University of Rhode Island [DigitalCommons@URI](https://digitalcommons.uri.edu/)

[PHY 204: Elementary Physics II -- Slides](https://digitalcommons.uri.edu/phy204-slides) PHY 204: Elementary Physics II (2021)

2020

03. Electric field of continuous charge distributions. Electric flux

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Robert Coyne University of Rhode Island, robcoyne@uri.edu

Follow this and additional works at: [https://digitalcommons.uri.edu/phy204-slides](https://digitalcommons.uri.edu/phy204-slides?utm_source=digitalcommons.uri.edu%2Fphy204-slides%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Müller, Gerhard and Coyne, Robert, "03. Electric field of continuous charge distributions. Electric flux" (2020). PHY 204: Elementary Physics II -- Slides. Paper 28. [https://digitalcommons.uri.edu/phy204-slides/28](https://digitalcommons.uri.edu/phy204-slides/28?utm_source=digitalcommons.uri.edu%2Fphy204-slides%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Slides by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Electric Field of Continuous Charge Distribution

- Divide the charge distribution into infinitesimal blocks.
	- For 3D applications use charge per unit volume: *ρ* = ∆*Q*/∆*V*.
	- For 2D applications use charge per unit area: *σ* = ∆*Q*/∆*A*.
	- For 1D applications use charge per unit length: *λ* = ∆*Q*/∆*L*.
- Use Coulomb's law to calculate the electric field generated by each block.
- Use the superposition principle to calculate the resultant field from all blocks.
- Use symmetries whenever possible.

Electric Field of Charged Rod (1)

• Charge on slice dx : $dq = \lambda dx$

• Electric field generated by slice
$$
dx
$$
: $dE = \frac{kdq}{x^2} = \frac{k\lambda dx}{x^2}$

• Electric field generated by charged rod:

$$
E = k\lambda \int_{D}^{D+L} \frac{dx}{x^2} = k\lambda \left[-\frac{1}{x} \right]_{D}^{D+L} = k\lambda \left[\frac{1}{D} - \frac{1}{D+L} \right] = \frac{kQ}{D(D+L)}
$$

- Limiting case of very short rod $(L \ll D)$: $E \simeq \frac{kQ}{D^2}$ *D*²
- Limiting case of very long rod $(L \gg D)$: $E \simeq \frac{k\lambda}{D}$ *D*

Electric Field of Charged Rod (2)

- Charge per unit length: $\lambda = Q/L$
- Charge on slice dx_s : $dq = \lambda dx_s$
- Trigonometric relations:

$$
y_p = r \sin \theta, \quad -x_s = r \cos \theta
$$

$$
x_s = -y_p \cot \theta, \quad dx_s = \frac{y_p d\theta}{\sin^2 \theta}
$$

•
$$
dE = \frac{k\lambda dx_s}{r^2} = \frac{k\lambda dx_s}{y_p^2} \sin^2 \theta = \frac{k\lambda d\theta}{y_p}
$$

\n• $dE_y = dE \sin \theta = \frac{k\lambda}{y_p} \sin \theta d\theta \Rightarrow E_y = \frac{k\lambda}{y_p} \int_{\theta_1}^{\theta_2} \sin \theta d\theta = -\frac{k\lambda}{y_p} (\cos \theta_2 - \cos \theta_1)$
\n• $dE_x = dE \cos \theta = \frac{k\lambda}{y_p} \cos \theta d\theta \Rightarrow E_x = \frac{k\lambda}{y_p} \int_{\theta_1}^{\theta_2} \cos \theta d\theta = \frac{k\lambda}{y_p} (\sin \theta_2 - \sin \theta_1)$

Electric Field of Charged Rod (3)

Symmetry dictates that the resulting electric field is directed radially.

•
$$
\theta_2 = \pi - \theta_1
$$
, $\Rightarrow \sin \theta_2 = \sin \theta_1$, $\cos \theta_2 = -\cos \theta_1$.
\n• $\cos \theta_1 = \frac{L/2}{\sqrt{L^2/4 + R^2}}$.
\n• $E_R = -\frac{k\lambda}{R} (\cos \theta_2 - \cos \theta_1) = \frac{k\lambda}{R} \frac{L}{\sqrt{L^2/4 + R^2}}$.
\n• $E_z = \frac{k\lambda}{R} (\sin \theta_2 - \sin \theta_1) = 0$.

• Large distance
$$
(R \gg L)
$$
: $E_R \simeq \frac{kQ}{R^2}$.

• Small distances
$$
(R \ll L)
$$
: $E_R \simeq \frac{2k\lambda}{R}$

• Rod of infinite length: $\vec{E} = \frac{2k\lambda}{R}$ $\frac{R}{R}$ \hat{R} .

Electric Field of Charged Rod (4)

Symmetry dictates that the resulting electric field is directed radially (alternative derivation).

- Charge per unit length: $\lambda = Q/L$
- Charge on slice dx : $dq = \lambda dx$

Electric Field of Charged Ring

- Total charge on ring: *Q*
- Charge per unit length: $\lambda = Q/2\pi a$
- Charge on arc: *dq*

•
$$
dE = \frac{kdq}{r^2} = \frac{kdq}{x^2 + a^2}
$$

\n• $dE_x = dE \cos \theta = dE \frac{x}{\sqrt{x^2 + a^2}} = \frac{kxdq}{(x^2 + a^2)^{3/2}}$
\n• $E_x = \frac{kx}{(x^2 + a^2)^{3/2}} \int dq \Rightarrow E_x = \frac{kQx}{(x^2 + a^2)^{3/2}}$
\n• $|x| \ll a$: $E_x \approx \frac{kQx}{a^3}$, $x \gg a$: $E_x \approx \frac{kQ}{x^2}$
\n• $(dE_x/dx)_{x=x_0} = 0 \Rightarrow x_0 = \pm a/\sqrt{2}$

Charged Bead Moving Along Axis of Charged Ring

Consider a negatively charged bead (mass *m*, charge −*q*) constrained to move without friction along the axis of a positively charged ring.

- Place bead on *x*-axis near center of ring: $|x| \ll a: E_x \simeq \frac{kQx}{a^3}$ *a* 3
- Restoring force: $F = -qE_x = -k_sx$ with $k_s = \frac{kQq}{a^3}$ *a* 3
- Acceleration: $a = \frac{F}{m}$ $\frac{F}{m} = -\frac{k_s}{m}$ $\frac{0}{m}$ *x*
- Equation of motion: $\frac{d^2x}{dt^2} = -\frac{k_s}{m}$ $\frac{3}{m}$ *x*
- Harmonic oscillation: $x(t) = A \cos(\omega t + \phi)$
- Angular frequency: $\omega = \sqrt{\frac{k_s}{m}}$

Electric Field of Charged Disk

- Charge per unit area: $\sigma = \frac{Q}{\pi R}$ *πR*²
- Area of ring: $dA = 2\pi a da$
- Charge on ring: $dq = 2\pi \sigma a da$

•
$$
dE_x = \frac{kxdq}{(x^2 + a^2)^{3/2}} = \frac{2\pi \sigma kxada}{(x^2 + a^2)^{3/2}}
$$

\n•
$$
E_x = 2\pi \sigma kx \int_0^R \frac{ada}{(x^2 + a^2)^{3/2}} = 2\pi \sigma kx \left[\frac{-1}{\sqrt{x^2 + a^2}} \right]_0^R
$$

\n•
$$
E_x = 2\pi \sigma k \left[1 - \frac{x}{\sqrt{x^2 + R^2}} \right] \text{ for } x > 0
$$

\n•
$$
x \ll R: E_x \simeq 2\pi \sigma k = \frac{\sigma}{2\epsilon_0}
$$

• Infinite sheet of charge produces uniform electric field perpendicular to plane.

x

Electric Field of Charged Rubber Band

The electric field at position *x* along the line of a charged rubber band is

$$
E = \frac{kQ}{x(x+L)}
$$

The value of *E* at $x_1 = 1$ m is $E_1 = 16N/C$.

- (a) What is the electric field E_2 at a distance $x_2 = 2m$ from the edge of the band?
- (b) To what length L_2 must the band be stretched (toward the left) such that it generates the field $E_2 = 8N/C$ at $x_1 = 1$ m?

Consider four configurations of two charged rods with equal amounts of charge per unit length |*λ*| on them.

- (a) Determine the direction of the electric field at points P_1 , P_2 , P_3 , P_4 .
- (b) Rank the electric field at the four points according to strength.

Electric Field of Charged Semicircle

Consider a uniformly charged thin rod bent into a semicircle of radius *R*.

Find the electric field generated at the origin of the coordinate system.

- Charge per unit length: $\lambda = Q/\pi R$
- Charge on slice: $dq = \lambda R d\theta$ (assumed positive)
- Electric field generated by slice: $dE = k \frac{|dq|}{R^2} = \frac{k|\lambda|}{R}$ $\frac{1}{R}$ *d*θ directed radially (inward for $\lambda > 0$)
- Components of $d\vec{E}$: $dE_x = dE \cos \theta$, $dE_y = -dE \sin \theta$
- Electric field from all slices added up:

$$
E_x = \frac{k\lambda}{R} \int_0^{\pi} \cos\theta \, d\theta = \frac{k\lambda}{R} \left[\sin\theta \right]_0^{\pi} = 0
$$

$$
E_y = -\frac{k\lambda}{R} \int_0^{\pi} \sin\theta \, d\theta = \frac{k\lambda}{R} \left[\cos\theta \right]_0^{\pi} = -\frac{2k\lambda}{R}
$$

Electric Flux: Definition

Consider a surface S of arbitrary shape in the presence of an electric field \vec{E} . Prescription for the calculation of the electric flux through *S*:

- Divide *S* into small tiles of area ∆*Aⁱ* .
- Introduce vector $\Delta \vec{A}_i = \hat{n}_i \Delta A_i$ perpendicular to tile.
	- If S is open choose consistently one of two possible directions for $\Delta \vec A_i.$
	- $-$ If S is closed choose $\Delta \vec{A}_i$ to be directed outward.
- Electric field at position of tile *i*: \vec{E}_i .
- Electric flux through tile *i*: $\Delta \Phi_i^{(E)} = \vec{E}_i \cdot \Delta \vec{A}_i = E_i \Delta A_i \cos \theta_i.$
- Electric flux through S : $\Phi_E = \sum_i \vec{E}_i \cdot \Delta \vec{A}_i$.
- \cdot Limit of infinitesimal tiles: $\Phi_E = \int \vec{E} \cdot d\vec{A}.$
- Electric flux is a scalar.
- The SI unit of electric flux is Nm^2/C .

Electric Flux: Illustration

Electric Flux: Application (1)

Consider a rectangular sheet oriented perpendicular to the *yz* plane as shown and positioned in a uniform electric field $\vec{E} = (2\hat{i})N/C$.

- (a) Find the area *A* of the sheet.
- (b) Find the angle between \vec{A} and \vec{E} .
- (c) Find the electric flux Φ*^E* through the sheet.

Electric Flux: Application (2)

Consider a plane sheet of paper whose orientation in space is described by the area vector $\vec A = (3\hat j + 4\hat k) \text{m}^2$ positioned in a region of uniform electric field $\vec{E} = (1\hat{i} + 5\hat{j} - 2\hat{k})$ N/C.

- (a) Find the area *A* of the sheet.
- (b) Find the magnitude E of the electric field \vec{E} .
- (c) Find the electric flux Φ*^E* through the sheet.
- (d) Find the angle θ between vectors \vec{A} and \vec{E} .

Electric Flux: Application (3)

The room shown below is positioned in an electric field $\vec{E} = (3\hat{i} + 2\hat{j} + 5\hat{k})$ N/C.

(a) What is the electric flux Φ*^E* through the closed door?

- (b) What is the electric flux Φ_E through the door opened at $\theta = 90^\circ ?$
- (c) At what angle θ_1 is the electric flux through the door zero?
- (d) At what angle θ_2 is the electric flux through the door a maximum?

Electric Flux: Application (4)

Consider a positive point charge *Q* at the center of a spherical surface of radius *R*. Calculate the electric flux through the surface.

- \cdot \vec{E} is directed radially outward. Hence \vec{E} is parallel to $d\vec{A}$ everywhere on the surface.
- $\bm{\cdot} \,$ \vec{E} has the same magnitude, $E=kQ/R^2$, everywhere on the surface.
- The area of the spherical surface is $A = 4\pi R^2$.
- \cdot Hence the electric flux is $\Phi_E\doteq\oint\vec{E}\cdot d\vec{A}=EA=4\pi kQ.$
- Note that Φ_F is independent of *R*.

Intermediate Exam I: Problem #3 (Spring '05)

Consider two plane surfaces with area vectors \vec{A}_1 (pointing in positive *x*-direction) and \vec{A}_2 (pointing in positive z -direction). The region is filled with a uniform electric field $\vec{E} = (2\hat{i} + 7\hat{j} - 3\hat{k})$ N/C.

- (a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 .
- (b) Find the electric flux $\Phi_E^{(2)}$ through area $A_2.$

Intermediate Exam I: Problem #3 (Spring '05)

Consider two plane surfaces with area vectors \vec{A}_1 (pointing in positive *x*-direction) and \vec{A}_2 (pointing in positive z -direction). The region is filled with a uniform electric field $\vec{E} = (2\hat{i} + 7\hat{j} - 3\hat{k})$ N/C.

(a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 . (b) Find the electric flux $\Phi_E^{(2)}$ through area $A_2.$

(a) $\vec{A}_1 = 6\hat{i} \text{ m}^2$, $\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (2N/C)(6m^2) = 12Nm^2/C.$

z

Intermediate Exam I: Problem #3 (Spring '05)

Consider two plane surfaces with area vectors \vec{A}_1 (pointing in positive *x*-direction) and \vec{A}_2 (pointing in positive z -direction). The region is filled with a uniform electric field $\vec{E} = (2\hat{i} + 7\hat{j} - 3\hat{k})$ N/C.

(a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 . (b) Find the electric flux $\Phi_E^{(2)}$ through area $A_2.$

(a)
$$
\vec{A}_1 = 6\hat{i} \text{ m}^2
$$
,
\n $\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (2N/C)(6m^2) = 12Nm^2/C$.
\n(b) $\vec{A}_2 = 12\hat{k} \text{ m}^2$,
\n $\Phi_E^{(2)} = \vec{E} \cdot \vec{A}_2 = (-3N/C)(12m^2) = -36Nm^2/C$.

