
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

2013 

Distribution, Variability, and Trends in Wind Characteristics in New Distribution, Variability, and Trends in Wind Characteristics in New 

England Coastal Areas England Coastal Areas 

Kelly I. Knorr 
University of Rhode Island, kellyireneknorr@gmail.com 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Knorr, Kelly I., "Distribution, Variability, and Trends in Wind Characteristics in New England Coastal Areas" 
(2013). Open Access Master's Theses. Paper 22. 
https://digitalcommons.uri.edu/theses/22 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/22?utm_source=digitalcommons.uri.edu%2Ftheses%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


DISTRIBUTION, VARIABILITY, AND TRENDS IN WIND

CHARACTERISTICS IN NEW ENGLAND COASTAL AREAS

BY

KELLY I. KNORR

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

OCEANOGRAPHY

UNIVERSITY OF RHODE ISLAND

2013



MASTER OF SCIENCE THESIS

OF

KELLY I. KNORR

APPROVED:

Thesis Committee:

Major Professor John Merrill

Annette Grilli

Brice Loose

Nasser Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2013



ABSTRACT

A comprehensive analysis of regional near-surface wind speed characteristics

is presented based on data from 9 coastal sites, extending over periods of 20 to

39 years, with a mean duration of 33 years. Six terrestrial data sets were ob-

tained from the National Climatic Data Center (NCDC), and 3 additional buoy

data sets came from the National Data Buoy Center (NDBC). Data sets contain

either sub-hourly or hourly wind speed averages from near-surface, single height

anemometers. Extensive quality checks were performed to account for anemometer

height changes, missing data, and flagged data.

Analyses focus on long-term temporal trends. Monthly, seasonal, and interan-

nual long-term trends are analyzed utilizing low-order Gaussian moments and the

Ordinary Linear Regression (OLR) technique; data autocorrelation is accounted

for and additional statistical analysis is performed herein. Four sites exhibit statis-

tically significant negative wind speed trends, 2 sites show statistically significant

increased trends, and no trend is observed at 3 sites. Further data analyses include

calculation of the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of annual

wind speeds and long-term temporal trends in the Weibull Probability Density

Function (PDF) and the shape and scale parameters that describe the form of the

distribution. The spatial variation of near-surface wind speed characteristics and

regional wind speed climatology are also investigated.

Results indicate marked stilling in the annual mean, Weibull scale parameter,

and 5th and 95th percentile values of wind speed at most terrestrial sites; opposite

trends are generally observed at buoys and marine sites. Possible attributions of

the source of the wind speed trends are also discussed.
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CHAPTER 1

Introduction

1.1 Near-surface wind

My interest is in surface winds as a fundamental variable in physical processes

in the ocean and atmosphere, but I recognize that near-surface winds influence

many disciplines. Climate variables in terrestrial and oceanic environments, wind

energy generation, and construction and other industries are all directly affected

by surface wind speeds.

Winds and the environment

Surface wind speeds, among other meteorological variables, influence the hy-

drological cycle through pan evaporation and crop reference evapotranspiration

(Rayner, 2007; McVicar et al., 2012). Thus, understanding of the role of wind in

surface flux is important for surface energy balance estimations (Monahan, 2006;

Rayner, 2007). The atmospheric transport of aerosols, specifically iron which

can be a limiting micronutrient, is controlled by winds (Mahowald et al., 2000).

Aerosols associated with pollution and pollination are advected and deposited

by winds (Okubo and Levin, 1989; Bernard et al., 2001). Heat and moisture

are transported by winds; converging and diverging winds initiate convection

(Capps and Zender, 2008). Near-surface ocean currents are forced by winds, and

winds play a large role in air-sea interaction (Wanninkhof et al., 2002) and gas

fluxes (Donelan et al., 2002). Wind speed estimates are used in storm surge and

wave height forecasting for coastal protection and erosion mitigation (Bijl, 1997;

Caires and Sterl, 2005). Winds are important in atmospheric modeling and large

scale model projections of climate change. A modest change in initial and bound-

ary conditions in General Circulation Models (GCMs) can significantly alter run
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and ensemble responses (Capps and Zender, 2008; McVicar et al., 2012).

Wind energy production and other industries

Even though turbine hubs are typically at or above 80m and most surface

anemometers measure winds speeds at 10m, wind speeds at the two heights can

be related by wind power laws (Peterson and Hennessey, 1978). Therefore, wind

power production is directly affected by near surface wind speeds. In addition, wind

power density varies with the cube of wind speed: a seemingly minor shift in wind

speeds can manifest as a substantial change in wind power (Greene et al., 2012b).

As more communities lean on alternative energy and countries encourage and en-

force renewable energy development, accurate wind energy assessment is needed.

Wind risk assessment is a factor in the construction, marketing, and insurance of

properties. For instance, winds are considered during infrastructure planning and

in structural engineering techniques (Cook, 1986; Jungo et al., 2002). In addition,

winds shape the location, design, and capacity of airports (Wever, 2012). Planting,

harvest, and crop yield in the agricultural industry are influenced by meteorological

processes directly related to near surface wind speeds (O’Neal et al., 2005).

Recent studies

Several studies in the climate literature have examined surface wind speeds.

For instance, Klink (2002) analyzed interannual variability and long-term trends,

Wan et al. (2009) reported spatial patterns after data homogenization, and Yan et

al. (2002) and Smits et al. (2005) studied extreme surface wind speeds linked to

cyclones. Recently, Pryor et al. (2009) compared in situ wind speed observations

to reanalysis data sets and model outputs. These studies and others suggest that

a changing climate will likely alter surface wind speeds (Vautard et al., 2010).
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1.2 Are wind speeds decreasing?

It has been hypothesized that wind speeds have decreased in the past 30-50

years (McVicar et al., 2012). This phenomenon of reduced wind speeds, termed

“stilling” by Roderick et al. (2007), has been identified at multiple sites in the

both hemispheres over the past several decades. Reduced wind speed trends were

identified in Northern Hemisphere countries including China (Xu et al., 2006), the

Czech Republic (Brazdil et al., 2009), and the Netherlands (Smits et al., 2005;

Wever, 2012). Studies in the Southern Hemisphere including 2 sites in Brazil

(da Silva et al., 2010) and 14 in Argentina and Chile (Mahowald et al., 2007;

Vautard et al., 2010) document negative trends. Furthermore, 41 sites in Aus-

tralia exhibited a mean trend of -0.010 ms−1a−1 over the study period 1975-2004

(Roderick et al., 2007).

Several studies have documented reduced wind speeds in the continental

United States and one study observed similar trends regionally in New England.

Klink (1999; 2002) conducted wind speed metric studies in and near Minnesota

and Greene et al. (2012a; 2012b) documented pronounced negative trends in win-

ter and spring median wind speeds over the western US plains. Scientists at Blue

Hill Meteorological Observatory, an isolated site south of Boston, have utilized a

contacting anemometer to record wind speeds since the 1960s and have observation

archives extending back to 1885 (Iacono, 2009). Iacono (2009) observed negative

trends of -0.008 ms−1a−1 from 1885-2009 and -0.026 ms−1a−1 from 1960-2009. It

was suggested that wind speeds at TF Green airport in Rhode Island have stilled,

but a trend was not quantified in the local climatic study (Pilson, 2008). To my

knowledge, substantial negative trends in New England like those at Blue Hill

have yet to be identified in the published literature. Furthermore, a comprehen-

sive study of regional New England wind speeds is absent from the recent climate
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literature.

There have been a couple of extensive studies that combined many of the in-

dividual studies previously listed, attempting to estimate and classify wind speed

trends over large spatial scales. A study of near surface wind speeds over the con-

tiguous United States reported widespread stilling of in situ winds from 1973-2000

and 1973-2005 (Pryor et al., 2009). This study utilized National Climatic Data

Center (NCDC) wind speed data that were normalized to a single, standard ob-

servation anemometer height of 10m in data sets NCDC-6421 (1655 stations) and

NCDC-DS3503 (193 stations) (Pryor et al., 2009). Conclusions were formed after

analyzing data recorded at 0000 and 1200 UTC to avoid time of observation bias in

temporal trends. The study used linear trends calculated utilizing Ordinary Linear

Regression and found that consistent negative wind speed trends were exhibited

across the continental United States with the largest trend magnitude in the east-

ern and midwestern regions. An addendum (Pryor and Ledolter, 2010) reported

almost identical findings in wind speed trends utilizing temporal-autocorrelation

(Pryor et al., 2009).

A recently published study was conducted on a global spatial scale in a similar

manner to that of Pryor et al. (2009). The investigation compiled trend analyses

from 148 publications including hundreds of sites throughout the world with each

data set duration greater than 30 years (McVicar et al., 2012). The OLR tech-

nique was utilized to calculate near surface terrestrial wind speed trends; a global

terrestrial trend was calculated to be -0.014ms−1a−1, illustrating a geographically

widespread stilling wind speed phenomenon (McVicar et al., 2012).

1.2.1 Wind speed metrics utilized to identify trends

Wind speed stilling has been identified in several different wind speed metrics.

Many studies, most utilizing the OLR technique, identify long-term trends in mean
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wind speed with units of ms−1a−1. Studies of other wind metrics support wind

speed stilling observations and assertions. Pryor et al. (2009) reported a signifi-

cant decrease for the annual 50th percentile of wind speed for many sites in the

continental United States. Vautard et al. (2010) reported a 5-15% decline in wind

speeds over the past 30 years with a greater decrease in strong winds than in weak

winds. Scientists also reported on a change in frequency of light and strong winds

(Mescherskaya et al., 2006), a decrease in gusts exceeding 30m/s (Sweeney, 2000),

and reduced speed of maximum daily gusts (Hewston and Dorling, 2011). The

frequency of storm events at 13 sites in the Netherlands decreased about 10% per

decade (Smits et al., 2005). Furthermore, storm events were shorter in duration

and occurred less frequently at several stations in coastal Spain (Fuentes, 2005).

Greene et al. (2012a; 2012b) observed wind speeds at 10m to estimate wind

power density at 80m for wind energy assessment purposes and emphasized de-

creases in wind power density during winter and spring. Other scientists have also

reported stilling on monthly, seasonal, annual, and interannual temporal scales.

For instance, McVicar et al. (2012) measured mean monthly wind speeds and

trends; they also examined annual wind speeds and trends for the continent of

Australia. A significant decrease in wind speeds was observed during the warm-

ing season (classified as April through October) in 22 regional sites in Canada

(Burn and Hesch, 2007). In other studies, long-term trends, interannual variability

(Klink, 2002), and effects of atmospheric circulation (Klink, 2007) on wind speeds

in and near Minnesota were reported. The papers emphasized reduced wind speeds

in the mid-west near Minnesota and explored how and why wind speeds vary from

year to year.
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1.2.2 Possible stilling attributions

Recent climate literature has provided possible explanations for observed re-

duced wind speeds on local, regional, and global spatial scales. Current literature

attributes stilling to a combination of increased surface roughness, changes in at-

mospheric circulation patterns, and observing anomalies.

1. An increase in surface roughness can account for 25%-60% of wind speed

stilling in studies in Eurasia (Vautard et al., 2010). However, this estimate

is mainly from Normalized Difference Vegetation Index (NDVI) data estima-

tions of land use and biomass changes. Surface roughness can increase due

to a number of factors:

(a) urbanization, or the expansion of urban and suburban areas (Oke, 2002)

(Guo et al., 2011)

(b) an increase in vegetation growth due to larger atmospheric CO2 con-

centrations (Donohue et al., 2009)

(c) forestation, the replanting and regrowth of former forests (Iacono, 2009;

Vautard et al., 2010)

(d) afforestation, the growth of forests in barren land always absent of

forests (Liu et al., 2008)

(e) agriculture land use changes including the amount of cultivated land

used for low and high crops, especially in areas with high crops such as

corn (Wieringa et al., 2001)

2. Mesoscale, synoptic, and planetary scale climate change phenomena could

cause apparent stilling, such as:

(a) a change in synoptic weather patterns including less cyclonic weather,
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such as storms and associated low pressure systems, and more anticy-

clonic circulation (Smits et al., 2005; Fuentes, 2005)

(b) retreat of jet stream poleward (Iacono, 2009)

(c) large scale climate circulation patterns such as El Niño Southern Os-

cillation (ENSO), Arctic Oscillation (AO), and North Atlantic Oscilla-

tion (NAO), and associated teleconnections affecting regions differently

(Klink, 2007; George and Wolfe, 2009) and changes in monsoonal pat-

terns (Xu et al., 2006)

(d) climate change related to rapid warming of polar latitudes reducing the

temperature and pressure gradients between polar latitudes and tropical

and mid-latitudes (Ren, 2010)

3. Reduced wind speeds or discontinuities could be attributed to observing

anomalies in some cases. Examples of observing anomalies include:

(a) the introduction of Automated Surface Observing System (ASOS) in

the mid to late 1990s (McKee et al., 2000; Pryor et al., 2009)

(b) anemometer obstructions and poor site maintenance (Wan et al., 2009)

(c) anemometer height and location changes (Wan et al., 2009;

Pryor and Ledolter, 2010)

(d) anemometer type and calibration changes (Wan et al., 2009;

Thomas and Swail, 2011)

(e) absence of documentation for any of the items in this section

(Klink, 2002; McVicar et al., 2012)
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1.3 Spatial wind speed trends

Increasing wind speeds

Not all studies point to wind speed stilling. Even though many current

publications indicate stilling on varying spatial scales, there are documented

cases of increased wind speeds. Scientists in the State of Veracruz, Mex-

ico observed elevated wind speeds at 5 sites with a trend of +0.017ms−1a−1

(Cancino-Solorzano and Xiberta-Bernat, 2009). A mean trend of +0.017ms−1a−1

was recorded at 8 sites over a period of 29 years in Spain (Recio et al., 2009),

and Moratiel et al. (2011) observed a wind speed trend of +0.040ms−1a−1 at a

coastal site in Spain. Elevated wind speeds were indicated in various wind speed

metric studies along with an increase in wind speed gusts (Kruger et al., 2010)

and 10 minute means exceeding 20ms−1 and 30ms−1 (Fujii, 2007). McVicar et al.

(2012) reported that cyclonic weather patterns, especially those associated with

sub-synoptic scale fronts and storms are responsible for increases in gusts.

Apart from these isolated cases of increased wind speeds over land, there have

been multiple studies that document increasing wind speed observations over the

ocean. Perhaps the most well known of these manuscripts is the paper by Young

et al. (2011) that recently appeared in Science. Young et al. (2011) utilized 23

years of ocean satellite altimeter data to calculate wind speeds and surface gravity

wave significant heights. They reported positive trends for both variables, with

higher magnitudes in wind speed trends. There was an increase in mean wind

speed, but more pronounced increases were in the 90th and 99th percentiles, the

latter of which indicated that extreme wind speeds over the oceans are increas-

ing by +0.75%a−1. Spatially, the highest percentage increase was located in the

Southern Hemisphere oceans, and the smallest trends (even negative in patches)

were detected in the northern Pacific Ocean. Young et al. (2011) correlated their
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results with observations from 12 deep-water buoys and concluded that although

there were marked differences between buoy and satellite trends, both analyses

reported similar features.

There have been other cases of increasing wind speeds over the ocean. In situ

observational reports include that of Flohn and Kapala (1989), whose publication

documented positive trends of +0.014ms−1a−1 for the Atlantic and +0.042ms−1a−1

for the Pacific. Another in situ study that utilized 5◦ grid cells of wind speeds mea-

sured by ships’ anemometers reported an increase of +0.020ms−1a−1 from 1982-

2000 (Thomas et al., 2008) for the global oceans. Recent satellite altimetry studies

like that of Young et al. (2011) concur with in situ studies, reaffirming reports

of increasing near-surface wind speeds over the oceans. Tokinaga and Xie (2011)

compared ship-based in situ observations to satellite measurements by construct-

ing a data set, Wave-and Anemometer-Based Sea Surface Wind (WASWind), to

homogenize in situ data. In situ data were homogenized to account for varying

anemometer heights, which generally became elevated with time, and to grid data

sets to monthly 4◦x4◦cells. They analyzed in situ data from 1950-2008 and satel-

lite data from 1998-2008. During those time periods, Tokinaga and Xie (2011)

calculated a trend of +0.013ms−1a−1 using the satellite data and similar trends us-

ing the WASWind data. Furthermore, Wentz (2007) published an inclusive world

ocean trend of +0.008ms−1a−1 using satellite data over 1987-2006.

Global trend patterns

There have been indications of global spatial patterns in near-surface wind

speed trends. Generally, terrestrial tropics and mid-latitudes have exhibited re-

duced wind speeds in the Northern and Southern Hemispheres; whereas increased

terrestrial wind speeds have been observed at latitudes greater than 65-70◦ in

both hemispheres. Increased wind speeds have been reported for Antarctica
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(Aristidi et al., 2005; Turner et al., 2005) and Alaska (Lynch et al., 2004). As pre-

viously indicated, wind speeds over the ocean have increased.

Studies in coastal areas have documented both stilling and increased wind

speeds. The complex topography and atmospheric circulation patterns such as the

land-breeze/sea-breeze cycle influence near-surface wind speeds. Currently, there

is not a consensus or understanding of coastal wind speed trends.

Scientists lack a complete understanding of the processes that govern the lati-

tudinal dependence on wind speed trends. Vautard’s (2010) hypothesis connecting

stilling with increased surface roughness is currently the only possible justification

for opposite marine and terrestrial trends at the same latitude. However, Vautard

(2010) recognized that increasing surface roughness only accounted for up to 60%

of stilling, and stilling has occurred during periods of negative satellite NDVI. In

addition, it is very unlikely that one phenomenon could be responsible for varying

wind speed trends throughout the globe; there is much to be resolved in regard to

the latitudinal dependence of wind speeds and trend attribution.

1.4 Model and reanalysis data

Reanalysis data and model projections should accurately predict wind speeds

trends, for inclusion in past and future climate studies. However, it has been re-

ported on several occasions that models and reanalysis data have not accurately

represented wind observations. This can cause studies to make conflicting conclu-

sions. For instance, two research groups studied the influence of radiation, wind

speed, atmospheric humidity, and air temperature on pan evaporation and evapo-

rative trends (Matsoukas et al., 2011; McVicar et al., 2012). However, Matsoukas

et al. (2011) used reanalysis data and attributed the evaporative trends to radia-

tive changes; whereas McVicar (2012) used in situ data and attributed evaporative

trends to wind speed changes.
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Further research has indicated that reanalysis data and model outputs do not

always represent in situ near-surface wind speed observations well. McVicar et al.

(2008) demonstrated that the NCEP/NCAR, NCEP/DOE and ERA40 reanalysis

data sets poorly reproduce negative wind speed trends and their spatial variabil-

ity. Furthermore, additional studies in both the Northern (Smits et al., 2005) and

Southern (Rayner, 2007) Hemispheres showed that observed wind speed trends

have little similarity with geostrophic or model reanalysis outputs. The misrep-

resentation of reanalysis data is not limited to terrestrial sites: Atlantic Ocean

reanalysis data trends did not agree with in situ trends calculated by Thomas et.

al. in 2008 (Wever, 2012). A thorough study by Pryor et al. (2009) compared in

situ and reanalysis data sets and output from Regional Climate Models (RCMs) in

the contiguous United States. Their results showed that opposite (positive) trends

were produced by the NARR, NCEP-1, and ERA-40 reanalysis data sets, while

wide spread stilling was observed in the 50th and 90th percentiles in the in situ

data sets. The Regional Spectral Model (RSM) also produced positive wind speed

trends over the United States (Pryor et al., 2009). However, several studies have

given favorable reports regarding model projections that correctly represented the

observed wind speed trend latitudinal dependence (Yin, 2005; Seidel et al., 2008).

McVicar et al. (2008) demonstrated that reanalysis data did not exhibit sim-

ilar trends as wind speed data, and recognized the importance of this flaw. They

constructed continent-wide gridded cells merging in situ anemometer observations

and reported decreased wind speeds for 88% of the land surface in Australia from

1975-2006. This technique was recommended for other climate variables and spa-

tial regions as an alternative to reanalysis data for models (McVicar et al., 2008).
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1.5 Motivation

Decreasing terrestrial near-surface wind speeds have been observed in the last

30-50 years. Stilling has been attributed to increased surface roughness, atmo-

spheric circulation changes, and observing anomalies; due to complications in data

homogeneity and complex physical processes, many unanswered questions remain.

The hypothesized latitudinal dependence on wind speed trends raises more ques-

tions, especially in areas near the coast.

Our study is necessary for several reasons. First, the study site is located

in the mid-latitudes (between 40.5◦N-41.9◦N), where both terrestrial stilling and

increased marine wind speeds have been observed. The anemometer locations are

in close proximity to the coast, which have been chosen to address the opposite

trends that have been observed along coastlines. Finally, a comprehensive study of

New England regional wind speeds is absent from the published climate literature.
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CHAPTER 2

Data

2.1 Data sources

National Climatic Data Center

The National Climatic Data Center (NCDC), an organization maintained by

the National Oceanic and Atmospheric Association (NOAA), offers online tools to

acquire long-term international climatic data. The site contains a plethora of data

and applications, but I concentrated on hourly/sub-hourly global data using the

Climate Data Online (CDO) map application. These data sets contain variables

such as wind speed, wind direction, pressure, temperature, and precipitation with

time steps of an hour or less.

NCDC offers about 50 variables in which to choose, and I commonly requested

wind direction, wind speed, and atmospheric pressure observations. After the

data request to NCDC is processed, four files are delivered: the data file with the

specified variables and time range, an inventory file with number of observations

per month over the requested time range, a comprehensive header which details

many quality and identification codes, and site-specific station information like the

elevation, latitude and longitude.

The data retrieved from the NCDC CDO tool require formatting and manip-

ulation before analysis in a program such as Matlab or Windographer. Oftentimes

the data is recorded at irregular time intervals or has multiple observations at one

single time. Also, the data can contain repeated column characters indicating the

site name and wind observation type. Furthermore, a ‘Q’ and ‘I’ are listed for

each individual observation. I commonly used a Unix Stream EDitor (SED) script

with substitution commands to simplify the data sets into a usable form. Further
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analysis is then used to organize the data into specially formatted files; these files

are tailored to fit the analysis I desire, whether I am utilizing hourly, daily, or

monthly wind vectors.

Very little supplementary material is available on anemometer type, height,

calibration, and station location changes. The comprehensive header file con-

tains keys to quality, type, and identification codes, but often codes are obscure.

The details of observations, specifically if an “hourly” observation is an hourly

mean or a single observation, are unknown until the installation of Automated

Surface Observing System (ASOS) at each site, after which observations are 2-

minute averages reported hourly. ASOS was generally deployed between 1993-1998

(Pryor et al., 2009). As the name states, observations by the ASOS firmware are

automated, and the installation changed several characteristics of recorded wind

observations (McKee et al., 2000). For instance, after ASOS was implemented,

the frequency of observations of the weakest and strongest wind speeds increased.

In particular, calm winds were reported more frequently, and NCDC cautions the

analysis of extreme and low wind speeds (Groisman, 2002). Before ASOS was

implemented, wind data was coded and reported in a teletype as ‘DDFF’ for a

2-digit azimuth (DD) and speed (FF). Therefore, azimuthal data were recorded

with 10 degree precision, and wind speeds were documented in a whole knots

(KT). Historical and post-ASOS wind speed observations are converted to m/s

(1KT=0.514m/s). ASOS observations are coded with the same precision as his-

torical measurements, or to 10 degrees and 1KT and the anemometer and wind

vane starting threshold is 2KTS (Nadolski, 1998).

Although the installation of ASOS firmware altered the frequency of docu-

mented extreme and calm winds, the mean and other wind speed percentiles were

not affected (Pryor et al., 2009). Pryor et al. (2009) conducted a study to iden-
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tify discontinuities in the mean and 50th and 90th percentile annual wind speed

values at 193 NCDC sites. Discontinuities were distributed randomly through-

out all observation periods, thus confirming that the introduction of ASOS did not

cause an all-inclusive disruption in wind speed metrics at United States study sites

(Pryor et al., 2009).

National Buoy Data Center

The National Data Buoy Center (NDBC) is another organization provided by

NOAA which offers online resources of long-term oceanographic data. NDBC is

responsible for disseminating data and site information for buoys located through-

out the world in oceans, seas, bays, and lakes. Buoy data sets commonly contain

both meteorological variables such as wind speed and direction as well as ocean

and wave characteristics.

Our interest is in historical buoy data files, which are downloaded individu-

ally by years. In addition to standard meteorological data, NDBC offers numerous

variables: wave density, direction, period, and significant height. I requested stan-

dard meteorological data, and files can be downloaded immediately upon request

in .txt format. Unlike NCDC files, very little is required to manipulate data files

into a usable format, because data are recorded at evenly spaced intervals and files

do not contain extraneous characters. However, I formatted data for its use in

additional analyses.

NDBC observation documentation is extensive and accessible. Much of the

data is recorded subhourly at 10 minute intervals, with a 10 minute acquisition

period for each observation. The rest of the buoy data is reported in hourly

intervals, with data collection periods of 10 minutes per hour at numbered buoys

(44008 and 44011) and 2 minutes per hour at CMAN buoys (Buzzards Bay). All

NDBC observations are given in degrees and m/s with the same precision of those
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at NCDC sites (10 degrees and 0.5m/s). I will refer to Buzzards Bay as BUZM3

and Buoys 44008 and 44011 will be often be called B44008 and B44011.

2.2 Data characteristics

The majority of the data sets came from NCDC and are from the airport

sites of Barnstable, Bridgeport, Nantucket, New Bedford, North Central (NC)

State, and TF Green; 3 data sets were obtained from NDBC sites: 44008, 44011,

and BUZM3. Site locations are shown in Figure 1, where NCDC airport sites

are displayed as colored squares and NDBC buoy sites are indicated by colored

circles. Most data sets contain more than 30 years of hourly data, beginning in

the early 1970s and continuing through the present. The shortest data set is 20

years in duration and the longest data set contains observations for 39 years. As

mentioned earlier, the NCDC data sets are comprised of hourly observations; in

contrast, the NDBC data sets contain 10 minute averages for the majority of the

data collection period and hourly averages for a subset of the time. Information

on data sets utilized in this study is shown in Table 1.

 

 

 73.0
°
 W  72.5

°
 W  72.0

°
 W  71.5

°
 W  71.0

°
 W  70.5

°
 W  70.0

°
 W  69.5

°
 W  69.0

°
 W  68.5

°
 W  68.0

°
 W  67.5

°
 W  67.0

°
 W  66.5

°
 W  66.0

°
 W 

 40.5
°
 N 

 41.0
°
 N 

 41.5
°
 N 

 42.0
°
 N TFGreen

Barnstable

Bridgeport

Nantucket

NCState

NewBedford

Buzzards Bay

B44008

B44011

Figure 1: Study site locations, with NCDC sites shown as colored squares and
NDBC buoy sites indicated as colored circles.

Gap years and/or periods with missing data are present in the data sets. For

instance, there is a several-year gap in the BUZM3 data from March of 1994 until

May of 1997. Many gaps, like that in the BUZM3 data, are random, but there are
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systematic gaps in data at 3 NCDC airport sites: Bridgeport, Barnstable, and New

Bedford. The repeating gaps originate with the beginning of recorded observations

and do not cease until the installation of ASOS in the mid 1990s. These data sets

are characterized by a 7-hour window without observations, usually from the hours

of 0400-1000 UTC daily. Information on how I accounted for random and repeating

gaps is found in the Methods chapter.

As mentioned earlier, very little information is known about anemometer

type, height, and calibration changes of the stations in the NCDC archive. How-

ever, a subset of those stations was included in another data set, DSI-6421

(Groisman, 2002), that underwent considerable station research and data qual-

ity checks. Although the DSI-6421 data set was not obtained, the comprehensive

documentation was acquired. Two of the NCDC sites in this study, Bridgeport and

TF Green, were included in the DSI-6421 data set; information about anemome-

ter height changes and ASOS installation is present and its utilization contributes

to the robustness of the each sites’ study herein. Documentation pertaining to

anemometer height changes is especially useful because wind speeds change with el-

evation in the atmospheric boundary layer (ABL) and anemometer height changes

were common: at Bridgeport, the anemometer height was altered 5 times during

the study period. Techniques utilized to account for anemometer height adjust-

ments are located in the Methods chapter.
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CHAPTER 3

Methods

3.1 Accounting for missing data

In every data set utilized in this study, data are missing in a number of in-

stances. Missing data can be caused by a mechanical breakdown in the anemometer

or an electronic malfunction in the data logger. There can also be systematic miss-

ing data from some airport sites prior to the ASOS firmware installation, when

observations were only taken during flight operation hours. Furthermore, data

such as an azimuth indicated as ‘999’ and speed as ‘99.9’ are present in many data

sets. Before any data analysis, flagged data must be removed and missing data

must be accounted for to avoid the introduction of a bias or artifact in the data.

Complex techniques can be utilized to fill data sets or interpolate over missing

values, but the methods are usually computationally involved and can introduce a

bias; thus no measures have been taken to fill gaps.

It has been shown that irregular data coverage, such as partial data

years, may influence annual means by introducing a bias in the estimates

(Kondrashov and Ghil, 2006). Therefore, careful quality control has been per-

formed for all data sets. Since both random and recurrent missing data are present

in the study data sets, each case must be considered. Random missing data may

be as brief as a single interval (1 hour or ten minutes), or as prolonged as several

years. I chose to quantify the quality of the data using a measure of the fractional

availability of data. A day was considered valid only if it contained 12 or more

hourly observations. The maximum allowable amount of missing data in a month

was 10 days. Similarly, if greater than 1/3 of the days were missing in any given

season, it was rejected in seasonal analyses. Furthermore, if greater than 33% of

days were absent in one year, that year was flagged because estimates were not
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fully representative of annual conditions. In some cases, the year was indicated

differently in a figure; in other cases the year was omitted. Pryor et al. (2009)

chose similar data quality standards in their study, although the frequency of their

data was at twelve hour intervals instead of hourly intervals.

Three of the study data sets, like many of the NCDC data sets, contain

multiple hours of missing data each day for many years. The missing data are

absent during the same hours every day; this pattern can be explained by the

nature of the observation site and the exact hours that are missing. The sites

with this characteristic, New Bedford, Barnstable, and Bridgeport, are all airport

installations, and the missing data generally fall between 0400-1000 UTC, times

when the airport was not operational. Although installation dates of ASOS are

unknown for all sites, it is assumed that the recurring gaps ceased with ASOS

installation because subsequently the observations are uninterrupted.

The absence of 7 hours of data per day creates a bias in the data which cannot

be ignored. Until the late 1990s, the New Bedford data set is missing observations

from 0400-1000 UTC (7 hours), Barnstable has no observations during the time pe-

riod of 0400-0900 UTC (6 hours), and observations are absent from the Bridgeport

data set from 0300-0900 UTC (7 hours). Once these time periods were calculated,

all observations were removed from each data set post the ASOS deployment.

Thus, a new data set was created in which each site lacked observations for about

7 hours per day throughout the entire time series. The two data sets: (1) the

original data set with daily missing data until the ASOS installment and (2) the

adjusted data set with missing data until the ASOS implementation and 7 hours

of data withheld afterward, were then compared. Figure 2 illustrates the original

data in blue and the adjusted data in red. The adjusted data is only visible after

the installation of ASOS, because the values in the two data sets are identical until
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then. Figure 2 illustrates that the recurrent absence of multiple hours of data per

day increases the annual mean. The missing hours are generally after dusk and

before dawn, when wind speeds are the weakest at most terrestrial sites; diel wind

speed studies of these sites after ASOS implementation revealed these patterns.

Speeds drop at coastal sites during nighttime because convective motion almost

ceases, and the land-breeze/sea-breeze cycle shifts. The land-breeze/sea-breeze

cycle is covered in the Results and Discussion chapter. Therefore, by removing

the weakest wind speeds, the daily mean and annual mean wind speeds increase.

An alteration of annual means can affect long-term trends, too. If a temporal

trend was calculated with the original time series the magnitude would be much

larger due to the presence of low annual means, which is an artifact of the periodic

missing data.

3.2 Frequent occurrences of calms

Wind speed data at NCDC airport sites in this study are characterized by

a high frequency of calms. Calms are reported at NDBC buoy sites, but are

extremely infrequent and hourly averages are almost never calm. The wind azimuth

associated with calms is always 999 in NCDC data, and azimuths corresponding

to calms at NDBC buoy sites equal 0 or 999.

Calms or 0.0m/s wind speeds are recorded when wind speeds are less than

the starting speed (or cut-in speed) of the anemometer. The starting threshold for

ASOS anemometers and wind vanes is 2KT, and calms are reported when mea-

sured winds are less than 2KT (Nadolski, 1998). Wind speeds are reported as

1KT before the ASOS installation at some sites, indicating a lower cut-in speed or

higher observer precision. The frequently-reported calms at airport sites include

weak wind speeds in addition to calm values. A possibility to account for frequent

calms is to distribute 0.0m/s wind speeds as positive values up to 2KT (the cut-in

21



1980 1990 2000 2010
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Years

W
in

d
 S

p
e
e
d
 (

m
/s

)

Bridgeport: Accounting for Daily Gaps

 

 

Altered Data

y = −0.0284x
1
 + 60.9370x

0

Original Data

Figure 2: Time series of yearly means using two data sets at Bridgeport. The
blue dots represent annual means using the original data set, in which 7 hours
of data are missing until 1997. After 1997 the data is consistently recorded at
hourly intervals. The red dots indicate an altered Bridgeport data set, which is
exactly like the original data set (blue dots) until 1997. Post 1997, 7 hours of data
have been manually removed from each day. The blue and red dots overlap until
1997. A trend line was added to the altered data (red dots). A trend would have
a greater magnitude with the inclusion of the original data instead of the altered
data.

speed) utilizing the Weibull Probability Density Function (PDF) as a guide. Calms

would be distributed as positive values, because those are included in Weibull PDF

interval. It is difficult to appropriately bin the calm values and perform the proper

adjustment, especially without supporting documentation on the anemometer cut-

in speed prior to ASOS installations. Furthermore, I am not absolutely certain

that all calm wind speed observations are an artifact of anemometer cut-in speeds.

Therefore, I have chosen to include calm wind speed observations in most calcula-

tions. Calm wind speeds are not included in Weibull parameter analyses, because
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the Weibull PDF is bounded by zero, and zero is not contained in the interval.

A wind speed histogram of all winds in the data record and 45 bins at TF

Green was generated, but is not shown in this document. The figure is a wind

speed histogram, like Figure 11 and Figure 12, but a fitted Weibull curve is absent

because only positive values are contained in the Weibull interval. The histogram

that includes calm wind speeds is characterized by a bin with a very high occurrence

of calm wind speeds followed by bin with a very low occurrence of weak winds

just greater than 0.0m/s, and subsequently a bin with a high occurrence of wind

speeds around 2m/s. Although it is not possible to fit a Weibull curve to wind

data containing calm observations, the fit would be very poor.

In a time series of annually averaged wind speed percentiles for NCDC sites

(not shown), the large occurrence of calm wind speeds affects annual means of 5th

and 10th wind speed percentiles. Because calms are so frequent, the annual mean

5th and 10th wind speed percentiles are repeatedly 0.0m/s.

Not only do the frequent occurrences of reported calms vary between NDBC

and NCDC data, but the number of calms also varies through the data record

period at NCDC airport sites. Figure 3 shows the annual count of reported hourly

0.0m/s wind speeds for each year of the data record at TF Green. The annual calm

counts can be described as having a large interannual variability; the annual counts

range from 0 in 1991 and 1992 to 1057 in 2008, over 12% of the observations for

that year. At all NCDC airport sites, the frequency of calm occurrences increases

after the ASOS installation, and Figure 3 shows that TF Green is no exception.

The ASOS firmware was deployed at TF Green on 01SEP1995, and this date is

represented by a black vertical line in Figure 3. There is an apparent increase in

reported calms after the ASOS implementation, and the annual calm totals after

the installation are greater than the largest calm totals before the installation.
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Figure 3: Time series of annual calm wind speed occurrence totals (red dots) at
TF Green. A reported calm wind speed is equal to 0.0m/s. The ASOS firmware
installation date at TF Green (01SEP1995) is indicated by a vertical black line.

3.3 Anemometer height homogenization

Because wind speeds increase with height in the atmospheric boundary layer,

wind speeds recorded at different heights should be adjusted to a common alti-

tude. Many studies in the current climate literature (Klink, 1999; Xu et al., 2006;

Wan et al., 2009; Vautard et al., 2010) acknowledge the importance of homogeniz-

ing near-surface anemometer heights or utilize data sets in which adjustments in

wind speeds have been made for anemometer height changes. The most common

reference height is 10m and is recognized by the World Meteorological Organiza-

tion’s (WMO) Guide on the Global Observing System (GOS).

Anemometer height information is available in the DSI-6421 documentation

(Groisman, 2002) for the TF Green and Bridgeport data sets. There was only

one anemometer height adjustment during the study period at TF Green: on
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01SEP1995 the anemometer was raised to 10m from 6.1m. Conversely, 5 ad-

justments were made to the Bridgeport anemometer: from 25.6m to 10.06m on

18APR1974, back to 25.6m on 15APR1976, to 24.38m on 15JUN1980, to 8.23m

on 30OCT1981, and finally to 7.92m with the ASOS deployment on 01MAY1996.

Anemometer heights at other NCDC airport sites have not been found. Conversely,

observation information and buoy specifications are readily available for the NDBC

sites. Although the anemometer heights for all three buoys in this study have not

changed, none of these is at 10m. For instance, the anemometers at B44008 and

B44011 are located at 5m height and Buzzard Bay buoy (BUZM3) observations

are measured at 24.8m.

The logarithmic (log) law and power law are analytical representations of wind

speed distribution with height. The log law is more applicable in lower, turbu-

lent layers of the atmosphere, particularly below 30 meters height (Mikhail, 1985;

Merrill and Knorr, 2012); the power law describes wind speeds over a greater

height range, and has been used in the majority of studies to standardize

anemometer heights. α, a dimensionless number, can be used to characterize

wind speeds at elevated heights, based on surface wind speeds (Touma, 1977;

Peterson and Hennessey, 1978). This relationship, given by the power law, is

shown in Equation 1, where U2 and U1 are wind speeds at height 2 (z2) and

height 1 (z1) respectively and α is the power law exponent or shear coefficient.

U2/U1 = (z2/z1)
α (1)

In a well-mixed ABL or neutral static stability ABL conditions, the value of

α is close to 1/7 (Peterson and Hennessey, 1978; Merrill and Knorr, 2012), and an

assumption of α= 1/7 can be utilized as an annual mean value (Touma, 1977;

Crosby, 2011). However, ABL stability is highly variable, especially in coastal
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areas; Barthelmie and Pryor (2006) showed that the land-sea boundary and coastal

atmospheric processes can affect the ABL up to 20km from the shoreline. Although

coastal processes and fluctuating ABL stability can introduce error with wind

speed extrapolation, the assumption of α=1/7 has been used over land and sea

(Peterson and Hennessey, 1978; Sedefian, 1980; Lu et al., 2002) and in the Rhode

Island Sound (Grilli and Spaulding, 2010). The shear coefficient value of 1/7 was

used in this study for consistency, but recent research has suggested that α=1/7

may be too high for marine wind profiles (Grilli and Spaulding, 2013). Grilli and

Spaulding (2013) measured an α value of 0.086 over Block Island, offshore of Rhode

Island. Even though 1/7 was utilized in this study for buoy sites, a slightly smaller

α value as suggested by Grilli and Spaulding (2013) would not significantly change

results.

The power law is widely applied for wind resource assessment, but it is uti-

lized in this study to correct wind speeds with anemometer height adjustments.

Corrections were applied to all data at the Bridgeport site and to the data prior

to 01SEP1995 at TF Green. Wind speed corrections were also applied at BUZM3,

Buoy 44008, and Buoy 44011 to adjust observations to a common anemometer

height of 10m. Depending on the anemometer height change, wind speed adjust-

ments were generally small in magnitude. For example, a wind speed of 5 m/s

observed at TF Green at a height of 6.1m would be adjusted to an observation of

5.37m/s at 10m elevation.

3.4 Weibull probability density function

In many cases, the wind speed distribution can be characterized by

the unimodal, two parameter Weibull probability density function (PDF)

(Hennessey, 1977). The Weibull PDF has been found to closely ap-

proximate near-surface wind speed distributions (Justus et al., 1976) and
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winds aloft (Baynes and Davenport, 1975). It is the most widely utilized

empirical distribution (He et al., 2010) in the literature in climatic sur-

face wind speed studies (Yan et al., 2002; Monahan, 2006; Klink, 2007;

Capps and Zender, 2008) and wind power assessment (Hennessey, 1977;

Lu et al., 2002; Pryor and Barthelmie, 2009).

The Weibull curve fits the asymmetrical or long-tailed distribution of wind

speeds, because both are bounded by zero and positively skewed. Fits of PDFs

with asymmetrical distributions have also been examined. For example, Morgan

et al. (2011) evaluated 14 PDFs from 178 offshore sites which ranged from 1 to 20

years in duration. The performance of the PDFs was assessed with three metrics,

including a wind speed probability plot R2. Morgan et al. (2011) demonstrated

that different distributions more accurately estimated some metrics at individual

sites, but it was concluded that the Bimodal Weibull (BIW), Kappa (KAP) and

Wakeby (WAK) PDFs offered the best fit for offshore wind speeds among all the

study sites and metrics. However, they indicated that the BIW, KAP, and WAK

PDFs were extremely complex and the PDF that offered the best fit among simpler

distributions for offshore wind speeds was the Weibull (Morgan et al., 2011).

The Weibull distribution is also known as a Fisher-Tippett Type III distri-

bution, which is a type of Generalized Extreme Value (GEV) distribution. GEV

distributions are useful in representing unusually small or large observation magni-

tudes. The GEV is covered under the Extremal Types Theorem, in which extreme

observation values of a fixed distribution will converge in a known distribution

as the number of extreme observations increases. The Extremal Types Theorem

in analogous to the Central Limit Theorem applied for a symmetrical Gaussian

curve. Three parameters characterize GEV distributions: location or shift ζ, scale

c, and shape κ. There are three classifications of GEV distributions depending
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on the magnitude of the shape parameter κ. The Weibull, or the Fisher-Tippett

Type III distribution occurs when ζ=0 and κ < 0 (Wilks, 2011). A separate shape

parameter k and the scale parameter c characterize the form of the Weibull PDF:

k describes the peakedness and width, and c is a measure of the central tendency

(Pryor and Barthelmie, 2009). k is a function of the skewness and kurtosis of

the distribution, and the mean wind speed and standard deviation determine c

(Capps and Zender, 2008). The Weibull PDF is described by Equation 2, where

p(U) is the PDF, k is the shape parameter, c is the scale parameter, and U are

wind speed observations.

p(U) = (k/c)(U/c)(k−1)exp[−(U/c)k] where U, k, c > 0 (2)

The Rayleigh distribution, a special case of the Weibull distribution, is as-

sumed when k equals 2. The Weibull distribution is generally characterized by

k < 3.6, with a positively skewed curve. When k approximately equals 3.6, the

Weibull PDF resembles a Gaussian curve, and if k exceeds 3.6 the Weibull curve can

be described by negative skewness and will no longer have a long tail (Wilks, 2011).

Data sets were analyzed utilizing qualitative and quantitative Weibull PDF

goodness of fit measures, and the maximum likelihood estimates of the Weibull

parameters were computed at a 90% confidence level. In addition, the spatial

variation of shape and scale parameters and analyses results of long-term and

seasonal temporal variation are reported herein.

3.5 Ordinary Linear Regression

Forecasting and climate analyses often involve Ordinary Linear Regression

(OLR), also referred to as linear, least-squares regression or simple linear regres-

sion. When OLR is utilized for estimation or prediction, the OLR line is referred

to as a trend line. The overwhelming majority of current near-surface wind speed
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climatological studies utilize the OLR method to analyze long term trends. The

OLR technique is utilized to summarize a linear relationship between two vari-

ables, X and Y, where X is generally referred to as the independent or predictor

variable and Y is the dependent or predictand variable. To demonstrate the linear

relationship, a line of best fit, or least-squares line, of Y on X is estimated. The

line is referred to as linear because it is characterized by a polynomial of the first

degree and can be represented by Equation 3, where X and Y are the independent

and dependent variables referred to above, and a and b are the y-intercept and

slope respectively. When the OLR method is utilized, the slope b is of the same

form as the Pearson Correlation Coefficient (Wilks, 2011).

Y = a+ bX (3)

Least squares

The line of best fit used to represent the relationship between X and Y is

calculated utilizing the least squares technique. This method measures the dif-

ference between the expected and actual value of each Y at each corresponding

X, which will be represented as Xi and Yi. For instance, consider one data pair

(X1,Y1), where Y1 lies some distance above the best fit line. The position on the

best fit line that corresponds with X1 will be called Y ; in this case, Y1 > Y and

the difference Y1-Y is denoted as d1. This difference d1 is also called a deviation

error or a residual. There is a deviation error for each pair (Xi,Yi) which can be

positive if Yi lies above the line of best fit, negative if Yi lies below, and zero if Yi

=Y. The goodness of fit is determined by summing the residual di squares of all n

data points: the line with d21 + d22 + d23 + ...d2n a minimum is considered the best

fit line. Therefore, the sign of di is not important because each deviation error is

squared. It should also be acknowledged that the mean of residuals of the best fit

line equals zero (Wilks, 2011).
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Confidence limits

Confidence limits, or fiducial limits, can be calculated for the y-intercept a and

the slope b. These limits are the end numbers for intervals containing a certain

percentage of data. For a data set statistic S (in this case S is a and b) and

standard deviation σS, the 90% confidence interval is represented by S ± 1.645σS,

where 90% is the confidence level and 1.645 is the confidence coefficient or critical

value (Spiegel and Stephens, 2011). The methods used to calculate confidence

limits associated with the a and b in OLR are distribution-free.

3.6 Autocorrelation

Persistence refers to the characteristic of a data set which is statistically de-

pendent on its past or future values. A data set exhibits positive statistical, or

serial, dependence on its values if small values are generally followed by small val-

ues and a similar pattern with large values. This serial dependence is present in

data because the time scale of the associated physical processes is as long or longer

than the observation interval. Persistence is common in climatology and meteo-

rology because of the nature of observations and their dependence on time. For

instance, wind speeds, precipitation, temperature, and pressure all exhibit persis-

tence, and all occur over varying periods of time from a brief microscale event to

a several-day synoptic event (Wilks, 2011).

Data that exhibit meteorological persistence are statistically autocorrelated

because no observation is independent of the previous observation. An autocorre-

lated data set typically has subset averages that deviate from the mean, resulting

in a larger time averaged variance than a statistically independent data set with

the same mean (Wilks, 2011). Furthermore, a repeated or periodic signal can be a

characteristic of autocorrelated data. The presence of autocorrelation in data can

foster artifacts or biases in the data, because each sample is statistically dependent
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on the previous sample.

Because the wind speed data I study exists in a time series, it is temporally

autocorrelated. The data consists of either 10-minute averages, hourly averages,

or hourly observations, which are much shorter than many meteorological events.

Although it is advantageous to resolve wind speeds 6 times per hour, observations

that lie closer together exhibit a higher degree of autocorrelation. Ignoring autocor-

relation in wind speed data can possibly cause inflated correlation and long-term

trend estimates and smaller confidence intervals. Many wind speed climatological

studies acknowledge autocorrelation but do not account for it in reported long-term

trends. However, Pryor et al. (2009) acknowledged the inherent autocorrelation

in their continental United States wind speed study and followed up with an ad-

dendum (2010) that focused solely on adjusting trends and confidence intervals

to account for autocorrelation. Although the number of trends deemed statis-

tically significant was slightly reduced with consideration of autocorrelation, the

trend magnitudes were consistent with those when autocorrelation was not treated

(Pryor and Ledolter, 2010).

There are several methods to estimate autocorrelation and its ramification

in data set parameters. Equation 4 shows the effective sample size n′ of a data

set, where n is the number of observations in the data set and ρ1 is the lag-1

autocorrelation coefficient (Wilks, 2011). Thus, when the data are autocorrelated,

the effective sample size is reduced and can be adjusted. When no autocorrelation

is present, ρ1 = 0, and n′ = n.

n′ ∼= n(1− ρ1)/(1 + ρ1) (4)

Autocorrelation was evaluated at a terrestrial and a marine site to estimate

the degree of autocorrelation in the study data. The sites were evaluated from

2009-2011, a period of 3 years, utilizing hourly data from TF Green and hourly
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mean data from BUZM3 at 0000 and 1200 UTC. These three years and 0000 and

1200 observations were chosen because missing data were sparse, and the continuity

of observations is needed to assess autocorrelation. An autocorrelation test cannot

be performed if data are absent; linear interpolation was utilized to fill missing

data, which were about 1 per year. Figure 4 and Figure 5 show autocorrelation at

two sites for the three year time series and the first 6 days of the autocorrelation.

The 95% confidence intervals, or the critical autocorrelation lines, are indicated

in red and given by Equation 5, where Rn is the critical autocorrelation value for

each lag n in a data set size N (Glover et al., 2011). Autocorrelation is signif-

icant when the magnitude of the autocorrelation coefficient Rxx is greater than

Rn, or when the autocorrelation coefficient extends beyond the confidence limits

(Glover et al., 2011).

Rn = 1.96/
√
N − n− 3 (5)

The autocorrelation coefficient Rxx value at lag-1 (12 hours) and the relation-

ship between Rxx values and the critical autocorrelation lines are suggestive of the

degree of autocorrelation. The Rxx value at lag-1 is much higher for the Buzzards

Bay data at about 0.5 compared to the low Rxx value of TF Green at about 0.15.

The autocorrelation coefficient shows periodicity, indicating a strong seasonal sig-

nature in the BUZM3 data in Figure 4; the inflection points and zero crossings

are representative of the change of seasons, located about 180 days apart. The

magnitude of Rxx exceeds that of Rn at the beginning of the time series and at the

seasonal troughs and ridges, confirming that the data are non-random and highly

autocorrelated. A similar seasonal pattern is shown in the TF Green data in Fig-

ure 5, but the cycle is obscured and noisy. In Figure 5, the absolute value of Rxx

is rarely greater than that of Rn, and autocorrelation is not important. The wind
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speed autocorrelation results at BUZM3 and TF Green are consistent with the

results from a study by Brett and Tuller (1991). In their study, wind speeds were

highly autocorrelated at sites characterized by uniform topography compared to

wind speeds measured at sites with complex topography (Brett and Tuller, 1991).

Similarly, the BUZM3 data, collected in Buzzards Bay in open water, exhibits high

autocorrelation; whereas the TF Green data is nearly statistically independent and

is measured inland with inhomogeneous surrounding topography.
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Figure 4: Temporal autocorrelation Rxx (blue) for three years of data at 0000 and
1200 UTC at BUZM3 (left) and first 12 lags (6 days) of the autocorrelation (right)
with the 95% confidence limits indicated by the red lines calculated from Equation
5.

3.7 Resampling techniques

Unlike parametric tests, nonparametric, or distribution-free, tests are typi-

cally more computationally intensive and do not assume that the sample data and

statistic are characterized by a certain parametric distribution (Wilks, 2011). Two
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Figure 5: Temporal autocorrelation Rxx (green) for three years of data at 0000
and 1200 UTC at TF Green (left) and first 12 lags (6 days) of the autocorrelation
(right) with the 95% confidence limits indicated by the red lines calculated from
Equation 5.

types of nonparametric testing are established: the first approach focuses on data

analysis utilizing parametric methods without considering the distribution, and

the second technique utilizes resampling techniques to infer characteristics of the

distribution using subsets of the data set. The types of nonparametric testing are

known as classical procedures and resampling methods (Wilks, 2011). Nonpara-

metric tests were used to confirm and strengthen conclusions made from parametric

tests in this study.

I focus on the second type of nonparametric testing, resampling techniques, in

which artificial data sets are created based on selection of points from the original

data set. It is assumed that the artificial data set is representative of the original

data set. Multiple artificial samples are constructed and the data set statistic and
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its variance are compared. Resampling techniques are utilized to verify data set

statistics calculated using parametric tests and to describe their variability and

reliability (Emery and Thompson, 2001). Resampling techniques share objectives

but differ in the procedures that each utilizes to generate artificial data.

Bootstrap

The bootstrap resampling method was first practiced by Bradley Efron

in 1977 (Diaconis and Efron, 1983). The name originates from the expres-

sion to “pull oneself up by one’s bootstraps,” or to succeed without outside

help; the bootstrap method is used in a single-sample setting where multi-

ple samples are not available and therefore permutation procedures are not

feasible (Emery and Thompson, 2001). Because the bootstrap is a resampling

technique, it is not constrained by the assumption of a specific distribution

and does not require a relation between model and statistic data properties

(Emery and Thompson, 2001). Each bootstrap sample is treated similarly to the

unknown distribution of the original data set. This practice is known as the plug-in

principle because each sample distribution is plugged-in to estimate the original

distribution of n values, where each sample has the probability 1/n (Wilks, 2011).

Bootstrap sampling is known as sampling with replacement, because an ob-

servation xi, where 0 < i < n and i is the sample number and n is the sample

size, can be present once, multiple times, or not at all in each bootstrap sample

(Emery and Thompson, 2001). To construct bootstrap samples, the data are sep-

arated and placed into individual bins that correspond to random numbers. The

number of bins equal the amount of data, and bins are usually assigned a random

number between -1 and 1. The bin size for observations assigned to random num-

bers varying between -1 and 1 would be 2/n. A sample size is usually n, but can be

less than n, and random numbers between -1 and 1 are selected to fill the bootstrap
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sample. With each selection, the corresponding binned datum xi is added to the

bootstrap sample and the bin is then returned to the selection pool. Thus, each bin

or observation xi can be present in a bootstrap more than once or not at all. This

process is repeated for each bootstrap sample, and up to 100,000 bootstrap samples

may be generated. The sample statistic is calculated for each bootstrap sample,

and the statistic’s true distribution can be evaluated from the bootstrap statistic

frequency distribution. With a sufficient number of bootstrap samples, the statistic

should exhibit convergence to its mean value (Emery and Thompson, 2001).

Jackknife

Another established resampling technique is the jackknife method, which was

introduced by Maurice Quenouille in 1949 and subsequently developed by John

Tukey. Tukey suggested the name “jackknife,” because he likened the statisti-

cal jackknife method to an all-purpose tool (Emery and Thompson, 2001). Unlike

bootstrap, the jackknife method replaces data points prior to resampling, and

no repeat observations are contained in a jackknife sample. To produce a jack-

knife sample, a fixed number of data points are omitted from the data set. The

number of deleted data points j from the total number of data points n, can

range from 1 to n/2. The delete-1 or j = 1 jackknife is most commonly utilized

(Emery and Thompson, 2001). In a delete-j test each jackknife sample is com-

prised of Sn = n− j samples, with the number of deleted observations j remaining

constant, but a different set of j values is removed for each sample. For example,

a data set of n = 4 observations resampled using the jackknife delete-1 (j = 1)

method would produce 4 jackknife samples, each of size Sn = 3 data points. Fi-

nally, the mean of the jackknife samples will always equal the mean of the original

data set.

36



Resampling studies in current literature

Pryor et al. (2009) examined wind speed trends across the contiguous United

States, utilizing bootstrap techniques to confirm trends were robust to the auto-

correlation effects of a time series. At each site, annual mean wind speeds and

percentiles were calculated from observations at 0000 UTC and 1200 UTC each

day (Pryor et al., 2009). In the study, 1000 bootstrap samples were generated

for each site, and regression analysis was performed for each bootstrap sample to

reestimate the slope. Statistical significance of a trend at 90% confidence was indi-

cated if trends in the middle 900 values of the frequency distribution had nonzero

magnitudes (Pryor et al., 2009).

Rogers et al. (2005) utilized jackknife methods to estimate the variance and

uncertainty of slopes calculated from linear regression in Measure Correlate Predict

(MCP) wind techniques. They conducted multiple jackknife tests, varying delete-j

to find an optimal delete-j that preserved the data distribution and ensured that

each sample was independent. They showed that the jackknife variance estimate

converged to the linear regression variance estimate with a large sample size if the

jackknife samples were independent (Rogers et al., 2005). Because the jackknife

method is not dependent on the data set parametric distribution, they were able

to demonstrate that the jackknife estimate of variance correctly estimated wind

speed and Weibull parameter uncertainties (Rogers et al., 2005).

In a study of n = 20 data points, Tichelaar and Ruff (1989) compared jack-

knife delete-1, jackknife delete-10 (or delete-half ), and bootstrap methods using

100 bootstrap samples. Their objective was to compare each method’s ability to

estimate the reliability of a linear regression line using least squares fit. All three

methods were able to produce the slope of the line accurately, but the bootstrap

method’s standard error of slope was lowest.
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Our resampling technique

I performed regression analysis on daily mean wind speeds to estimate long-

term trends for each data set. A hybrid of the bootstrap and jackknife resampling

techniques was utilized to estimate the reliability of those trends. 1000 samples

were generated from the original data set using resampling. Similar to bootstrap,

data points xi for each sample Si were chosen by a random number generator; how-

ever, data were replaced after the sample was completed, not after the data point

was drawn. Similar to jackknife, samples comprised a fraction of the data from the

original data set; the samples Si contained 10% of the total observations n. How-

ever, two samples could both contain similar data points, or may not contain any

of the same observations. The modest sample size Sn and random filling method

were chosen to minimize effects of autocorrelation in the time series. However,

Sn was still large enough to preserve the original wind speed Weibull distribution

and shape and scale parameters. Therefore, the sampling was representative of

the population because it followed the governing distribution; yet it accounted for

inherent effects of autocorrelation in the time series. The sample size Sn varied

for each site, because the number of daily means differs with duration and miss-

ing data. After 1000 samples Si were generated, the distribution was analyzed to

verify convergence of the statistic mean. Similar to the analysis of Pryor et al.

(2009), the slope term of the linear regression analysis was the statistic of interest,

and the slopes, or trends, at a 90% confidence level were identified. I will refer

to this method as Ordinary Linear Regression-Knorr Grilli (OLR-KG) after the

underlying technique and those who designed it. I utilize two other techniques to

estimate long-term wind speed trends. Those two techniques are the Ordinary Lin-

ear Regression-Daily Means (OLR-DM) and Ordinary Linear Regression-Annual

Means (OLR-AM) and do not include resampling methods. As the names im-
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ply, OLR-DM and OLR-AM both use OLR to estimate the slope term; the two

methods differ in the averaging interval (daily versus yearly) of the input data.
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CHAPTER 4

Results and Discussion

4.1 Local climatology and wind speed patterns

Regional winds are forced by many atmospheric physical processes and occur

on mesoscale to synoptic scales. Phenomena such as the land-breeze/sea-breeze

cycle, mid-latitude storms, jet stream shifts, and teleconnections of large scale cli-

mate patterns influence winds. Wind speeds at mid-latitudes are generally greater

in the winter than the summer, because strong winds are characteristics of win-

ter storms. Marine sites exhibit lower vertical shear and higher near-surface wind

speeds than terrestrial sites, due to lower drag and longer unobstructed fetch. In

contrast, terrestrial sites experience more shear and diel variability. Although the

diel range of wind speeds is much larger at terrestrial sites, the intra-annual wind

speed range at marine sites greatly exceeds that of inland sites. The large range

of wind speeds on an annual time scale is evident in Figure 6, where the buoy

sites BUZM3 (Buzzards Bay), B44008, and B44011, indicated by the dashed lines,

exhibit an approximately 4.5m/s intra-annual speed range. The wind speed range

at terrestrial sites is notably smaller, about 1m/s.

A subtle feature of Figure 6 is that the wind speed at the terrestrial sites lags

that of the three buoy sites. This feature is more noticeable in the bottom panel.

The speed at the buoy sites reaches a maximum value in January or February,

but the terrestrial sites do not reach a maximum wind speed until March or April.

The buoy site lead is noticeable in the summer months, too. Minimum speeds

occur in July at most buoy sites, but speeds are weakest in August or September

at terrestrial sites.
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Figure 6: Categorical intra-annual wind speed variation at the nine study sites.
The top panel shows seasonal mean wind speeds during the period of record for
each site. Monthly mean wind speeds for the time series at each site are shown in
the bottom panel. Means were calculated for individual months and seasons that
contained more than 20 days and 60 days of observations respectively; months and
seasons that did not meet these criteria were excluded. Winter includes January,
February, and March; spring consists of April, May, and June; summer months
are categorized as July, August, and September; Autumn months are October,
November, and December.

Land-breeze/sea-breeze cycle

A mesoscale circulation pattern observed in many coastal areas is the land-

breeze/sea-breeze cycle. This type of thermal circulation is commonly promi-

nent year-round in the tropics and subtropics and in summer months in the mid-

latitudes. The land-breeze/sea-breeze cycle is driven by the differing heating rates

of the land and ocean and occurs on diel cycles and varies with seasons.

Throughout the day, the land is heated and the air above the land becomes

warm; a shallow thermal low forms over the land. Concurrently, a shallow thermal

high develops over the ocean, where the air is cooler. This creates a circulation cell
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in which air moves from a relatively high pressure over the ocean to a relatively

low pressure over the land. Air rises on land and there is return flow in winds aloft.

The movement of air at the surface from the sea to land is called a sea-breeze. The

sea-breeze is strongest with large temperature and pressure gradients; this occurs

in the afternoon when the temperature difference between land and sea is large

and near the coast where the pressure and temperature contours are tightest.

This circulation cell is reversed at nighttime when the air temperature just

above the land is cooler than that above the water. A land-breeze moves from the

high just above the land to the low above the water. The land-breeze is typically

weaker than the sea-breeze because the temperature contrast between the land and

ocean is less at nighttime.

In addition to the diel pattern of the land-breeze/sea-breeze, there are seasonal

characteristics associated with its cycle in the mid-latitudes. The sea-breeze dom-

inates in the spring and summer, when the temperature contrast between the air

above the land and ocean is largest. During the winter months the air temperature

is more homogeneous and the cycle is weakened.

The land-breeze/sea-breeze is evident in Southern New England regional wind

speeds. The sea-breeze is strengthened throughout the day and reaches its max-

imum in the late afternoon. The sea-breeze is characterized by strong southerly

winds near the coast in the afternoon. The magnitudes of the winds associated

with the land-breeze are less and blow from the north. This mesoscale circula-

tion pattern forces the south-southwesterly prevailing winds in the late spring and

summertime, but its influence is much weaker in the wintertime.

Prevailing wind directions

The offshore Bermuda High drives anticyclonic flow and southerly winds in the

summer. In addition, the south-southwesterly sea-breeze is prevalent in summer
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months; wind azimuths reflect these two processes. The prevailing winds are forced

by mid-latitude storms in the winter, in which strong winds blow from the north

and northwest.

Wind roses in Figure 7 and Figure 8 show azimuths of daily mean data at TF

Green and Buzzards Bay. Azimuth frequencies are indicated by the dotted percent

circles, with the longest direction sectors corresponding to most common azimuth

values. The wind roses were generated with 36 direction bins and the wind speed

and azimuth frequency scales for Figure 7 and Figure 8 are identical. Colors in the

legend represent daily average wind speeds in m/s that comprise each direction

sector. Azimuths are plotted utilizing the meteorological convention.

The sea-breeze winds are noticeable in the southwesterly quadrant of both

wind roses. In addition, the roses show strong northeasterly and northwesterly

winds from mid-latitude cyclonic storms. These winds are not as frequent as the

southwesterly winds, but the winds from mid-latitude storms are much stronger. A

comparison of the rose in Figure 7 with that in Figure 8 reinforces the distinction

between marine sites with high wind speeds and terrestrial sites exhibiting much

weaker wind speeds. The sea-breeze is evident in wind roses for BUZM3 and the

terrestrial sites excluding NC State, but its signature is absent from the offshore

buoy B44008 and B44011 roses. Southwesterly flow is present in the wind roses

at the two offshore buoys, but the substantial occurrence of southwesterly winds

characteristic of other sites is not featured. The two offshore buoys and NC State

are sufficiently distant from the shoreline such that sea-breeze effects are negligible.

4.2 Weibull spatial and temporal variation

Table 2 displays Weibull shape (k) and scale (c) parameters for daily mean

wind speed data and corresponding 90% confidence limits. Scale parameters range

from 3.35m/s at NC State to 7.96m/s at B44008. Also, k parameters span a
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Figure 7: Daily averaged winds at TF Green over the data record period with 36
azimuth bins. Direction sector lengths are shown as percentages, indicating the
frequency of daily azimuths. The wind rose is color coded by wind speeds in units
of m/s that comprise each azimuth sector.

narrower range than c parameters, with minimum k of 2.16 at NC State and a

maximum of 3.16 at Barnstable. As mentioned in the Methods chapter, c is a

function of mean wind speed and describes the central tendency and k describes

the peakedness of the distribution. Thus large c values correspond to high mean

wind speeds: the largest c values are those at the buoy sites, with magnitudes that

exceed 7m/s. The 90% confidence intervals are dependent on the variation and

number of observations. 90% confidence limits were utilized in this study and in

similar studies by Pryor et al. (2009), Young et al. (2011), and Tokinaga and Xie

(2010).

Figure 9 is another way to show the relationship among Weibull parameters

for sites. The y-axis is the dimensionless shape parameter k and the x-axis is
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Figure 8: Daily averaged winds at Buzzards Bay over the data record period with
36 azimuth bins. Direction sector lengths are shown as percentages, indicating the
frequency of daily azimuths. The wind rose is color coded by wind speeds in units
of m/s that comprise each azimuth sector.

the scale parameter c. The red contours are lines of constant mean wind speed,

ranging from 1m/s to 10m/s. NDBC buoy sites are represented by colored circles

and NCDC airport sites are indicated by colored squares; each is plotted according

to its respective k and c values.

The large range of c values between sites is evident from Figure 9 once the

axes scale has been noted: the range on the x-axis is more than twice that on the

y-axis. The shape parameter values have a narrow range from about 2.16 to 3.16,

and the wind speed contours are characterized with little curvature above k values

of 1.5. Because c describes wind speed and has a greater site to site variability

than k, c will be the focus here.

The colored circle buoy sites are grouped closely together. As mentioned
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above, the largest c values are observed at the buoy sites. The largest values are

those of B44008 and B44011 sites, whose markers overlap. This is expected because

both buoys are located offshore in an environment free of complex topography and

are influenced by similar meteorological processes. Figure 9 also shows the nearly

identical shape and scale values of TF Green and Bridgeport. TF Green is located

at the northwest corner of Narragansett Bay and Bridgeport lies along the north

shore of the Long Island Sound. Most of the NCDC airport site c parameters

are clustered in the range of 4-5m/s. However, the low value of the Weibull scale

parameter of NC State distinguishes the site from the other airport sites. NC State

is located further inland, where wind speeds are slowed by complex topography

and are characterized by a weak sea-breeze cycle.
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Figure 9: Wind speed contours (m/s) in red in Weibull parameter space, with k
on the y-axis and c in m/s on the x-axis. Daily averaged parameters at airport
sites are represented by colored squares and parameters from buoy sites are shown
as colored circles. The k and c values for all sites are listed in Table 2.

Study site Weibull PDFs are shown in Figure 10; PDFs were generated using
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the Weibull c and k values listed in Table 2. The PDFs for the airport sites TF

Green, Barnstable, Bridgeport, and New Bedford are similar in form. Similarly,

the PDFs that describe the B44008 and B44011 data overlap. Buoy site curves are

notably long-tailed.
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Figure 10: Weibull PDFs for study sites with occurrence displayed on the y-axis
and wind speed (m/s) on the x-axis. The k and c values for all sites are listed in
Table 2.

Wind speed histograms and Weibull PDFs for the TF Green terrestrial site

and the B44011 marine site are shown in Figure 11 and Figure 12. To ensure

equal amounts of data were represented, both figures were constructed utilizing

concurrent data from 1985-2011. In addition, data were divided into 45 equally

spaced wind speed bins to generate the histograms. The y-axes are occurrence, or

the number of observations during the time period, and the x-axes are wind speed

in m/s. Hourly mean data from 6 observations per hour are shown in Figure 12,

and hourly data are shown in Figure 11. Corresponding plots made with daily-
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averaged wind data have nearly identical appearance, and the corresponding c

values are very similar. The daily mean c values in Table 2 and hourly c values

featured in Figure 11 for TF Green differ more than those of B44011, which can

be explained by the omission of 10 years of hourly data from 1975-1985. In Figure

11, the TF Green hourly wind parameter c equals 5.06m/s and the hourly mean

c value at B44011 in Figure 12 is 7.83m/s. The B44011 wind speed distribution

and Weibull PDF are wider than those of TF Green due to higher wind speeds, a

property of an offshore buoy site. The distribution of the calm data differs between

the two sites, too.

Figure 11 illustrates an absence of smooth concordance of the TF Green hourly

wind speed distribution with the Weibull PDF. Very weak wind speed observations

of less than about 1.5m/s are largely absent from the wind speed distribution, and

the histogram shows an abrupt observation occurrence increase at about 1.5m/s.

The observation occurrence exceeds that of the Weibull PDF at wind speeds from

2-4m/s and then dips below the PDF at 4.5m/s and 8.5m/s. However, from 5-8m/s

and from 9-13m/s the Weibull PDF fit is acceptable. The absence of weak wind

speeds may be partially explained by the excessive occurrence of calm (0.0m/s)

data recorded at TF Green, where the measurement threshold is 2KTs or about

1m/s. There are a few observations below this threshold that were recorded pre-

ASOS. Calms are not represented in this distribution, because zero is not included

in the Weibull PDF interval. In addition to the omitted calm data, the extensive

absence of agreement between the wind speed distribution and the Weibull PDF

can be possibly be attributed to properties of the data coding. Another source

of the disagreement might be related to the averaging period of the observations:

6 ten-minute mean wind speed observations are averaged for hourly averages in

Figure 12 and hourly observations are utilized in Figure 11. As acknowledged
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in the Data chapter, the averaging interval for the majority of the NDBC buoy

observations is a 10-minute acquisition period and 6 10-minute averages constitute

every hour; whereas observations at NCDC sites after ASOS firmware deployment

include a 2-minute averaging period for each hour observation. Therefore, hourly

observations at an NCDC site are characterized by large variability and much of

that variability has been smoothed by averaging in NDBC site hourly mean data.

Weibull probability plots that correspond to Figure 11 and Figure 12 are

shown in Appendix B. Probability plots illustrate the Weibull goodness of fit and

are shown on a log-log scale with probability on the y-axis and wind speed (m/s)

on the x-axis. In an ideal fit, data would lie on the straight Weibull probability line

without deviations. Figure B.2 shows the Weibull goodness of fit at B44011, which

is characterized by a smooth fit and low error except at very low wind speeds near

the cut-in speed. The Weibull fit for the TF Green hourly mean data is poorer

than that of B44011 data. An ideal fit would be linear, but extreme low and high

wind speed data fall below the probability curve, with the most drastic overshoot

of the Weibull plot at low wind speed values. The data coding practice introduces

the artificial steps of 0.5m/s in low wind speeds.

The substantial seasonal variation at B44011 is shown in wind speed distri-

butions for each season in Figure 13. Mean hourly wind speed distributions and

corresponding Weibull PDFs for winter, spring, summer, and autumn with wind

speed occurrence on the y-axis and wind speed in m/s on the x-axis are displayed.

The hourly averaged wind speed data are taken from the entire time series at

B44011 and 50 bins are utilized in each histogram. Although winter officially com-

mences with winter solstice around December 21st, I categorized seasons based on

whole months for ease of programming and analysis. The same number of hourly

mean data points are shown in each wind speed histogram. Figure 6, which shows
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Figure 11: Hourly wind speed histogram with 45 bins (blue) and Weibull PDF
(red) for TF Green data from 1985-2011. c = 5.062 and k = 2.222 for the included
hourly data.

the large intra-annual mean wind speed range at buoy sites, is another way to view

the wind speed variation.

The Weibull c parameter varies with each season at B44011; the mean wind

speed and Weibull distribution reflect this variability. c is at its maximum value in

winter at 10.2m/s, drops to 6.8m/s during spring months, falls even lower to 5.7m/s

during the summer, and rises to an intermediate value of 9.1m/s during autumn.

The contrast in seasonal c values at buoy sites is notable in seasonal mean wind

speeds in Figure 6 and in wind speed distributions in Figure 13. The range over

which relatively high occurrences of wind speeds are observed is broader for winter

and autumn months, reflecting a higher central tendency and higher Weibull shape

parameter values for those seasons. The peak corresponds to a lower wind speed

during spring and summer and the Weibull curve is characterized by steeper slopes
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Figure 12: Hourly mean wind speed histogram with 45 bins (blue) and Weibull
PDF (red) for B44011 data from entire observation period (1985-2011). c = 7.826
and k = 1.872 for the hourly mean data.

below and above its peak occurrence value. The properties of each Weibull curve

in Figure 13 are expected given the location of B44011 and the regional physical

processes. For instance, higher winds blow more frequently in the winter and

autumn due to an increase in cyclonic weather patterns. The winds are weaker

in the spring and summer months and a high frequency of low wind speeds is

expected with fewer mid-latitude storms and more anticyclonic weather. However,

summertime winds are still characterized by the sea-breeze at most study sites,

and summertime winds at buoy sites typically have a greater magnitude than

wintertime winds at terrestrial study sites.

Winds at terrestrial sites are generally characterized by low seasonal variation.

The intra-annual wind speeds at TF Green are no exception and Figure 6 shows

the low intra-annual range of about 1m/s. The seasonal c values for TF Green
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reflect the absence of variability: the maximum c value of 5.48m/s occurs in winter,

the spring c value is slightly lower at 5.08m/s, c is smallest in summer months at

4.46m/s, and the scale parameter in autumn is 5.10m/s, which is similar to the

spring value. The seasonal c values are similar, but do not all fall in the confidence

intervals of the other seasons. Therefore, hourly wind speed data distributions

and Weibull PDFs for each season at TF Green are almost indistinguishable (not

shown), although they are not statistically identical.
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Figure 13: Wind speed histograms and Weibull PDFs for hourly means at Buoy
44011, where the x-axis is wind speed and the y-axis is occurrence. 50 wind speed
bins were utilized for each histogram and data extends from 1985-2011.

4.3 Long-term mean wind speed trends

Regression analysis was applied to the data from the 9 sites and long-term

trends values were inferred from the slope term. Three methods were utilized

to compute long-term trends, and Ordinary Linear Regression techniques were
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applied in each. The methods differ in averaging intervals and data selection. All

three approaches are described in detail in the Methods section. I will refer to

Ordinary Linear Regression-Daily Means method as OLR-DM; in this method,

regression analysis was applied to all daily-averaged wind speed data for the time

series at each site. The Ordinary Linear Regression-Knorr Grilli method will be

referred to as the OLR-KG method. In OLR-KG, OLR was performed multiple

times on 10% subsets of daily-averaged wind speed data. After the slope term was

calculated 1000 times in OLR-KG, convergence was confirmed from its distribution

and the mean value was saved. The primary objective of the OLR-KG technique

was to account for autocorrelation through random resampling. The Ordinary

Linear Regression-Annual Means method will be referred to as OLR-AM; in this

technique, regression analysis was preformed on annually-averaged wind speeds and

the slope term is analogous to the r value in the analysis. 90% confidence limits

have been calculated for wind speeds from the OLR-DM and OLR-KG techniques,

but confidence limits are omitted for the OLR-AM method. Confidence limits

are not meaningful for annual mean trends in this study, because the annual mean

data sets contain only 20-39 data points, and each data point is actually an average

over multiple days. When trends from this study were tested with stricter 95%

confidence limits, trend magnitudes and significance did not change.

Long-term trends and 90% confidence limits in units of ms−1a−1 calculated

from the OLR-DM, OLR-KG, and OLR-AM methods are listed in Table 3. Trends

and corresponding confidence intervals calculated utilizing the OLR-DM and OLR-

KG methods are indicated by: lower confidence limit≤ trend ≤upper confidence

limit. Confidence intervals are consistently wider for the OLR-KG method than

the OLR-DM method, because only 10% of the total daily means are utilized in

each calculation. Trends are statistically significant at the 90% confidence level
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if a zero trend falls outside the confidence limits. Sites that exhibit statistically

significant wind speed trends at a 90% confidence level from the OLR-KG method

are indicated with an asterisk in the Site column.

There are no important differences in the trend values in Table 3 between the

OLR-DM, OLR-KG, and OLR-AM techniques at any site. There is an insignificant

difference between trends calculated using the OLR-DM and OLR-KG methods.

The largest difference is 0.0003ms−1a−1 at BUZM3 and B44008. The OLR-AM

trends deviate from those calculated from the OLR-DM and OLR-KG methods,

and the differences are not characterized by a pattern in magnitude or sign. The

sites with the largest OLR-AM differences are NC State and B44008, in which

OLR-AM trends differ from the other two methods by about +0.0020ms−1a−1

and -0.0015ms−1a−1 respectively. Plausible explanations for the trend magnitude

discrepancies include the shorter observation record at NC State (20 years) and

the numerous gap years in the B44008 data set (see Table 1). Furthermore, wind

speed trends at NC State and B44008 were not significant at the 90% confidence

level. Even though trend values differ between methods and confidence limits

are not listed for the OLR-AM method, the OLR-AM trend values lie within the

confidence limits set by the OLR-DM and OLR-KG techniques. Because additional

measures were taken to account for autocorrelation in the OLR-KG method and

OLR-DM and OLR-AM trends are contained in the OLR-KG confidence intervals,

I will refer to the OLR-KG trend values in all further discussion.

In Table 3 and Figure 14, six of the nine study sites exhibit statistically

significant long-term wind speed trends, and the trends vary in magnitude and

sign. In Figure 14, statistically significant trends are indicated by colored squares,

and colored diamonds represent insignificant trends; positive trends are colored

red, and negative trends are shown by blue shapes. Long-term trend magni-
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tudes greater than 0.03ms−1a−1 are characteristics of wind speed at Nantucket

(+0.0438ms−1a−1), TF Green (-0.0377ms−1a−1), and B44011 (+0.0335ms−1a−1).

The smallest trend magnitude that is still classified as statistically significant is

-0.0074ms−1a−1 at New Bedford. Even though the magnitude of the trend at NC

State exceeds that of New Bedford, the trend at NC State is not significant at a

90% confidence level because there are almost twice as many daily mean obser-

vations at New Bedford than at NC State. Trends also differ in sign: 4 of the 6

statistically significant trends are negative and 2 are positive.
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Site Scale Parameter c (m/s) Shape Parameter k

TF Green 5.00 ≤ 5.02 ≤ 5.05 2.89 ≤ 2.92 ≤ 2.95

Barnstable 5.22 ≤ 5.24 ≤ 5.27 3.13 ≤ 3.16 ≤ 3.20

Bridgeport 4.82 ≤ 4.85 ≤ 4.87 2.90 ≤ 2.93 ≤ 2.96

Nantucket 5.03 ≤ 5.07 ≤ 5.10 2.26 ≤ 2.28 ≤ 2.30

NC State 3.319 ≤ 3.35 ≤ 3.39 2.13 ≤ 2.16 ≤ 2.19

New Bedford 4.37 ≤ 4.40 ≤ 4.42 2.63 ≤ 2.66 ≤ 2.69

BUZM3 7.57 ≤ 7.62 ≤ 7.68 2.76 ≤ 2.80 ≤ 2.84

B44008 7.89 ≤ 7.96 ≤ 8.03 2.25 ≤ 2.28 ≤ 2.32

B44011 7.78 ≤ 7.86 ≤ 7.93 2.22 ≤ 2.25 ≤ 2.29

Table 2: Weibull shape and scale parameters (in bold font) and 90% confidence
intervals calculated using daily mean wind speeds.
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4.3.1 Spatial trend patterns

The spatial variation of long-term trends as reported in recent climate liter-

ature was addressed in the Introduction. Widespread negative wind speed trends

have been observed in numerous areas and at multiple spatial scales, including the

US Mid-West region (Klink, 2002; Greene et al., 2012b; Greene et al., 2012a), the

contiguous United States (Pryor et al., 2009), Australia (Roderick et al., 2007),

Europe (Wever, 2012), and the throughout the world (McVicar et al., 2012). In

contrast, increasing wind speed over the world’s oceans indicated by positive wind

speed trends has been recorded by quality controlled ship and buoy anemome-

ter data (Thomas et al., 2008; Tokinaga and Xie, 2011) and satellite scatterom-

eter and altimetry (Young et al., 2011) observations. In addition, a latitudi-

nal dependence of terrestrial wind speed trends has been suggested, with pos-

itive trends at the poles and negative trends in the tropics and mid-latitudes

(McVicar et al., 2012). These reports and assertions offer general trend classifi-

cations onshore and offshore, but coastal long-term wind speed trend studies are

largely absent from the published literature and patterns in long-term wind speed

trends have not been identified.

The spatial trend distribution in Figure 14 generally parallels mid-latitude

spatial trend patterns described in climate literature: onshore sites are described

as having negative wind speed trends and wind speed at offshore sites generally

exhibits positive trends. However, there are exceptions to this simple pattern in

the literature and also in this study. For example, wind speeds are stilling at

the offshore buoy BUZM3 and wind speeds are increasing inland at NC State.

However, the trends at these two exceptional sites are not statistically significant

and Figure 14 reaffirms that long-term trends in this study can be characterized

as spatially coherent and not isolated.
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Figure 14: Long-term trends at study sites classified by statistical significance at a
90% confidence level (squares), statistically insignificant at a 90% confidence level
(diamonds), positive (red), and negative (blue). Trend significance was determined
from the OLR-KG method.

4.3.2 Categorical temporal trends

Trends were calculated with the OLR-DM technique for each month and sea-

son at all sites and results are displayed in Figure 15. The top panel of Figure

15 shows the trend in ms−1a−1 on the y-axis for each season on the x-axis at

sites shown by colored shapes. Squares indicate a statistically significant long-

term trend and the colored diamonds represent a statistically insignificant trend;

the significance was determined from values in Table 3. If a particular season had

more than 30 missing days, the season was excluded in the trend analysis. Monthly

trends in ms−1a−1 for the time series at each site are shown in the bottom panel

of Figure 15. Statistically significant trends at sites (from Table 3) are indicated

by heavy weight colored lines and statistically insignificant trends are shown by

thin weight colored lines (NC State, Buzzards Bay, and B44008). Months were not

included in the analysis if more than 10 days were missing per month.

The motivation behind the calculations of the results presented in Figure 15

was to resolve if long-term trend values were steady throughout the year, or if a

trend in certain seasons or months dominated the long-term value. Buoy site wind

speed trends appear to have the largest positive values in the autumn and winter,

and the largest negative values in the summer. However, trends at buoys show

59



large intra-annual variation, which is noticeable in the lower panel. For example,

the trend ranges from 0ms−1a−1 in June to almost +0.08ms−1a−1 in October at

B44011 and from -0.04ms−1a−1 in June to +0.06ms−1a−1 in October at B44008. At

many terrestrial sites, especially those with significant negative trends, the trend

magnitude is constant throughout most of the year.
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Figure 15: Seasonal (top) and monthly (bottom) wind speed trends in ms−1a−1

at all sites. Statistically significant trends determined by the OLR-KG method
from Table 3 are indicated by colored squares (top) and thick lines (bottom).
Statistically insignificant trends are represented by colored diamonds (top) and
thin lines (bottom). Seasonal and monthly data were excluded if a particular
season or month was missing more than 1/3 of the daily means.

4.4 Long-term trends in additional metrics

Although many climatological wind speed studies examine annual mean

wind speed and report trends in units of ms−1a−1, other metrics have

been used in other wind speed studies. As mentioned in the Introduc-

tion, scientists have published metric studies including trends in extreme
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weak and strong wind speeds (Mescherskaya et al., 2006; Vautard et al., 2010),

storm frequency (Smits et al., 2005; Fuentes, 2005), gusts (Sweeney, 2000;

Hewston and Dorling, 2011), and wind power density (Greene et al., 2012b). I

analyzed two additional wind speed metrics at each site: annual mean wind speed

percentiles and annual mean Weibull parameters.

4.4.1 Trends in wind speed percentiles

Pryor et al. (2009) studied long-term variation in the 5th-95th annual wind

speed percentiles, and focused on the 50th (median) and 90th annual percentiles.

The data they utilized were recorded twice-daily, with observations at 0000 and

1200 UTC. After analyzing wind speed from over 1000 US sites, they concluded

that geographically widespread wind speed stilling was occurring in the 50th and

90th percentiles in the continental US sites (Pryor et al., 2009).

I analyzed the long-term variation of the 5th, 10th, 25th, 50th, 75th, 90th,

and 95th percentiles at all study sites. Time series figures (not shown) can be

described as geometric, because annual percentile values are members of the data

set (not averaged), in which observations are coded with a finite precision of .5m/s.

Although none of the figures are included in this document, a few features will

be described. Generally, wind speeds in the highest percentiles (90th and 95th)

are consistently characterized with the largest interannual variability. In addition,

if wind speeds are anomalously high or low, the anomaly pervades most or all of

the percentiles of that particular year. The large occurrences of zeros at NCDC

airport sites highlighted in the Methods chapter is apparent in the 5th and 10th

annual mean wind speed percentiles. For instance, reported calm wind speeds are

so frequent in the New Bedford and NC State data that many of the annual mean

5th and 10th percentiles in the time series are equal to 0m/s.

At Nantucket and Bridgeport, interannual wind speed percentile variability
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and wind speeds appear to abruptly increase and decrease respectively without a

large gap in wind speed observations. After a missing year at Barnstable, annually

averaged wind speed percentiles can be described by a systematic decrease. An

abrupt change in all wind speed percentiles is suggestive of a data discontinuity.

Mean wind speed trend signs are consistent with those in annual mean wind

speed percentiles. Long-term percentile trend magnitudes are greatest in the small-

est (5th and 10th) and largest (90th and 95th) annual wind speed percentiles.

4.4.2 Long-term variation of Weibull parameters

Other metrics utilized to measure long-term wind speed trends are the Weibull

shape k and scale c parameters, and studies that examine long-term Weibull pa-

rameter variation include those of Klink (2002), Wichser and Klink (2008), and

Barthelmie and Pryor (2009). In this study, annual mean k and c parameters and

corresponding 90% confidence limits were calculated for wind speeds at each site.

Again, I highlight the c parameter because it is a function of mean wind speed. In

addition, annual k values are rarely less than 1.5, meaning that the influence on

annual mean wind speed from the k parameter is almost negligible (see Figure 9).

In addition, corresponding k parameter time series are generally characterized by

having a zero trend or trend with a very small magnitude.

Figure 16 and 17 show a time series of annual mean c parameters and a

regression line from the least squares fitting technique. 90% confidence limits are

indicated for each annual mean c value, and a solid least squares fitted line shows

the trend over the time series. In Figure 16, a dotted line has been added to TF

Green annual c parameters from 1985-2011 to illustrate that the trend is greater

after 1985 than it was before. The equations associated with the regression lines in

Figures 16 and Figure 17 are listed in the legends. Included in the equations is the

slope term determined from regression analysis and associated with the long-term
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trend.

At all sites, c trend signs conform with those of mean wind speed trends,

but the trend magnitudes are not identical. Therefore, time series of annual c

parameters at each site exhibit similar features as mean wind speed trends, con-

firming that trends are identified in multiple wind speed metrics. The annual mean

Weibull scale parameter trend value at Nantucket is +0.0228ms−1a−1 (Figure 17);

the trend calculated from annual mean wind speeds (OLR-AM method) at the

same site is +0.0453ms−1a−1. Annual mean wind speeds are characterized by a

trend of -0.0333ms−1a−1 at TF Green, and the Weibull scale parameter trend is

-0.0378ms−1a−1. The annual mean scale parameters at Nantucket, shown in Fig-

ure 17, increase throughout the time series, and the parameters are characterized

by a large amount of interannual variability. In contrast, at TF Green, c values

decrease from 1975-2011, and the least squares line appears to fit the data more

closely.

4.4.3 Changes in wind azimuths

I analyzed daily mean azimuths at study sites in multi-year periods at the

beginning and end of each data period. The goal of this analysis was to identify

the presence or absence of an azimuthal shift (or lack thereof) in each time series.

A change in wind direction is suggestive of a shift in weather patterns or a different

upstream drag profile, both of which could influence wind speeds.

At sites with statistically significant negative trends, winds generally blew

more frequently from the southwest and less frequently from the northwest at the

end of the time series. In contrast, opposite patterns were observed in daily mean

azimuths at sites with statistically significant positive trends. Distinct wind rose

changes were observed at the Nantucket and New Bedford sites. At Nantucket, a

daily mean wind rose from 2007-2011 was characterized by far fewer occurrences

63



1980 1990 2000 2010
4.5

5

5.5

6

Years

S
c
a
le

 P
a

ra
m

e
te

r 
(m

/s
)

TF Green Weibull Scale Parameter Variation

 

 

scale

y=−0.0333x+71.656

y=−0.0470x+99.072

Figure 16: Time series of annual mean Weibull scale c parameter (m/s) variation
with 90% confidence limits at TF Green. Regression lines from the least squares
fitting technique have been added for the entire time series (solid) and 1985-2011
(dotted) and corresponding equations are shown in the legend.

of southwesterly winds than the 1975-1979 rose. In contrast, stilling winds at New

Bedford experienced a marked shift in azimuths with less frequent northwesterly

winds in 2007-2011 than in 1973-1977. These wind roses are not shown here, but

their structure is similar to those in Figure 7 and Figure 8.

The observed alterations in wind direction are generally subtle and are not

easily quantified. However, a change in the frequency of wind azimuths as re-

ported may provide some explanation to the observed long-term wind speed trends.

Higher storm frequency could force an increased amount of strong winds from the

northeast and northwest, resutling in a positive wind speed trend. Conversely, a

negative trend might be justified by a higher occurrence of weak southwesterly

winds from anticyclonic weather.
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Figure 17: Time series of annual mean Weibull scale c parameter (m/s) variation
with 90% confidence limits at Nantucket. A regression line from the least squares
fitting technique has been added for the entire time series and its corresponding
equation is shown in the legend.

4.5 Principal Component Analysis (PCA) and cluster analysis

A Principal Component Analysis (PCA) is a statistical data reduction method

utilized to express a group of variables as a single new variable or to minimize the

number of variables. The new variables are referred to as Principal Components

(PCs), and all PCs are orthogonal to each other; therefore, no information is re-

dundant (Emery and Thompson, 2001). The combined PCs, or statistical modes,

account for all the variance in the data. Since the primary goal of the PCA analysis

is to reduce the variables, a few PCs should contain a significant amount of the

total variance.

Clustering techniques are utilized to separate data into groups in a multispace

and analyze their relationship. I analyzed data with the k-means cluster method,
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which partitions data by optimizing separation distance between exclusive clusters

and minimizing inclusive cluster distance (Corti, 2012). To do this, the k-means

method maximizes the ratio of the inter-cluster centroid variance to the mean

intra-cluster variance, also known as the seed value (Corti, 2012).

I performed a PCA and k-means cluster analysis on TF Green and BUZM3

data to identify a change in synoptic weather from the beginning to the end of

the time series. The meteorological variables used were wind speed, wind azimuth

components u and v, pressure, and temperature for a five-year period at the be-

ginning and end of the time series. However, the variables could not be reduced

because the percent variance explained by all 5 PCs was around 20%, and the

maximum percent variance was about 27%. Therefore, all variables and PCs were

important in the analysis. There were no striking changes because the modes were

statistically insignificant. The number of variables could not be reduced, so all five

PCs were inputted to the cluster analysis. The cluster analysis seed value remained

relatively small with a maximum around 0.38 and did not change significantly with

different numbers of clusters. Therefore, the PCA and cluster analysis confirmed

that the synoptic weather has remained consistent in the last 25 years at TF Green

and BUZM3. The results from these tests could be fortified by an additional tests

using more variables, such as precipitation, ceiling height, temperature profile, and

humidity. However, the variables are limited, especially at the beginning of the

time series.

4.6 Possible causes of long-term trends

Multidecadal wind speed trends can be attributed to processes internal to the

climate system, to a change in surface roughness, and/or to observing anomalies.

Observation analyses results have given insight to the causes of wind speed trends

in Southern New England.
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Figure 15 shows large positive wind speed trends in the autumn and winter and

contrasting (negative or zero) trends in the spring and summer at buoy sites. These

trends could be indicative of an increase in winter mid-latitude storms offshore,

thus providing a possible explanation for positive offshore wind speeds in this and

other studies. To my knowledge, there are no published regional studies verifying

this hypothesis. Smits et al. (2005) studied temporal distributions of independent

wind events (storms) in the Netherlands, and a similar study could be carried out

to verify this hypothesis. Furthermore, a regional decrease in cyclonic weather

might explain the observed wind speed stilling at terrestrial sites.

Discontinuities in annual mean wind speed and percentiles at several terres-

trial sites (not shown) raise concerns, especially when discontinuities are paired

with gap years and known anemometer height and calibration adjustments. Pryor

et al. (2009) tested 193 sites in the NCDC DS-3505 data set for discontinuities

with a 5-year running mean of annual 50th and 90th wind speed percentiles and

concluded that discontinuities are equally distributed throughout the data record,

not concentrated at the time of the ASOS deployment. However, the sites I exam-

ine were not included in this test, and wind speed discontinuities (and trends) may

be influenced by anemometer height changes and ASOS firmware installations.

Even though I have no quantitative measurements of forestation and urban-

ization, the possibility exists that these processes could contribute to wind speed

stilling at many onshore locations. Furthermore, it has been speculated that

two distinct processes could be simultaneously affecting winds. For instance, a

widespread process could be controlling the increase of wind speeds offshore; yet

this physical process might be masked onshore by an increase in surface roughness

causing stilling winds.
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CHAPTER 5

Conclusions and future work

5.1 Summary

Long-term wind speed data were obtained from NCDC and NDBC at 9 coastal

New England sites. Analyses revealed meteorological processes that drive regional

wind speeds, which include the land-breeze/sea-breeze cycle, mid-latitude storms,

and persistent high and low pressure systems. The spatial variation of Weibull

parameters was studied, and I calculated larger c parameters, a wider distribution,

and larger intra-annual variability offshore. Smaller c values and reduced seasonal

variability describe wind speeds at onshore sites.

Wind speed trends were calculated from three regression analysis methods

that differed in averaging intervals and sampling techniques. Long-term trends

calculated from all three of these methods were in agreement, and coastal New

England wind speed can be characterized by spatially coherent wind speed trends.

Wind speed trends at six of 9 study sites are statistically significant at a 90%

confidence level; 2 sites exhibit positive wind speed trends and stilling has been

calculated at 4 sites. The spatial distribution of trends conforms with the general

pattern of reported wind speed trends in published literature, with negative trends

onshore and positive trends offshore.

Additional wind speed metric analyses of Weibull scale parameters and wind

speed percentiles corroborate long-term trends. Annual Weibull scale parameters

were analyzed with the OLR technique, and trend signs concurred with those of

annual mean wind speed. Time series of the 5th, 10th, 25th, 50th, 75th, 90th,

and 95th mean annual wind speed percentiles for each site were analyzed. Trends

were evident in all percentiles but the largest magnitudes were characteristics of

the weak and extreme percentiles.
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5.2 Future work

Trend statistics for 9 coastal study sites are not sufficient to form robust

conclusions about the spatial distribution of trends in mid-latitude coastal regions.

Furthermore, a simple onshore versus offshore trend classification cannot mask

underlying influences on wind speed such as the complex topography and physical

processes. Additional work must be done in other coastal areas, not just regionally

in Southeastern New England.

The calculation of wind speed trend magnitudes and signs is relatively

straightforward, but diagnosing the trend source is more of an open-ended problem

and not straightforward. Many factors, both intrinsic and extrinsic to the climate

system influence wind speeds, and oftentimes those factors are difficult to quantify.

Therefore, current research and published literature have not accurately attributed

the sources of wind speed trend sources. Continued work must be devoted to deter-

mining the causes of such trends. I intend to continue to explore the possibility of a

change in synoptic weather patterns through a power spectral density (PSD) anal-

ysis of regional wind speed data. I began an analysis of maximum monthly wind

speeds to diagnose a possible change in storm frequency and intensity. Preliminary

results indicate a significant change in 1 of the 3 parameters that characterize the

Generalized Extreme Value distribution and a -0.0513ms−1a−1 trend in monthly

maximum wind speed from the beginning to the end of the time series.

Determining the cause of wind speed trends can help scientists predict future

wind speeds, which has importance in many fields. Wind energy assessment relies

on an accurate understanding of wind speed and its spatial interannual variability.

More importantly, the estimate of future wind speed regimes in climate models

and projection of climate change scenarios is dependent on accurately quantifying

and identifying causes of wind speed trends.
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APPENDIX A

Acronyms

ABL Atmospheric Boundary Layer

AO Arctic Oscillation

ASOS Automated Surface Observing System

BIW Bimodal Weibull

CDO Climate Data Online

ENSO El Niño Southern Oscillation

GCM General Circulation Model

GEV Generalized Extreme Value

GOS Global Observing System

KAP Kappa

KG Knorr-Grilli

MCP Measure Correlate Predict

NCDC National Climatic Data Center

NAO North Atlantic Oscillation

NDBC National Data Buoy Center

NDVI Normalized Difference Vegetation Index

OLR Ordinary Linear Regression
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OLR-AM Ordinary Linear Regression-Annual Means

OLR-DM Ordinary Linear Regression-Daily Means

PCA Principal Component Analysis

PDF Probability Density Function

PSD Power Spectral Density

RCM Regional Climate Model

SED Stream EDitor

WAK Wakeby

WASWind Wave-and Anemometer-Based Sea Surface Wind

WMO World Meteorological Organization
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APPENDIX B

Weibull PDF Goodness of fit

The following figures are probability plots showing the goodness of fit of wind

speed data and the Weibull PDF. The figures are on log-log scales, with the y-axes

as probability and the x-axes as wind speed (m/s). The red dotted line indicates

the Weibull PDF, and the blue plus signs are data. An ideal fit would include all

data lying on the red PDF line. Figure B.1, Figure B.2, and Figure B.3 are the

corresponding probability plots for the wind speed histograms and Weibull curves

in Figures 11, Figure 12, and Figure 13 respectively.

Figure B.1 shows the Weibull fit of the hourly wind speed data at TF Green.

Low and extreme high wind speed data fall below the probability curve, with the

most drastic difference between the PDF and the wind speed data at low wind

speed values. The artificial steps of 0.5m/s or whole knots are an artifact of the

data coding. The Weibull goodness of fit for hourly mean data at B44011 is shown

in Figure B.2. Generally there is a smooth fit and relatively low error except at the

lowest wind speeds near the cut-in speed. Figure B.3 shows the Weibull probability

plots for hourly mean wind speed data for each season at B44011. The fit for all

seasons except winter is smooth and data falls along the red PDF line except for

very weak wind speeds.
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Figure B.1: Weibull probability plot for hourly wind speeds at TF Green. The red
dashed line is the Weibull PDF data and the blue plus signs are the wind speed
data (m/s) on log-log axes. Data with an ideal fit would lie on the red line with no
deviations. The corresponding wind speed histogram and Weibull PDF are shown
in Figure 11.
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Figure B.2: Weibull probability plot for hourly mean wind speeds at B44011. The
red dashed line is the Weibull PDF data and the blue plus signs are the wind speed
data (m/s) on log-log axes. Data with an ideal fit would lie on the red line with no
deviations. The corresponding wind speed histogram and Weibull PDF are shown
in Figure 12.
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Figure B.3: Weibull probability plot for winter, spring, summer, and autumn
hourly mean wind speeds at B44011. The red dashed line is the Weibull PDF data
and the blue plus signs are the wind speed data (m/s) on log-log axes. Data with
an ideal fit would lie on the red line with no deviations. Corresponding wind speed
histograms and Weibull PDFs are shown in Figure 13.
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