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Electric Field of Continuous Charge Distribution

• Divide the charge distribution into infinitesimal blocks.
– For 3D applications use charge per unit volume: ρ = ∆Q/∆V.
– For 2D applications use charge per unit area: σ = ∆Q/∆A.
– For 1D applications use charge per unit length: λ = ∆Q/∆L.

• Use Coulomb’s law to calculate the electric field generated by each block.

• Use the superposition principle to calculate the resultant field from all blocks.

• Use symmetries whenever possible.
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Electric Field of Charged Rod (1)

• Charge per unit length: λ = Q/L

• Charge on slice dx: dq = λdx

x

L

dE

y

x

dq = λ dx

++ +++ +++ +++ +

D

• Electric field generated by slice dx: dE =
kdq
x2 =

kλdx
x2

• Electric field generated by charged rod:

E = kλ
∫ D+L

D

dx
x2 = kλ

[
− 1

x

]D+L

D
= kλ

[
1
D
− 1

D + L

]
=

kQ
D(D + L)

• Limiting case of very short rod (L� D): E ' kQ
D2

• Limiting case of very long rod (L� D): E ' kλ

D
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Electric Field of Charged Rod (2)

• Charge per unit length: λ = Q/L

• Charge on slice dxs: dq = λdxs

• Trigonometric relations:

yp = r sin θ, −xs = r cos θ

xs = −yp cot θ, dxs =
ypdθ

sin2 θ

• dE =
kλdxs

r2 =
kλdxs

y2
p

sin2 θ =
kλdθ

yp

• dEy = dE sin θ =
kλ

yp
sin θdθ ⇒ Ey =

kλ

yp

∫ θ2

θ1

sin θdθ = − kλ

yp
(cos θ2 − cos θ1)

• dEx = dE cos θ =
kλ

yp
cos θdθ ⇒ Ex =

kλ

yp

∫ θ2

θ1

cos θdθ =
kλ

yp
(sin θ2 − sin θ1)
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Electric Field of Charged Rod (3)

Symmetry dictates that the resulting electric field is directed radially.

• θ2 = π − θ1, ⇒ sin θ2 = sin θ1, cos θ2 = − cos θ1.

• cos θ1 =
L/2√

L2/4 + R2
.

• ER = − kλ

R
(cos θ2 − cos θ1) =

kλ

R
L√

L2/4 + R2
.

• Ez =
kλ

R
(sin θ2 − sin θ1) = 0.

• Large distance (R� L): ER '
kQ
R2 .

• Small distances (R� L): ER '
2kλ

R

• Rod of infinite length: ~E =
2kλ

R
R̂.
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Electric Field of Charged Rod (4)

Symmetry dictates that the resulting electric field is directed radially (alternative derivation).

• Charge per unit length: λ = Q/L

• Charge on slice dx: dq = λdx

• dE =
kdq
r2 =

kλdx
x2 + y2

• dEy = dE cos θ =
dEy√
x2 + y2

=
kλydx

(x2 + y2)3/2

• Ey =
∫ +L/2

−L/2

kλydx
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[
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√
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]+L/2

−L/2
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kλL

y
√
(L/2)2 + y2

=
kQ

y
√
(L/2)2 + y2

• Large distance (y� L): Ey '
kQ
y2

• Small distances (y� L): Ey '
2kλ

y
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Electric Field of Charged Ring

• Total charge on ring: Q

• Charge per unit
length: λ = Q/2πa

• Charge on arc: dq

• dE =
kdq
r2 =

kdq
x2 + a2

• dEx = dE cos θ = dE
x√

x2 + a2
=

kxdq
(x2 + a2)3/2

• Ex =
kx

(x2 + a2)3/2

∫
dq ⇒ Ex =

kQx
(x2 + a2)3/2

• |x| � a : Ex '
kQx
a3 , x� a : Ex '

kQ
x2

• (dEx/dx)x=x0 = 0 ⇒ x0 = ±a/
√

2

Ex

x
−x

x0

0
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Charged Bead Moving Along Axis of Charged Ring

Consider a negatively charged bead (mass m, charge −q) constrained to move without friction along the axis
of a positively charged ring.

• Place bead on x-axis near center of ring: |x| � a : Ex '
kQx
a3

• Restoring force: F = −qEx = −ksx with ks =
kQq
a3

• Acceleration: a =
F
m

= − ks

m
x

• Equation of motion: d2x
dt2 = − ks

m
x

• Harmonic oscillation: x(t) = A cos(ωt + φ)

• Angular frequency: ω =

√
ks

m
=

√
kQq
ma3

Ex

x
−x

x0

0
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Electric Field of Charged Disk

• Charge per unit area: σ =
Q

πR2

• Area of ring: dA = 2πada

• Charge on ring: dq = 2πσada

R

da

a
x

• dEx =
kxdq

(x2 + a2)3/2 =
2πσkxada
(x2 + a2)3/2

• Ex = 2πσkx
∫ R

0

ada
(x2 + a2)3/2 = 2πσkx

[
−1√

x2 + a2

]R

0

• Ex = 2πσk
[

1− x√
x2 + R2

]
for x > 0

• x� R : Ex ' 2πσk =
σ

2ε0

• Infinite sheet of charge produces uniform electric field perpendicular to plane.
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Electric Field of Charged Rubber Band

The electric field at position x along the line of a charged rubber band is

E =
kQ

x(x + L)

The value of E at x1 = 1m is E1 = 16N/C.

++++++++++ ++

x
  
=

 2
m

2

x
  
=

 1
m

1

E  = 16N/C1

Q

L  = 2m

x

1

(a) What is the electric field E2 at a distance x2 = 2m from the edge of the band?

(b) To what length L2 must the band be stretched (toward the left) such that it generates the field E2 = 8N/C
at x1 = 1m?
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Electric Field Between Charged Rods

Consider four configurations of two charged rods with equal amounts of charge per unit length |λ| on them.

P P

P P

1 2

3 4

+ + + + + + + +

−−− −−

+ + + + + + + +

+ + + + + − − − − − − − −

−−− −−

− − − − − − − −

+ + + + +

(a) Determine the direction of the electric field at points P1, P2, P3, P4.

(b) Rank the electric field at the four points according to strength.
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Electric Field of Charged Semicircle

Consider a uniformly charged thin rod bent into a semicircle of radius R.

Find the electric field generated at the origin of the coordinate system.

• Charge per unit length: λ = Q/πR

• Charge on slice: dq = λRdθ (assumed positive)

• Electric field generated by slice: dE = k
|dq|
R2 =

k|λ|
R

dθ

directed radially (inward for λ > 0)

• Components of d~E: dEx = dE cos θ, dEy = −dE sin θ

• Electric field from all slices added up:

Ex =
kλ

R

∫ π

0
cos θ dθ =

kλ

R

[
sin θ

]π

0
= 0

Ey = − kλ

R

∫ π

0
sin θ dθ =

kλ

R

[
cos θ

]π

0
= − 2kλ

R
θ

R

y

Rd

x

θ
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Electric Flux: Definition

Consider a surface S of arbitrary shape in the presence of an electric field ~E.
Prescription for the calculation of the electric flux through S:

• Divide S into small tiles of area ∆Ai.

• Introduce vector ∆~Ai = n̂i∆Ai perpendicular to tile.
– If S is open choose consistently one of two possible directions for ∆~Ai.
– If S is closed choose ∆~Ai to be directed outward.

• Electric field at position of tile i: ~Ei.

• Electric flux through tile i:
∆Φ(E)

i = ~Ei · ∆~Ai = Ei∆Ai cos θi.

• Electric flux through S: ΦE = ∑i~Ei · ∆~Ai.

• Limit of infinitesimal tiles: ΦE =
∫
~E · d~A.

• Electric flux is a scalar.

• The SI unit of electric flux is Nm2/C.
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Electric Flux: Illustration
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Electric Flux: Application (1)

Consider a rectangular sheet oriented perpendicular to the yz plane as shown and positioned in a uniform
electric field ~E = (2ĵ)N/C.

x

y

z

2m

3m

4m

E

A

(a) Find the area A of the sheet.
(b) Find the angle between ~A and ~E.
(c) Find the electric flux ΦE through the sheet.

tsl40



Electric Flux: Application (2)

Consider a plane sheet of paper whose orientation in space is described by the area vector ~A = (3ĵ + 4k̂)m2

positioned in a region of uniform electric field ~E = (1î + 5ĵ− 2k̂)N/C.

x

y

z

A

E

(a) Find the area A of the sheet.
(b) Find the magnitude E of the electric field ~E.
(c) Find the electric flux ΦE through the sheet.
(d) Find the angle θ between vectors ~A and ~E.
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Electric Flux: Application (3)

The room shown below is positioned in an electric field ~E = (3î + 2ĵ + 5k̂)N/C.

2m

1m
z

x

y
θ

(a) What is the electric flux ΦE through the closed door?
(b) What is the electric flux ΦE through the door opened at θ = 90◦?
(c) At what angle θ1 is the electric flux through the door zero?
(d) At what angle θ2 is the electric flux through the door a maximum?
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Electric Flux: Application (4)

Consider a positive point charge Q at the center of a spherical surface of radius R.
Calculate the electric flux through the surface.

• ~E is directed radially outward. Hence ~E is parallel to d~A everywhere on the surface.

• ~E has the same magnitude, E = kQ/R2, everywhere on the surface.

• The area of the spherical surface is A = 4πR2.

• Hence the electric flux is ΦE
.
=
∮
~E · d~A = EA = 4πkQ.

• Note that ΦE is independent of R.
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Intermediate Exam I: Problem #3 (Spring ’05)

Consider two plane surfaces with area vectors ~A1 (pointing in positive x-direction) and ~A2 (pointing in positive
z-direction). The region is filled with a uniform electric field ~E = (2î + 7ĵ− 3k̂)N/C.

(a) Find the electric flux Φ(1)
E through area A1.

(b) Find the electric flux Φ(2)
E through area A2.

z

x

y

3m

2m

4m
3m

A1

A 2

Solution:

(a) ~A1 = 6î m2,
Φ(1)

E = ~E ·~A1 = (2N/C)(6m2) = 12Nm2/C.

(b) ~A2 = 12k̂ m2,
Φ(2)

E = ~E ·~A2 = (−3N/C)(12m2) = −36Nm2/C.
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