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ABSTRACT

One of the new features of modern GNSS signals is
that they generally have a pilot component and data
component. A unique aspect of the GPS L1C signal
is that it has an unequal power split between the pi-
lot and data components. Various papers have pro-
posed channel combining techniques to acquire mod-
ern GNSS signals using both components.

In this paper, the optimal detector for GPS L1C acqui-
sition over multiple code periods without knowledge of
the navigation data or overlay code phase is derived. A
variation of semi-coherent integration technique (non-
coherently combining the 10 msec coherent combina-
tions) that accounts for the unequal power split be-
tween the data and pilot components is proposed. Sin-
gle trial detection and false alarm probabilities are

used to compare performance of this semi-coherent
integration with unequal power compensation to the
optimal detector as well as to noncoherent combining
and single channel acquisition on the pilot component
only. Simulation results show that the semi-coherent
integration with unequal power compensation slightly
outperforms both the semi-coherent integration detec-
tor without compensating for unequal power and the
noncoherent combining detector.

INTRODUCTION

L1C is the most recent of the modernized GPS sig-
nals with the first launch of a GPS Block III satellite
with this signal payload expected to occur within a few
years. One of the interesting features of modern Global
Navigation Satellite System (GNSS) signals, includ-
ing the GPS L1C signal, is the presence of data and
pilot components. The pilot component is a carrier
with a deterministic overlay code but no data symbols
whereas the data component carries the navigation
data symbol stream. Two unique aspects of GPS L1C
are the asymmetrical power split between the two com-
ponents (75%/25% for the pilot/data) and the trans-
mission of both components in phase with orthogonal-
ity achieved by code division multiplexing.

Unassisted acquisition of GNSS signals requires a two-
dimensional search for code delay and Doppler fre-
quency of the incoming signal. For modern two-
component GNSS signals, conventional GNSS acquisi-
tion schemes could be used on either component, cor-
relating the received signal with either the pilot or the
data spreading code [1–3]. One obvious disadvantage
of this approach is the wasting of signal power; hence,
new techniques for signal combining or joint acquisi-
tion of the pilot and data components have been pro-
posed.

Noncoherent combining, or acquisition of each com-
ponent separately and combining the power from the
correlators for each component was proposed in [4] and
has been analyzed in various papers [3,5]. A technique
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known as coherent channel combining with sign recov-
ery takes advantage of the fact that the relative sign
between the data and pilot components can be esti-
mated by correlating the received signal with two dif-
ferent composite codes: the data spreading code plus
the pilot spreading code and the pilot spreading code
minus the data spreading code [3,5–8]. Semi-coherent
integration refers to noncoherently combining these co-
herent combinations (every 10 msec code period for the
case of GPS L1C). Expressions for the single trial false
alarm and detection probabilities for a single code pe-
riod were derived in [3] for two-component GNSS sig-
nals transmitted in phase quadrature with equal power
split and in [9] for signals in phase with unequal power
split. Results were extended for using multiple code
periods for the in phase quadrature signal with equal
power split in [10].

In this paper, a brief introduction to the GPS L1C
signal is first provided along with the signal model.
The optimal detector for acquisition of the GPS L1C
signal in an additive white Gaussian noise using an
arbitrary integer number of primary code periods is
derived. Single channel acquisition on the pilot only
and noncoherent combining acquisition techniques are
provided for comparison purposes. The semi-coherent
combining technique for the GPS L1C signal is devel-
oped. Simulation results compare the performance of
the optimal detector with single channel, noncoher-
ent combining and semi-coherent combining acquisi-
tion techniques.

GPS L1C AND SIGNAL MODEL

The design of the new civil signal in the L1 band,
called L1C, was initiated in August 2003 and com-
pleted in April 2006 and is described in [11, 12]. It
has the same carrier frequency of 1575.42 MHz as the
legacy L1 C/A code signal but many innovative de-
sign features separate this signal from its counterpart
on the same frequency that was designed thirty years
prior. As the most recent of the modernized GPS sig-
nals, L1C has acquired many advancements seen in
other modern signals including WAAS, L5, and L2C.
The signal design for L1C is specified in the Interface
Specification document IS-GPS-800A [13].

The L1C signal is split into two components with 75%
power in the pilot component and 25% power in the
data component. Spreading codes with a length of
10,230 chips and a period of 10 ms at a chipping rate
of 1.023 Mcps are based on Weil codes [14]. Not only
does each satellite have unique spreading codes, but
different codes are also used for the pilot and data
components. In addition to the spreading code, the
pilot component uses an 18 second 1800-bit overlay

code. One bit of this overlay code and one bit of the
navigation data on the data component both have a
duration of 10 ms which corresponds to one period of
the spreading code.

Both components of the L1C signal use binary offset
carrier (BOC) modulation which is explained in [15].
BOC modulation uses a square-wave spreading sym-
bol (subcarrier) to modulate each chip of the spread-
ing code which splits the spectrum about the carrier
frequency. The convention of using BOC(α, β) to de-
scribe a BOC modulated symbol has become standard
where the subcarrier frequency is fs = α× 1.023 MHz
and the spreading code rate is fc = β × 1.023 MHz.
The modulation for the L1C data component is strictly
BOC(1,1). The L1C pilot component uses a time
multiplexed combination of BOC(6,1) and BOC(1,1)
known as TMBOC.

After signal conditioning in the front end of the GNSS
receiver, the L1C signal from one satellite is

s(t) =
[√

3
2CdP (t− τ)cP (t− τ)gP (t− τ)

· cos(2π(fIF + fd)t+ δθ)
]

+
[√

1
2CdD(t− τ)cD(t− τ)gD(t− τ)

· cos(2π(fIF + fd)t+ δθ)
]

+ n(t) (1)

where

• where the total signal power is denoted as C
(Watts) which includes any antenna gain and re-
ceiver implementation losses,

• dP (t) and dD(t) are the series of overlay code and
data bits,

• cP (t) and CD(t) are the spreading codes for the
pilot and data components,

• gP (t) and gD(t) are the periodic repetition of the
spreading symbols (also known as the subcarrier)
for the data and pilot components and repeat ev-
ery code chip,

• τ and fd are the unknown delay and Doppler fre-
quency of the signal,

• the signal is at an intermediate frequency fIF
(Hertz),

• the unknown phase term is δθ (radians), which is
the phase difference between the received signal
and the locally generated signal used for down-
conversion,

• and n(t) is additive white Gaussian noise with
power spectral density N0/2.
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Despite being a discrete-time signal as this point in the
receiver, continuous-time signals are used here to pro-
vide insight under the assumption that the sample-rate
has been selected fast enough to accurately represent
the signal.

After multiplication by two reference signals that are
in phase quadrature and subsequent low-pass filtering,
the inphase and quadrature channels are

I− Channel =√
3
4CdP (t− τ)cP (t− τ)gP (t− τ) cos(2π∆fdt+ ∆θ)

+
√

1
4CdD(t− τ)cD(t− τ)gD(t− τ) cos(2π∆fdt+ ∆θ)

+nI(t) (2)

Q− Channel =√
3
4CdP (t− τ)cP (t− τ)gP (t− τ) sin(2π∆fdt+ ∆θ)

+
√

1
4CdD(t− τ)cD(t− τ)gD(t− τ) sin(2π∆fdt+ ∆θ)

+nQ(t), (3)

where ∆fd = fd − f̂d is the error in Doppler estimate
and ∆θ = θ− θ̂ is the carrier phase offset between the
local replica and received signal.

The inphase and quadrature channels are coherently
integrated after each are multiplied by the local code
and spreading symbol (subcarrier) replicas. This gives
the scalar output of the I-channel and Q-channel cor-
relators for both the pilot and data components ev-
ery integer multiple of the coherent integration time,
kTc:

IP,k =

√
3
4C dP,k

Tc

∫ kTc+Tc

kTc

cP (t−τ)cP (t−τ̂)gP (t−τ)

·gP (t−τ̂) cos(2π∆fdt+∆θ)dt+ ηP,I,k

QP,k =

√
3
4C dP,k

Tc

∫ kTc+Tc

kTc

cP (t−τ)cP (t−τ̂)gP (t−τ)

·gP (t−τ̂) sin(2π∆fdt+∆θ)dt+ ηP,Q,k

ID,k =

√
1
4C dD,k

Tc

∫ kTc+Tc

kTc

cD(t−τ)cD(t−τ̂)gD(t−τ)

·gD(t−τ̂) cos(2π∆fdt+∆θ)dt+ ηD,I,k

QD,k=

√
1
4C dD,k

Tc

∫ kTc+Tc

kTc

cD(t−τ)cD(t−τ̂)gD(t−τ)

·gD(t−τ̂) sin(2π∆fdt+∆θ)dt+ ηD,Q,k, (4)

where Tc is the coherent integration time, τ̂ is the es-
timated delay and η are the uncorrelated noise terms
that each have the same variance, σ2 = N0/2Tc [16].
We assume that the coherent integration time the
length of a of the spreading code period which is the

same as an overlay or data code bit (10 ms for GPS
L1C) and that bit transitions are avoided. When the
signal from the satellite is present and correct delay
(τ̂ = τ) and Doppler estimates are used, the output of
the correlators are now

IP,k =
√

3
4C dP,k cos (∆θ) + ηP,I,k

QP,k =
√

3
4C dP,k sin (∆θ) + ηP,Q,k

ID,k =
√

1
4C dD,k cos (∆θ) + ηD,I,k

QD,k =
√

1
4C dD,k sin (∆θ) + ηD,Q,k. (5)

Due to the autocorrelation properties of the spread-
ing code, the correlator outputs contain the noise
terms only when incorrect delay estimates (τ̂ 6= τ)
are used.

OPTIMAL DETECTOR FOR
ACQUISITION OF GPS L1C

In this section, classical detection theory is used to
derive the optimal detector for an arbitrary integer
number of primary spreading code periods of the GPS
L1C signal and in general, any two-component GNSS
signal in which the components are in phase but have
an unequal power split. The optimal detector for GPS
L5 acquisition was derived in [5]. The optimal detector
for GPS L1C acquisition over a single spreading code
period was derived in [9] and the results are extended
here to find the optimal detector for GPS L1C over
multiple code periods.

In GNSS acquisition, there are two choices when trying
to acquire the signal from a particular satellite: either
the satellite signal is present or not. These hypotheses
are formally defined as H1 when the satellite signal
is present and H0 which corresponds to no satellite
signal.

The output of the correlators are used here as the
observation since they are sufficient statistics for de-
tecting the signal in an additive white Gaussian noise
channel [17,18]. Correlator outputs for the L1C signal
are derived in equation (4) and given in equation (5)
for correct estimation of delay and Doppler. Due to au-
tocorrelation properties of the codes, we assume that
the correlator outputs contain noise only if an incor-
rect delay estimate is used. The observation vector at
the output of the correlators under each of these two
hypotheses are

H1 : r =


IP
QP

ID
QD

+n =


√
αCdP cos (∆θ)√
αCdP sin (∆θ)√
βCdD cos (∆θ)√
βCdD sin (∆θ)

+n

H0 : r = n. (6)
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We observe K spreading code periods. Under H1, the
observation is the 4K × 1 vector of correlator out-
puts from the K × 10 millisecond observation. The
4K × 1 noise vector, n, is white and Gaussian with
covariance σ2I, where I is the identity matrix and
σ2 = N0/ (2Tc) [16]. The received signal power is C
with the parameters α and β describing the power split
between the two components so that α + β = 1. For
the GPS L1C signal, α = 3/4 and β = 1/4. The car-
rier phase residual (or phase offset between the local
replica and received signal) is ∆θ. Each component
may have data, dP or dD, which represents any navi-
gation data, overlay code, or combination of these two
items that might be present. These data vectors, dP
or dD, are each K×1 vectors which represent the data
bit during each code period.

Since the a priori probabilities of a signal being present
are unknown, the Neyman-Pearson criterion is used so
that a test is designed to maximize the probability of
detection (Pd) under a particular probability of false
alarm constraint (Pf ). The optimum test consists of
using the observation r to find the likelihood ratio Λ(r)
and comparing this result to a threshold to make a de-
cision [17]. The likelihood ratio is a ratio of conditional
joint probabilities and is therefore a scalar:

Λ(r) ,
p (r | H1)

p (r | H0)
. (7)

The likelihood ratio test is

Λ(r)
H1

≷
H0

TH, (8)

where the threshold, TH, is determined as follows for
a fixed Pf :

Pf =

∫ ∞
TH

p(Λ | H0)dΛ. (9)

The joint probability density function of r is expressed
as a product of the marginal probability density func-
tions since all of the noise terms are mutually uncor-
related and therefore statistically independent zero-
mean Gaussian random variables. The joint probabil-
ity density function under hypothesis H0 (no satellite
signal present) is

p(r | H0) =

(
1

(2π)2σ4

)K
exp

(
−|r|2

2σ2

)
. (10)

The joint probability density function under hypothe-

sis H1 (satellite signal is present) is

p(r | H1)

=

[
1

(2π)
2
σ4

]K
exp

[
1

2σ2

∣∣∣∣r− ej∆θ
[√

αCdp√
βCdD

]∣∣∣∣2
]

=

[
1

(2π)
2
σ4

]K
exp

(
−p2

2σ2

)
, (11)

where

p2 = |r|2 +KC

− 2
√
C cos(∆θ)

K∑
k=1

(√
αIP,kdP,k +

√
βID,kdD,k

)
− 2
√
C sin(∆θ)

K∑
k=1

(√
αQP,kdP,k +

√
βQD,kdD,k

)
(12)

By substituting equation (12) into equation (11) for
p2, the joint probability density function is now

p(r | H1)

=

[
1

(2π)
2
σ4

]K
exp

(
−|r|2

2σ2

)
exp

(
−KC
2σ2

)

·exp

(√
C

σ2
cos(∆θ)

K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k

))

·exp

(√
C

σ2
sin(∆θ)

K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k

))
.(13)

Since the carrier phase residual (∆θ), overlay code
bit (dP ), and data bit (dD), are unknown, we con-
sider each of them a random variable with a known
a priori density. The conditional probability density
functions in the likelihood ratio can be found by aver-
aging p (r | H0, θ, dP , dD) and p (r | H1, θ, dP , dD) over
the probability density function of the random carrier
phase residual and the probability mass function of the
random bits:

p (r | H1) =
∑

dP,dD∈{B}

p(dP,dD)

·
∫ 2π

0

p (r | H1,∆θ, dP , dD) p (∆θ | H1) d∆θ

p (r | H0) =
∑

dP,dD∈{B}

p(dP,dD)

·
∫ 2π

0

p (r | H0,∆θ, dP , dD) p (∆θ | H0) d∆θ, (14)

where B represents all possible combinations of the
data and pilot bits over the observation interval.
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The likelihood ratio is now

Λ(r) =
p (r | H1)

p (r | H0)

=
∑

dP,dD∈{B}

p(dP,dD)

1

2π

∫ 2π

0

[[
1

(2π)
2
σ4

]K
exp

(
−|r|2

2σ2

)
exp

(
−KC
2σ2

)

·exp

(√
C

σ2
cos(∆θ)

K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k

))

·exp

(√
C

σ2
sin(∆θ)

K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k

))

·
(
(2π)2σ4

)K
exp

(
+|r|2

2σ2

)]
d∆θ

= exp

(
−KC
2σ2

) ∑
dP,dD∈{B}

p(dP,dD)

· 1

2π

∫ 2π

0

exp

(√
C

σ2
cos(∆θ) (x)

)

·exp

(√
C

σ2
sin(∆θ) (y)

)
d∆θ (15)

where

x =
K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k

)
,

y =
K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k

)
. (16)

Since the first exponential function in (15) is not a
function of the observable, the carrier phase offset
or overlay/data bits, we can incorporate it into the
threshold so that the likelihood ratio for the optimal
GPS L1C detector is now

Λ(r) =
∑

dP,dD∈{B}

p(dP,dD)

1

2π

∫ 2π

0

[
exp

(√
C

σ2
cos(∆θ) (x)

)

·exp

(√
C

σ2
sin(∆θ) (y)

)]
d∆θ

=
∑

dP,dD∈{B}

p(dP,dD)

I0

(√
C

σ2

√
x2 + y2

)
, (17)

where I0 is the modified Bessel function of zeroth order
and x, y are defined in equation (16). This is similar
to the optimal detector for acquisition of the GPS L5

signal derived in [5]. The optimal GPS L1C detector
presented here however, includes scale factors based
on the power split between the data and pilot com-
ponents as well as different ordering of terms due to
the components being in phase as opposed to in phase
quadrature.

SINGLE CHANNEL ACQUISITION

Either the pilot or data component can be used for
acquisition for two-component GNSS signals. Since
the phase of the carrier is unknown, the conventional
noncoherent detection algorithm squares the output
of the correlators and adds them together to get the
decision variable, which in the case of acquisition of
the pilot component is:

Z =
K∑
k=1

(
I2
P,k +Q2

P,k

)
. (18)

Since the correlator outputs are Gaussian random vari-
ables, the decision variable Z is a chi-square random
variable with 2K degrees of freedom. When incorrect
delay and Doppler estimates are used, the correlator
outputs are zero mean so that Z has a central chi-
square distribution. However, when correct delay and
Doppler values are used, Z is a noncentral chi-square
random variable with noncentrality parameter

a2
scp = 3

4KC. (19)

When the value of the decision variable Z is above a
threshold λ, the signal is considered present. In the
acquisition process, there are two hypotheses formally
defined as H1 when the satellite signal is present and
H0 which corresponds to no satellite signal. Perfor-
mance of the acquisition scheme can be determined by
how often a signal is declared present when it actu-
ally is not which is known as the false alarm probabil-
ity (Pfa) and how often the signal is declared present
correctly which is known as the detection probability
(Pd). Since Z is a chi-square random variable, these
two probabilities are well known:

P scpfa (λ) = P (Z > λ | H0)

= 1− P (Z < λ | H0)

= exp

(
−λ
2σ2

)K−1∑
k=0

1

k!

(
λ

2σ2

)k
(20)

and

P scpd (λ) = P (Z > λ | H1)

= 1− P (Z < λ | H1) = QK

(
ascp
σ
,

√
λ

σ

)

= QK


√

3
4KC

σ
,

√
λ

σ

 , (21)
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where QK is the generalized (K th-order) Marcum’s Q
function [18].

NONCOHERENT CHANNEL COMBINING

In order to avoid wasting signal power during acquisi-
tion, the incoming signal can be correlated separately
with a local replica of the pilot and the data spreading
codes. Noncoherent channel combining is when these
correlator outputs are squared and then summed to
obtain the decision variable:

Z =
K∑
k=1

(
I2
P,k +Q2

P,k + I2
D,k +Q2

D,k

)
. (22)

Similar to the single channel acquisition, Z, is a chi-
square random variable but with 4K degrees of free-
dom now. When the signal is not present or incorrect
delay and Doppler estimates are used, Z has a central
chi-square distribution. When the delay and Doppler
estimates are correct, Z is a non-central chi-square
random variable with noncentrality parameter

a2
nc = 3

4KC + 1
4KC = KC. (23)

This leads to the following false alarm and detection
probabilities:

Pncfa (λ) = P (Z > λ | H0)

= exp

(
−λ
2σ2

) 2K−1∑
k=0

1

k!

(
λ

2σ2

)k
(24)

and

Pncd (λ) = P (Z > λ | H1) = Q2K

(
anc
σ
,

√
λ

σ

)

= Q2K

(√
KC

σ
,

√
λ

σ

)
. (25)

where Q2K is the generalized (2K th-order) Marcum’s
Q function [18].

Fig. 1 shows the performance of this noncoherent com-
bining detector compared to the single channel and
optimal detectors. Semi-coherent integration will at-
tempt to achieve better performance than the non-
coherent combining detector to approach that of the
optimal detector.

SEMI-COHERENT INTEGRATION

Semi-coherent integration refers to the noncoherent
combination of the 10 ms coherent combinations of the
data and pilot components. The pilot and data compo-
nents can be combined coherently over one spreading
code period by using a local composite spreading code
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Figure 1: Simulation results that show the detection
probability of the Optimal GPS L1C detector, non-
coherent combining detector, and single channel pilot
detector over two (K=2) primary spreading code pe-
riods at a fixed false alarm rate of 0.001.

that has the correct relative sign between the data and
pilot components:

cP (t)gP (t) + cD(t)gD(t) if dP dD = 1 (26a)

or

cP (t)gP (t)− cD(t)gD(t) if dP dD = −1. (26b)

Since this relative sign is unknown to the receiver,
both these codes are used in coherent channel combin-
ing with sign recovery and the correct estimate of the
relative sign given by the correlation with the high-
est power. Subsequent noncoherent combining leads
to

Z =
K∑
k=1

max
{
|z+
k |

2, |z−k |
2
}
, (27)

where

z+
k = IP,k + jQP,k + ID,k + jQD,k (28a)

z−k = IP,k + jQP,k − ID,k − jQD,k, (28b)

and

|z+
k |

2 = (IP,k + ID,k)
2

+ (QP,k +QD,k)
2

(29a)

|z−k |
2 = (IP,k − ID,k)

2
+ (QP,k −QD,k)

2
. (29b)

For the K = 1 case, false alarm and detection proba-
bilities were found in [9] to be:

P chfa(λ) = 1− P
(
|z+|2 < λ | H0

)
P
(
|z−|2 < λ | H0

)
= 1−

[
1− exp

(
−λ
4σ2

)]2

(30)
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and

P chd (λ) = 1− P
(
|z+|2 < λ | H1

)
P
(
|z−|2 < λ | H1

)
= 1−

1−Q1


√(

1 +
√

3/2
)
C

√
2σ

,

√
λ√
2σ


·

1−Q1


√(

1−
√

3/2
)
C

√
2σ

,

√
λ√
2σ

. (31)

Since the false alarm and detection probabilities easily
lead to the cumulative distribution function (CDF),
taking the derivative of the CDF gives the probability
density function of the decision statistic for K = 1,
under the noise only and signal present cases:

fK=1
Z (z;H0) =

1

2σ2
exp

(
−z
4σ2

)
− 1

2σ2
exp

(
−z
2σ2

)
, (32)

fK=1
Z (z;H1)

=
1

4σ2
exp

(
−(1−

√
3/2)C−z

4σ2

)
I0


√

(1−
√

3/2)Cz

2σ2


·

1−Q1


√

(1+
√

3/2)C
√

2σ
,

√
z√

2σ


+

1

4σ2
exp

(
−(1+

√
3/2)C−z

4σ2

)
I0


√

(1+
√

3/2)Cz

2σ2


·

1−Q1


√

(1−
√

3/2)C
√

2σ
,

√
z√

2σ

 . (33)

The characteristic function was found in [10] for the
decision variable under H1 for a slightly less com-
plex probability distribution function due to the equal
power split assumption. The characteristic function
can then be raised to the power K to find the charac-
teristic function for the decision statistic for a generic
value of K. In this case, with the unequal power split
between the pilot and data components, the proba-
bility distribution function contains products of the
modified Bessel function and the generalized Marcum’s
Q function. Numerical techniques be used to find
the detection and false alarm probabilities for a given
K > 1.

Fig. 2 shows that this semi-coherent detector does not
lead to a detection performance improvement when
compared to noncoherent combining. This leads us
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Figure 2: Simulation results that show the detection
probability of the semi-coherent and noncoherent com-
bining detectors over two (K=2) primary spreading
code periods at a fixed false alarm rate of 0.001.

to consider semi-coherent integration in which the un-
equal power split between the data and pilot compo-
nents is considered.

SEMI-COHERENT INTEGRATION WITH
UNEQUAL POWER COMPENSATION

The semi-coherent channel combining technique pro-
posed for two component GNSS signals with equal
power can be altered to compensate for two-
component GNSS signals with unequal power split.
The decision variable now incorporates a weighting of
each correlator output:

Z =
K∑
k=1

max
{
|z+
k |

2, |z−k |
2
}
, (34)

where

z+
k =

√
αIP,k + j

√
αQP,k +

√
βID,k + j

√
βQD,k (35a)

z−k =
√
αIP,k + j

√
αQP,k −

√
βID,k − j

√
βQD,k,(35b)

and

|z+
k |

2 =
(√

αIP,k+
√
βID,k

)2

+
(√

αQP,k+
√
βQD,k

)2

(36a)

|z−k |
2 =

(√
αIP,k−

√
βID,k

)2

+
(√

αQP,k−
√
βQD,k

)2

,(36b)

with

α =
3

4
and β =

1

4
.
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For the K = 1 case, false alarm and detection proba-
bilities were found in [9] to be:

P chwfa (λ) = 1− P
(
|z+|2 < λ | H0

)
P
(
|z−|2 < λ | H0

)
= 1−

[
1− exp

(
−λ
2σ2

)]2

(37)

and

P chwd (λ) = 1− P
(
|z+|2 < λ | H1

)
P
(
|z−|2 < λ | H1

)
= 1−

[
1−Q1

(√
C

σ
,

√
λ

σ

)]

·

1−Q1


√

1
4C

σ
,

√
λ

σ

. (38)

The probability density functions of the decision statis-
tic for K = 1 under both the noise only and signal
present cases are

fK=1
Z (z;H0) =

1

σ2
exp

(
−z
σ2

)
− 1

σ2
exp

(
−z
σ2

)
, (39)

fK=1
Z (z;H1)

=
1

4σ2
exp

(
−(1−

√
3/2)C−z

4σ2

)
I0


√

(1−
√

3/2)Cz

2σ2


·

1−Q1


√

(1+
√

3/2)C
√

2σ
,

√
z√

2σ


+

1

4σ2
exp

(
−(1+

√
3/2)C−z

4σ2

)
I0


√

(1+
√

3/2)Cz

2σ2


·

1−Q1


√

(1−
√

3/2)C
√

2σ
,

√
z√

2σ

 . (40)

Numerical techniques can be used to find the detection
and false alarm probabilities for a particular K > 1
from (39) and (40).

The improvement in detection performance of semi-
coherent integration when compensated for the un-
equal power split between the data and pilot compo-
nents is shown in Fig. 3.
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Figure 3: Simulation results that show the detection
probability of semi-coherent integration with and with-
out compensating for the data/pilot power split over
two (K=2) primary spreading code periods.

PEFORMANCE AND COMPARISON

In this section, results from various simulations are
presented. Specifically, we focus on the detection prob-
abilities of the various acquisition schemes discussed
at a fixed false alarm rate of 0.001. As shown in
Fig. 4 and also discussed in [9] , performance of semi-
coherent integration with unequal power compensa-
tion approaches that of the optimal detector over one
spreading code period, K = 1 (no noncoherent combi-
nations are used).
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Figure 4: Simulation results that show the detection
probability of various GPS L1C acquisition schemes
over one (K=1) primary spreading code period.
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Once multiple spreading code periods are used (K >
1), the performance of semi-coherent integration with
unequal power compensation no longer achieves the
optimal detector’s performance but its still greater
than that of the noncoherent combining detector as
shown in Fig. 5 and Fig. 6.
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Figure 5: Simulation results that show the detection
probability of various GPS L1C acquisition schemes
over two (K=2) primary spreading code periods.
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Figure 6: Simulation results that show the detection
probability of various GPS L1C acquisition schemes
over five (K=5) primary spreading code periods.

To determine if semi-coherent integration with unequal
power compensation would still provide the slight per-

formance improvement over noncoherent combining
with extended total integration times, Figs. 7 and 8
show the detection probabilities for K=10 and K=20
respectively.
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Figure 7: Simulation results that show the detection
probability of semi-coherent integration with unequal
power compensation and noncoherent combining over
10 primary spreading code periods (K=10).
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Figure 8: Simulation results that show the detection
probability of semi-coherent integration with unequal
power compensation and noncoherent combining over
20 primary spreading code periods (K=20).

Semi-coherent integration with unequal power com-
pensation retains its performance advantage over non-
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coherent combining until using twenty spreading code
periods or a Carrier-to-Noise ratio of 23 dB-Hz.

CONCLUSIONS

The GPS L1C signal like most modern GNSS signals
has both a pilot and data component but with the
unique aspect of an unequal power split between the
two components. The optimal detector for GPS L1C
acquisition over multiple spreading code periods with-
out knowledge of of the navigation data and overlay
code phase was derived. In addition, noncoherently
adding the coherent combinations of the pilot and data
components, or semi-coherent integration, was inves-
tigated. Semi-coherent integration was shown to pro-
vide a detection performance improvement (about 0.4
dB) over noncoherent combining when compensated
for the unequal power split between the data and pi-
lot components. Simulations show the performance of
semi-coherent integration compared to the optimal de-
tector, noncoherent combining, and pilot channel only
acquisition.
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