for reliable and 

real time control of prosthesis.  

Reliable EMG pattern recognition system for artificial legs has been developed in 

our previous study [11]. It can enhance the system performance when sudden 

disturbances were applied to multiple sensors. In the previous work, however, the 

disturbances were generated through simulations and the algorithms were only tested 

offline [25]. The proposed algorithms in this paper, which were very different from the 

previous approaches, focused on real-time design with low detection latency, and were 

implemented and tested in a real-time embedded system.  

There has been extensive research in using GPUs for general purpose computing 

(GPGPU) to obtain exceptional computation performance for many data parallel 

applications [23, 28-30]. A good summary of GPGPU can be found in [23, 31-32]. 

Our prior study made the first attempt to use GPU in EMG-controlled artificial legs 

and other medical applications [22]. Our results on individual computation 

components on EMG signal pattern recognition showed good speedups of GPU over 

CPU for various window sizes. The focus of the work reported in [22] was on parallel 

implementations of individual algorithms on GPU whereas this paper makes the first 

attempt to integrate the entire system for neural-machine interfacing (i.e. a CPS) for 
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real time control of artificial legs. Our prior works [22] report offline analysis, while 

the work presented in this paper implements online decoding method for real-time 

testing. To the best knowledge of the authors, there has been no existing study on 

implementing the entire training algorithm on GPU for different numbers of windows 

and integrating the training algorithm together with real time testing on the same 

subject. 

1.6 Conclusions 

A new EMG-based neural-machine interface (NMI) for artificial legs was 

developed and implemented on an embedded system for real time operation. The NMI 

represents a typical cyber-physical system that tightly integrated cyber and physical 

systems to achieve high accuracy, reliability, and real-time operation. This cyber-

physical system consists of (1) an EMG pattern classifier for decoding the user‟s 

intended lower limb movements and (2) a trust management mechanism for handling 

unexpected sensor failures and signal disturbances. The software was then embedded 

in a newly designed hardware platform based on an embedded microcontroller and a 

GPU to form a complete NMI for real time testing. To prove our design concepts, a 

working prototype was built to conduct experiments on a human subject with 

transfemoral leg amputations and an able-bodied subject to identify their intent for 

sitting and standing. We also tested our trust management model on an able-bodied 

human subject by adding motion artifacts. The results showed high system accuracy, 

reliability and reasonable time response for real time operation. Our NMI design has a 

great potential to allow leg amputees to intuitively and efficiently control prosthetic 

legs, which in turn will improve the function of prosthetic legs and the quality of life 
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for patients with leg amputations. Our future work includes the consideration of other 

movement tasks such as walking on different terrains, communications between trust 

models and user intent identification models, and exploring online training algorithms.   
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Abstract 

Our previous study has shown the potential of using a computer system to accurately 

decode electromyographic (EMG) signals for neural controlled artificial legs. Because 

of computation complexity of the training algorithm coupled with real time 

requirement of controlling artificial legs, traditional embedded systems generally 

cannot be directly applied to the system. This paper presents a new design of an 

FPGA-based neural-machine interface for artificial legs. Both the training algorithm 

and the real time controlling algorithm are implemented on an FPGA. A soft processor 

built on the FPGA is used to manage hardware components and direct data flows. The 

implementation and evaluation of this design are based on Altera Stratix II GX 

EP2SGX90 FPGA device on a PCI Express development board. Our performance 

evaluations indicate that a speedup of around 280X can be achieved over our previous 

software implementation with no sacrifice of computation accuracy.  The results 

demonstrate the feasibility of a self-contained, low power, and high performance real-

time neural-machine interface for artificial legs. 

2.1   Introduction 

The technology of integrating human neuromuscular system and computer system 

to control artificial limbs has advanced rapidly in recent years. The key to the success 

of this advancement is the neural-machine interface (NMI) that senses neuromuscular 

control signals, interprets such signals, and makes decisions to identify user‟s 

movement intent for prostheses control. Electromyographic (EMG) signals are 

effective muscle electrical signals for expressing movement intent for neural control of 

artificial limbs and can be acquired from electrodes mounted directly on the skin [1]. 
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While EMG-based NMIs have been proposed and clinically tested for artificial arms 

[2-3], no EMG-controlled prosthetic legs are available because of two main reasons.  

(1) Due to the highly non-stationary characteristics of leg EMG signals, accurate 

decoding of user intent from such signals requires dynamic signal processing 

strategies [4]. Furthermore, the accuracy in identifying user‟s intended lower limb 

movement is more critical than upper limb movement. A 90% accuracy rate may be 

acceptable for artificial arm control, but is inadequate for safe use of artificial legs 

because any error may cause the user to fall.  

(2) To realize the NMI that can be carried by leg amputees, compact integration 

of software and hardware on an embedded system is required. Such embedded system 

should provide high speed and real time computation of neural decoding algorithm 

because any delayed decision-making from the NMI may result in unsafe use of 

prostheses. Streaming and storing multiple sensor data and at the same time 

deciphering user intent with fast time response to guarantee smooth control of 

artificial legs is a great challenge to the design of an embedded NMI. 

Our previous study has shown the potential of using a computer system to 

accurately decode EMG signals for neural controlled artificial legs [5]. A special 

purpose computer system was designed for neural machine interface (NMI). The NMI 

takes EMG inputs from multiple EMG electrodes mounted on user‟s lower limbs, 

decodes user‟s movement intent by EMG pattern recognition (PR) algorithm, and 

makes decisions to control prosthetic legs. The PR algorithm generally includes two 

phases: training and testing. During the training phase, the classifier is trained to learn 

the patterns of EMG signals when the user performs different tasks. This process 
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involves intensive signal processing and numerical computations. The trained 

classifier is then used to predict the user‟s movement during the real time testing 

phase. Our previous experiments implemented the real time control algorithm on a 

commodity embedded microcontroller unit (MCU) and the training algorithm on a PC.  

EMG signals were segmented and processed by sliding analysis windows. The 

parameters of the trained classifier were manually loaded into the memory of the 

MCU before the real time testing phase started. Looking at the existing research, 

several observations are in order: 

(1) The accuracy of the neural deciphering algorithm increases as the window 

length increases, which in turn increases the computation complexity. 

(2) The commodity embedded system can barely meet the requirement of real 

time testing for a very small window length. Increasing the window length for higher 

accuracy places overburden on the MCU. 

(3) It is even more difficult to incorporate both training and testing algorithms in a 

compact and efficient way on the existing embedded system. 

This paper presents the design and implementation of an FPGA-based special 

purpose embedded system realizing a neural machine interface for artificial legs. Our 

new system integrates both the training algorithm and the real time control algorithm 

on an FPGA. New parallel algorithms tailored to FPGA device are developed to fulfill 

the requirements of high speed processing of training process and real time processing 

of control functions. 

Our newly designed embedded architecture consists of a serial peripheral 

interface (SPI) module, a training module, a testing module and a flash memory. The 
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SPI module interfaces with off board analog-to-digital converters (ADC) to sample 

EMG signals. The training module implements parallel algorithm for training phase. 

The parameters of the trained classifier are stored in the flash memory. The testing 

module provides decoding algorithm in real time and sends out decisions for 

prosthetic leg control. 

Our experimental results on the Altera Stratix II GX EP2SGX90 PCI Express 

platform have shown that the training performance is 3X faster than the software 

implementation running on a CPU at 2.0 GHz while the power consumption is only 

tenth of the software version. The real time controlling process achieves a speedup of 

around 280X over our previous software implementation based on Freescale‟s 

MPC5566 MCU with no sacrifice of computation accuracy.  

This paper makes the following contributions: 

 Design and implementation of an FPGA-based special purpose embedded 

system for neural machine interface for artificial legs; 

 Design of a parallel EMG pattern recognition algorithm specifically tailored to 

FPGA device to decode user intent in real time; 

 Demonstration of the feasibility of a self-contained, high performance, and low 

power real-time NMI for artificial legs. 

2.2   Embedded System Architecture 

The overall structure of our embedded system architecture for neural machine 

interface is shown in Figure 2.1. Multiple channels of EMG signals are collected from 

different muscles on patient‟s residual limb using surface electrodes. EMG amplifiers 

then filter the signal noises and make the polarity and the amplitude range of the EMG 
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Figure 2.1.  Structure of EMG-based neural machine interface for artificial 

legs. 

 

signals compatible with the input requirements of analog-to-digital converters (ADC). 

The outputs of the amplifiers are converted to digital signals by the ADCs and then 

streamed to the FPGA device. The sampled digital data are stored in the SRAM of the 

FPGA chip and segmented by sliding analysis windows. EMG features that 

characterize individual EMG signals are extracted in each analysis window. The 

FPGA system works in two modes: training mode and real time testing mode.  In the 

training mode, a large amount of EMG data is collected and processed to train the 

EMG pattern classifier. The parameters of the trained classifier for later use in the 

testing mode are stored in the flash memory upon completion of the training phase. In 

the testing mode, the EMG input streams are processed continuously and sent to the 

trained classifier for a decision that identifies the user‟s locomotion mode for every 

analysis window. 

2.3   Pattern Recognition Algorithm 

In order to decipher the intended lower limb movements using leg EMG signals, 

we need first extract EMG features from raw EMG signals and then employ an EMG 
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pattern classifier to identify the movement modes. In this study, EMG time-domain 

(TD) features and a linear discriminant analysis (LDA) classifier [6] are adopted for 

our design. 

2.3.1   EMG Feature Extraction 

Several types of EMG features have been studied for EMG PR, such as time-

domain features [6], frequency-domain features [7], and time-frequency features [8]. 

In our study, four time-domain (TD) features (the mean absolute value, the number of 

zero crossings, the waveform length, and the number of slope sign changes) are used. 

In both training procedure and testing procedure, EMG signals are segmented into a 

series of analysis windows with a fixed window length and a window increment. In an 

analysis window, four TD features are extracted from the EMG signals for each 

channel. A N41 feature vector f  for one analysis window is formulated as 

T

Nn fffff },...,...,{ 21 , where nf  denotes four TD features of channel n , and 

N denotes the number of EMG channels. In the training procedure, EMG data are 

recorded for a period of time under each interested movement mode. A MN 4  

feature matrix is formed as input to train the EMG pattern classifier, where M  is the 

total number of training windows. In the testing procedure, the feature vector f  

derived from every analysis window is input to the classifier and a movement mode 

(class) is predicted for each window. 

2.3.2   EMG Pattern Classification 

Various classification methods have been applied to EMG PR, such as LDA [6], 

multilayer perceptron [9], Fuzzy logic [10], and artificial neural network [4]. In our 
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study, a LDA classifier is adopted to decode the movement class. The movement 

classes are expressed as ]),1[( GgCg  , where G  denotes the total number of classes.  

Using the linear discriminant analysis, the observed data is classified to the 

movement class gC  where the posteriori probability )|( fCP g  can be maximized 

[11]. Given movement class gC , the observed feature vectors have a multivariate 

normal (MVN) distribution. Suppose g  is the mean vector and g  is the covariance 

matrix of class gC , we have )(~)|( , ggg MVNCfP  . By assuming that every 

class shared a common covariance, i.e.  g , the movement class can be estimated 

as }{maxarg
~

gCgg dCC  , where  g
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                                  g

T

gg

T

C fd
g

 ~~~

2

1~~~ 11   .                                    (2.1) 

Two weight matrices ],...,...,[ 21 Gg WWWWW   and ],...,...,[ 21 Gg DDDDD   are stored 
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in the flash memory once the training procedure completes. Here ggW ~
~ 1  and 

g

T

ggD  ~~~

2

1 1 . Equation (2.1) can be expressed as  

                                                  gg

T

C DWfd
g


~

.                                                  (2.2) 

In the testing phase, the observed feature vector f  derived from each analysis 

window is applied to calculate 
gCd

~
in (2.2) for each movement class and is classified 

into a class gC
~

that satisfies 

                    },...,,{},
~

{maxarg
~

21 GgCgg CCCCdCC
g

 .                            (2.3) 

2.4   System Implementation 

Our system implementation is based on Altera Stratix II GX EP2SGX90 FPGA. 

The FPGA device is integrated on a PCI Express development board that has 64-

Mbyte flash memory. The parallelism of FPGAs allows for high computational 

throughput even at a low clock rates. The flexibility of FPGAs allows for even higher 

performance by trading off precision and range in the data format. In this study, we 

have designed a special PR algorithm to make the best use of FPGA. The PR 

algorithm is implemented with the help of Impulse C C-to-HDL CoDeveloper 

software. To optimize the system performance, large tasks have been divided into 

small function processes. The processes can work in parallel unless there are data 

dependencies. The communications between different processes can be easily 

achieved using streams and signals. A stream is a dual-port first-in-first-out (FIFO) 

RAM buffer, where a producer process stores data and a consumer process loads data. 

Each process can read data from and write data to multiple streams. Signals are used 
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to communicate status information from one process to another.  

The hardware design and program implementation details are discussed in the 

following subsections. 

2.4.1   Hardware Design 

The hardware design of the embedded system is shown in Figure 2.2.  The FPGA 

system is built using Altera SOPC Builder (System on a Programmable Chip Builder) 

software. All the hardware components on the FPGA are connected by Altera‟s 

Avalon memory mapped (Avalon-MM) interface, which is an address-based 

read/write interface of master-slave connections. In the system, each component has 

its own memory space. The components with master ports (“M” in Figure 2.2) can 

 
 

Figure 2.2.  Block diagram of embedded system design based on Altera Stratix II 

GX FPGA device. Avalon-MM: Avalon memory mapped interface; M: master 

port; S: slave port; ADC: analog-to-digital converter; SPI: serial peripheral 

interface; SRAM: internal static RAM. 
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directly read/write data from/to the components with slave ports (“S” in Figure 2.2) if 

the ports are connected by the same Avalon-MM interface.  

The serial peripheral interface (SPI) module communicates with the external 

ADC chips and controls the EMG data sampling and storing. Due to the parallelism of 

FPGAs, multiple EMG channels can be sampled and processed in parallel, which 

effectively speeds up the system performance and reduces complexity of the decoding 

algorithm. The sampled EMG data are stored in the on-chip SRAM. A special circular 

buffer is designed for optimizing memory utilization. The training module and the 

testing module are both user defined function modules that implement the PR 

algorithms for the training phase and the testing phase, respectively. The training data 

can be online collected or pre-loaded into the off-chip flash memory before the 

training process starts. In our experimental results we evaluate the performance of the 

training phase assuming the training data is already in the flash memory of the board. 

When the training phase completes, the weight matrices of the EMG pattern classifier 

are stored in the flash memory for future use in testing phase. During the real time 

testing procedure, the decision of the EMG classifier is displayed by eight user LEDs. 

A Nios II/s standard soft processor is used to direct data flows and evaluate the 

performance of PR algorithms. A timestamp timer is built for the purpose of 

measuring program execution time. In our design, direct memory access (DMA) is 

efficiently used for transferring data blocks between user defined modules and 

memories without the involvement of the Nios II processor. The testing module and 

the SPI module can directly access memory blocks in the SRAM. The training module 

can access the flash memory directly. 
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2.4.2   Task Parallelism and Pipelining 

The experimental results of our previous software implementation have shown 

that the processing of extracting features from multiple channels of EMG signals was 

the most computation-intensive task for both training and testing procedures. The 

feature extraction task accounted for more than 90% of the total execution time. 

Fortunately, we have found that in the feature extraction process, each channel has the 

identical and independent procedure: sample and store EMG data, load data of one 

analysis window from memory, calculate the mean of data, subtract the mean from 

raw data, calculate four TD features and send these features to the LDA classifier. The 

parallelism of FPGAs enables all the EMG channels to be processed in parallel, rather 

than in sequence as in the software implementation. Therefore, if there are N  EMG 

channels, N feature extraction threads will be generated.  

1) Testing Phase: Figure 2.3 demonstrates high level task stages and data flows of 

EMG PR for testing phase. Each white box in the figure represents a function process. 

N  parallel feature extraction threads are generated. Each thread contains three stages 

(processes): a) fetch data from memory (“Read_ch n ”), b) calculate the mean of data 

and subtract the mean from raw data (“SubtractMean_ch n ”), and c) extract four TD 

features from pre-processed data (“FeatureExtract_ch n ”). Within the 

“FeatureExtract_ch n ” process, the operations of extracting each feature (the mean 

absolute value, the number of zero crossings, the waveform length, and the number of 

slope sign changes) can also be parallelized since they do not depend on each other. A 

software process running on the Nios II processor triggers the first stage of each thread 

by sending out a signal (“Start_Ch n _Sig”) to indicate that EMG data for channel n  is 
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currently available to fetch from memory (“Data_Mem”). The subsequent two stages 

are triggered once there are valid data coming in.  

The implementation of LDA classifier also contains three processes (algorithm 

details in Section 2.3.2): a) load weight matrices W and D  from off-chip flash 

memory (“Read_Weights”), b) concatenate four TD features of each channel into a 

feature vector f  and calculate Wf T (“Multiply_ W ”), c) add weight matrix D  to 

Wf T  and output the movement class according to equation (2.3) in Section 2.3.2 

(“Argmax_Classify”).   

2) Training Phase: In the training process, the input to the LDA classifier is an 

EMG feature matrix composed of a large number of feature vectors extracted from a 

 
 

Figure 2.3.  Task stages and data flows of EMG PR in the testing phase. 
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series of sliding windows. In addition to the task parallelism among different channels, 

the feature extractions of subsequent windows can be efficiently pipelined. When the 

former analysis window has completed the stage of data fetching and moved to next 

stage to process the data, the following window can begin to fetch data from the 

memory. 

The implementation of LDA classifier for training phase has five stages as shown 

in Figure 2.4: a) sort feature vectors into groups according to movement class, b) 

within each group, calculate mean feature vector and subtract the mean vector from all 

the feature vectors, c) compute covariance matrix of each class, d) compute inverse of 

mean covariance matrix, e) compute weight matrices W  and D . Wherein, stage b and 

c can be parallelized among different groups. 

2.4.3   Memory Utilization and Timing Control 

In a real time embedded system design, precise timing control and efficient 

 
 

Figure 2.4.  Task stages and data flows of LDA classification in the training phase. 
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memory utilization are very important. To ensure a smooth control of artificial legs, a 

circular buffer is designed to allow simultaneous data sampling and decision making. 

Because all the EMG channels are sampled and processed in parallel, each channel has 

its own buffer. The circular buffer of one channel consists of 1Q  memory blocks, 

where Q  is the quotient of window length divided by window increment. Here we 

choose a proper window length and a window increment to make sure Q  is an integer. 

Each memory block stores the data sampled in one window increment. 

Figure 2.5 shows an example to demonstrate the timing control and memory 

management of our real-time decoding algorithm for one channel. In the example, the 

window length and the window increment are set to 140ms and 20ms, respectively. 

Therefore, 140/20+1=8 memory blocks are generated in this buffer. Usually the data 

sampling frequency is 1000Hz and each sample is a 16-bit data, so the circular buffer 

size is 8*20*16 bits = 320 bytes.  

 
 

Figure 2.5.  Timing control and memory management of real-time control 

algorithm for one channel 
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The buffer is divided into 8 blocks. To fill up each block, it takes 20ms.  To make 

the first decision, the system needs to wait for 140ms to get data for the first window 

1W . When blocks 1 to 7 are filled up, the data for 1W  are available. At this point, PR 

module can start to fetch data to its local buffer, and the system keeps sampling new 

data and stores the incoming data in block 8. When block 8 is filled up, the data for the 

second window 2W  (blocks 2 to 8) are available and the PR module starts to process 

2W . At this point, the PR computation of 1W  has been completed and decision 1 has 

been sent out, so the data in block 1 is no longer useful. Block 1 can be replaced by 

new data. When processing window 3W , the data in blocks 3, 4, 5, 6, 7, 8 and 1 are 

fetched. In this way, the PR algorithm computation and the data sampling are 

operating in parallel. Since the execution time of PR algorithm is much shorter than 

20ms, the system is sufficient to generate a decision every 20ms. 

2.4.4   Mixed-Precision Operation 

For high accuracy, most computations in LDA algorithm are based on floating 

point data format. Compared to floating point operations, fixed-point operations result 

in much higher performance for computation-intensive applications on FPGAs 

because of their reduced resource cost and lower latency [12]. However, lower-

precision operations may lose computation accuracy. To address this problem, mixed-

precision operation is employed in our implementation. Since EMG signals are 

sampled by 16-bit ADCs, they can be represented by 32-bit fixed-point data types 

without loss of information. We analyzed the arithmetic operation types in the PR 

algorithm and found that most operations only involved EMG data summation, 

subtraction, and multiplication/division by integers, all can be handled by fixed-point 
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data formats with careful tracking except for the computation of covariance matrix and 

inverse matrix. Therefore in our design, floating point data type is only used during 

the computations of covariance matrix and inverse matrix in the training procedure. 

2.5   Prototyping & Experimental Results 

2.5.1   NMI Prototype 

Based on the design described in the previous sections, we implemented a 

prototype board as shown in Figure 2.6. The performance of the FPGA 

implementation is compared with our previous software implementation using a 

combination of a PC and a commodity embedded system [5]. On our FPGA 

implementation, both the training algorithm and the real time control algorithm are 

implemented on Altera Stratix II GX EP2SGX90 FPGA PCI Express platform. In the 

software implementation, training phase is run on the PC with 2 GHz AMD Turion 64 

X2 CPU while the real time testing phase is run on the embedded system using 

Freescale‟s MPC5566 132 MHz 32 bits microcontroller with Power Architecture. 

 
Figure 2.6.  The prototype board based on Altera Stratix II GX EP2S90 PCI 

Express platform. 
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Table 2.1.  Stratix II GX EP2SGX90 resource utilization 

Resource Training  Testing 

ALUTs (72,768) 17,763 (24%) 21,857 (30%) 

Registers (72,768) 18,414 (25%) 19,929 (27%) 

Mem bits(4,520,448) 1,876,343(41%) 1,210,530 (27%) 

DSP blocks (384) 222 (58%) 184 (48%) 

 

Both NMI prototypes are used to recognize the user‟s intended movement transitions 

between sitting and standing, two basic but difficult tasks for patients with 

transfemoral amputations. Seven EMG channels are applied in the prototypes. Two 

movement classes are considered: sitting and standing. Four TD features and a LDA-

based classifier discussed in previous sections are used in the PR algorithm. 

Overlapped analysis windows are used in order to gain timely system response. The 

window length and the window increment are set to 140ms and 20ms, respectively, 

with the EMG data sampling frequency of 1000Hz. The system clock of the FPGA 

NMI prototype is 100MHz. The resource utilization summary is presented in Table 

2.1. 

2.5.2   Experimental Settings and Results 

Our NMI prototype contains a serial peripheral interface (SPI) module that is 

designed to interface with off board ADCs for data sampling. Since our current 

development board does not have enough IOs to interface with multiple EMG 

channels, we set up a two-phase experiment to evaluate the performance of our real-

time control algorithm. 

1) Evaluations of computation accuracy and speed: To evaluate the computation 
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accuracy of our fixed-point computation on the FPGA implementation, our experiment 

was based on the same testing dataset as the software floating-point implementation. 

The testing dataset was preloaded into the memory. The experiment results show that 

given a series of 400 analysis windows, the decision sequence of the FPGA system 

was exactly the same as the software implementation. 

To generate one decision, the average execution time of our parallel 

implementation running on EP2SGX90 was 0.283ms. Compared this value with the 

performance of our real-time software implementation (80ms) based on Freescale‟s 

MPC5566 132 MHz 32 bits microcontroller with Power Architecture, the new design 

using FPGA implementation gives a 280X speedup. 

2) Evaluation of real time control: Although there were no real EMG data 

sampled in, we assumed the circular buffer kept receiving new data. The PR module 

was triggered by a countdown counter every 20ms. Once triggered, the PR module 

began to fetch data from the circular buffer and process the data. A debugging 

software program was running on the Nios II processor. The result shows that a 

decision-out message was displayed on the Nios II software console every 20ms, 

which means that the real time decision algorithm sent out a decision every 20ms 

continuously. The result indicates a smooth and prompt real-time control. Once we 

move the design to a new board with enough IOs, the PR algorithm will be triggered 

by a signal as soon as one memory block of the circular buffer has been filled up 

(details in Section III). The decision making time interval is still 20ms. 

Table 2.2 compares the execution time of the training procedure for different 

window sizes between the software and the FPGA implementations. The software 
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version was developed using Microsoft VC++ and ran on AMD Turion 64 X2 CPU at 

2.00 GHz. From the table we can see the FPGA implementation gives a speedup 

around 3X over the software implementation. 

Low power consumption is very important to the final implementation of the NMI 

for artificial legs. The power consumption of our FPGA implementation measured by 

Altera PowerPlay Early Power Estimator was 3.499 W. The AMD Turion 64x2 

processor has a reported thermal design power of 35 W, which is about 10 times 

higher than our implementation. 

2.6   Conclusions 

This paper presented a new design and implementation of an FPGA-based neural-

machine interface (NMI) for artificial legs. The NMI implemented both the 

computation-intensive training algorithm and the real time controlling algorithm on 

board. The implementation of the training algorithm achieved a speedup of 3X over 

the software implementation running on a 2.0 GHz CPU, and only consumed tenth of 

power. The performance of FPGA-based real time decision algorithm was 280X faster 

than the software implementation on Freescale‟s MPC5566 microcontroller with no 

sacrifice of computation accuracy. The high efficiency and accuracy were achieved 

through parallelized and pipelined algorithm, mixed-precision operations, precise 

timing control, and optimized memory utilization. The results demonstrated the 

Table 2.2. Training execution times and speedups 

Window size Software on PC FPGA Speedup 

100 87.28 ms 28.93 ms 3.02 

200 177.29 ms 56.94 ms 3.11 

400 356.64 ms 112.94 ms 3.15 
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feasibility of a self-contained, low power, and high performance real-time NMI for 

artificial legs. Our future work includes implementation of an embedded system that 

fuses the information of EMG signals and kinematics for deciphering other lower limb 

movement tasks such as walking on different terrains and testing our NMI on leg 

amputees. 
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Abstract 

This paper presents the design and implementation of a cyber physical system 

(CPS) for neural-machine interface (NMI) that continuously senses signals from a 

human neuromuscular control system and recognizes the user's intended locomotion 

modes in real-time. The CPS contains two major parts: a microcontroller unit (MCU) 

for sensing and buffering input signals and an FPGA device as the computing engine 

for fast decoding and recognition of neural signals. The real-time experiments on a 

human subject demonstrated its real-time, self-contained, and high accuracy in 

identifying three major lower limb movement tasks (level-ground walking, stair ascent, 

and standing), paving the way for truly neural-controlled prosthetic legs. 

3.1   Introduction 

Neural-machine interface (NMI) is a typical example of biomedical cyber physical 

system (CPS) which utilizes neural activities to control machines. The neural signals 

collected from nerves, central neurons, and muscles contain a lot of important 

information that can represent human states such as emotion, intention, and motion. In 

such a CPS, a computer senses bioelectric signals from a physical system (i.e. human 

neural control system), interprets these signals, and then controls an external device, 

such as a power-assisted wheelchair [1], a telepresence robot [2], or a prosthesis [3-5], 

which is also a physical system.  

The neural signals captured from muscles are called electromyographic (EMG) 

signals. The EMG signals can be picked up with electrodes on the body surface and are 

effective bioelectric signals for expressing movement intent. In recent years, EMG-
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based NMI has been widely studied for control of artificial limbs in order to improve 

the quality of life of people with limb loss. 

Researchers have aimed at utilizing neural information to develop multifunctional, 

computerized prosthetic limbs that perform like natural-controlled limbs. The NMI 

needs to interface with multiple sensors for collecting neural signals, decipher user 

intent, and drive the prosthetic joints simultaneously. EMG pattern recognition (PR) is 

a sophisticated technique for characterizing EMG signals and classifying user‟s 

intended movements. It usually contains a training phase for constructing the 

parameters of a classifier from a large amount of EMG signals, and a testing phase for 

recognizing user intent using the trained classifier. While the PR algorithm for artificial 

arm control has been successfully developed and neural-controlled prosthetic arms 

have already been clinically tested [4, 6-7], there has been no EMG-based NMI 

commercially available for control of powered prosthetic legs. Challenges in the 

management of both physical and computational resources have limited the success of 

a CPS for neural control of artificial legs.  

One of the challenges on physical resources is due to the muscle loss of leg 

amputees.  Patients with leg amputations may not have enough EMG recording sites 

available for neuromuscular information extraction [8]. The non-stationary of EMG 

signals during dynamic leg movement further increases the difficulty of user intent 

recognition (UIR). To address this challenge, Huang et al. proposed a phase-dependent 

PR strategy for classifying user‟s locomotion modes [8]. This PR algorithm extracted 

neural information from limited signal sources and showed accurate classification (90% 

or higher accuracy) of seven locomotion modes  when 7-9 channels of EMG signals 
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were collected from able-bodied subjects and leg amputees. The performance of the 

phase-dependent PR strategy was further improved by incorporating EMG signals with 

mechanical signals resulting from forces/moments acting on prosthetic legs [9]. The 

experimental results showed that the classification accuracies of the  neuromuscular-

mechanical fusion based PR algorithm were 2%-27% higher than the accuracies 

derived from the strategies using EMG signals alone, or mechanical signals alone [9]. 

The challenges on computational resources include tight integration of software 

and hardware on an embedded computer system that is specifically tailored to this 

environment. It requires high speed classifier training, fast response, real-time decision 

making, high reliability, and low power consumption. Embedded systems are usually 

resource constrained and typically have processors with slower system clock, limited 

memory, small or no hard drives. To make the idea of neural-controlled artificial leg a 

reality, we need efficiently manage the constrained computational resources to meet all 

the requirements for smooth control and safe use of prosthetic legs. Our previous study 

proposed an NMI implemented on a commodity 32-bit microcontroller unit (MCU) for 

recognizing two non-locomotion tasks of sitting and standing in real-time [10]. It was 

reported that there was a noticeable delay of 400 ms for producing classifying 

decisions, implying inadequate computational power of the MCU for real-time control 

of artificial legs. Furthermore, this NMI implementation realized only the testing phase 

of the PR algorithm on the MCU. The training algorithm which involved intensive 

computations was implemented on graphic processing units (GPUs) and showed good 

speedups over CPU-based implementation [10]. However, currently most of the GPU 

cards only have PCI Express interfaces and are not portable. Relative high power 
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consumption further makes it more difficult to use GPU as an embedded wearable 

device.  

To tackle these technical challenges, we present a new design of an embedded 

system that is specifically tailored to the new NMI. A unique integration of hardware 

and software of the embedded system is proposed that is suitable to this real-time CPS 

with adequate computational capability, high energy efficiency, flexibility, reliability, 

and robustness. The NMI on an embedded platform continuously monitors EMG 

activities from leg muscles as well as mechanical forces/moments acting on prosthetic 

legs. Information fusion technique is then used to decode and decipher the collected 

signals to recognize users' intended locomotion modes in real-time. The embedded 

system contains two major parts: a data collection module for sensing and buffering 

input signals and an intelligent processing unit for executing the UIR algorithm. The 

data collection module was implemented on a microcontroller unit (MCU) with 

multiple on-board analog-to-digital converters (ADCs) for signal sampling. A 

reconfigurable FPGA device was designed as the main computing engine for this 

system. There are several reasons for choosing FPGAs for the designed NMI. First, the 

parallelism of FPGAs allows for high computational throughput even at low clock 

rates. Secondly, FPGAs are not constrained by a specific instruction set, thus are more 

flexible and more power efficient than processors. Furthermore, FPGAs can easily 

generate customized IO interfaces with existing IP cores, and appear to be good choices 

for real-time embedded solutions. In our design, a high-level synthesis tool was used to 

help reducing the implementation difficulty of coding with hardware design language 

(HDL). A special parallel processing algorithm for UIR was designed, realizing the 
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neuromuscular-mechanical fusion based PR algorithm coupled with the real-time 

controlling algorithm in hardware. A serial peripheral interface (SPI) was built between 

the MCU and the FPGA to transfer digitized input data from the MCU to the FPGA 

device. The decision stream of user's intended movements can be output to either 

control a powered prosthetic leg or drive a virtual reality (VR) system with the purpose 

of evaluating the NMI. Although our previous research has made the attempt to use 

FPGA in EMG pattern recognition and has shown high processing speed in the offline 

analyses [11], the embedded system presented here is the first complete CPS for the 

NMI that implements both training and testing modules on one single chip. The New 

CPS integrates all the necessary interfaces and control algorithms for interacting with 

the physical system in real-time.  

The newly designed NMI was completely built and tested as a working prototype. 

The prototype was then used to carry out real-time testing experiments on an able-

bodied subject for classifying three movement tasks (level-ground walking, stair ascent, 

and standing) in real-time. The system performance was evaluated to demonstrate the 

feasibility of a self-contained and high performance real-time NMI for artificial legs. 

Videos of our experiments on the human subject can be found at 

http://www.youtube.com/watch?v=KNhihjXProU. 

This paper is organized as follows. Next section presents the overall system 

design. Section 3.3 describes the detailed implementation of the UIR algorithm. The 

experimental results are demonstrated in Section 3.4. We conclude our paper in Section 

3.5. 

3.2   System Design 
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The architecture of designed CPS is shown in Figure 3.1. The embedded NMI 

samples input signals from two physical systems--a human neuromuscular system and 

a mechanical prosthetic leg. The sampled signals are then processed to decipher user‟s 

intent to control the prosthesis. The NMI consists of two modules: a data collection 

module built on an MCU with multiple on-chip ADCs for sensing and buffering input 

signals, and an FPGA device as the computing engine for fast data decoding and 

pattern recognition. A serial peripheral interface (SPI) is located between the two 

devices for transferring digitized input data from the MCU to the FPGA device. 

1) Input signals: Multi-channel EMG signals are collected from multiple surface 

electrodes mounted on patient's residual muscles. Mechanical forces and moments are 

recorded from a 6 degrees-of-freedom (DOF) load cell mounted on the prosthetic 

pylon. The EMG signals and the mechanical signals are preprocessed by filters and 

amplifiers and then simultaneously streamed into the NMI. 

Figure 3.1. System architecture of the embedded NMI for artificial legs. 
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2) MCU module: The MCU device does not do any compute-intensive task. It 

provides multi-channel on-chip ADCs to sample the input signals and convert the 

analog signals to digital data. The digitized data is then stored in the user-defined result 

queues allocated in the RAM buffer. In the system RAM, two equal sized result queues 

are defined. With direct memory access (DMA) support, the MCU core can be 

insulated from the data acquisition process. Thus these two result queues forms a 

circular buffer that can continuously receive new data while transmitting old data to the 

FPGA module for further processing. 

3) FPGA module: The FPGA device receives digitized data from the MCU 

module continuously. In order to fully utilize the computing capacity of the FPGA 

system and produce dense decisions, the input signals are segmented by overlapped 

analysis windows with a fixed window length and window increment [4]. The designed 

FPGA module contains six components: an SPI module that serially receives input 

signals from the MCU module, a user defined module implementing the UIR 

algorithm, a high-speed on-chip memory for fast online pattern recognition, an 

SDRAM controller that interfaces with a large-capacity external SDRAM, parallel IOs 

for outputting UIR decisions, and a soft processor for managing hardware components 

and directing data flows. The FPGA module works in two modes: offline training and 

online pattern recognition. Offline training needs to be performed before using the 

artificial leg and also whenever a complete re-training is required. During the training 

procedure, users are instructed to do different movement tasks, and a large amount of 

data is collected by the NMI to train the classifier. The external SDRAM is only used 

in the offline training phase to store the training data because FPGAs usually have 
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limited on-chip memory. For online pattern recognition, the input streams are stored in 

the on-chip memory for fast processing and provided to the classifier for decisions to 

continuously identify the user‟s intended movements. 

3.3   Implementation of the UIR Algorithm on FPGA 

3.3.1   Architecture of the UIR Strategy 

The architecture of the UIR strategy based on neuromuscular-mechanical 

information fusion and phase-dependent pattern recognition (PR) is shown in Figure 

3.2. It is a self-contained architecture that integrates the functions of training and phase-

dependent pattern recognition in one embedded system. For every analysis window, 

features of EMG signals and mechanical signals are extracted from each input channel. 

A feature vector is formed and normalized by fusing the features from all the input 

channels. The feature vector is then fed to the classifier for pattern recognition. The 

Figure 3.2. Architecture of UIR strategy based on neuromuscular-mechanical fusion 

and phase-dependent pattern recognition. 
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phase-dependent classifier consists of a gait phase detector and multiple classifiers. 

Each classifier is associated with a specific gait phase. During the process of pattern 

recognition, the gait phase for current analysis window is first determined by the phase 

detector, and then the corresponding classifier is adopted to do the classification. In this 

study, four gait phases are defined: initial double limb stance (phase 1), single limb 

stance (phase 2), terminal double limb stance (phase 3), and swing (phase 4) [9]. The 

real-time gait phase detection is based on the measurements of the vertical ground 

reaction force (GRF) sampled from the 6-DOF load cell. 

In the real-time embedded system design, to ensure a smooth control of artificial 

legs, precise timing control is necessary. Figure 3.3 shows the timing diagram of the 

control algorithm during the real-time UIR process. In the designed system, the MCU 

and the FPGA device collaborates to produce a decision at every window increment. 

While the MCU is sampling data for window 1i , the user intent recognition for 

window i , including the tasks of SPI data transfer, feature extraction, gait phase 

Figure 3.3. Timing diagram of the control algorithm during online UIR process. 
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detection, feature vector formation and normalization, and pattern recognition must be 

done within the window increment. In other words, the execution time of the UIR 

algorithm determines the minimum window increment. Larger window increments will 

introduce longer delay to the NMI decision, which may not be safe to control the 

prosthesis in real-time. Therefore fast processing speed is very critical to the embedded 

system design. 

3.3.2   Parallel Implementations on FPGA 

The implementation of the CPS was based on the Altera DE3 education board with 

a Stratix III 3S150 FPGA device, coupled with the Freescale MPC5566 132 MHz 32 

bits MCU evaluation board (EVB) with 40-channel 12-bit on-chip ADCs. The 

MPC5566 module and the DE3 module are connected with each other via serial 

peripheral interface (SPI). In this design, DE3 was configured as the SPI master and 

MPC5566 was the slave. A parallel UIR algorithm tailored to FPGA was designed and 

implemented on DE3. Fixed-point operations were adopted in this implementation 

because of their less resource cost and lower latency than floating-point operations. In 

addition, because the input signals were sampled by ADCs with 12-bit resolution, all 

the arithmetic operation types in the PR algorithm could be handled by 32-bit fixed-

point data formats with careful management. 

The UIR algorithm was implemented on the FPGA with the help of a high-level 

synthesis tool--CoDeveloper from Impulse Accelerated Technologies. The PR 

algorithm was first developed using C programming language, and then CoDeveloper 

was used to generate VHDL (VHSIC hardware description language) modules from the 

C program. The VHDL modules were integrated into the FPGA system as the user 



 

73 

 

defined modules as shown in Figure 3.1, and worked with other hardware components 

as a complete NMI. To utilize the parallelism of FPGAs, CoDeveloper provides a 

multiple process, parallel programming model. In our design, the algorithm was 

partitioned into a set of processes. These processes can run on the FPGA in parallel if 

there are no data dependencies. The communications between processes can be done 

using communication objects, such as streams, signals, and shared memories. Streams 

are implemented in hardware as dual-port FIFO RAM buffers. A stream connects two 

concurrent processes (a producer and a consumer), where the producer stores data into 

and the consumer accesses data from the stream buffer. A single process can be 

associated with multiple input and output streams. Signals are useful objects to 

communicate status information among processes. Shared memories are used to store 

and access large blocks of data from specific external memory locations using block 

read and block write functions.  

1) Feature Extraction: Before offline training or online pattern recognition is 

performed, features need to be extracted from raw input signals. In every analysis 

window, four time-domain (TD) features (mean absolute value, number of zero 

crossings, waveform length, and number of slope sign changes) are extracted from each 

EMG channel. For the mechanical forces/moments recorded from the 6-DOF load cell, 

the mean value is calculated as the feature from each individual DOF. The procedure of 

feature extraction is independent for individual input channel and identical for 

homogeneous sensors. This property can be utilized to greatly reduce the computation 

time for feature extraction because all the channels can be processed in parallel. Figure 

3.4 shows the partitioned processes and the data flows of the FPGA implementation of 
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feature extraction. Each white box in the figure represents a small process. The black 

arrows located between processes are one-way data streams. In this design, 6N  

parallel threads are generated, where N  denotes the number of EMG channels, and the 

other six threads are assigned for extracting features from mechanical forces/moments. 

For each EMG channel, the thread contains four processes: loading raw input data from 

memory, calculating mean, subtracting mean from the raw data, and extracting four TD 

features from the processed data. For mechanical forces/moments, each thread fetches 

raw data from memory and calculates mean as the mechanical feature. After all the 

features are extracted, the feature streams are sent to the process of feature vector 

formation and normalization and then fused into a 1)64( N  feature vector. To 

implement the phase-dependent PR strategy, a thread of gait phase detection loads the 

vertical GRF measured from the load cell in each analysis window, and then 

Figure 3.4. Partitioned processes and data flows of the FPGA implementation of 

feature extraction. 
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determines current gait phase. This thread is also independent from the threads for 

feature extraction so that it can run simultaneously with other threads. The detected gait 

phase is streamed to the phase labeling process, and the feature vector generated in 

current window is labeled with a specific gait phase. During online pattern recognition, 

the feature vector with a labeled phase is the input data for pattern classification. In the 

training procedure, signals are recorded for a period of time under each movement task. 

Same procedure of feature extraction is performed for every training window. A 

])4,1[()64(  pMN p  feature matrix is generated as the training data for each gait 

phase, where pM  is the number of training windows in the 
thp  phase. 

2) Pattern Recognition: In this study, linear discriminant analysis (LDA) is 

adopted for user intent classification because of its computational efficiency for real-

time prosthesis control and the comparable accuracy to more complex classifiers [7]. 

Four gait phases are defined for recognizing user‟s locomotion mode, giving rise to 

four LDA-based classifiers. Each classifier is trained for a specific phase. The details of 

the LDA algorithm can be found in Appendix 3A. 

Most of the computations involved in the training algorithm are matrix operations. 

Because a large amount of data need to be processed in the training procedure, the 

dimensions of the matrices can be very large. Only using on-chip memory is not 

enough to handle all the computations. External memory with large capacity is required 

to store the processing data. In our implementation, several external memory buffers 

are defined to store either large matrices during the training computations or data that 

might be reused in the online PR phase or the re-training phase. A process is designed 

to perform a simple task with a small block of data, such as a matrix row/column, and 
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store partial results in the external memory. In this way, the operations of subsequent 

matrix rows/columns can be efficiently pipelined.  

During online pattern recognition, based on the gait phase of current analysis 

window, the parameters of the corresponding classifier are loaded from memory. The 

observed feature vector derived from each analysis window is provided to the classifier 

for intent recognition. 

3.4   Prototyping & Experimental Results 

This study was conducted with Institutional Review Board (IRB) approval at our 

university and informed consent of subjects. To evaluate the performance of the 

designed NMI, two experiments with different purposes were conducted. First, to 

evaluate the classification accuracy and the computation speed of the FPGA-based PR 

algorithm, the performance of the FPGA implementation was compared with our 

previous software implementation by processing the same dataset offline. Secondly, to 

evaluate the performance of the entire CPS, a real-time test was carried out on a male 

able-bodied subject for identifying three movement tasks (level-ground walking, stair 

ascent, and standing). 

3.4.1   Performance of FPGA vs. CPU 

In order to verify the correctness of the FPGA-based PR algorithm and compare 

the performance of the FPGA design with our previous Matlab implementation, we 

processed the same dataset on both platforms. The testing dataset was previously 

collected from a male patient with transfemoral amputation (TF).  Seven EMG 

channels recording signals from the gluteal and thigh muscles and six channels of 

mechanical forces/moments measured by a 6-DOF load cell were collected in this 
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dataset for identifying three locomotion modes including level-ground walking, stairs 

ascent, and stairs descent. The dataset was segmented by overlapped analysis windows. 

The window length and the window increment were set to 160 data points and 20 data 

points, respectively. The dataset contained 936 analysis windows totally, where 596 of 

them were used as the training data and the rest 340 windows were testing data. The 

Matlab implementation was based on a PC with Intel Core i3 3.2 GHz CPU and 6 GB 

DDR3 SDRAM at 1333 MHz. For the FPGA implementation, a 1GB DDR2-SDRAM 

SO-DIMM module was plugged into the DDR2 SO-DIMM socket on the DE3 board as 

the system external memory. The Altera high performance DDR2 SDRAM IP 

generated one 200 MHz clock as SDRAM's data clock and one half-rate system clock 

100 MHz for all other hardware components in the system. The dataset was preloaded 

into the SDRAM, and the output decisions were printed to the Nios II console [12] for 

performance evaluation. 

It was observed that the classification results of the FPGA system matched very 

well with the Matlab implementation. Both platforms provided a training accuracy of 

98.99% and a testing accuracy of 98.00%.  The missed classification points of the two 

implementations appeared in the same locations. These results clearly demonstrated 

that the FPGA-based PR algorithm did not lose any computation accuracy as compared 

to the software implementation.  

Table 3.1 compares the execution time of the LDA-based PR algorithm between 

the software implementation and the FPGA design. Two configurations with different 

number of input channels were considered, one with 7 EMG channels and 6 

mechanical channels, the other with 12 EMGs and 6 mechanical channels. For the 



 

78 

 

training algorithm that processed 600 analysis windows, the FPGA provided a speedup 

of around 7X over the software implementation. In the testing phase, the FPGA system 

took less than 0.3 ms to classify one analysis window. Compared with the Matlab 

implementation, the FPGA-based PR testing algorithm demonstrated a speedup of 30 

times for the configuration of 7 EMGs and 6 mechanical signals. If more input 

channels were used (i.e. 12 EMG channels and 6 mechanical channels), a more 

significant speedup of 38X was observed, which further demonstrated the advantages 

of FPGA parallelism. From Table 3.1 we can see that the FPGA implementation of the 

testing algorithm shows better performance than the training algorithm. This is because 

the testing algorithm only used fast on-chip memory while the computation complexity 

of the training algorithm required the FPGA to interact with the external memory. In 

our experiments it was observed that loading training data from external memory to the 

FPGA took more than half of the total execution time of the training algorithm. The 

summary of FPGA resource utilization is listed in Table 3.2. 

3.4.2   System Performance in Real-Time 

Table 3.1.  Comparison of the execution time of the PR algorithm 

 Configuration FPGA Matlab Speedup 

Training Algorithm 

( 600 analysis 

windows) 

7 EMGs 

6 Mech. 
0.46 s 3.2 s 6.96 x 

12 EMGs 

6 Mech. 
0.64 s 4.7 s 7.34 x 

Testing algorithm 

( classify one analysis 

window) 

7 EMGs 

6 Mech. 
0.23ms 6.8 ms 29.56 x 

12 EMGs 

6 Mech. 
0.25 ms 9.5 ms 38.00 x 
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The designed NMI prototype was tested on one male able-bodied subject (Figure 

3.5) in real-time. A plastic adaptor was made so that the subject could wear a hydraulic 

passive knee on the left side. Seven surface EMG electrodes (MA-420-002, Motion 

Lab System Inc., Baton Rouge, LA) were used to record signals from the gluteal and 

thigh (or residual thigh) muscles on the subject's left leg. An MA-300 system (Motion 

Lab System Inc., Baton Rouge, LA) collected seven channels of EMG signals. A 

ground electrode was placed near the anterior iliac spine of the subject. The mechanical 

ground reaction forces and moments were measured by a 6-DOF load cell mounted on 

Table 3.2.  Stratix III 3S150 resource utilization 

Resources Available Training 

12 EMG 

6 Mech. 

Training 

7 EMG 

6 Mech. 

Online PR 

12 EMG 

6 Mech. 

Online PR 

7 EMG 

6 Mech. 

Combinational 

ALUTs 

113,600 46% 33% 32% 25% 

Memory 

ALUTs 

56,800 3% 2% 3% 2% 

Registers 113,600 43% 30% 27% 24% 

Block memory 

bits 

5,630,976 16% 12% 16% 12% 

DSP blocks 384 72% 44% 27% 24% 
 

Figure 3.5. The NMI prototype based on MPC5566 EVB and DE3 education board 

(left figure) and the experimental setup of the real-time test on a male able-bodied 

subject (right figure).   
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the prosthetic pylon. The analog EMG signals and mechanical signals were digitally 

sampled at the rate of 1.1 KHz by the MPC5566 EVB. The intent decisions made by 

the FPGA device were sent out to 4-bit parallel IO pins on the DE3 board, and 

displayed by a software GUI. The window length and the window increment were still 

set to 160 data points and 20 data points, respectively. 

Three movement tasks (level-ground walking (W), stair ascent (SA) and standing 

(ST)) and four mode transitions (ST→W, W→ST, ST→SA and SA→ST) were 

investigated in this experiment. For the subject‟s safety, he was allowed to use hand 

railings and a walking stick. A training session was conducted first to collect the 

training data for the pattern classification. The subject was instructed to do each 

movement task for about 10 seconds in one trial. Three trials were collected as the 

training data. In the real time testing sessions, 10 real-time testing trials were 

conducted. To evaluate the system performance of real-time intent recognition, we 

adopted the evaluation criteria as described in our previous study [13]. The testing data 

were separated into static states and transitional periods. The static state was defined as 

the state of the subject continuously walking on the same type of terrain (level ground 

and stair) or performing the same task (standing). A transitional period was the period 

when subjects switched locomotion modes. The purpose of the UIR system is to predict 

mode transitions before a critical gait event for safe and smooth switch of prosthesis 

control mode. In this study the critical timing was defined for each type of transition. 

For the transitions from standing to locomotion modes (level-ground walking and stair 

ascent), the critical timing was defined at the beginning of the swing phase (i.e. toe-

off). For the transitions from locomotion modes to standing, the critical timing was the 
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beginning of the double stance phase (i.e. heel contact). The real time performance of 

our embedded system was evaluated by the following parameters. 

Classification Accuracy in the Static States: The classification accuracy in the 

static state is the percentage of correctly classified observations over the total number 

of observations in the static states. 

The Number of Missed Mode Transitions: For the transitions from standing to 

locomotion modes, the transition period starts one second before the critical timing, and 

terminates at the end of the single stance phase after the critical timing; for the 

transitions from locomotion modes to standing, the transition period includes the full 

stride cycle prior to the critical timing and the period of one second after the critical 

timing. A transition is missed if no correct transition decision is made within the 

defined transition period. 

Prediction Time of Mode Transitions: The prediction time of a transition in this 

experiment is defined as the elapsed time from the moment when the decisions of the 

classifier changes movement mode to the critical timing for the investigated task 

transitions. 

The overall classification accuracy in the static states across 10 testing trials for 

classifying level-ground walking, stair ascent and standing was 99.31%. For all the 10 

trials, no missed mode transitions were observed within the defined transition period. 

Table 3.3 lists the average and the standard deviation of the prediction time for four 

Table 3.3.  Prediction time of mode transitions before critical timing 

Transition ST→W W→ST ST→SA SA→ST 

Prediction Time (ms) 412.8±76.7 124.39±114.2 549.83±139.2  -104.67±54.1 
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types of transitions. The results show that there was around 104 ms decision delay for 

the transitions from stair ascent to standing (SA→ST). This is because the subject 

could not perform foot-over-foot alternating stair climbing with a passive knee joint. In 

our experiments, the subject climbed stairs by lifting the sound leg on one step and then 

pulled up the prosthetic leg on the same step, which produced the same pattern as the 

mode transition from stair ascent to standing. Therefore the transition SA→ST was 

only able to be recognized after the subject was standing still. This problem will be 

eliminated by replacing the passive device with a powered knee in the near future. 

Wearing the powered knee, the prosthesis user is able to climb stairs foot-over-foot, 

which provides a very different pattern from the transition SA→ST. For the other three 

types of transitions (ST→W, W→ST, and ST→SA), the user intent for mode 

transitions can be accurately predicted 104-549 ms before the critical timing for 

switching the control of prosthesis. Figure 3.6 shows the real-time system performance 

Figure 3.6. Real-time system performance for one representative testing trial. The 

white area denotes the periods of static states (level-ground walking, stair ascent, 

and standing); the gray area represents the transitional period; the black vertical 

dash line indicates the critical timing for each transition. 
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for one representative testing trial. The white area in Figure 6 denotes the periods of 

static states (level-ground walking, stair ascent, and standing), the gray area represents 

the transitional period, and the black vertical dash line indicates the critical timing for 

each transition. We can see in this trial all the transitions were correctly recognized 

within the transitional period. No missed classifications occurred in the static states in 

this trial. The video of our real-time experiments can be found at 

http://www.youtube.com/watch?v=KNhihjXProU. 

3.5   Conclusions 

This paper presented the design and implementation of the first complete cyber 

physical system of neural machine interface for artificial legs.  The new CPS 

implemented both training and testing modules on one single chip, and integrated all 

the necessary interfaces and control algorithms for identifying the user's intended 

locomotion modes in real-time. The designed NMI incorporated an MCU for sensing 

and buffering input EMG signals and mechanical signals, and an FPGA device as the 

computing engine for fast decoding and pattern recognition. A special parallel 

processing algorithm for UIR was designed and implemented that realized the 

neuromuscular-mechanical fusion based PR algorithm coupled with the real-time 

controlling algorithm on the FPGA. The FPGA implementation of the PR algorithm 

achieved a speedup of 7X over the Matlab implementation for the training phase, and a 

speedup of more than 30X for the testing phase with no sacrifice of computation 

accuracy. The designed NMI prototype was tested on an able-bodied subject for 

accurately classifying multiple movement tasks (level-ground walking, stair ascent, and 

standing) in real-time. The results demonstrated the feasibility of a self-contained and 
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high performance real-time NMI for artificial legs. Our future work includes real-time 

testing of the designed NMI system on amputee subjects, using the NMI system to 

control powered prosthetic legs, studying management of power consumption, and 

increasing the system reliability. 

Appendix 3A – Pattern Recognition Using Linear Discriminant Analysis 

The principle of the LDA-based PR strategy is to find a linear combination of 

features which separates multiple locomotion classes ]),1[( GgCg  . G  denotes the 

total number of classes. Suppose g  is the mean vector of class gC  and every class 

shares a common covariance matrix  , the linear discriminant function is defined as 
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During the training procedure,   and g  are estimated based on the feature 

matrix calculated from the training data. The estimations of   and g  are expressed as 
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where gK  is the number of analysis windows in class gC ; kCg
f ,  is the thk  observed 

feature vector in class gC ; ],...,,...,,[ ,,2,1, ggggg KCkCCCg ffffF   is the feature matrix of 

class gC ; ]~,...,~,~[ ggggMi   is the mean matrix that has the same number of 
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columns as in 
gF . The results of the LDA training procedure can be represented by a 

weight matrix as ],...,,...,,[ 21 Gg wwwwW   and a weight vector as 

],...,,...,,[ 21 Gg ccccc  . Here  

                                                      ggw ~
~ 1                                                   (3.2) 

and 

                                                  g

T

ggc  ~~~

2

1 1 .                                           (3.3)  

Therefore (3.1) can be estimated as  

                                                   gg

T

C cwfd
g


~

.                                            (3.4) 

The major task of the training procedure is to calculate the mean vector g
~  for 

each class, the common covariance matrix 
~

, and its inverse matrix 1~  . In practice, 

matrix inversion is a compute-intensive and time consuming task, which should be 

avoided if possible. From (3.2) and (3.3), it can be found that  
1~   does not appear 

alone. If g
~~ 1  can be calculated in an efficient way, W  and c  can be achieved 

easily. In our implementation, a more efficient algorithm was adopted to solve this 

problem. First, a Cholesky decomposition is performed as RRT 
~

, where R  is 

upper triangular. Then g
~~ 1  can be quickly computed with a forward substitution 

algorithm for a lower triangular matrix 
TR , followed by a back substitution algorithm 

for an upper triangular matrix R . The condition of a successful Cholesky 

decomposition is that 
~

 must be symmetric and has real positive diagonal elements, 
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which can be perfectly satisfied by a covariance matrix. In this way, (3.2) and (3.3) can 

be reformulated as )~\(\ g

T

g RRw   and g

T

gg wc ~
2

1
 . 

During the testing phase, the observed feature vector f  derived from each analysis 

window is applied to calculate 
gCd

~
 in (3.4) for each movement class and is classified 

into a class 
gC

~
 that satisfies 

},...,,{},
~

{maxarg
~
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Abstract 

Our previously developed locomotion-mode- recognition (LMR) system has 

provided a great promise to intuitive control of powered artificial legs. However, the 

lack of fast, practical training methods is a barrier for clinical use of our LMR system 

for prosthetic legs. This paper aims to design a new, automatic, and user-driven 

training method for practical use of LMR system. In this method, a wearable terrain 

detection interface based on a portable laser distance sensor and an inertial 

measurement unit (IMU) is applied to detect the terrain change in front of the 

prosthesis user. The mechanical measurement from the prosthetic pylon is used to 

detect gait phase. These two streams of information are used to automatically identify 

the transitions among various locomotion modes, switch the prosthesis control mode, 

and label the training data with movement class and gait phase in real-time. No 

external device is required in this training system. In addition, the prosthesis user 

without assistance from any other experts can do the whole training procedure. The 

pilot experimental results on an able-bodied subject have demonstrated that our 

developed new method is accurate and user-friendly, and can significantly simplify the 

LMR training system and training procedure without sacrificing the system 

performance. The novel design paves the way for clinical use of our designed LMR 

system for powered lower limb prosthesis control. 

4.1   Introduction 

Myoelectric (EMG) pattern recognition (PR) has been widely used for identifying 

human movement intent to control prostheses [1-4]. The PR strategy usually consists 

of two phases: a training phase for constructing the parameters of a classifier and a 
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testing phase for identifying the user intent using the trained classifier. Our previous 

study has developed a locomotion-mode-recognition (LMR) system for artificial legs 

based on a phase-dependent PR strategy and neuromuscular-mechanical information 

fusion [3, 5]. The LMR system has been tested in real-time on both able-bodied 

subjects and lower limb amputees. The results have shown high accuracies (>98%) in 

identifying three tested locomotion modes (level-ground walking, stair ascent, and 

stair descent) and tasks such as sitting and standing [5-6].  

 One of the challenges for applying the designed LMR system to clinical 

practice is the lack of practical system training methods. A few PR training methods 

have been developed for control of upper limb prosthesis, such as screen-guided 

training (SGT) [7-8], where users perform muscle contractions by following a 

sequence of visual/audible cues, and prosthesis-guided training (PGT) [9], where the 

prosthesis itself provides the cues by performing a sequence of preprogrammed 

motions. However, neither SGT nor PGT can be directly adopted in the training of 

LMR system for lower limb prostheses because the computer and prosthesis must 

coordinate with the walking environment to cue the user to perform locomotion mode 

transitions during training data collection. Currently the training procedure for the 

LMR system is time consuming and manually conducted by experts. During the 

training procedure, experts cue the user's actions according to the user‟s movement 

status and walking terrain in front of the user, switch the prosthesis control mode 

before the user steps on another type of terrain, and label the collected training data 

with movement class manually using an external computer. Such a manual approach 

significantly challenges the clinical value of LMR because usually the experts are not 
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available at home.   

 To address this challenge, this paper aims to design an automatic and user-

driven training method for the LMR system. The basic idea is replacing the expert 

with a smart system to collect and automatically label the training data for PR training. 

Our design significantly simplifies the training procedure, and can be applied anytime 

and anywhere, which paves the way for clinical use of the LMR system for powered 

lower limb prosthesis control. 

4.2   Automatic Training Method 

The LMR system for artificial legs is based on phase-dependent pattern 

classification [4-5], which consists of a gait phase detector and multiple sub-classifiers 

corresponding to each phase. In this study, four gait phases are defined: initial double 

limb stance (phase 1), single limb stance (phase 2), terminal double limb stance (phase 

3), and swing (phase 4) [5]. In the LMR system training, the EMG signals and 

mechanical forces/moments are the inputs of the LMR system [4] and segmented by 

overlapped analysis windows. For every analysis window, features of EMG signals 

and mechanical measurements are extracted from each input channel and concatenated 

into one feature vector. The feature vector must be labeled with the correct movement 

class and gait phase to train individual sub-classifiers.  

The previous approach labels the training data with locomotion mode (class) and 

gait phase by an experimenter manually. In this design, we replace the experimenter 

by a smart system that (1) automatically identifies the transition between locomotion 

modes based on terrain detection sensors and algorithms, (2) switches the control 

mode of powered artificial legs, (3) labels the analysis windows with the locomotion 
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mode (class index) and gait phase, and (4) trains individual sub-classifiers. Our 

designed system consists of three parts: a gait phase detector for identifying the gait 

phase of the current analysis window, a terrain detection interface for detecting the 

terrain in front of the user, and a labeling algorithm to label the mode and gait phase of 

current data. 

To label every analysis window with locomotion mode (class index), it is 

important to define the timing of mode transition. The purpose of the LMR system is 

to predict mode transitions before a critical gait event for safe and smooth switch of 

prosthesis control mode. Our previous study has defined this critical timing for each 

type of mode transition [4, 6]. In order to allow the LMR system to predict mode 

transitions before the critical timings, the transition between locomotion modes is 

defined to be the beginning of the single stance phase (phase 2) immediately prior to 

the critical timing during the transition [4]. 

1) Gait Phase Detection: The real-time gait phase detection is implemented by 

monitoring the vertical ground reaction force (GRF) measured from the 6 DOF load 

cell. The detailed algorithm can be found in [5]. 

2) Terrain Detection Interface: Because the sequence of the user‟s locomotion 

mode in the training trials is predefined, the goal of the terrain detection interface is 

not to predict the unknown terrain in front of the subject, but to detect the upcoming 

terrain change in an appropriate range of distances to help identify the transition 

between the locomotion modes.  

Figure 4.1 shows the sensor setup of the terrain detection interface. A portable 

laser distance sensor and an inertial measurement unit (IMU)  are placed on the 
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prosthesis user's waist as suggested in [10], because this sensor configuration has been 

demonstrated to provide stable signals with very small noises and good performance 

for recognizing terrain types. Before the training procedure starts, a calibration session 

is conducted first to measure a few parameters for later use in the training process. 

During calibration, the user walks at a comfortable speed on the level-ground for 

about 30 seconds. The average vertical distance from the laser sensor to the level 

ground ( H ) and the average step length ( LS ) of the user are measured.  

Three types of terrains have been investigated in this study, including terrains that 

are above current negotiated terrain (upper terrain), terrains with the same height as 

the current terrain (level terrain), and terrains that are below the current terrain (lower 

terrain). The terrain types can be discriminated by a simple decision tree as shown in 

Figure 4.2. In Figure 4.2, )(
~

th  denotes the estimated height of the terrain in front of 

 

Figure 4.1.  Four types of terrain alterations investigated in this study. 
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the subject, which can be calculated by )(cos)()(
~

ttdHth  . Here )(td  denotes 

the distance measured from the laser sensor; )(t  is the angle between the laser beam 

and the vertical direction, which can be obtained from the IMU; H  is the average 

vertical distance from the laser sensor to the terrain measured in the calibration 

session. 1hT  and 2hT  in Figure 4.2 represent the thresholds that distinguish the three 

terrain types. To reduce possible miss identifications, only the decisions in phase 1 

(i.e. initial double limb stance phase) of each stride cycle are considered for detection 

of terrain change. 

In order to accurately identify the transitions between consecutive movement 

tasks in real-time, the detection of terrain alteration must happen within the stride 

cycle immediately prior to the transition point. To meet this requirement the initial 

angle between the laser beam and the vertical direction ( init ) and the thresholds 1hT  

and 2hT  need to be chosen appropriately. As shown in Figure 4.1(a) and (b) for the 

terrain alterations from level ground to up/down stair, in order to make sure the subject 

is within the prior cycle to the transition point when the terrain alteration is detected, 

by assuming the variation of   during level ground walking is very small, the 

acceptable range of init  can be estimated by 

 

Figure 4.2.  The decision tree that discriminates the terrain types. 
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for Figure 4.1(b). 

For Figure 4.1(c) and (d), which represent the terrain alterations from up/down 

stair to level terrain, the terrain alterations must be detected within the last step. To 

satisfy this condition, 1hT  and 2hT  need to be less than the height of one stair step.  

3) Labeling Algorithm: The gait phase of every analysis window is directly 

labeled with the output of the gait phase detector. On the promise of detecting all the 

terrain alterations in the required ranges by the terrain detection interface, the 

transition point between locomotion modes is identified as the first analysis window in 

phase 2 immediately after the expected terrain change is detected. The transition point 

from standing to locomotion modes can be automatically identified without the 

information of terrain type, which is the first analysis window immediately after toe-

off (the beginning of phase 2). For two consecutive movement modes, the analysis 

windows before the transition point are labeled with the former movement class, and 

the windows after the transition point are labeled with the latter movement mode. 

4.3   Participant and Experiments 

4.3.1   Participant and Measurements 

This study was conducted with Institutional Review Board (IRB) approval at the 

University of Rhode Island and informed consent of subjects. One male able-bodied 
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subject was recruited. A plastic adaptor was made so that the subject could wear a 

prosthetic leg on the right side. 

Seven surface EMG signals were collected from the thigh muscles on the 

subject's right leg including adductor magnus (AM), biceps femoris long head (BFL), 

biceps femoris short head (BFS), rectus femoris (RF), sartorius (SAR), semitendinosus 

(SEM), and vastus lateralis (VL). The EMG signals were filtered between 20 Hz and 

450 Hz with a pass-band gain of 1000. Mechanical ground reaction forces and 

moments were measured by a 6 degree-of-freedom (DOF) load cell mounted on the 

prosthetic pylon. A portable optical laser distance sensor and an inertial measurement 

unit (IMU) were placed on the right waist of the subject. The laser distance sensor 

could measure a distance ranging from 300 mm to 10000 mm with the resolution of 3 

mm. The EMG signals and the mechanical measurements were sampled at 1000 Hz. 

The signals from the laser sensor and the IMU were sampled at 100 Hz. The input data 

were synchronized and segmented into a series of 160 ms analysis windows with a 20 

ms window increment. For each analysis window, four time-domain (TD) features 

(mean absolute value, number of zero crossings, waveform length, and number of 

slope sign changes) were extracted from each EMG channel [11]. For mechanical 

signals, the maximum, minimum, and mean values calculated from each individual 

DOF were the features. Linear discriminant analysis (LDA) [12] was used as the 

classification method for pattern recognition. The system were implemented in Matlab 

on a PC with 1.6GHz Xeon CPU and 2GB RAM. 

4.3.2   Experimental Protocol 

In this study, four movement tasks (level-ground walking (W), stair ascent (SA), 
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stair descent (SD), and standing (ST)), and five mode transitions (ST→W, W→SA, 

SA→W, W→SD, and SD→W) were investigated. An obstacle course was built in the 

laboratory, consisting of a level-ground walk way, 5-step stairs with the height of 160 

mm for each step, a small flat platform, and an obstacle block (300 mm high and 250 

mm wide). 

The experiment consisted of three sessions: calibration session, automatic training 

session, and real-time testing session. Before the training started, the calibration 

session was conducted to measure the average vertical distance from the laser sensor 

to the level ground ( H ) and the average step length ( LS ) of the subject. During 

calibration, the subject walked on the level-ground at a comfortable speed for 30 

seconds. H  and LS  were measured to be 980 mm and 600 mm, respectively. Because 

1hT  and 
2hT  need to be less than the height of one stair step (160 mm) as explained in 

Section 4.2, 1hT  and 2hT  were set to -120 mm and 120 mm, respectively. From (4.1) 

and (4.2) derived in Section 4.2, the estimated range of init  was calculated to be (19, 

50) degree, and init  was set to 42 degree. 

During training, the subject was asked to perform a sequence of predefined 

movement tasks. The subject began with standing for about four seconds, switched to 

level-ground walking on the straight walkway, transited to stair ascent, walked on the 

platform with a 180 degrees turn, transited to stair descent, and switched back to level-

ground walking on the walkway, stopped in front of the obstacle, turned 180 degrees, 

and repeated the previous tasks in the same way for two more times. In this training 

trial, besides the movement tasks investigated in this study, there were movements not 

wanted to be included in the training dataset, such as turning in front of the obstacle, 



 

98 

 

and walking and turning on the platform. These movements were labeled as "not 

included" (NI) mode.  

After training, ten real-time testing trials were conducted to evaluate the 

performance of the LMR system. Each trial lasted about one minute. All the 

investigated movement tasks and mode transitions were evaluated in the testing 

session. 

4.4   Results & Discussions 

In the training trial, the subject took about 225 seconds to complete all the 

movement tasks. After the subject finished all the tasks, only 0.11 second was further 

spent to train the classifiers. All the terrain alterations were accurately identified and 

all analysis windows were correctly labeled. Figure 4.3 shows the automatic labeling 

of locomotion modes in part of the training trial. It is observed from the figure that all 

terrain alterations were recognized at the beginning of phase 1 during the transition 

cycle, which means the actual terrain changes were detected before phase 1 and within 

the stride cycle prior to the transition. The transition points between consecutive tasks 

were accurately identified at the beginning of phase 2 during the transition cycle. All 

movement tasks were labeled with the correct class modes. 

The overall classification accuracy across 10 real-time testing trials was 97.64%. 

For all the 10 trials, no missed mode transitions were observed. The user intent for 

mode transitions was accurately predicted 103-653 ms before the critical timing for 

switching the control of prosthesis. The results indicate that the LMR system using 

automatic training strategy provides a comparable performance with the system using 

previous training method. 
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Table 4.1 summarizes the comparison between our new automatic training 

method and the previous training method. From the table we can see the new training 

method can significantly simplify the training procedure and shorten the total training 

time. 

4.5   Conclusions 

In this paper, an automatic, user-driven training strategy has been designed and 

implemented for classifying locomotion modes for control of powered artificial legs. 

The smart system can automatically identify the locomotion mode transitions based on 

a terrain detection interface, switch the prosthesis control mode, label the training data 

with correct mode (i.e. class index) and gait phase in real-time, and train the pattern 

classifiers in LMR quickly. The preliminary experimental results on an able-bodied 

subject show that all the analysis windows in the training trial were correctly labeled 

 

Figure 4.3.  Automatic labeling of locomotion modes in part of the training trial. 
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in real-time and the algorithm training process was accomplished immediately after 

the user completed all the movements. Compared with the system using traditional 

training strategy, our new training method can significantly simplify the training 

system and procedure, be easily operated by a naïve user, and shorten the total training 

time without sacrificing the system performance. These results pave the way for 

clinically viable LMR for intuitive control of prosthetic legs. 

Table 4.1.  Comparison between the new automatic training method and the 

previous training method 

 New Automatic Training Traditional Training 

Connection to 

external device 

A laser distance sensor and an 

IMU are required, which are 

both portable, and can be 

integrated into the prosthesis 

system in the future 

An external computer is required. 

Requirement of 

extra manpower 

No. A professional experimenter is 

required. 

Total training 

time 

30 s calibration time for 

measuring a few parameters; 

 

225 s for performing 

movement tasks; 

 

0.11 s for the rest training 

process; 

225 s for performing movement 

tasks; 

 

24 s for offline processing of 

training algorithm; 

 

At least 10 minutes for interacting 

with the experimenter, and manual 

data labeling 

Is the system 

easy to follow?  

User-driven:  

The training can be easily 

operated by a 'naïve user' 

unaided. 

 

The user only needs to 

perform all the movement 

tasks, and the training will be 

immediately done. 

Experimenter driven:  

The user needs to follow the 

guidance from the experimenter. 

 

The user needs to pause and wait 

when the experimenter is 

processing the data. 

The way to 

switch the 

prosthesis 

control mode 

Automatic switch;  

Driven by user's motion 

Manual switch; 

Controlled by experimenter 
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Abstract 

EMG pattern classification has been widely studied for decoding user intent for 

intuitive prosthesis control. However, EMG signals can be easily contaminated by 

noise and disturbances, which may degrade the classification performance. This study 

aims to design a real-time self-recovery EMG pattern classification interface to 

provide reliable user intent recognition for multifunctional prosthetic arm control. A 

novel self-recovery module consisting of multiple sensor fault detectors and a fast 

LDA classifier retraining strategy has been developed to immediately recover the 

classification performance from signal disturbances. The self-recovery EMG pattern 

recognition (PR) system has been implemented on an embedded system as a working 

prototype. Experimental evaluation has been performed on an able-bodied subject in 

real-time to classify three arm movements while signal disturbances were manually 

introduced. The results of this study may propel the clinical use of EMG PR for 

multifunctional prosthetic arm control. 

5.1   Introduction 

Electromyographic signal (EMG) pattern recognition (PR) is a widely used 

method for classifying user intent for neural control of artificial limbs [1-3]. However, 

unreliability of surface EMG recordings over time is a challenge for applying the 

EMG pattern recognition controlled prostheses for clinical practice. Motion artifacts, 

environmental noises, sensor location shifts, user fatigue, and other conditions may all 

cause changes in the EMG characteristics and thus lead to inaccurate identification of 

user intent and threaten the prosthesis control reliability and user safety[4-5].  

Several strategies have been developed to address this challenge in order to make 
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artificial limb control based on EMG PR clinically viable.  Sensinger et al. [5] 

employed adaptive pattern classifier to cope with variations in EMG signals for 

reliable EMG PR. Tkach et al. [6] investigated different EMG features and suggested 

several time-domain features that were resilience to EMG signal change caused by 

muscle fatigue and exerted force levels. Hargrove et al. [7] suggested a new EMG PR 

training procedure in order to accommodate EMG electrode shift during prosthesis 

use.  

Our research group developed a unique, reliable EMG pattern recognition 

interface, consisting of sensor fault detectors and a self-recovery mechanism. The 

sensor fault detectors monitor the recordings from individual EMG electrodes; the 

self-recovery mechanism will remove the faulty EMG signals from the PR algorithm 

to recover the classification accuracy [8-10]. It was observed that the EMG 

classification performance was not significantly affected by the removal of one or two 

EMG signals from redundant EMG recordings [2, 8]. Our new EMG-PR interface 

could salvage system performance by up to 20% increased classification accuracy 

when one or more EMG signals were disturbed [8].  

Despite the promise of our design concept showed in our previous study, the 

algorithm development and validation were tested offline. In order to implement this 

concept in real-time, especially in a wearable embedded system, several challenges 

still exist. First, the recovery strategy involves retraining of the pattern classifier.  

Currently this procedure involves reorganization of training feature matrix, 

computation of parameters in the pattern classifiers, and reorganization of testing 

feature vectors. Whether or not the embedded system can handle this procedure 
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quickly for each decision-making is unknown. Secondly, since more components are 

included in the EMG PR algorithm, communication among components and precise 

timing control is crucial. Finally, a compact integration of all the components in an 

embedded computer is required. The system needs to provide necessary interfaces for 

data collection, adequate computing power for real-time decision making, efficient 

memory management, and low power consumption. All these challenges have never 

been explored. 

This paper presents the first real-time self-recovery EMG pattern recognition 

interface for artificial arms. A novel self-recovery scheme with a fast and efficient 

retraining algorithm based on linear discriminant analysis (LDA) has been developed. 

The self-recovery EMG pattern recognition system was implemented on an embedded 

computer system as a working prototype. The prototype was preliminarily evaluated 

on an able-bodied subject in real-time in classifying three arm movements while 

motion artifacts were manually introduced by randomly tapping the EMG electrodes. 

The results of this study may propel the clinical use of EMG PR for multifunctional 

prosthetic arm control. 

5.2   Methods 

5.2.1   System Structure 

The overall structure of the self-recovery EMG pattern recognition interface is 

shown in Figure 5.1. The system seamlessly integrates EMG pattern recognition with 

the self-recovery module. Multiple channels of EMG signals segmented by overlapped 

sliding analysis windows are the system inputs. In each window, four time-domain 

(TD) features (mean absolute value, number of zero crossings, waveform length, and 
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number of slope sign changes [11]) of the EMG signals are extracted from each input 

channel and fed to the self-recovery module. The sensor fault detectors closely 

monitor the key features of each EMG signal to detect disturbances. Based on the 

detection results, the EMG features extracted from „normal‟ channels are concatenated 

into a feature vector as the input for pattern classification. If no disturbance is 

detected, the feature vector is directly sent to the classifier generated from the original 

training data. If one or more signals are determined as „abnormal‟, the fast LDA 

retraining process is triggered and the reduced feature vector is fed to the new 

classifier for pattern recognition. 

5.2.2   Fast LDA-based Retraining Algorithm 

Previously the lack of a fast and efficient retraining algorithm was the most 

critical challenge to the design of a real-time self-recovery EMG PR interface.  If the 

 

Figure 5.1.  System structure of the self-recovery EMG sensing interface for 

LDA-based pattern recognition. 

 



 

108 

 

retraining process cannot be accomplished in a short period of time, the signal 

disturbances may impair the classification performance and even harm the prostheses 

users‟ safety. Linear discriminant analysis (LDA) is a widely used method for EMG 

pattern recognition [1, 10-11]. By examining the details of the LDA algorithm, we 

developed a fast and memory efficient LDA retraining algorithm by making the most 

efficient use of existing information.   

The principle of the LDA-based PR strategy is to find a linear combination of 

features which separates multiple classes ]),1[( GgCg  . Here G denotes the total 

number of studied classes. Suppose f is the feature vector in one analysis window, 

g is the mean vector of class 
gC and every class shares a common covariance matrix 

 , the LDA function is defined as g
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gF . In a feature vector T

NnkC fffff
g

],...,,...,,[ 21,  , N  is the total number of EMG 

input channels and nf  denotes the four EMG features extracted from the thn  channel. 

In the previous retraining strategy [8], after the initial training process is done, the 

original EMG feature matrix is stored in the memory for later use in the retraining 

process. During the retraining procedure, for each class, a new EMG feature matrix 

'gF  is reorganized by removing the feature rows corresponding to the disturbed 

channels from gF . The mean vector of each class '~
g  and the new common 

covariance matrix 
~

' are then recalculated based on 'gF .  Our experimental analysis 

has shown that the calculation of 
~

' is the most computational intensive task in the 

retraining procedure, which accounts for more than 90% of the total processing time. 

This is because for each class, a large amount of analysis windows are collected as the 

training data. The number of columns in 'gF  may vary from several hundreds to a few 

thousands, which leads to intensive numerical operations in calculating 
~

'. 

Fortunately, after closely analyzing the details of the LDA training algorithm, we 

have found that the calculation of 
~

' and '~
g  can be avoided in a smart way.  The trick 

is, instead of the large feature matrix gF , only g
~  and 

~
 are stored in the memory 

after the initial training process is finished. 
~

' and '~
g  can be easily retrieved from 

~
 

and g
~ . Figure 5.2 shows an example of the retrieving process if a single EMG 

channel is detected to be „abnormal‟. Assume there are totally 6 EMG channels. Each 

element in the mean vector is calculated by averaging one specific feature row in gF . 

Therefore '~
g  can be obtained by taking off the four elements that are associated with 
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the disturbed EMG channel from 
g

~ . 
~

' is constructed by removing the 

corresponding rows and columns associated with the disturbed channel from 
~

 and 

then merging the remaining four small matrices ( 1B , 2B , 3B , and 4B  in Figure 5.2). 

If multiple EMG signals are disturbed, 
~

' and '~
g  can be obtained by doing the 

retrieving process repeatedly. Compared with the previous retraining algorithm which 

requires intensive numerical operations and a large memory space, the new strategy 

dramatically accelerates the retraining speed and is much more memory efficient.  

5.2.3   Sensor Fault Detection 

To detect individual EMG sensor abnormalities, various signal processing 

methods have been applied to sensor fault detection [8-10]. A detector based on 

Bayesian decision rule [8] has been proposed for accurately detecting three types of 

simulated distortions including EMG signal drift and saturation, additional noise in the 

signal, and variation of EMG magnitude.  An abnormality detector using Cumulative 

Sum (CUSUM) algorithm [9] has been developed to closely monitor the changes of 

EMG features for detecting sudden changes or gradual changes in EMG signals. 

In this study, the CUSUM detector is adopted in our implementation because of 

Figure 5.2. An example of retrieving 
~

' and '~
g from 

~
 and g

~  when a single 

EMG channel is disturbed. The white blocks represent the elements associated with 

the disturbed channel.   
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its computational efficiency for real-time processing, its high accuracy, and low false 

alarm rate in detecting motion artifacts [9-10]. Two EMG features including mean 

absolute value and number of zero crossings are monitored to recognize abnormal 

changes. Detailed algorithms of the CUSUM detector can be found in [9]. 

5.2.4   Real-Time Embedded System Implementation 

A preliminary prototype of the self-recovery EMG pattern recognition system was 

implemented on Gumstix Overo Air, an ARM Cortex-A8 OMAP3503 based 

computer-on-module (COM), and RoboVero, an expansion board with an ARM 

Cortex-M3 microcontroller and eight 12-bit analog-to-digital converters (Fig. 3). The 

Overo COM communicates with the RoboVero expansion board via two 70-pin 

connectors as shown in Figure 5.3. The system implementation consists of two parts: 

the microcontroller on the RoboVero expansion board for data sampling and 

dispatching, and the Cortex-A8 processor on the Overo COM for EMG pattern 

recognition. 

5.2.5   Experimental Protocol 

This study was conducted with Institutional Review Board (IRB) approval at the 

 

Figure 5.3.  The prototype based on Gumstix Overo Air COM and RoboVero 

expansion board. 
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University of Rhode Island and informed consent of subject. One male able-bodied 

subject was recruited. Four surface EMG electrodes (MA-420-002, Motion Lab 

System Inc.) were placed around the subject's right forearm. An MA-300 EMG system 

collected four channels of EMG signals. The analog EMG signals were digitally 

sampled at the rate of 1000 Hz by the Gumstix RoboVero expansion board. The 

sampled data were segmented into overlapped analysis windows with 160 ms length 

and 20 ms increment, resulting in a new decision every 20 ms. Three motion classes 

(Elbow Flexion, Elbow Extension, and No Movement) were investigated in this 

experiment. The experiment consisted of two sessions: training session, and testing 

session.  

The training session was conducted first to collect the training data and build the 

original classifier. The subject was instructed to perform one movement for about 4 

seconds in one trial. For each movement task, three separate trials were collected. 

After the training process was done, the parameters of the generated classifier, as well 

as the mean vector for each class and the common covariance matrix were saved in the 

memory for later use in the testing session.  

In the real-time testing session, for each movement task, the subject performed 

the movement for about 4 seconds in four separate trials. Totally 12 testing trials were 

conducted.  In every trial, motion artifacts were manually introduced by randomly 

tapping the EMG electrodes with roughly equal strength. In the preliminary 

experiment, we only tapped one electrode at a time. To better evaluate the 

performance of our self-recovery module, two types of classification decisions with 

and without the self-recovery module were compared in every analysis window. 
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In addition, an offline evaluation was conducted to compare the performance 

between our fast LDA retraining algorithm and the previous retraining strategy [8, 10] 

by processing the same dataset collected in the real-time testing session. 

5.3   Results & Discussions 

5.3.1   Performance of the Retraining Algorithm 

Table 5.1 summarizes the comparison between our new fast LDA retraining 

algorithm and the previous retraining algorithm. From the table we can see the new 

retraining algorithm was two orders of magnitude (118 times) faster than the previous 

retraining strategy and meanwhile only consumed less than 1% of the memory usage 

of the old strategy. Furthermore, our fast retraining algorithm only took less than 1 ms 

to generate the new classifier. This result makes it possible for the system to extract 

EMG features, detect signal disturbances, retrain the classifier, perform pattern 

recognition, and produce a decision seamlessly in a sequence within the duration of 

Table 5.1.  Comparison between the new retraining method and the previous 

retraining method 

 New Fast Retraining Previous Retraining  

Processing time  0.55 ms (2307 windows, 3 

classes, 4 channels) 

65 ms (2307 windows, 3 

classes, 4 channels) 

Speedup 118 1 

Memory Usage 

(2307 windows, 3 

classes, 4 channels, 

4 features per 

channel) 

g
~ :(4x4)x4 bytes=64 

bytes; 


~  : (4x4)x(4x4)x4 bytes  

       =1024 bytes; 

Total: 64x3+1024 

 = 1216 bytes=1.2 Kbytes 

Total size of the feature matrix: 

(4x4)x2307x4 bytes 

 = 147648 bytes 

 = 144.2 Kbytes 

Meet real-time 

constraints? 

Yes. No. 
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one window increment (i.e. 20 ms). This new design and implementation clearly 

demonstrated the feasibility of a self-recovery strategy that is truly 'imperceptible' to 

users. 

5.3.2   System Performance in Real-Time 

In the 12 real-time testing trials, totally 48 motion artifacts were introduced, 

among which 43 were recognized by the CUSUM detector and 20 caused miss 

classifications if our self-recovery was not used. All the disturbances that led to 

classification errors were successfully detected. The undetected disturbances were 

those with either small amplitude or short duration, which did not affect the 

classification performance. Without the self-recovery module, there were 277 miss 

classifications observed among 5993 decisions. All these errors were caused by 

motion artifacts. Our self-recovery module eliminated 259 of them, resulting in a 

93.5% recovery rate.  

Figure 5.4 shows the real-time system performance of some representative testing 

trials. The blue line at the bottom demonstrates one channel of the EMG signals which 

was randomly disturbed by motion artifacts. The black line above is the detection 

results of the CUSUM detector. As seen in the figure, the CUSUM detector accurately 

recognized all five motion artifacts. The classification decisions without self-recovery 

are displayed by the red line. The green line denotes the recovered decisions. The 

three gray ellipses in the figure mark three typical cases in the experiment. Case A  

represents a situation in which the self-recovery module successfully eliminates the 

classification error caused by motion artifacts. This is also the most common case. B  

is a case in which the sensor fault detector identifies the disturbance but the retrained 
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classifier still provides an incorrect decision. This may be because the disturbed EMG 

signal is critical to the recognition of this motion. Another case C  is a situation where 

the disturbance does not affect the classification decision.    

The results of the experiment have shown the promise of a robust, reliable, and 

efficient real-time EMG pattern recognition interface for artificial arms. 

5.4   Conclusion 

This paper presented a real-time self-recovery EMG pattern recognition interface 

for artificial arms. The system seamlessly integrated EMG pattern recognition with a 

self-recovery module that could detect signal disturbances, retrain the classifier, and 

perform reliable pattern classification in real-time. A novel fast and efficient LDA-

based retraining algorithm was developed and demonstrated the ability to immediately 

recover the classification performance from motion artifacts. The self-recovery EMG 

Figure 5.4. Real-time system performance of some representative testing trials. 
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pattern recognition system was implemented on an embedded computer system as a 

working prototype. The preliminary experimental evaluation on an able-bodied subject 

showed that our system could maintain high accuracy in classifying three arm 

movements while motion artifacts were manually introduced. The self-recovery 

module was able to eliminate 93.5% of the miss classifications caused by motion 

artifacts. These results have demonstrated the feasibility of a clinically viable EMG 

PR interface for multifunctional prosthetic arm control. 
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