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Abstract 

The authors discuss the methodologies for constructing quality control charts by 

cumulative square and cumulative variance methodologies. These methodologies  

correspond to the EWMS and EWMV methods proposed by MacGregor and Harris 

(1993). Based on the distributions of the quality control chart statistics, we focus on the 

average (mean) cumulative square and average (mean) cumulative variance schemes to 

arrive at control limits appearing as parallel lines seen in stand Shewhart control charts. 

Last , we utilize the Box quadratic form and approximation to deal with the complexities 

of cumulative variance where means vary over time. 

Keywords: SPC, cumulative square, cumulative variance, EWMS, EWMV. 

 

Introduction 

In statistical process control (SPC), we identify methods based on cumulative 

statistics as cumulative sum (CUSUM). Previously, many others studied CUSUM control 

charts including Page (1954, 1961), Johnson (1962a, 1962b), Lucas (1976, 1982, 1985), 

Hawkins (1981, 1987, 1993), Woodall and Ncube (1985), Crosier (1988), Woodall and 

Adams (1993), Hawkins and Olwell (1997), Huesch et al. (2008, where human generated 

data indicate that standard Shewhart control charts are not robust) and Ryu, JH et al. 

(2010). Details as to the process for solving quality problems with CUSUM methods 

detailed by Montgomery (2013, chapter 9) provide for the solution of difficult situations 

where standard mean and variation control may not find small changes in processes.  
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The basic idea of CUSUM is to cumulate the information from previous sample 

points to reflect the changes in the process parameters achieving greater sensitivity. This 

approach is particularly effective for the sample size n=1, where the statistic is a random 

walk: 

10

1

0 )( 



 ii

i

j

ji CxxC  .  

The CUSUM statistic is nonstationary. It drifts away from the target as long as 

one collects a sufficient number of samples, even if there is no shift in the process mean. 

To reduce the effect of nonstationary, a 'buffer', called reference or slack value, is usually 

included in practice.  

  CUSUM chart and EWMA chart, the latter of which studied earlier by Roberts 

(1959) and Lucas and Saccucci (1990), often have similar records of performance in 

monitoring statistical processes. MacGragor and Harris (1993) suggested the use 

exponentially weighted moving variance (EWMV) and exponentially weighted moving 

square (EWMS) for such tasks. EWMS include squaring values of basic quantities in 

calculating the weighted moving average. However, previous research tended to focus on  

the process mean and not the process variability (or variance). Thus,  there are no control 

charts  for variability corresponding to MacGregor-Harris's EWMS and EWMV charts. 

We discuss, as an alternative, cumulative square (CUS) and cumulative variances (CUV) 

control charts to achieve this goal. The relation of  CUS and CUV is similar to the 

relation of EWMS and EWMV, where the square are cumulated on the basis of grand 

mean, and the variances are cumulated on the basis of local mean. We further propose 

another modification of the average cumulative square (ACUS) and average cumulative 

variances (ACUV) charts. 
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Cumulative Square and Average Cumulative Square  

Cumulative square (CUS) quantity accumulates the variances of the sequential 

observations of ),(~ 0Nxi  to form the statistic: 

2

1

22
)(  iii CxC                  i=1, 2,…         (1) 

As with the EWMS,   is the unconditional process mean. Observations ix  arise from 

independent processes, and each 2)( ix  is )1(22

0  . Therefore,  
2

iC  follows )(22

0 i , 

as long as 
2

0C  is set at zero. The degrees of freedom are the number of observations 

accumulated. To construct a CUS chart, we determine the control limits through use of 

the upper and lower critical values of the chi-square distribution with degrees of freedom 

of i, for example, )(2

99.0 i  and )(2

01.0 i .  

Figures 1 (a) and (b) show an example of the CUS chart for both variance and 

mean shift. Since the number of observations accumulated, i, always increases before 

interruption due to alarm signal, the control limits and the statistic are also monotonously 

increasing along with i. The chart is lean from the bottom left to the upper right. 

Moreover, the width between UCL and LCL also increases.  

One may prefer control charts with a constant width between the upper and lower 

control limits for ease of interpretation. With this preference , we utilize the simple mean 

of the cumulative variance, iCi /
2

. This is the average chi-square per degree of freedom. 

We assume the process is in-control in terms of no variance shift, hence,  iCi /
2

 follows 

the distribution )(2
2

0 i
i



. However, for large numbers of degrees of freedom i , the chi-

square distribution is, according to central limit theorem, approximately a normal 
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distribution of mean i  and variance i2 . The distribution )(2
2

0 i
i



 converges to a 

constant 2

0 and the asymptotic variance becomes zero. Hence, the  iCi /
2

control chart is 

not available for very large i, because the UCL and LCL tend to be the same. In turn, we  

consider the control chart iCi /
2

 ~ )(2

2

0 i
i



. We may name this chart as average 

cumulative square (ACUS) for it is the chi-square per square root of degrees of freedom. 

This statistic approximates to asymptotic distribution of )2,(2

0 iN . It is still a non-

horizontal chart, as the slope of the chart is not zero, but the asymptotic width between 

UCL and LCL is constant. Although the shape of the chart is parabolic curve with the 

central line i , it is actually quite flat when i is large, as showed in Figure 1 (c). A further 

modification may be make ACUS horizontal, that is, to chart iiCi

2

0

2
/  , which 

follows ii
i

2

0

2

2

0 )( 


 . This occurs because the mean of )(2

2

0 i
i



 is i2

0 . We can 

still call this ACUS, or horizontal cumulative square (HCUS), shown in Figure 1(d). We 

estimate the variance of the underlying process, 2

0   in Phase I of the SPC  control chart 

construction.  

When the number of observations is large, we acquire the control limits  through 

the approximation of chi-square to normal distribution. Fisher's approximation is  

22 )12(
2

1
 zi           (2) 

for 30i , where z  is standard normal distribution. Wilson and Hilferty's (1931) 

developed a better approximation: 
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32 )
9

2

9

2
1()( z

ii
ii  .       (3) 

This approximation is more accurate than Fisher's approximation for constructing control 

limits (Hald, 1952). 

We base the above discussion on cumulative square on the assumption that we 

know the process mean  . When the process mean is unknown, one uses an  appropriate 

estimate to replace   in the above formulas.   In these case, one collects (samples)  a set 

of preliminary data to estimate the process mean. The cumulative square will be 

composed of sum of 2)( xxi   where each of 2)( xxi  ~ )1(22

0   is not independent of 

each other. Therefore, the distribution is not exactly )(22

0 i . Moreover, we use 

approximations (2) and (3), the final approximate error to the control limits may not 

estimate the  process mean well. 

Cumulative variances (CUV) and Average Cumulative variances (ACUV) 

CUS and ACUS signal both mean shift and variance shift. If one wishes to 

monitor the shifts in the process variance, one can utilize the concepts of cumulative 

variances (CUV) or average cumulative variances (ACUV). The cumulative variances 

(CUV) statistic, corresponding to EWMV in MacGregor and Harris (1993), is defined as  

2

1

22
)(  iiii CxC  ,          i=1, 2…           (4) 

where i  is the process mean at the i
th
  point. This statistic accumulates the instantaneous 

variation from the process mean that may vary for different time points. One of the 

options to estimate i  is using EWMA, iii x  1)1(  with jx0 , j0, like in 
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EWMV. Another option is to measure the unweighted average of moving window of size 

n, 



i

nij

ji x
n

1
̂ .  

If i  is known, each of 2)( iix   is )1(22

0  , and 
2

iC  becomes )(22

0 i . If i  

is EWMA with parameter  , this relation may reduce the number of degrees of freedom. 

To identify the appropriate number of degrees of freedom of 
2

iC , we apply Box 

approximation )(2 vg  to CUV definition in (4) [This method was employed by  

MacGregor and Harris (1993) for estimating  EWMV].  

Let )',,(' 11, xxxX ii   and )',,(' 11,  


 ii . Since iii x  1)1( , set 

00  , then LX


, where L is the matrix composed of   in (5).  





















 





000

0

00

)1()1(0 1













 i
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Setting 00 C , we have 

XLILIXXXCxC iiii )()'(')()''()( 2

1

22
  


  (6) 

According to Box (1954) quadratic form, 
2

0

2
/iC  follows )(2 vg  where 

)(/)( UtraceUUtraceg   and )(/)( 2 UUtraceUtracev   and )()'( LILIU  . The 

values for g  and v  for different i , the number of accumulated observations, and 

different values of EWMA parameter   are shown in Table 1 and Figure 2. From Table 

1 and Figure 2, we can see that the value of g and the slope of iv /  are almost a constant 

for different i when i is greater than 10, although the degrees of freedom are less than i.  
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In addition, we observe that the effects of   on g and v  are almost linear. For small  , 

i.e.  =0.1, the loss in degrees of freedom is very small, only less 3%. For   as large as 

0.9, the loss in degrees of freedom is as high as 30%.  

We analytically calculate the converging asymptotic value of g and iv /  because 

we can express trace(U) and trace(UU) with   and i. In Table 1, the values of g and iv /  

are constant up to two decimal places. This provides reasonably approximations to g and 

iv / . For example, when  =0.1, approximating iv 973.0 and g=0.873 are sufficient. 

This allows us to acquire good approximations for g and v . In turn,  the nonstandard chi-

square distribution will result in an approximate chi-square.   

The choice of   depends on the purpose of the chart. If the CUV is monitoring 

variation at the process time-varying mean, the nature of the time-varying mean of the 

process is less volatile than the process observation. Moreover,   is small. If the chart is 

to monitor the variance of forecasting error, then   is a value between zero and one.  

In turn, the CUV statistic 
2

iC  follows )(22

0 vg  where the value of g  and v  

depend only on i and  . For approximations g  and v  are simply  asymptotic values. For 

example, if  =0.1, to ascertain the values of the chi-square, we follow Wilson and 

Hilferty's (1931): 

32 )
9

2

9

2
1()( z

vv
vv         (7) 

The method in (7) is similar to  Johnson (1949) in estimating EWMV.  

 Since v  increases with i at a constant rate, the central line and control limits for 

the control chart also increase. The distance between UCL and LCL widens at a rate 
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approximately with the square root of i. We observe this in (7) or by a Fisher 

approximation. For example, if v  is sufficiently large , by Fisher approximation, we have 

 )(2

99.0 v - ]12)(2)[
2

1
)( 01.099.0

2

01.0

2

99.0

2

01.0  vzzzzv    (8) 

Therefore, we construct a control chart with parallel lines for control limits and of 

constant width for the conditional variance that is similar to the ACUS. Finally, the 

ACUV chart statistic is iCi /
2

 ~ )(2

2

0 vg
i




, because i
i

v
v )(  and 

i

v
 is nearly 

constant.  

Figure 3 shows examples of the CUV and ACUV chart for  =0.1 choosing 

values of g=0.873 and 
i

v
=0.97. We construct control limits  at a two percent significance 

level (=0.02). A mean shift from 0 to 1 on Obs. #31 and a variance shift from 1 to 

2 on obs.#45 occurred in the process. We observe that the CUV charts do not reflect 

the shift in mean but perform well in detecting the shift in variance. The ACUV control 

chart performed well. Therefore, these control charts are very useful for monitoring 

variability of processes. 

 

Summary 

We observed that the CUS, ACUS, CUV, and ACUV are easier to construct in 

comparison with EWMS and EWMV control charts. Another advantage of CUS and 

ACUS in comparison with EWMS is that )(2 i is exact for a process that is in control. 

When the chi-square distribution is exact for a process that is in control, one can easily 

construct control limits from  public available distribution tables and computer functions. 
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The CUV and ACUV also have advantage in that the approximation procedure can 

employ the nearly constant characteristics of g and 
i

v
  in order to construct control limits 

easily. [One may easily accomplish this task with spreadsheet software, but one must 

beware on computational errors common to spreadsheet software.] The ACUV control  

chart contains a constant distance between the UCL and LCL and appears similar to 

conventional Shewhart control charts.  

In addition, we illustrated our results rather than only producing tables with 

numerical values. This easies our understandings that control limits are not constant over 

time when sample (subgroup) sizes are the same. In the future, we shall consider the 

relative performance of the scheme by assessing the criterion of average run length 

(ARL). As the cumulative square or cumulative variances are serially correlated, the ARL 

of these schemes does not directly reflect the significance level  associated with the 

control limits. We expect to obtain ARL through Monte Carlo simulation for processes 

that are in varying degrees of control and for various changes in process variability. 
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Table 1        

  g  Ratio of  i 

 i =30  i  =100   i =30  i  =100   i =30  i  =100   i  =300  

0.1 0.8728 0.8744 29.0503 97.2519 0.9683 0.9725 0.9737 

0.5 0.387 0.3883 25.5516 85.5512 0.8517 0.8555 0.8566 

0.9 0.0254 0.0255 21.1673 70.8434 0.7056 0.7084 0.7093 
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Figure 1 (a) CUS Chart with variance shift 
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Figure 1 (b) CUS Chart with mean shift 
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Figure 1 (c) ACUS Chart 
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Figure 1 (d) HCUS Chart with mean shift at Obs. # 31 
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Figure 2 (a)  degree of freedom of 2
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Figure 2 (b) value of g  
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Figure 2 (c)    ratio of iv /   

dots:  =0.1;  line:  =0.5; dash:  =0.9 
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Figure 2 (d)   The Effects of    
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Figure 3 (a) ACUV Chart with  =0.1 

Mean shift from 0 to 1 on Obs. #31, variance shift from 1 to 2 on obs.#45 
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Figure 3 (b) ACUV Chart with  =0.1 

Mean shift from 0 to 1 on Obs. #31, variance shift from 1 to 2 on obs.#45 
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