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ABSTRACT

Spoofing is the common term used for describing the
intentional broadcasting of false radio frequency sig-
nals intended to disrupt and mislead systems that de-
pend on accurate position, navigation, and timing in-
formation provided by Global Navigation Satellite Sys-
tems (GNSS). Spoofing is an increasingly recognized
threat garnering increased interest from researchers
and users, both military and civilian.

This paper presents a GNSS spoof detection algorithm
that exploits the geometric distribution of a horizon-
tal array of GNSS receiver antennae and the geomet-
ric configuration of visible navigation satellites. Us-

ing a Neyman-Pearson hypothesis testing formulation,
a spatial correlation test is developed that can accu-
rately and dependably detect a GNSS spoofing event.
This paper develops the generalized likelihood ratio
test using standard statistical models of the GNSS
range measurements and maximum likelihood esti-
mates of the unknown variables. An analysis is pre-
sented showing the performance effects of the number
of receivers used, internal receiver clock bias estima-
tion, unknown antenna array orientation, and tempo-
ral and spatial locations of the detector.

Simulations were conducted using a GNSS simulator
and receiver combination to further substantiate the-
oretical claims. Furthermore, comparisons to similar
prior work using position solutions shows a marked
improvement in performance.

INTRODUCTION

Global Navigation Satellite Systems (GNSS) are well
known to be accurate providers of position informa-
tion across the globe; as such, they are commonly used
to locate and navigate craft in various transportation
modes. Because of high signal availabilities, capable
receivers, and well-populated satellite constellations,
GNSS users typically believe that the position infor-
mation provided by their GNSS receiver is perfectly
accurate. More sophisticated users look beyond ac-
curacy and are also concerned with the integrity of
the GNSS information; for example, RAIM algorithms
were developed to ensure users that the provided posi-
tion information is resistant to several possible satellite
failure modes.

Advances in electronics technology have enabled the
creation of malicious RF interference of GNSS signals.
Jamming (devices for which are widely available on
the web at very low cost) involves the creation of an
RF signal that overpowers or distorts the GNSS re-
ceiver’s input so as to completely deny the GNSS user
of any position, navigation, or time (PNT) informa-
tion. Clearly jamming is a serious concern when we
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expect accurate PNT information at all times. For-
tunately current generation GNSS receivers warn the
user when PNT is unavailable, so can detect jamming;
some of the more sophisticated receivers can also com-
bat jamming. Recent demonstrations have highlighted
another threat to GNSS integrity, the intentional cre-
ation of RF signals so as to provide counterfeit infor-
mation to a GNSS receiver; so called “spoofing” [1].
Since current generation GNSS receivers are not ex-
pecting to experience spoofing, this type of attack
is considered more dangerous than a jamming attack
since an erroneous PNT solution is often worse than
no solution at all.

A variety of approaches have been proposed in the lit-
erature to recognize spoofing and vary widely based
upon the assumed capabilities and a priori knowledge
of the spoofer. Methods for a single GNSS receiver
include monitoring the power levels of the GNSS sig-
nals (absolute, relative, and across satellites), checking
that the observed constellation is correct for the given
time (e.g. number of and IDs of the satellites), test-
ing the accuracy of the clock component, and checking
the computed position against that derived from some
non-GNSS source (e.g. an INS) [2]. Other methods
include correlating the P(Y) code at the RF level [3],
looking for vestigial peaks in the correlator outputs
[4], comparing to trusted reference signals [5, 6], us-
ing an antenna array to spatially locate and identify
signals [7], and other multi-antenna methods. While
these ideas are certainly viable for recognizing spoof-
ing, much of the treatment in the literature has been a
description of the methods; there has been little analy-
sis of their performance at effectively detecting spoof-
ing.

Further, implementation of many of the proposed
spoof detection methods requires a complete redesign
of the GNSS receiver since the detection algorithms
are based upon internal signal measurements unavail-
able outside of the receiver. Our approach to spoof
detection for the past two years has been to focus
on techniques that exploit the output already pro-
vided by current generation, commercial-off-the-shelf
(COTS) receivers. In other words, spoof detection
that can be implemented via a software tool interfac-
ing to existing GNSS hardware. For example, at last
year’s ION ITM [8] we presented a spoof detection al-
gorithm based upon the position solutions estimated
by an array of COTS GNSS receivers. We developed
the method using classical hypothesis testing and pro-
vided a complete analysis of its performance under the
Neyman-Pearson criterion. For example, we were able
to show excellent spoof detection performance (false
alarm probability of 10−5 and detection probability of
0.99) using 4 receivers with antennae distributed on a

circle of radius 10 meters.

Continuing this approach, the current paper develops
and analyses the performance of a GNSS spoof detec-
tion algorithm based on the (pseudo)ranges estimated
by an array of COTS receivers. The motivation for this
approach is: (1) range data (perhaps through residu-
als) is available as a standard output from some COTS
receivers, (2) the position based spoofing detection al-
gorithm mentioned above [8] works quite well, and (3)
the conversion from pseudoranges to the position so-
lution is lossy from an information theoretic (and hy-
pothesis testing) perspective; hence, better spoof de-
tection performance should be achievable by testing
with the original (pseudorange) data.

The primary contribution of this paper is the devel-
opment of a GNSS spoof detection algorithm that ex-
ploits the pseudorange information provided by some
COTS GNSS receivers. The resulting algorithm can
be interpreted as a spatial matched filter, comparing
the differential pseudoranges observed at the separate
antennae to their expected values given the geometry
of the antenna pattern. We then provide an analysis of
performance (providing expressions for both the prob-
ability of false alarm and the probability of detection)
to show the improvement over our previous position
based method. The paper is organized as follows: (1)
first we establish notation for the signals of interest,
(2) we present the statistics of the two hypotheses (no
spoof vs spoof) based on an additive white Gaussian
noise channel for the pseudoranges, (3) we develop the
optimum hypothesis test under a Neyman-Pearson cri-
terion, (4) we analyze the theoretical performance of
the test, and (5) we describe and present experimental
work to verify the theoretical predictions of perfor-
mance.

NOTATION AND SOME MATHEMATICAL
PRELIMINARIES

Imagine a configuration of m GNSS receivers with
their antennae located on a horizontal plane, evenly
distributed about a circle of radius r. (In this treat-
ment we assume that m ≥ 3; the important case of
m = 2 is considered in [9].) For convenience, let us em-
ploy a local east, north, up (ENU) coordinate frame
with the center of the circle at its origin. The in-
dividual antennae locations (k = 1, ...m) in this same
reference frame, then, areeknk

uk

 =

r sin θk
r cos θk

0


where

θk =
2π (k − 1)

m
+ θ
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This angle term describes the equiangular distribution
of the antennae about the circle relative to north in
which θ allows for a clockwise rotation of the entire
antennae platform.

The sky view presented to this antennae array is
assumed to consist of N satellites which will be
indexed by n (n = 1, . . . N). We will use the notation
ψn to represent the elevation (0 ≤ ψn ≤ 90◦) and
φn for the azimuth (0 ≤ φn ≤ 360◦) of satellite n
relative to the center of the ENU reference frame.
Satellites below the local horizon are ignored; in fact,
it is common to also ignore low elevation satellites
(say below 5◦). Since the antennae are assumed to
be closely spaced (r is small) then the set of visible
satellites and their angles is identical for each antenna.

For spoof detection each antenna is assumed to in-
dependently process the RF signals it receives, yield-
ing pseudoranges to the observed satellites. Let d0,n

represent the true distance (range) from the center of

the antennae array
(

[0, 0, 0]
T
)

to the nth satellite. In

terms of the elevation and azimuth angles, the position
of this satellite in the local ENU coordinate system
is en

u

 =

d0,n cosψn sinφn
d0,n cosψn cosφn

d0,n sinψn


and the range from the kth antenna to the nth satellite
is

dk,n =
[
(d0,n cosψn sinφn − ek)

2

+ (d0,n cosψn cosφn − nk)
2

+ (d0,n sinψn − uk)
2
] 1

2

=
(
d0,n

2

− 2d0,nr cosψn [sinφn sin θk + cosφn cos θk]

+r2
) 1

2

Since the satellite range is much, much larger than the
spacing between antennae (d0,n � r), this range can
be approximated

dk,n ≈ d0,n

√
1− 2

δk,n
d0,n

in which δk,n is

δk,n = r cosψn [sinφn sin θk + cosφn cos θk]

= r cosψn cos (φn − θk)

The square root function in the approximation to the
range can be expanded in a Taylor series in terms of

the variable x (= δk,n/d0,n) about x = 0

√
1− 2x =

∞∑
k=0

xk

k!

(
∂k

∂xk
√

1− 2x

)∣∣∣∣
x=0

= 1− x− x2

2
+ ...

≈ 1− x

where the approximation holds since x is small. In
terms of δk,n and d0,n, this is

dk,n ≈ d0,n

(
1− δk,n

d0,n

)
≈ d0,n − δk,n

so

dk,n − d0,n ≈ −δk,n

In other words, the difference in the expected range
measurement between a specific antenna and a
specific satellite relative to the corresponding range
measurement for that same satellite to the center of
the antennae array is approximately equal to −δk,n.

Finally, GPS pseudorange measurements combine the
actual range with the receiver clock bias and noise. An
equation for this simple measurement model is

ρk,n = dk,n + bk + wk,n

in which ρk,n is the pseudorange measurement for
satellite n at antenna k, bk is the clock bias of receiver
k, and wk,n represents white Gaussian noise (assumed
to be independent over k and n). As each receiver es-
timates and removes its own clock bias, the resulting
model on the measured ranges is then

d̂k,n = ρk,n − bk = dk,n + wk,n

This expression assumes that the clock bias estimate
is perfect so that all that remains is the additive noise.
We return to this issue later in this paper.

THE HYPOTHESES

We consider two situations, the null hypothesis, H0,
in which no spoofer is present and the alternative hy-
pothesis, H1, in which a spoofer is present:

• H0: With no spoofer present each individual range
measurement is an accurate estimate of the actual
range for that antenna and satellite pair.

d̂k,n = dk,n + wk,n = d0,n − δk,n + wk,n

for k = 1, 2, ...m and n = 1, 2, ...N .
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• H1: With a spoofer present we assume that the
individual antennae all receive identical RF sig-
nals, that we have a single point spoofer; hence, all
would provide noisy estimates of the same ranges.
(With only one radiator, a spoofer can create only
one possible position solution [10]. Further, while
the antennae will see the RF at slightly differ-
ent times, due to the difference in propagation
distance from the spoofer to each antenna, these
time delays are absorbed by the receiver clock
bias; hence, the receivers see identical RF.) Let-

ting d
(s)
n represent the spoofed range for satellite

n, we have the observation model

d̂k,n = d(s)
n + wk,n

for k = 1, 2, ...m and n = 1, 2, ...N . Note that
these are independent of the antennae positions
and the rotation angle.

For simplicity we model each noise term, wk,n, us-
ing independent Gaussian statistics with zero means
and variance, σ2, under both hypotheses. Under hy-
pothesis H0 and H1, the pseudorange distributions are
then

d̂k,n ∼ N
(
d0,n − δk,n, σ2

)
and d̂k,n ∼ N

(
0, σ2

)
respectively. The notation x ∼ N

(
µ, σ2

)
implies that

the random variable x has a Gaussian distribution with
mean µ and variance σ2.

HYPOTHESIS TESTING

We imagine a Neyman-Pearson formulation for this
problem and wish to develop a binary hypothesis test
wtih fixed probability of false alarm (the probability of
inaccurately deciding H1 when H0 is true). Hypothesis
testing is implemented by computing a scalar function

of the observation data, T
(
d̂1,1, ...d̂m,N

)
, called the

test statistic, and comparing this value to a constant
called the threshold. If the test statistic exceeds the
threshold, we decide H1; if not, we decide H0. Sym-
bolically we write this as

T
({
d̂k,n

})H1
>
<
H0

λ

in which case we use the notation
{
d̂k,n

}
to represent

the full set of mN range measurements. The optimum
test statistic for the Neyman-Pearson formulation is
well known to be the likelihood ratio [11]

T
({
d̂k,n

})
=

f
({
d̂k,n

})
|H1

f
({
d̂k,n

})
|H0

which is the ratio of the conditional probability den-
sity functions (pdfs) of the measurements under the
two hypotheses. Usually, one simplifies the algebraic
form of this test by taking monotonic functions of the
result (e.g. the natural logarithm is very common for
independent observations) and ignoring any additive
and positive multiplicative terms that are independent
of the data. As noted in the section above, we will
assume that the pdfs are Gaussian.

If one has a complete characterization of the two
hypotheses, then the development of the test statistic
is usually quite straightforward. The work, then,
is the development of the expressions for the prob-
ability of false alarm (so that the threshold can
be selected) and the probability of detection, the
resulting performance. If some of the parameters are
unknown, additional analysis and/or approximations
are required.

Under the statistical assumptions stated above the the
likelihood ratio test is

T
({
d̂k,n

})
=

m∏
k=1

N∏
n=1

1
σ
√

2π
e−

( ̂dk,n−d(s)n )
2

2σ2

1
σ
√

2π
e−

( ̂dk,n−d0,n+δk,n)
2

2σ2

Taking the natural logarithm, simplifying the algebra,
and ignoring any additive or positive multiplicative
constants yields an equivalent test statistic

T
({
d̂k,n

})
=

m∑
k=1

N∑
n=1

d̂k,n

[
d(s)
n − d0,n + δk,n

]
An obvious problem with this test statistic is that
it requires knowledge of the position through the

occurrence of d
(s)
n and d0,n in the computation, both

of which are unknown. One common approach,
the generalized likelihood ratio test (GLRT) [11],
estimates the unknown parameters under the two
hypotheses (typically a maximum likelihood esti-
mate, MLE) and substitutes those values into the
test statistic. We consider two cases depdending
upon whether or not the orientation of the antenna
array, through the variable θ, is known. The known
orientation case is derived in [9] while the interesting
unknown orientation case is developed in Appendix A.

• Known Orientation: It is shown in [9] that the

MLE of d
(s)
n and d0,n are identical; hence, if θ is

known then the hypothesis test reduces to

T
({
d̂k,n

})
=

m∑
k=1

N∑
n=1

d̂k,nδk,n
H1
>
<
H0

λ
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for some threshold λ. This detector can be inter-
preted as a spatial correlator.

• Unknown Orientation: In this case the MLEs
of d

(s)
n and d0,n are still equal, and we must use

the MLE of θ. Denoting δ̂k,n as the estimated δk,n
using θ̂, the hypothesis test is

T
({
d̂k,n

})
=

m∑
k=1

N∑
n=1

d̂k,nδ̂k,n
H0
>
<
H1

λ2

with λ2 a threshold yet to be determined. Af-
ter manipulation (see Appendix A), this can be
shown to be equivalent to the test

T 2
s + T 2

c

H0
>
<
H1

λ2

with

Ts =
N∑
n=1

N∑
n=1

d̂k,n cosψn sin

(
φn,0 −

2π (k − 1)

m

)
and

Tc =

N∑
n=1

N∑
n=1

d̂k,n cosψn cos

(
φn,0 −

2π (k − 1)

m

)
In comparison to the known orientation test
above, note that the direction of the threshold test
has changed. Further, this test can be interpreted
as a non-coherent form of the spatial correlator.

Note – due to the symmetry of the δk,n (and the d̂k,n)

any satellite specific term in d̂k,n contributes zero in
the test statistic in either case. For example, any ad-
ditional delay due to the ionosphere, troposphere, or-
bital error, or satellite clock issue that is common to all
receivers for a specific satellite has no impact on the
spoof detection; hence initially ignoring those terms
in our measurement model is not a limitation on the
results.

PERFORMANCE OF THE TEST WITH
KNOWN ORIENTATION

As a linear combination of Gaussian variables, the test
statistic

T
({
d̂k,n

})
=

m∑
k=1

N∑
n=1

d̂k,nδk,n

is also Gaussian distributed. Specifically (and see [9]
for details) under hypotheses H0 and H1, the distribu-
tions are

T ∼ N
(
µ0, σ

2
T

)
and T ∼ N

(
0, σ2

T

)

respectively, with

µ0 = −mr
2

2

N∑
n=1

cos2 ψn

and

σ2
T =

mr2σ2

2

N∑
n=1

cos2 ψn

For a hypothesis test with Gaussian statistics the false
alarm probability is

Pfa = Prob(T > λ|H0) = Q

(
λ− µ
σT

)
(Q(·) being the Gaussian tail probability). If Pfa is
fixed (which is typical for a Neyman-Pearson formula-
tion), then we can solve for the threshold as

λ = σTQ
−1(Pfa) + µ0

The power, or the detection probability, of the test is
then

Pd = Prob(T > λ|H1) = Q

(
λ− µ1

σT

)
= Q

(
Q−1(Pfa) +

µ0 − µ1

σT

)
Substituting in our expressions for the means (µ1 = 0)
and variance, and simplifying, yields

Pd = Q

Q−1(Pfa)−

√√√√mr2

2σ2

N∑
n=1

cos2 ψn


This result has the expected characteristics: Pd

increases for larger m and/or larger r; it decreases
with larger σ. It is interesting to see the dependence
on the number of satellites (N) and their elevations
(ψn); more and lower satellites improve performance.

Let’s define the spatial SNR as

SSNR ≡ mr2

2σ2

N∑
n=1

cos2 ψn

Clearly the larger this term is, the better the perfor-
mance is. Further, define the scale parameter

γ =
r

σ

then

SSNR =
m

2
γ2

N∑
n=1

cos2 ψn

In other words, a decrease in σ (the user range er-
ror, URE) allows for a corresponding decrease in
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the antenna pattern radius r without a change in
performance. Next, consider the satellite dependent
term

Sky Term ≡
N∑
n=1

cos2 ψn

While we cannot reduce this analytically as it is a
complex function of the sky view, we can use GPS
almanacs to explore its variation in time. For exam-
ple, at longitude 072◦W and latitude 41◦N (near the
authors’ work locations) the Sky Term ranges from
3 to 10 with an average of approximately 6 as shown
in Figure 1. An sample assessment of North Amer-
ica [9] shows a daily average value ranging from 5 to
9.

Time (hours)
0 2 4 6 8 10 12 14 16 18 20 22 24

S
k
y
 T

e
rm

0

2

4

6

8

10

12

Sky Term

Mean Sky Term

Figure 1: Example of Sky Term over 24-hour period.

As an example, Figures 2 and 3 show the receiver oper-
ating characteristic (ROC) for γ = 1, m = 3 receivers,
and Sky Term = 5. The left subplot is the full ROC;
the right subplot zooms in for low Pfa. Even at a value
of γ = 1 performance is quite good!

PERFORMANCE OF THE TEST WITH
UNKNOWN ORIENTATION

With unknown orientation, the hypothesis test
is

T 2
s + T 2

c

H0
>
<
H1

λ2

with Ts and Tc defined above. On the (Ts, Tc) plane
this is a test of falling inside or outside a circle of
radius λ (with, in general, a different λ from the
known orientation test above).

Appendix B addresses the statistics of these two test
variables. Specifically, they are jointly Gaussian under

Probability of False Alarm
0 0.2 0.4 0.6 0.8 1

P
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n

0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Typical ROC for the test with known orien-
tation (γ = 1,m = 3, and Sky Term = 5).
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1

Figure 3: Typical ROC for the test with known orien-
tation (γ = 1,m = 3, and Sky Term = 5).

both hypotheses:

{Ts, Tc}H0
∼ N

(
µs,0, µc,0, σ

2
T , σ

2
T , 0
)

and
{Ts, Tc}H1

∼ Ng
(
0, 0, σ2

T , σ
2
T , 0
)

(this notation lists the two means, two variances, and
the correlation coefficient, respectively, of the bivariate
Gaussian pdf) with

µs,0 =
mr

2
sin θ

N∑
n=1

cos2 ψn

µc,0 =
mr

2
cos θ

N∑
n=1

cos2 ψn

and

σ2
T =

mσ2

2

N∑
n=1

cos2 ψn
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Of significance in these results is the common vari-
ances and the zero correlation coefficients; the joint
pdfs of the test statistic have contours of constant
probability that are circles under both hypotheses.

The probability of detection is the probability under
H1 that the test statistic is smaller than the thresh-
old

Pd = ProbH1

(
T 2
s + T 2

c < λ2
)

Since {Ts, Tc} are bivariate Gaussian with zero means
and equal variances under H1 then

Pd =

∫∫
Ω

1

2πσ2
T

e
− 1

2σ2
T

(T 2
s+T 2

c )
dTsdTc

in which Ω is the disk about the origin of radius λ.
Changing variables to polar coordinates of magnitude
s (chosen to avoid using r with two definitions) and
phase angle φ yields

Pd =

∫ 2π

0

∫ λ

0

s

2πσ2
T

e
− s2

2σ2
T dsdφ

in which we have explicitly described the limits of in-
tegration of Ω. Integrating first over φ, then over s
yields

Pd = 1− e
− λ2

2σ2
T

The probability of false alarm of the test is the prob-
ability under H0 that the test statistic is smaller than
the threshold

Pfa = ProbH0

(
T 2
s + T 2

c < λ2
)

Again, {Ts, Tc} are bivariate Gaussian, but with non-
zero means, so

Pfa =

∫∫
Ω

1

2πσ2
T

e
− (Ts−µs,0)2+(Tc−µc,0)2

2σ2
T dTsdTc

Changing to polar coordinates yields

Pfa =

∫ λ

0

s

σ2
T

e
−
s2+µ2s,0+µ2c,0

2σ2
T∫ 2π

0

1

2π
e

s
√
µ2s,0+µ2c,0

σ2
T

cos(φ−θ)
dφ

 ds
where θ is the unknown orientation of the antennae
array. Now, the inner integral in brackets can be ma-
nipulated by changing variables to ζ = φ − θ, using
the periodicity of the cosine function to shift the in-
tegration limits, and recognizing the definition of the

modified Bessel function of the first kind. The result
for the false a alarm probability is then

Pfa =

∫ λ

0

s

σ2
T

e
−
s2+µ2s,0+µ2c,0

2σ2
T I0

s
√
µ2
s,0 + µ2

c,0

σ2
T

 ds

This final form for Pfa can be written in terms of Mar-
cum’s Q function [11]

Pfa = 1−Q
(
γ

√
m

2
Sky Term,

λ

σT

)
At this point we have expressions for Pfa and Pd in
terms of the system parameters of number of antennae
m, spacing of antennae r, user range error σ2, and the
geometric Sky Term. We can invert the Pd expression
for the threshold λ

λ = σT
√
−2 ln(1− Pd)

Inserting this result into the expression for Pfa we
have

Pfa = 1−Q


√√√√mr2

2

N∑
n=1

cos2 ψn,
√
−2 ln(1− Pd)


We acknowledge that some might think that this
expression is backwards, that it is more usual in
hypothesis testing to write the detection probability
as a function of the false alarm probability. However,
the utility of this closed-form expression is that for
a fixed Pd and measurement noise variance, σ2, the
known monotonically of Marcum’s Q function in
its arguments implies that our test’s performance
improves with increasing r,m, and Sky Term.

As an example, Figures 4 and 5 shows the ROC for
γ = 1, m = 3 receivers, and Sky Term = 5. For
comparison, the performance with known orientation
is also shown. As presented previously, the first plot
is the full ROC; the second plot zooms in for low Pfa.
While an unknown orientation does result in some per-
formance loss, performance is still quite good!

THE EFFECT OF CLOCK ERROR

We noted above that the actual GNSS measurements
are pseudoranges

ρk,n = dk,n + bk + wk,n

in which dk,n is the true range, bk is the clock bias of
receiver k, and wk,n represents white Gaussian noise
(assumed to be independent over k and n). Further,
our initial assumption was that each receiver estimates
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Figure 4: ROC comparison for unknown orientation
vs. known orientation

Figure 5: ROC comparison for unknown orientation
vs. known orientation (zoomed in)

and removes its own clock bias and that the estimate
is perfect so that

d̂k,n = ρk,n − bk = dk,n + wk,n

More realistically, however, the bias is not known
perfectly and the receiver employs an estimate b̂k,
so

d̂k,n = ρk,n − b̂k
= dk,n + bk − b̂kwk,n
= dk,n + εk + wk,n

in which we define the clock bias error as εk = bk− b̂k.

Appendix C characterizes the joint statistics of εk and
wk,n. The utility of these results is that we can re-
consider the statistics of the test. Consider the known
orientation case. Expanding the relevant test statis-
tic

T
({
d̂k,n

})
=

m∑
k=1

N∑
n=1

d̂k,nδk,n

=
m∑
k=1

N∑
n=1

(dk,n + εk + wk,n) δk,n

=
m∑
k=1

N∑
n=1

dk,nδk,n +
m∑
k=1

N∑
n=1

(εk + wk,n) δk,n

The first term is the mean of the test statistic, which is
the same as that appearing in the analysis in [9]; the
second term is a more complicated noise term. The
mean of this noise term is still zero (as it was above)
but, in contrast to the original analysis, the occurance
of the εk terms changes the variances. Specifically, the
test statistic’s variance increases to

σ2
T ′ = σ2hTh

m∑
k=1

(
N∑
n=1

δk,n

)2

+ σ2
m∑
k=1

N∑
n=1

δ2
k,n

(h is defined in Appendix C) which decreases perfor-
mance.

As an example, Figure 6 extends the results shown
in Figure 3 above, showing the ROC when the clock
noise is included (γ = 1, m = 3 receivers, and
Sky Term = 5). For comparison, the performance
with no clock effect is also shown. While the clock bias
reduces performance, the drop is quite small.

Proc. ION ITM, Dana Pt CA, Jan. 2015



Figure 6: ROC showing test with known orientation
including clock noise

Figure 7: ROC showing test with known orientation
including clock noise (zoomed-in)

Figure 8: Simulation ROC curve with performance
bounds

SIMULATION RESULTS

The ROC curves presented thus far were generated
using the theoretical performance equations for Pfa

and Pd given above. Seeking to further substantiate
the performance claims for this detection algorithm,
a simulation was conducted using a Spirent GSS 8000
simulator to generate a model GPS constellation
and feed the RF into a Novatel ProPak v3 GPS
receiver. The receiver’s range measurements and
satellite azimuth/elevation information were output
to a companion laptop for post-processing. The above
detection test statistics were calculated every second
and a performance curve drawn modeling the realized
performance.

Figure 8 shows the observed performance (plotted in
blue) against upper and lower bound theoretical per-
formance curves. These two curves used the maximum
and minimum Sky Term values observed throughout
the course of the 24-hour test. A significant obser-
vation worth noting is that the observed performance
curve appears to be (and in fact is, in a way) an aver-
age of the maximum and minimum Sky Term curves.
As noted multiple times above, the performance is de-
pendent on this constantly changing Sky Term; no
two snapshots are exactly the same. This means a
unique threshold is calculated for each snapshot, and
if a performance curve was plotted for each calculated
threshold, they would fill in all the space between these
performance bounds.
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COMPARISON TO PRIOR WORK

It is of interest to compare the performance results of
spoof detection based on pseudoranges to our prior
results for detection based solely on the position
solutions from the receivers.

Our ION GNSS+ 2013 paper [?] developed the form
of the test when the only data available is the receiver
position xk (east and north components, written as a
complex quantity). Assuming known rotation θ and
antenna positions dk, the optimum test was shown to
be

T ′ =
m∑
k=1

2<
{
−d∗ke−jθxk

} H1

>
<
H0

λ′

Effectively this test first undoes the rotation by θ, then
correlates the complex observations, the xk, against
the known orientation components, the dk; this is a
spatial correlator. If the orientation is unknown, the
optimum test was shown to be

T ′(x1, . . . xm) = −

∣∣∣∣∣
m∑
k=1

d∗kxk

∣∣∣∣∣ H1

>
<
H0

λ′

a ”non-coherent” spatial correlator.

Our ION ITM 2014 paper [8] employed a better model
of the errors in the position observation for use in anal-
yses of both of these tests. For the spatial correlation
(known orientation), the performance was shown to
be

Pd = Q

(
Q−1(Pfa)−

√
2mr2

σ2HDOP2

)
(1)

The performance for the non-coherent version was
shown to be

Pfa = 1−Q

(√
2mr2

Γ
,
√
−2 ln (1− Pd)

)
(2)

Based on pseudoranges (and ignoring clock bias es-
timation effects), the current paper develops perfor-
mance expressions as well. With known orientation,
we have performance

Pd = Q

Q−1(Pfa)−

√√√√mr2

2σ2

N∑
n=1

cos2 ψn


Comparing back to Eq. 1 the only difference is the
term under the square root and we note that we would
like the largest square root term possible. In other
words, expecting that the pseudorange test should
perform better than the position based test, we ex-
pect

2mr2

σ2HDOP2 <
mr2

2σ2

N∑
n=1

cos2 ψn (3)
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Figure 9: Performance metric for spoof detection with
unknown orientation; pseudorange and po-
sition based tests.

and want to explore how much the difference is.

With unknown orientation (but still zero clock bias)
the pseudorange based test’s performance is

Pfa = 1−Q


√√√√mr2

2σ2

N∑
n=1

cos2 ψn,
√
−2 ln (1− Pd)


Comparing back to Eq. 2 the only difference is the
expression under the square root of the first argument
which we note is the same expression as seen in the
known orientation case, and again we would like the
largest square root term possible.

The terms for comparision appears in Eq. 3. Can-
celing common terms (r, σ2, and m) the expression
is

1

2

N∑
n=1

cos2 ψn >
2

HDOP2

Figure 9 compares these two metrics over the course of
24 hours at our location. Recall that larger values are
better from a detection performance perspective. As
expected, the pseudorange based detector has superior
performance.

We can characterize the increase by taking the ratio
and converting to a decibel scale

gain = 10 log10

(
HDOP2

4

N∑
n=1

cos2 ψn

)

This gain is plotted in Figure 10; the average observed
improvement is 1.4 dB. The performance gain varies
greatly with time; a look at Figures 11 and 12 pro-
vides some insight into the explanation. Although the
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Figure 10: Performance gain of pseudorange testing
over position testing (in dB).

Figure 11: Sky view when the pseudorange is only
marginally better than the position based
test.

Sky Term is roughly 30% greater in Figure 11, the
HDOP is less than half of that in Figure 12. This
indicates the both the robustness of the pseudorange
based test (continuous strong performance) and the
volatility of the position solution based test. While
low-elevation satellites are more heavily weighted in
the pseudorange test, the loss of performance in the
position solution test due to the increased HDOP from
these same low-elevation satellites proves the stronger
dependence on this term.

Figure 12: Sky view when the pseudorange is much
better than the position based test.

CONCLUSIONS

In conclusion, this paper has demonstrated a new ap-
proach for detecting GNSS spoofing attacks leveraging
pseudorange measurements from an array of receivers.
The performance of this method was shown to depend
on the number of antennas and the distance they are
spaced within the multi-antennae array as well as the
geometry of the visible GNSS satellite constellation.
Imperfect clock bias measurements or an unknown ar-
ray orientation can further impact the detector perfor-
mance, but upon analysis the detector is quite robust
against these detriments. Lastly, when compared to
prior work using a similar approach with final GPS
position solutions, the presented detector proved su-
perior; the average improvement over the simulated
period was 1.4dB increase in performance.

APPENDIX A – SIMPLIFYING THE
UNKNOWN ORIENTATION TEST

Recall that the effect of θ is through the pseudorange
offsets, δk,n, which are themselves functions of the θk.
Evaluated at the MLE of θ, these are

δ̂k,n = r cosψn

[
sinφn sin

(
2π(k − 1)

m
+ θ̂

)
...

+ cosφn cos

(
2π(k − 1)

m
+ θ̂

)]

Expanding the sine and cosine of the sum of angles
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and then recombining in a different order

δ̂k,n = r cosψn

 cos

(
φn −

2π(k − 1)

m

)
cos θ̂

+ sin
(
φn − 2π(k−1)

m

)
sin θ̂


so we need the cosine and sine of θ̂.

For brevity, let us define η as

η = φn −
2π(k − 1)

m

We have

tan θ̂ =

N∑
n=1

m∑
k=1

d̂k,n cosψn sin (η)

N∑
n=1

m∑
k=1

d̂k,n cosψn cos (η)

so

cos θ̂ =

N∑
n=1

m∑
k=1

d̂k,n cosψn cos (η)

D

and

sin θ̂ =

N∑
n=1

m∑
k=1

d̂k,n cosψn sin (η)

D

in which common denominator term is

D =

√√√√√√√√√√

(
N∑
n=1

m∑
k=1

d̂k,n cosψn cos (η)

)2

+

(
N∑
n=1

m∑
k=1

d̂k,n cosψn sin (η)

)2

Substituting yields the resulting test.

APPENDIX B – ANALYSIS WITH
UNKNOWN ORIENTATION

With unknown orientation the test statistic is(
N∑
n=1

m∑
k=1

d̂k,n cosψn sin (η)

)2

+

(
N∑
n=1

m∑
k=1

d̂k,n cosψn cos (η)

)2

= Ts
2 + Tc

2

in which we’ve provided names for the two terms in
parentheses so that we can examine them individually.
We note that both Ts and Tc are linear functions of
the ρ̂k,n. Further, recall that each d̂k,n is a random
variable, either

d̂k,n = ρk,n + wk,n = d0,n − δk,n + wk,n

or
d̂k,n = d(s)

n + wk,n

depending upon the hypothesis. As we are assuming
that the wk,n are iid Gaussian random variables, then
Ts and Tc are jointly Gaussian under both hypothe-
ses:

{Ts, Tc}H0
∼ N

(
µs,0, µc,0, σ

2
s,0, σ

2
c,0, ρ0

)
and

{Ts, Tc}H1
∼ N

(
µs,1, µc,1, σ

2
s,1, σ

2
c,1, ρ1

)
(the parameters being the two means, two variances,
and correlation coefficient). To continue we need these
parameters under both hypotheses.

Under H0 taking expectations yields

µs,0 =

N∑
n=1

m∑
k=1

dk,n cosψn sin (η)

and

µc,0 =
N∑
n=1

m∑
k=1

dk,n cosψn cos (η)

while under H1 both reduce further to µs,1 = 0 and
µc,1 = 0.

To compute the variances, note that the individual
terms of the summations in both Ts and Tc are them-
selves independent (since the wk,n are iid); hence, after
tedious algebra we have

σ2
s,1 = σ2

s,0 =
mσ2

2

N∑
n=1

cos2 ψn

Similarly,
σ2
c,0 = σ2

c,1 = σ2
s,0

All four variances are equal.

The remaining parameter is the correlation coefficient,
ρ, under both hypotheses. As a characteristic of
the random variables without their means, ρ will be
the same under both hypotheses. Substantial algebra
yields zero for both hypotheses.

To conclude this Appendix, we note that trigonometric
manipulation allows us to simplify the µs,0 and µc,0
terms to

µs,0 =
mr

2
sin θ

N∑
n=1

cos2 ψn

and

µc,0 =
mr

2
cos θ

N∑
n=1

cos2 ψn
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Further, we note that

√
µ2
s,0 + µ2

c,0 =
mr

2

N∑
n=1

cos2 ψn

APPENDIX C – CLOCK BIAS EFFECTS

This appendix considers the pseudoranges and clock
bias for a single receiver (i.e. we drop the subscript k)
since the process of solving for an estimate of the clock
bias is independent from receiver to receiver.

Recall that the GNSS pseudorange measurements
combine the actual range with the receiver clock bias
and noise

ρn = dn + b+ wn

in which ρn is the pseudorange measurement for satel-
lite n, b is the clock bias, and wn represents the white
Gaussian measurement noise (assumed to be indepen-
dent over n). In the spoofing detection algorithm de-
velopment and analysis above we assumed that each
receiver estimates and removes its own clock bias per-
fectly so that the measurement consisted of only the
true range and noise

d̂n = ρn − b = dn + wn

This appendix explores this issue further.

First, let’s define the estimate of the clock bias as b̂;
the range measurement is, then

d̂n = ρn − b̂ = dn + wn + b− b̂ = dn + wn + ε

Our goal is to show that the clock estimation error, ε,
is just an additional noise term.

The unknowns in the standard GNSS problem are the
receiver position and the clock bias

x =


x
y
z
b


and the observables are the N pseudoranges

ρ =


ρ1

ρ2

...
ρN


Suppose that x is the least squares solution for the
given observables, then for small perturbations δρ and
δx we have

δρ = H δx

where H is the geometry matrix

H =


cosψ1 sinφ1 cosψ1 cosφ1 sinψ1 1
cosψ2 sinφ2 cosψ2 cosφ2 sinψ2 1

...
...

...
...

cosψN sinφN cosψN cosφN sinψN 1


Equivalently, at the solution to the least squares prob-
lem, we have

δx =
(
HTH

)−1
HT δρ

This expression relates changes in the measurements
to changes in the solution; of interest here is the last
element of δx, the clock bias estimate.

We note the following:

• Consider the case of pseudoranges with a constant
bias b, but no noise

ρn = dn + b

so that each δρ is the constant vector [b, b, . . . , b]T .
In this case each δx is zero except for the clock
term

δx =
(
HTH

)−1
HT b1 =


0
0
0
b


with 1 = [1, 1, . . . 1]T .

• Consider the case of pseudoranges with zero bias
and white noise with standard deviation σ

ρn = dn + wn

so that each δρ is the iid noise vector
[w1, w2, . . . , wN ]T . In this case the DOP matrix
provides the covariance matrix of the solution

Σx =
(
HTH

)−1
σ2

Most importantly, the clock estimate error, ε, has
variance determined by the bottom right element
of this matrix

σ2
z =

(
HTH

)−1

[4,4]
σ2

The multiplier is the TDOP (time dilution of pre-
cision).

• The estimate of the clock bias is a deterministic
function of the true clock bias, the pseudorange
measurement noise, and the geometry matrix

b̂ = b+ hT w
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in which b is the deterministic bias, w =
[w1, w2, . . . , wN ]T is the noise, and hT =

[h1, h2, . . . , hn] is the 4th row of
(
HTH

)−1
HT

(the transpose is employed so that all vectors are
column vectors). Further, since the clock bias er-

ror is ε = b− b̂, in terms of the noise it is

ε = −hT w

• The clock bias error, ε, is a Gaussian random vari-
able with distribution

ε ∼ N
(
0, σ2hTh

)
= N

(
0, σ2TDOP2

)
in which TDOP is the 4,4 element of the DOP
matrix. Further, since the clock bias estimate
satisfies b̂ = b − ε, b̂ is also a Gaussian random
variable

b̂ ∼ N
(
b, σ2hTh

)
The covariance of ε and the individual noise terms,
the wn, is

Cov (ε, wn) = −σ2hn

• Defining the combined noise on the pseudorange

d̂n as
qn = wn + ε

then its distribution is

qn ∼ N
(
0, σ2

(
1− 2hn + hTh

))
• The covariance of the pseudorange errors are

E {qn qp} = σ2
(
δ[n− p]− hn − hp + hTh

)
in which δ[·] is the Kronecker delta.

The utility of the above facts is that we can reconsider
the statistics of the proposed hypothesis tests. Recall
the known orientation case; the test statistic is

T
({
d̂k,n

})
=

m∑
k=1

N∑
n=1

d̂k,nδk,n

In terms of the measurement equation, this statistic
is

T
({
d̂k,n

})
=

m∑
k=1

N∑
n=1

dk,nδk,n

+
m∑
k=1

N∑
n=1

(εk + wk,n) δk,n

The first part of this expression is the mean of the
test statistic which is identical to the original analysis

in [9]. The second part shows the effect of noise on the
test statistic.

The mean of this noise term is still zero although, in
contrast to the original analysis, the occurrence of the
εk terms changes the variance.

Paralleling the analysis in [9] for known orienta-
tion,

σ2
T ′ = Var

(
m∑
k=1

N∑
n=1

(εk + wk,n) δk,n

)

Using the fact that the variance of a sum is the sum
of all of the variances and covariances we have

σ2
T ′ = σ2hTh

m∑
k=1

N∑
n=1

N∑
p=1

δk,nδk,p

−2σ2
m∑
k=1

N∑
n=1

δk,n

(
N∑
p=1

δk,php

)

+σ2
m∑
k=1

N∑
n=1

δ2
k,n

It appears that
N∑
p=1

δk,php = 0

so

σ2
T ′ = σ2hTh

m∑
k=1

(
N∑
n=1

δk,n

)2

+ σ2
m∑
k=1

N∑
n=1

δ2
k,n

REFERENCES

[1] T. Humphreys, B. Ledvina, M. Psiaki, B. OHan-
lon, and P. Kinter, “Assessing the spoofing threat:
development of a portable GPS civilian spoofer,”
Proc. ION GNSS 2008, Savannah, GA, Sept.
2008.

[2] J. S. Warner and R. G. Johnston, “GPS spoofing
countermeasures,” Homeland Security Jour., Dec.
2003.

[3] M. L. Psiaki, B. W. OHanlon, J. A. Bhatti,. D.
P. Shepard, and T. E. Humphreys, “Civilian GPS
spoofing detection based on dual-receiver correla-
tion of military signals,” Proc. ION GNSS, Port-
land, OR, Sept. 2011.

[4] K. D. Wesson, D. P Shepard, J. A. Bhatti, and
T. E. Humphreys, “An evaluation of the vestigial
signal defense for civil GPS anti-spoofing,” Proc.
ION GNSS, Portland, OR, Sept. 2011.

Proc. ION ITM, Dana Pt CA, Jan. 2015



[5] B. M. Ledvina, W. J. Bencze, B. Galusha, and I.
Miller, “An in-line anti-spoofing device for legacy
civil GPS receivers,” Proc. ION ITM, San Diego,
CA, Jan. 2010.

[6] P. F. Swaszek, S.A. Pratz, B.N. Arocho, K.C.
Seals, and R.J. Hartnett, “GNSS spoof detection
using shipboard IMU measurements,” Proc. ION
GNSS, Tampa, FL, Sept. 2014

[7] S. Daneshmand, A. Jafarnia-Jahromi, A.
Broumandon, and G. Lachapelle, “A low-
complexity GPS anti-spoofing method using a
multi-antenna array,” Proc. ION GNSS 2012,
Nashville, TN, Sept. 2012.

[8] P. F. Swaszek and R. J. Hartnett, “A multi-
ple COTS receiver GNSS spoof detector - ex-
tensions,” Proc. ION ITM, San Diego, CA, Jan.
2014.

[9] D.S Radin, GPS Spoofing Detection Using
Multiple Antennas and Individual Space
Vehicle Pseudoranges, M.S. thesis, Dept.
ECBE, URI, Kingston, RI, 2015, unpublished.

[10] N. O. Tippenhauer, C. P̈opper, K.B. Rasmussen,
and S. C̆apkun, “On the requirements for success-
ful GPS spoofing attacks,” Proc. ACM CCS 2011,
Chicago, IL, Oct. 2011.

[11] H. L. Van Trees, Detection, Estimation, and
Modulation Theory, Part I, New York: Wiley,
1968.

Proc. ION ITM, Dana Pt CA, Jan. 2015


	GNSS Spoof Detection Based on Pseudoranges from Multiple Receivers
	Citation/Publisher Attribution

	GNSS Spoof Detection Based on Pseudoranges from Multiple Receivers
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use

	tmp.1444062202.pdf.SjdST

