University of Rhode Island

DigitalCommons@URI

PHY 204: Elementary Physics II - Slides

PHY 204: Elementary Physics II (2021)

2020

02. Motion of charged particles in electric field. Electric dipole

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Robert Coyne University of Rhode Island, robcoyne@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/phy204-slides

Recommended Citation

Müller, Gerhard and Coyne, Robert, "02. Motion of charged particles in electric field. Electric dipole" (2020). *PHY 204: Elementary Physics II -- Slides*. Paper 27. https://digitalcommons.uri.edu/phy204-slides/27

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Slides by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Particle in Uniform Electric or Gravitational Field

particle	charge	mass
electron	$q_e = -e$	$m_e = 9.109 \times 10^{-31} \text{kg}$
proton	$q_p = +e$	$m_e = 9.109 \times 10^{-31} \text{kg}$ $m_p = 1.673 \times 10^{-27} \text{kg}$
neutron	$q_n = 0$	$m_n = 1.675 \times 10^{-27} \text{kg}$

Elementary charge: $e = 1.602 \times 10^{-19}$ C.

Electric field

• equation of motion: $\vec{F}=m\vec{a}$

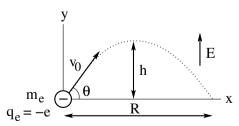
• force law: $\vec{F} = q\vec{E}$

• acceleration: $\vec{a} = (q/m)\vec{E}$

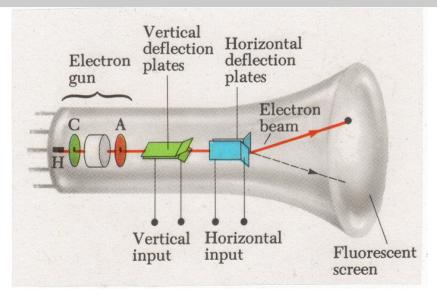
Gravitational field

• equation of motion: $\vec{F} = m\vec{a}$

• force law: $\vec{F} = m\vec{g}$

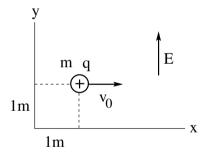

• acceleration: $\vec{a} = \vec{g}$

Projectile Motion in Electric Field


- electrostatic force: $F_x = 0$ $F_y = -eE$
- equation of motion: $\vec{F}=m_e \vec{a}$
- acceleration: $a_x = 0$ $a_y = -\frac{e}{m_e}E \equiv -a$
- velocity: $v_x(t) = v_0 \cos \theta$ $v_y(t) = v_0 \sin \theta at$
- position: $x(t) = v_0[\cos\theta]t$ $y(t) = v_0[\sin\theta]t \frac{1}{2}at^2$

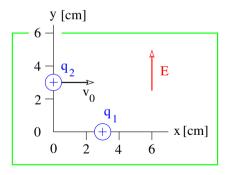
- height: $h = \frac{v_0^2}{2a} \sin^2 \theta$
- range: $R = \frac{v_0^2}{a}\sin(2\theta)$

Cathode Ray Tube



Particle Projected Perpendicular to Uniform Electric Field

A charged particle ($m=3 {
m kg},~q=1 \mu C$) is launched at $t_0=0$ with initial speed $v_0=2 {
m m/s}$ in an electric field of magnitude $E=6 \times 10^6 {
m N/C}$ as shown.


- (a) Find the position of the particle at $t_1 = 3s$.
- (b) By what angle does the velocity vector turn between $t_0 = 0$ and $t_1 = 3$ s?

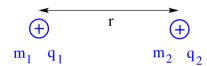
Particles Accelerated by Uniform Electric Field

A uniform electric field $E = 0.75 \times 10^3 \text{ N/C}$ exists in the box.

- (a) A charged particle of mass $m_1=1.9\times 10^{-9}{\rm kg}$ is released from rest at $x=3{\rm cm}$, y=0. It exits the box at $x=3{\rm cm}$, $y=6{\rm cm}$ after a time $t_1=5.7\times 10^{-5}{\rm s}$. Find the charge q_1 .
- (b) A second charged particle of mass $m_2 = 2.7 \times 10^{-14} \text{kg}$ is projected from position x = 0, y = 3 cm with initial speed $v_0 = 3.2 \times 10^4 \text{m/s}$. It exits the box at x = 3.9 cm, y = 6 cm. Find the charge q_2 .

Action and Reaction due to Coulomb Interaction

Two particles with masses m_1, m_2 and charges q_1, q_2 are released from rest a distance r apart.

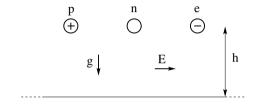

We consider the following four distinct configurations:

(a)
$$m_1 = 1$$
kg, $m_2 = 1$ kg, $q_1 = 1$ C, $q_2 = 1$ C

(b)
$$m_1 = 1$$
kg, $m_2 = 1$ kg, $q_1 = 1$ C, $q_2 = 2$ C

(c)
$$m_1 = 1$$
kg, $m_2 = 2$ kg, $q_1 = 1$ C, $q_2 = 1$ C

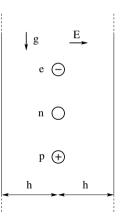
(d)
$$m_1=1\mathrm{kg}$$
, $m_2=2\mathrm{kg}$, $q_1=1\mathrm{C}$, $q_2=2\mathrm{C}$


Anwer the following questions for each configuration:

- (1) Is the force experienced by particle 1 smaller than or equal to or larger than the force experienced by particle 2?
- (2) Is the acceleration of particle 1 smaller than or equal to or larger than the acceleration of particle 2?

Particle in Uniform Electric and Gravitational Field (1)

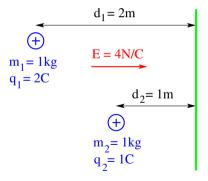
A proton, a neutron, and an electron are dropped from rest in a vertical gravitational field \vec{g} and in a horizontal electric field \vec{E} as shown. Both fields are uniform.


- (a) Which particle travels the shortest distance?
- (b) Which particle travels the longest distance?
- (c) Which particle travels the shortest time?
- (d) Which particle reaches the highest speed?

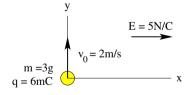
Particle in Uniform Electric and Gravitational Field (2)

A proton, a neutron, and an electron are dropped from rest in a vertical gravitational field \vec{g} and in a horizontal electric field \vec{E} as shown.

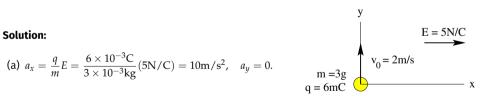
- (a) Which particle travels the shortest distance?
- (b) Which particle travels in a straight line?
- (c) Which particle travels the shortest time?
- (d) Which particle reaches the highest speed?



Is the Faster also the Quicker?

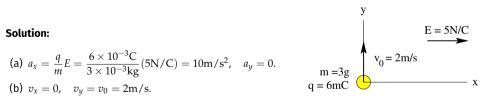

Charged particles 1 and 2 are released from rest in a uniform electric field.

- (a) Which particle moves faster when it hits the wall?
- (b) Which particle reaches the wall more quickly?


- (a) Find the components a_x and a_y of the acceleration at time t=0.
- (b) Find the components v_x and v_y of the velocity at time t=0.
- (c) Find the components v_x and v_y of the velocity at time t=1.2s.
- (d) Find the components x and y of the position at time t=1.2s.

- (a) Find the components a_x and a_y of the acceleration at time t=0.
- (b) Find the components v_x and v_y of the velocity at time t=0.
- (c) Find the components v_x and v_y of the velocity at time t=1.2s.
- (d) Find the components x and y of the position at time t=1.2s.

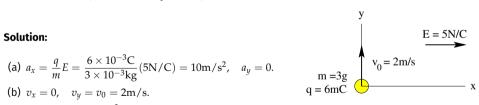
(a)
$$a_x = \frac{q}{m}E = \frac{6 \times 10^{-3} \text{C}}{3 \times 10^{-3} \text{kg}} (5\text{N/C}) = 10\text{m/s}^2, \quad a_y = 0.$$



- (a) Find the components a_x and a_y of the acceleration at time t=0.
- (b) Find the components v_x and v_y of the velocity at time t=0.
- (c) Find the components v_x and v_y of the velocity at time t=1.2s.
- (d) Find the components x and y of the position at time t=1.2s.

(a)
$$a_x = \frac{q}{m}E = \frac{6 \times 10^{-3} \text{C}}{3 \times 10^{-3} \text{kg}} (5\text{N/C}) = 10\text{m/s}^2, \quad a_y = 0.$$

(b)
$$v_x = 0$$
, $v_y = v_0 = 2$ m/s.



- (a) Find the components a_x and a_y of the acceleration at time t=0.
- (b) Find the components v_x and v_y of the velocity at time t=0.
- (c) Find the components v_x and v_y of the velocity at time t=1.2s.
- (d) Find the components x and y of the position at time t=1.2s.

(a)
$$a_x = \frac{q}{m}E = \frac{6 \times 10^{-3} \text{C}}{3 \times 10^{-3} \text{kg}} (5\text{N/C}) = 10\text{m/s}^2, \quad a_y = 0.$$

(b)
$$v_x = 0$$
, $v_y = v_0 = 2$ m/s.

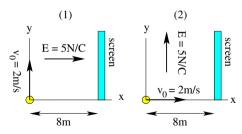
(c)
$$v_x = a_x t = (10 \text{m/s}^2)(1.2 \text{s}) = 12 \text{m/s}, \quad v_y = v_0 = 2 \text{m/s}.$$

- (a) Find the components a_x and a_y of the acceleration at time t=0.
- (b) Find the components v_x and v_y of the velocity at time t=0.
- (c) Find the components v_x and v_y of the velocity at time t=1.2s.
- (d) Find the components x and y of the position at time t=1.2s.

(a)
$$a_x = \frac{q}{m}E = \frac{6 \times 10^{-3} \text{C}}{3 \times 10^{-3} \text{kg}} (5\text{N/C}) = 10\text{m/s}^2, \quad a_y = 0.$$

(b)
$$v_x = 0$$
, $v_y = v_0 = 2$ m/s.

(c)
$$v_x = a_x t = (10 \text{m/s}^2)(1.2 \text{s}) = 12 \text{m/s}, \quad v_y = v_0 = 2 \text{m/s}.$$


(d)
$$x = \frac{1}{2}a_xt^2 = 0.5(10\text{m/s}^2)(1.2\text{s})^2 = 7.2\text{m}, \quad y = v_yt = (2\text{m/s})(1.2\text{s}) = 2.4\text{m}.$$

Solution:
$$(a) \ a_x = \frac{q}{m}E = \frac{6 \times 10^{-3} \text{C}}{3 \times 10^{-3} \text{kg}} (5\text{N/C}) = 10\text{m/s}^2, \quad a_y = 0.$$

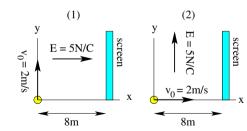
$$(b) \ v_x = 0, \quad v_y = v_0 = 2\text{m/s}.$$

$$q = 6\text{mC}$$

$$x$$

Consider two regions of uniform electric field as shown. Charged particles of mass m=2kg and charge q=1C are projected at time t=0 with initial velocities as shown. Both particles will hit the screen eventually. Ignore gravity.

- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?

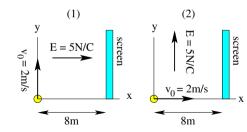


Consider two regions of uniform electric field as shown. Charged particles of mass m=2kg and charge q=1C are projected at time t=0 with initial velocities as shown. Both particles will hit the screen eventually. Ignore gravity.

- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?

Solution:

(a)
$$x_1 = \frac{1}{2}at_1^2$$
 with $a = \frac{q}{m}E = 2.5 \text{m/s}^2$, $x_1 = 8 \text{m}$ $\Rightarrow t_1 = 2.53 \text{s}$.


Consider two regions of uniform electric field as shown. Charged particles of mass m=2kg and charge q=1C are projected at time t=0 with initial velocities as shown. Both particles will hit the screen eventually. Ignore gravity.

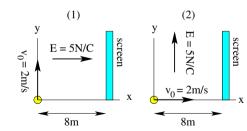
- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?

Solution:

(a)
$$x_1 = \frac{1}{2}at_1^2$$
 with $a = \frac{q}{m}E = 2.5 \text{m/s}^2$, $x_1 = 8 \text{m}$ $\Rightarrow t_1 = 2.53 \text{s}$.

(b) $y_1 = v_0 t_1 = 5.06$ m.

Consider two regions of uniform electric field as shown. Charged particles of mass m=2kg and charge q=1C are projected at time t=0 with initial velocities as shown. Both particles will hit the screen eventually. Ignore gravity.


- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?

Solution:

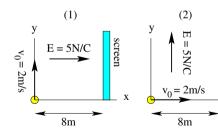
(a)
$$x_1 = \frac{1}{2}at_1^2$$
 with $a = \frac{q}{m}E = 2.5 \text{m/s}^2$, $x_1 = 8 \text{m}$ $\Rightarrow t_1 = 2.53 \text{s}$.

(b)
$$y_1 = v_0 t_1 = 5.06$$
m.

(c)
$$x_2 = v_0 t_2 \implies t_2 = \frac{8m}{2m/s} = 4s.$$

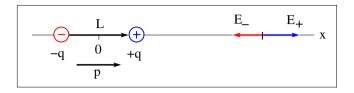
Consider two regions of uniform electric field as shown. Charged particles of mass m=2kg and charge q=1C are projected at time t=0 with initial velocities as shown. Both particles will hit the screen eventually. Ignore gravity.

- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?


Solution:

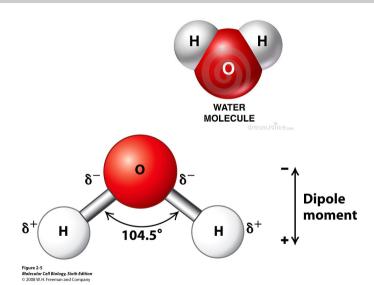
(a)
$$x_1 = \frac{1}{2}at_1^2$$
 with $a = \frac{q}{m}E = 2.5 \text{m/s}^2$, $x_1 = 8 \text{m}$ $\Rightarrow t_1 = 2.53 \text{s}$.

(b)
$$y_1 = v_0 t_1 = 5.06$$
m.


(c)
$$x_2 = v_0 t_2 \implies t_2 = \frac{8m}{2m/s} = 4s$$
.

(d)
$$y_2 = \frac{1}{2}at_2^2 = 20$$
m.

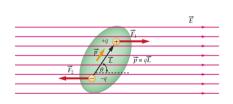
Electric Dipole Field

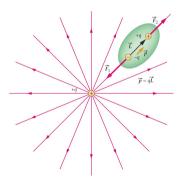


$$E = \frac{kq}{(x - L/2)^2} - \frac{kq}{(x + L/2)^2} = kq \left[\frac{(x + L/2)^2 - (x - L/2)^2}{(x - L/2)^2 (x + L/2)^2} \right] = \frac{2kqLx}{(x^2 - L^2/4)^2}$$
$$\approx \frac{2kqL}{x^3} = \frac{2kp}{x^3} \quad \text{(for } x \gg L\text{)}$$

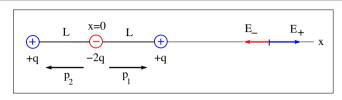
Electric dipole moment: $\vec{p} = q\vec{L}$

- Note the more rapid decay of the electric field with distance from an electric dipole ($\sim r^{-3}$) than from an electric point charge ($\sim r^{-2}$).
- · The dipolar field is not radial.

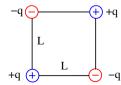




Force and Torque on Electric Dipole


- The net force on an electric dipole in a uniform electric field vanishes.
- However, this dipole experiences a torque $\vec{\tau} = \vec{p} \times \vec{L}$ that tends to align the vector \vec{p} with the vector \vec{E} .
- Now consider an electric dipole that is already aligned (locally) with a *nonuniform* electric field. This dipole experiences a net force that is always in the direction where the field has the steepest increase.

Electric Quadrupole Field


$$E = \frac{kq}{(x-L)^2} + \frac{kq}{(x+L)^2} + \frac{k(-2q)}{x^2} = \frac{kq}{x^2} \left[\left(1 - \frac{L}{x} \right)^{-2} + \left(1 + \frac{L}{x} \right)^{-2} - 2 \right]$$

$$= \frac{kq}{x^2} \left[\left(1 + \frac{2L}{x} + \frac{3L^2}{x^2} + \dots \right) + \left(1 - \frac{2L}{x} + \frac{3L^2}{x^2} - \dots \right) - 2 \right]$$

$$\approx \frac{6kqL^2}{x^4} = \frac{3kQ}{x^4} \quad \text{(for } x \gg L)$$

Electric quadrupole moment: $Q = 2qL^2$

Different quadrupole configuration:

