University of Rhode Island

DigitalCommons@URI

PHY 204: Elementary Physics II -- Slides

PHY 204: Elementary Physics II (2021)

2020

03. Electric field of continuous charge distributions. Electric flux

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Robert Coyne *University of Rhode Island*, robcoyne@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/phy204-slides

Recommended Citation

Müller, Gerhard and Coyne, Robert, "03. Electric field of continuous charge distributions. Electric flux" (2020). *PHY 204: Elementary Physics II -- Slides*. Paper 28. https://digitalcommons.uri.edu/phy204-slides/28

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Slides by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Electric Field of Continuous Charge Distribution

- · Divide the charge distribution into infinitesimal blocks.
 - For 3D applications use charge per unit volume: $\rho = \Delta Q/\Delta V$.
 - For 2D applications use charge per unit area: $\sigma = \Delta Q/\Delta A$.
 - For 1D applications use charge per unit length: $\lambda = \Delta Q/\Delta L$.
- Use Coulomb's law to calculate the electric field generated by each block.
- Use the superposition principle to calculate the resultant field from all blocks.
- · Use symmetries whenever possible.

$$\begin{split} d\vec{E}_i &= k \frac{dq_i}{r_i^2} \ \hat{r}_i \\ \vec{E} &= \sum_i d\vec{E}_i \rightarrow k \int \frac{dq}{r^2} \ \hat{r} \end{split}$$

Electric Field of Charged Rod (1)

- Charge per unit length: $\lambda = Q/L$
- Charge on slice dx: $dq = \lambda dx$

- Electric field generated by slice dx: $dE = \frac{kAq}{x^2} = \frac{k\lambda dx}{x^2}$
- Electric field generated by charged rod:

$$E = k\lambda \int_{D}^{D+L} \frac{dx}{x^2} = k\lambda \left[-\frac{1}{x} \right]_{D}^{D+L} = k\lambda \left[\frac{1}{D} - \frac{1}{D+L} \right] = \frac{kQ}{D(D+L)}$$

- Limiting case of very short rod ($L \ll D$): $E \simeq \frac{kQ}{D^2}$
- Limiting case of very long rod $(L\gg D)$: $E\simeq \frac{k\lambda}{D}$

Electric Field of Charged Rod (2)

- Charge per unit length: $\lambda = Q/L$
- Charge on slice dx_s : $dq = \lambda dx_s$
- Trigonometric relations:

$$y_p = r \sin \theta, \quad -x_s = r \cos \theta$$

 $x_s = -y_p \cot \theta, \quad dx_s = \frac{y_p d\theta}{\sin^2 \theta}$

•
$$dE = \frac{k\lambda dx_s}{r^2} = \frac{k\lambda dx_s}{y_p^2} \sin^2 \theta = \frac{k\lambda d\theta}{y_p}$$

•
$$dE_y = dE \sin \theta = \frac{k\lambda}{y_p} \sin \theta d\theta \implies E_y = \frac{k\lambda}{y_p} \int_{\theta_1}^{\theta_2} \sin \theta d\theta = -\frac{k\lambda}{y_p} (\cos \theta_2 - \cos \theta_1)$$

•
$$dE_x = dE\cos\theta = \frac{k\lambda}{y_p}\cos\theta d\theta \implies E_x = \frac{k\lambda}{y_p}\int_{\theta_1}^{\theta_2}\cos\theta d\theta = \frac{k\lambda}{y_p}\left(\sin\theta_2 - \sin\theta_1\right)$$

Electric Field of Charged Rod (3)

Symmetry dictates that the resulting electric field is directed radially.

•
$$\theta_2 = \pi - \theta_1$$
, $\Rightarrow \sin \theta_2 = \sin \theta_1$, $\cos \theta_2 = -\cos \theta_1$.

$$\cdot \cos \theta_1 = \frac{L/2}{\sqrt{L^2/4 + R^2}}.$$

•
$$E_R = -\frac{k\lambda}{R} \left(\cos\theta_2 - \cos\theta_1\right) = \frac{k\lambda}{R} \frac{L}{\sqrt{L^2/4 + R^2}}.$$

•
$$E_z = \frac{k\lambda}{R} \left(\sin \theta_2 - \sin \theta_1 \right) = 0.$$

• Large distance
$$(R \gg L)$$
: $E_R \simeq \frac{kQ}{R^2}$.

• Small distances
$$(R \ll L)$$
: $E_R \simeq \frac{2k\lambda}{R}$

• Rod of infinite length:
$$\vec{E} = \frac{2k\lambda}{R}\hat{R}$$
.

Electric Field of Charged Rod (4)

Symmetry dictates that the resulting electric field is directed radially (alternative derivation).

- Charge per unit length: $\lambda = Q/L$
- Charge on slice dx: $dq = \lambda dx$

•
$$dE = \frac{kdq}{r^2} = \frac{k\lambda dx}{x^2 + y^2}$$

•
$$dE_y = dE \cos \theta = \frac{dEy}{\sqrt{x^2 + y^2}} = \frac{k\lambda y dx}{(x^2 + y^2)^{3/2}}$$

•
$$E_y = \int_{-L/2}^{+L/2} \frac{k\lambda y dx}{(x^2 + y^2)^{3/2}} = \left[\frac{k\lambda y x}{y^2 \sqrt{x^2 + y^2}} \right]_{-L/2}^{+L/2}$$

•
$$E_y = \frac{k\lambda L}{y\sqrt{(L/2)^2 + y^2}} = \frac{kQ}{y\sqrt{(L/2)^2 + y^2}}$$

- Large distance $(y \gg L)$: $E_y \simeq \frac{kQ}{y^2}$
- Small distances $(y \ll L)$: $E_y \simeq \frac{2k\lambda}{y}$

Electric Field of Charged Ring

- Total charge on ring: Q
- Charge per unit length: $\lambda = Q/2\pi a$
- Charge on arc: dq

•
$$dE = \frac{kdq}{r^2} = \frac{kdq}{x^2 + a^2}$$

•
$$dE_x = dE \cos \theta = dE \frac{x}{\sqrt{x^2 + a^2}} = \frac{kxdq}{(x^2 + a^2)^{3/2}}$$

•
$$E_x = \frac{kx}{(x^2 + a^2)^{3/2}} \int dq \Rightarrow E_x = \frac{kQx}{(x^2 + a^2)^{3/2}}$$

•
$$|x| \ll a$$
: $E_x \simeq \frac{kQx}{a^3}$, $x \gg a$: $E_x \simeq \frac{kQ}{x^2}$

•
$$(dE_x/dx)_{x=x_0} = 0 \Rightarrow x_0 = \pm a/\sqrt{2}$$

Charged Bead Moving Along Axis of Charged Ring

Consider a negatively charged bead (mass m, charge -q) constrained to move without friction along the axis of a positively charged ring.

- Place bead on *x*-axis near center of ring: $|x| \ll a$: $E_x \simeq \frac{kQx}{a^3}$
- Restoring force: $F = -qE_x = -k_s x$ with $k_s = \frac{kQq}{a^3}$
- Acceleration: $a = \frac{F}{m} = -\frac{k_s}{m} x$
- Equation of motion: $\frac{d^2x}{dt^2} = -\frac{k_s}{m}x$
- Harmonic oscillation: $x(t) = A\cos(\omega t + \phi)$
- Angular frequency: $\omega = \sqrt{\frac{k_{\rm S}}{m}} = \sqrt{\frac{k Q q}{m a^3}}$

Electric Field of Charged Disk

- Charge per unit area: $\sigma = \frac{Q}{\pi R^2}$
- Area of ring: $dA = 2\pi a da$
- Charge on ring: $dq=2\pi\sigma ada$

•
$$dE_x = \frac{kxdq}{(x^2 + a^2)^{3/2}} = \frac{2\pi\sigma kxada}{(x^2 + a^2)^{3/2}}$$

•
$$E_x = 2\pi\sigma kx \int_0^R \frac{ada}{(x^2 + a^2)^{3/2}} = 2\pi\sigma kx \left[\frac{-1}{\sqrt{x^2 + a^2}}\right]_0^R$$

•
$$E_x = 2\pi\sigma k \left[1 - \frac{x}{\sqrt{x^2 + R^2}}\right]$$
 for $x > 0$

•
$$x \ll R$$
: $E_x \simeq 2\pi\sigma k = \frac{\sigma}{2\epsilon_0}$

• Infinite sheet of charge produces uniform electric field perpendicular to plane.

Electric Field of Charged Rubber Band

The electric field at position x along the line of a charged rubber band is

$$E = \frac{kQ}{x(x+L)}$$

The value of E at $x_1 = 1$ m is $E_1 = 16$ N/C.

- (a) What is the electric field E_2 at a distance $x_2 = 2m$ from the edge of the band?
- (b) To what length L_2 must the band be stretched (toward the left) such that it generates the field $E_2 = 8N/C$ at $x_1 = 1m$?

Electric Field Between Charged Rods

Consider four configurations of two charged rods with equal amounts of charge per unit length $|\lambda|$ on them.

- (a) Determine the direction of the electric field at points P_1 , P_2 , P_3 , P_4 .
- (b) Rank the electric field at the four points according to strength.

Electric Field of Charged Semicircle

Consider a uniformly charged thin rod bent into a semicircle of radius *R*.

Find the electric field generated at the origin of the coordinate system.

- Charge per unit length: $\lambda = Q/\pi R$
- Charge on slice: $dq = \lambda R d\theta$ (assumed positive)
- Electric field generated by slice: $dE = k \frac{|dq|}{R^2} = \frac{k|\lambda|}{R} d\theta$ directed radially (inward for $\lambda > 0$)
- Components of $d\vec{E}$: $dE_x = dE \cos \theta$, $dE_y = -dE \sin \theta$
- Electric field from all slices added up:

$$E_x = \frac{k\lambda}{R} \int_0^{\pi} \cos\theta \, d\theta = \frac{k\lambda}{R} \left[\sin\theta \right]_0^{\pi} = 0$$

$$E_y = -\frac{k\lambda}{R} \int_0^{\pi} \sin\theta \, d\theta = \frac{k\lambda}{R} \left[\cos\theta \right]_0^{\pi} = -\frac{2k\lambda}{R}$$

Electric Flux: Definition

Consider a surface S of arbitrary shape in the presence of an electric field \vec{E} .

Prescription for the calculation of the electric flux through S:

- Divide S into small tiles of area ΔA_i .
- Introduce vector $\Delta \vec{A}_i = \hat{n}_i \Delta A_i$ perpendicular to tile.
 - If S is open choose consistently one of two possible directions for $\Delta \vec{A}_i$.
 - If S is closed choose $\Delta \vec{A}_i$ to be directed outward.
- Electric field at position of tile i: \vec{E}_i .
- Electric flux through tile i: $\Delta \Phi_i^{(E)} = \vec{E}_i \cdot \Delta \vec{A}_i = E_i \Delta A_i \cos \theta_i.$
- Electric flux through S: $\Phi_E = \sum_i \vec{E}_i \cdot \Delta \vec{A}_i$.
- Limit of infinitesimal tiles: $\Phi_E = \int \vec{E} \cdot d\vec{A}$.
- · Electric flux is a scalar.
- The SI unit of electric flux is Nm²/C.

Electric Flux: Illustration

Electric Flux: Application (1)

Consider a rectangular sheet oriented perpendicular to the yz plane as shown and positioned in a uniform electric field $\vec{E}=(2\hat{j})N/C$.

- (a) Find the area A of the sheet.
- (b) Find the angle between \vec{A} and \vec{E} .
- (c) Find the electric flux Φ_E through the sheet.

Electric Flux: Application (2)

Consider a plane sheet of paper whose orientation in space is described by the area vector $\vec{A} = (3\hat{j} + 4\hat{k})m^2$ positioned in a region of uniform electric field $\vec{E} = (1\hat{i} + 5\hat{j} - 2\hat{k})N/C$.

- (a) Find the area A of the sheet.
- (b) Find the magnitude E of the electric field \vec{E} .
- (c) Find the electric flux Φ_E through the sheet.
- (d) Find the angle θ between vectors \vec{A} and \vec{E} .

Electric Flux: Application (3)

The room shown below is positioned in an electric field $\vec{E} = (3\hat{i} + 2\hat{j} + 5\hat{k})N/C$.

- (a) What is the electric flux Φ_E through the closed door?
- (b) What is the electric flux Φ_E through the door opened at $\theta=90^\circ$?
- (c) At what angle θ_1 is the electric flux through the door zero?
- (d) At what angle θ_2 is the electric flux through the door a maximum?

Electric Flux: Application (4)

Consider a positive point charge ${\it Q}$ at the center of a spherical surface of radius ${\it R}$. Calculate the electric flux through the surface.

- \vec{E} is directed radially outward. Hence \vec{E} is parallel to $d\vec{A}$ everywhere on the surface.
- \vec{E} has the same magnitude, $E=kQ/R^2$, everywhere on the surface.
- The area of the spherical surface is $A=4\pi R^2$.
- Hence the electric flux is $\Phi_E \doteq \oint \vec{E} \cdot d\vec{A} = EA = 4\pi kQ$.
- Note that Φ_E is independent of R.

Intermediate Exam I: Problem #3 (Spring '05)

Consider two plane surfaces with area vectors \vec{A}_1 (pointing in positive x-direction) and \vec{A}_2 (pointing in positive z-direction). The region is filled with a uniform electric field $\vec{E} = (2\hat{i} + 7\hat{j} - 3\hat{k})N/C$.

- (a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 .
- (b) Find the electric flux $\Phi_E^{(2)}$ through area A_2 .

Intermediate Exam I: Problem #3 (Spring '05)

Consider two plane surfaces with area vectors \vec{A}_1 (pointing in positive x-direction) and \vec{A}_2 (pointing in positive z-direction). The region is filled with a uniform electric field $\vec{E} = (2\hat{i} + 7\hat{j} - 3\hat{k})N/C$.

- (a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 .
- (b) Find the electric flux $\Phi_E^{(2)}$ through area A_2 .

Solution:

(a)
$$\vec{A}_1=6\hat{\imath}\,\mathrm{m}^2, \ \Phi_E^{(1)}=\vec{E}\cdot\vec{A}_1=(2\mathrm{N/C})(6\mathrm{m}^2)=12\mathrm{Nm}^2/\mathrm{C}.$$

Intermediate Exam I: Problem #3 (Spring '05)

Consider two plane surfaces with area vectors \vec{A}_1 (pointing in positive x-direction) and \vec{A}_2 (pointing in positive z-direction). The region is filled with a uniform electric field $\vec{E}=(2\hat{i}+7\hat{j}-3\hat{k})$ N/C.

- (a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 .
- (b) Find the electric flux $\Phi_E^{(2)}$ through area A_2 .

Solution:

(a)
$$\vec{A}_1 = 6\hat{i} \, \text{m}^2$$
,
 $\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (2\text{N/C})(6\text{m}^2) = 12\text{Nm}^2/\text{C}$.

(b)
$$\vec{A}_2=12\hat{k}\,\mathrm{m}^2, \ \Phi_{\vec{k}}^{(2)}=\vec{E}\cdot\vec{A}_2=(-3\mathrm{N/C})(12\mathrm{m}^2)=-36\mathrm{Nm}^2/\mathrm{C}.$$

