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ABSTRACT 

Poor aqueous solubility of drug candidates is a major challenge for the pharmaceutical 

scientists involved in drug development. Particle size reduction to nano scale appears 

as an effective and versatile option for solubility improvement. Unlike the traditional 

methods used for the particle size reduction, supercritical fluid (SCF) processing 

techniques offer advantages ranging from superior particle size control to clean 

processing.  Amongst all of the SCF based techniques, supercritical antisolvent (SAS) 

processing is of particular interest because most pharmaceuticals, including the model 

drug for this study-griseofulvin, are insoluble in supercritical carbon dioxide (scCO2), 

and SAS is one of the technique that can effectively process such compounds. 

Additionally, SAS is the only technique amongst SCF based technologies that has 

been successfully applied at an industrial scale. 

There are number of factors in effect during SAS processing. These factors can be 

grouped into two main categories; formulation related, and process related. In order to 

design a robust SAS process, it is extremely important to understand the impact of all 

of these variables on the desirable SAS product attributes, such as particle 

morphology, particle size, particle size distribution, and % yield of the process. 

Although several researchers have studied these variables, there is widespread 

disagreement amongst them. Hence, the goal of the studies shown in this dissertation 

is to address these gaps in the literature by carrying out a screening design of 

experiment (DOE), where 7 factors were studied, at 2 levels each, for their impact on 

particle size, particle size distribution, and process yield.  A 2(7-3) fractional factorial 



 

 

design of 16 experiments, plus 3 center point runs, for a total of 19 experiments, was 

performed. The factors that impacted the particle size the most were the nozzle 

diameter, temperature, and spray rate of liquid, in the order of decreasing importance. 

In case of particle size distribution, nozzle diameter, spray rate of liquid, drug 

concentration, pressure, and polymer concentration played significant roles. The yield 

was affected by polymer concentration, pressure, and the drug concentration. 

Additionally, we were able to find optimum processing and formulation variables, 

which would consistently deliver product of high yield (~90%), small particle size (d50 

of ~ 0.4 µm), and narrow particle size distribution.   

Further, we prepared and compared the physical and physicochemical characteristics 

of griseofulvin-polymer composite particles produced via three different methods: (1) 

supercritical antisolvent (SAS) process, (2) spray-drying process, and (3) the 

conventional solvent evaporation process.  The polymers used were Kollidon® VA64, 

HPMCAS-LF, and Eudragit® EPO.  Particle properties were analyzed using scanning 

electron microscopy, powder X-ray powder  (PXRD), differential scanning 

calorimetry (DSC), and Fourier transform infra red (FTIR). Particle size and particle 

size distribution measurements were made using Malvern laser diffractometer. The 

dissolution behavior of pure API and solid dispersions were compared.  Amorphous 

solid dispersions of spherical shapes were obtained, independent of the type of 

polymer used, when spray drying process was used.  FTIR spectra indicated the 

formation of hydrogen bonding between the drug and polymers, during spray drying 

process. Whereas, the drug remained in its crystalline form when the processing 

method was SAS or conventional solvent evaporation, and there was no hydrogen 



 

 

bonding for these formulations. The griseofulvin  particles used as unprocessed 

starting material had a mean diameter of approximately 12 µm with a size distribution 

range between 5-20 µm. With the spray drying or SAS process, and using any of the 

three hydrophilic polymers, in-situ nanoparticles with the mean particle size of 0.3 to 

0.5 µm were obtained. These nanoparticles were associated with improved dissolution 

performance compared with unprocessed crystalline griseofulvin.  

In conclusion the physicochemical properties and dissolution of crystalline 

griseofulvin could be improved by physical modification such as particle size 

reduction using SAS process, and generation of amorphous state using spray-drying 

process.  
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PREFACE 

This dissertation has been written in the manuscript format. It includes three 

manuscripts. Manuscript 1 has been published in the journal of Current Drug 

Delivery. Manuscript 2 and 3 are written in the format required by the Journal of 

Pharmaceutical Sciences.    

Manuscript 1: Nanoparticles in the pharmaceutical industry and the use of 

supercritical fluid technologies for nanoparticle production 

Manuscript 2: Engineering of nano- and micro-particles of griseofulvin  by 

supercritical antisolvent precipitation (SAS) process  

Manuscript 3: Comparing physico-chemical properties of griseofulvin coprecipitates 

prepared by supercritical antisolvent method, conventional solvent evaporation 

method, and spray drying method.  
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Abstract 

Poor aqueous solubility of drug candidates is a major challenge for the 

pharmaceutical scientists involved in drug development. Particle size reduction 

appears as an effective and versatile option for solubility improvement. Nanonization 

is an attractive solution to improve the bioavailability of the poorly soluble drugs, 

improved therapies, in vivo imaging, in vitro diagnostics and for the production of 

biomaterials and active implants.  

In drug delivery, application of nanotechnology is commonly referred to as Nano 

Drug Delivery Systems (NDDS). In this article, commercially available nanosized 

drugs, their dosage forms and proprietors, as well as the methods used for preparation 

like milling, high pressure homogenization, vacuum deposition, and high temperature 

evaporation were listed. Unlike the traditional methods used for the particle size 

reduction, supercritical fluid-processing techniques offer advantages ranging from 

superior particle size control to clean processing.   

The primary focus of this review article is the use of supercritical CO2 based 

technologies for small particle generation.  Particles that have the smooth surfaces, 

small particle size and distribution  and  free flowing can be obtained more, via few 

SCF techniques.  In almost all techniques, the process variables involved may be of 

thermodynamic and aerodynamic nature and the result of  the design of the particle 

collection environment.   

Rapid Expansion of Supercritical Solutions (RESS), Supercritical Anti Solvent (SAS) 

and Particles from Gas Saturated Solutions (PGSS) are three groups of processes 
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which lead to the production of fine and monodisperse powders. Few of them may 

also control crystal polymorphism.   Among the aforementioned processes, RESS 

involves dissolving a drug in a supercritical fluid (SCF) and passing it through an 

appropriate nozzle. Rapid depressurization of this solution causes an extremely rapid 

nucleation of the product. This process has been known for a long time but its 

application is limited. Carbon dioxide, which is the only supercritical fluid that is 

preferentially used in pharmaceutical processes, is not a good solvent for many 

Active Pharmaceutical Ingredients (API). Various researchers have modified the 

RESS process to overcome its solubilizing limitations, by introducing  RESOLV, 

RESAS, and RESS-SC.  Overall, all RESS based processes are difficult to scale up.   

 The SAS processes are based on decreasing the solvent power of a polar organic 

solvent in which the substrate (API & polymer of interest) is dissolved, by saturating 

it with carbon dioxide (CO2) at supercritical conditions. CO2 causes precipitation and 

recrystalization of the drug. SAS is scalable and can be applied to a wide variety of 

APIs and polymers. Minor modifications of basic SAS process include GAS, ASES, 

SAS-DEM and SAS-EM. Processes where SCF is used as an anti solvent and 

dispersing agent include SEDS, SAA, and A-SAIS. The mechanisms and applications 

of these processes were briefly discussed.   In PGSS, CO2 is dissolved in organic 

solutions or melted compounds and it is successfully used for manufacturing drug 

products as well as for drying purposes. The two widely used methods, PGSS-drying 

and CAN-BD SCF, were also included in discussions.  
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Among the limitations of the techniques involved, the poor solvent power of CO2, the 

cost and necessity of voluminous usage of the CO2 can be mentioned. There is still 

confusion in contribution of each variable on the particle morphology and properties, 

regardless of the number of mechanistic studies available.  The advantages of 

especially SAS and PGSS based techniques are production of the nano or microsized 

spherical particles with smooth surfaces and narrow particle size distribution. 

However, the reasons of why 25 years of active research, and more than 10 years of 

process development, could  not promote the use this technology and produced only  

few commercial drug products were clarified. 

Key Words  
Nanoparticles, Supercritical fluid, RESS, SAS, SEDS, PGSS 

 

Abbreviations 

BCS: Bio-pharmaceutics Classification System; SCF: Supercritical fluid; scCO2: 

Supercritical carbon dioxide; SEM: Scanning Electron Microscope; RESS : Rapid 

Expansion from Supercritical Solvent; RESOLV : Rapid Expansion of a Supercritical 

Solution into a Liquid Solvent; RESAS: Rapid Expansion from Supercritical to 

Aqueous Solutions; RESS-SC: Rapid Expansion from Supercritical Solvent ; GAS: 

Gas Antisolvent Process; SAS: Supercritical Antisolvent Process;  ASES: Aerosol 

Solvent Extraction System; SAS-DEM: Supercritical Antisolvent Drug Excipient 

Mixing; SAS-EM:  Supercritical Antisolvent  Enhanced Mass transfer;  SAA: 

Supercritical-Assisted Atomization; A-SAIS: Atomization of Supercritical 

Antisolvent Induced Suspensions; SEDS : Solution Enhanced Dispersion by 
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Supercritical fluids;  PGSS: Particles from Gas Saturated Solutions; CAN-BD: 

Carbon dioxide Assisted Nebulization with a Bubble Dryer 
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1.0 INTRODUCTION  

Although there are hundreds, thousands of new drug molecules being discovered and 

formulated day by day, very few of them reach commercialization. One of the most 

important reasons for the failure is the poor aqueous solubility of the drug substances. 

By various estimates up to 40 per cent of new chemical entities (NCEs) discovered by 

the pharmaceutical industry are poorly soluble or highly lipophilic compounds.  

Although many drugs do have adequate pharmacodynamic or target activity, due to 

poor solubility, these drugs are not absorbed by the body causing poor bioavailability. 

Today, nanonization may help drug substances to be actively targeted to the site of 

action, or directly taken by the cells and for delivery of the genes. However, their 

application for solubility enhancement is the most frequently applied reason. 

Reduction of the particle size of the poorly soluble drugs to nano scale increases their 

dissolution rate, saturation solubility, and in turn, the oral bioavailability; therefore, 

nanonization is becoming a very popular process enabling the use of such drugs [1-4].  

The effect of nanonization on solubility improvement of a drug substance can be 

explained by modified Noyes Whitney equation [5] which demonstrates the 

relationship among  the rate of dissolution and solubility as well as the surface area 

and particle size of a given drug substance.  On the other hand,  Kelvin equation [6, 7] 

helps us to understand the physics behind the particle size effect on saturation 

solubility when the particle size is reduced to nano scale. The Kelvin equation may be 

written as; 
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                 Eq.  (1)  

where p is the actual vapor pressure, p0 is the saturated vapor pressure, γ is the surface 

tension, Vm is the molar volume, R is the universal gas constant, r is the radius of the 

droplet, and T is temperature.  

 

Kelvin equation mathematically describes that, the vapor pressure of lipid droplets in 

a gas phase (aerosol) increases with an increase in the curvature of the surface of the 

dispersed phase which is realized by the particle size reduction of such a system. The 

vapor pressure is equivalent to the dissolution pressure. In the state of saturation 

solubility, there is equilibrium between the molecules dissolving and molecules 

recrystallizing. This equilibrium can be shifted when the particle size is reduced, 

which causes an increase in the dissolution pressure by increasing the saturation 

solubility. 

2.0 USE OF NANOTECHNOLOGY BY THE PHARMACEUTICAL 

 INDUSTRY 

Since 1990s, nanotechnology continues to gain popularity not only in the health care 

industry but in many other industries such as information and communication, energy 

production, food and agriculture, aerospace, construction etc. The term 

nanotechnology is used for any system of producing structures or devices in the 

nanometer range (1 nm=one thousand millionth of a meter, 10−9 m). Generally, size 

range of the nanoparticles fall between 1-100 nanometers. In some drug delivery 

systems, this range may exceed the nanosizes, while it is still being considered as 
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nanoparticles. Application of nanotechnology in health care arena is by far the most 

promising and beneficial for drug delivery, improved therapies, in vivo imaging, in 

vitro diagnostics and for  production of biomaterials and active implants. In drug 

delivery application of nanotechnology is commonly referred to as Nano Drug 

Delivery Systems (NDDS).  

 

Examples of commercially available NDDS are given in Table 1 which includes 

liposomes, nanosuspensions, nanoemulsions, polymer drug or polymer protein 

conjugates, dendrimers, fullerenes, carbon nanotubes, and inorganic nanoparticles.  

Liposomes are spherical lipid bilayers from 50 nm to 1000 nm in diameter that serve 

as convenient delivery vehicles for biological compounds. Dendrimers are spheroid 

or globular nanostructures that are precisely engineered to carry molecules 

encapsulated in their interior void spaces or attached to the surface. Fullerenes is  

form of carbon nanomaterials that can be functionalized and derivatized with a wide 

array of molecules that allow them to be used in medical and healthcare applications. 

The makers and the users of NDDS claim that, nanonization reduces the side effects 

of the drugs; improve efficacy and therapeutic effectiveness in disease stages that 

currently cannot be treated with conventional drugs. Interest of the pharmaceutical 

industry in NDDS is increasing worldwide [8-9]. There are several companies 

ranging from start up to a large corporations currently working in the field of NDDS, 

across the world.  
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Table 1: Commercially available nanotechnology based products. 

 

Product Name 

NDDS, Technology, dosage 

form  & Route of 

administration 

Therapeutic effect
Name of company & 

country 

Abelcet Liposomes for injection Anti-fungal Enzon, USA 

Ambisome, Liposomes for injection Anti-fungal Gilead/ Astellas, USA

Amphotec Liposomes for injection Anti-fungal 
Three Rivers 

Pharmaceuticals, USA

Daunoxome Liposomes for injection 
Anti-cancer 

(Kaposi’s sarcoma)
Gilead, USA 

DepoCyt Liposomes for injection 
lymphomatous 

meningitis 

SkyePharma, Enzon 

UK/USA 

Doxil/Caelyx Liposomes for injection 

Anti-cancer 

(ovarian)  

(Kaposi’s sarcoma,

ALZA, Schering 

Plough USA 

Epaxal  Liposomes for injection 
Vaccine against 

Hepatitis A 

Berna Biotech AG 

Switzerlan 

Estrasorb Liposomes-by topical 
To treat symptoms 

of menopause 
Novavax 

Inflexal  Liposomes for injection 
Vaccine against 

Influenza 

Berna Biotech AG 

Switzerlan 

Myocet Liposomes for injection Anti-cancer Elan, Ireland 
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(Breast) 

Visudyne Liposomes for injection 

Wet macular 

degeneration in 

conjuction with 

laser treatment 

QLT, Novartis 

Canada/Switzerland 

Triglide 

Nanosuspension by IDD 

solubilisation technology-

tablets for oral 

Anti/Hypo 

lipidemic  

Skye Pharma/First 

Horizon Pharma USA

Emend 

Nanosuspension by 

NanoCrystal technology 

-Capsules for oral 

Anti-emetic 

(during cancer 

chemotherapy) 

Elan/Merck & Co., 

Ireland/USA 

Megace ES 

Nanosuspension by 

NanoCrystal technology 

–Suspension for oral 

Anorexia, 

Cachexia 
Elan/Par, USA 

Rapamune 

Nanosuspension by 

NanoCrystal technology 

–suspension/tablet for oral

Immunosuppressan

t 

Elan/Wyeth 

Ireland/USA 

Tricor 

Nanosuspension by 

NanoCrystal technology 

-tablets for oral 

Anti/Hypo 

lipidemic 
Elan/Abbott  USA 

NanoXosan 30 Nanoemulsion –by topical 
Dermatological 

application 
Biofrontera, Germany
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Renagel 
Polymeric Drug 

Conjugates-for injection 
Kidney Failure Genzyme, USA 

Xyotax 
Polymer drug conjugates-

for injection 
Anti-cancer (lung) Cell Therapeutics, Inc 

Adagen 
Polymer Protein 

Conjugates- for injection 

Treatment of 

immunodeficiency 

diseases 

Enzon, USA 

Copaxone 
Polymer Protein 

Conjugates- for injection 

Treatment of 

Multiple Sclerosis
TEVA, Israel 

Macugen 
Polymer Protein 

Conjugates- for injection 

Treatment of Age-

related macular 

degeneration  

Eye Tech 

Pharmaceuticals/Pfizer 

USA 

Neulasta 
Polymer Protein 

Conjugates- for injection 

Febrile 

Neutropenia 
Amgen, USA 

Oncaspar 
Polymer Protein 

Conjugates- for injection 

Treatment of 

Leukemia 

Enzon, Sanofi-Aventis 

USA/France 

PEGASYS 
Polymer Protein 

Conjugates- for injection 

Treatment of 

Hepatitis C 

Roche-Nektar 

Switzerlan/USA 

PEGINTRON 
Polymer Protein 

Conjugates- for injection 

Treatment of 

Hepatitis C 

Enzon, Schering-

Plough USA 

Somavert 
Polymer Protein 

Conjugates- for injection 

Treatment of 

Acromegaly 
Nektar, Pfizer, USA 
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Abraxane  

Protein (Albumin) bound 

nanosuspension for 

injection 

Anti-cancer 

(breast) 
Celgene, USA 

MagNaGel Targeted Nanoparticle 
Diagnosis & 

treatment of cancer

Alnis Bioscience, Inc  

USA 

 

3.0 METHODS USED FOR PARTICLE SIZE REDUCTION TO “NANO” 

 SCALE 

A major challenge in reducing the particle size of solids to nano scales is the accurate 

control of the size and shape, which in turn is directly linked with the nano materials 

processing method. There are two approaches generally used to reduce particles to 

nanosizes: bottom-up and top-down methods. In the bottom-up approach a colloidal 

solution of drug is prepared and the solvent is evaporated obtaining controlled 

rearrangement of single atoms and molecules into larger nanostructures. Supercritical 

fluid based technologies utilize this approach. The top-down approach reduces the 

particle size of drug particles using media milling or high pressure homogenization, 

or similar alternative methods. Table 2 provides an overview of industry leaders in 

each of these technologies.  
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Table 2: Approaches for forming nanoparticle, current industry leaders and their 

patented technologies.  

 
Different approaches for  
nanoparticle preparation 

 
Company name (patented technology) 

TOP 
DOWN 

Media milling 
[3] 

1. Elan Drug Technologies (NanoCrystal) 

High Pressure 
Homogenization 

[2, 10] 

2. Drug Delivery 
Services 

3. Avestin 
(Emulsiflex) 

4. Baxter (Nanoedge) 5. Solvay/Abbott 
6. Pharmasol 

(Nanopure) 
7. Soliqs/Abbott 

(Nanomorph™) 
8. Skye Pharma (IDD™) 9. Bend Research, 

Inc 
10. Novartis (Hydrosol™)  

BOTTOM-
UP 

Wet Chemical 
Process (e.g. 
Supercritical 

fluid technology) 
 

11. Nektar 12. PiereFabre 
(Formuplex, 
Formuldisp, 
Formulcoat) 

13. Lavipharm (Infuse-X 
™) 

14. Phasex 

15. Eiffel technologies 16. Xspray 

17. RxKinetics 18. Alcon 
19. Eurand 20. Aphios 
21. Crititech/University of 

Kansas 
22. Thar 

23. Crystec 24. Activery 
25. Ferro Corp (SFEE) 

Gas Phase 
Synthesis (flame 
pyrolysis, laser 
ablation,  high 
temperature 
evaporation) 

[11 - 13] 

26. Johnson Matthey 
Technology 
Centre, UK 

27. Particular GmbH 

Alternative 
approaches 

Lithography, 
vacuum 

deposition,  etc 
[14] 

28. DENA 29. Many 
academic 
interests 
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This article focuses on supercritical fluid use as a method of choice for producing 

nanoparticles. 

 

4.0 SUPERCRITICAL FLUIDS (SCF)  

“Supercritical” is a state of a substance above its critical temperature (TC) and critical 

pressure (PC). A substance in its supercritical state is defined as Supercritical Fluid 

(SCF). The critical point represents the highest temperature and pressure at which the 

substance can exist as a vapor and liquid in equilibrium.  

In the supercritical stage, there is no phase boundary between the gas phase and the 

liquid phase.  In short, it can behave as if it is a liquid or a gas, but is actually neither.  

The properties of SCF are in between that of gas and liquid. The densities of a 

substance in its supercritical state are either the same or close to that of same 

substance in its liquid state. This property allows SCF to enhance solubility of poorly 

soluble drugs more than the gaseous state could. On the other hand, the diffusivity 

and viscosity of SCF are close to that of gas; which allow rapid mass transfer or 

penetration of SCF into materials than that of the liquid states. 

SCFs are highly compressible, particularly near the critical point, and their density 

and thus the solvation power can be carefully controlled by small changes in 

temperature and/or pressure [15, 16]. Although these unique and complementary 

physical characteristics allow the development of efficient and versatile processes, the 

SCFs are not universal “super-solvents”. Very few drug substances are soluble in 

SCFs without the aid of a cosolvent.  
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Although all gases could reach supercritical state above their critical point, for many, 

extremely high pressure and temperatures which may not be suitable for 

pharmaceuticals may be required.  The critical P, T values increase with the 

molecular weight or intermolecular hydrogen bonding and/or polarity. One must also 

consider the safety and affordability in addition to mild processing conditions, when 

choosing the SCF. For example, Xenon and Sulfur hexafluoride (when sufficiently 

purified) have low critical values, but remain too expensive for commercial use. 

Gases such as Nitrous oxide or ethane have low critical values, but can generate 

explosive mixtures and are therefore unsafe to handle. Trifluoromethane, which is 

chemically inert and nonflammable, has low toxicity and a low critical temperature 

and pressure. Furthermore, trifluoromethane has a strong permanent dipole moment 

(1.56 D), which helps solubilization of pharmaceutical compounds. However, carbon 

dioxide is the most preferred SCF for processing of pharmaceuticals including heat 

sensitive material such as biologicals. It has low critical temperature (31.2 °C) and 

pressure (73.8 bar or 7.4Mpa) and is nonflammable, nontoxic and environmentally 

safe. 

4.1   Solubility of pharmaceutical compounds in supercritical carbon dioxide  

Even though the mechanism of particle formation in different SCF based technologies 

is different, they all rely on either the solubility or insolubility of the solute (drug 

&/or polymer) in scCO2. Hence, determining the solubility of a solute of interest in 

scCO2 is important in choosing the SCF technology. This can be done  

experimentally or via theoretical estimation. The solubility of a pure solid component 
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(2) in a supercritical fluid (1) can be expressed as a function of the operating pressure 

P and temperature T, as described in Equation (2)  

       Eq. (2) 

 

 where y2 is the equilibrium mole fraction of the solid component (2) in the 

supercritical fluid phase, P2
SAT is the saturated vapor pressure of the solid component 

(2) at temperature T, R is the universal gas constant,  p is the operating pressure, Φ2
G 

is the solute fugacity coefficient in the supercritical fluid phase, and v2
S is the solute 

molar volume of the solid component (2). The solute fugacity Φ2
G is calculated by the 

equation of state (EOS) with T, P, and the concentration. Several EOSs are available 

in the literature for calculating the fugacity coefficient of the solid in a supercritical 

fluid. The Peng–Robinson equation of the state is one of the equations commonly 

used to evaluate the fugacity coefficient at a high pressure. Physical properties of the 

solute, such as the critical temperature Tc, critical pressure Pc, and acentric factor ω 

for high molecular weight compounds can be found in the literature.  

By controlling the pressure and the temperature, the density and solvent strength of 

SCF can be altered to simulate organic solvents ranging from chloroform to 

methylene chloride to hexane. scCO2 is a relatively non polar solvent, therefore if a 

compound is soluble in hexane, it should also dissolve in scCO2. It is also possible to 

modify the solvation power of a particular SCF by incorporating a small amount of 

volatile cosolvent, like acetone or ethanol.  
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When scCO2 is used as an anti-solvent, the key to particle production is generally the 

super saturation of the solution of materials via the counter-diffusion of scCO2 and 

the solvent. The insolubility of the solute in scCO2 influences the degree of this super 

saturation.  
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5.0 APPLICATIONS OF SCF BASED TECHNOLOGIES IN THE 

 PHARMACEUTUCAL INDUSTRY 

SCF based technologies are extremely flexible. Some applications are already at 

industrial capacity, whereas others remain under development. They include particle 

formation, extraction of trace amounts of organic solvent from the drug substances, 

impregnation of drug into polymer, coating, and reactive systems such as 

hydrogenation, biomass gasification, and supercritical water oxidation. Table 3 lists 

some of the well documented pharmaceutical applications of SCF technologies. 

However, this review article focuses on its use for nanoparticle production. 

Table 3: Pharmaceutical applications using supercritical fluid technologies. 

Pharmaceutical & Biomedical Applications Reference 

Particle formation/particle size reduction (micron and nano scale) [17-23] 

Residual organic solvent stripping (for drying purposes) [24-27] 

Impregnation of drug into polymer to prepare solid dispersion [28-30] 

Encapsulation, coating [31-33] 

Polymer processing (eg. Extrusion) [34-42] 

Liposome preparation  [43] 

Inclusion complexes (eg. Cyclodextrin) [44] 

Product sterilization [45-47] 

Extraction and purification [48, 49] 

Nanostructured materials for biomedical applications and tissue 

engineering 

[50-53] 
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6.0 SCF TECHNOLOGIES THAT ARE USED FOR PARTICLE 

 PRODUCTION 

Conventional techniques for particle size reduction include mechanical processes like 

crushing, grinding, and milling, recrystallization of the solute particles from their 

solution by using liquid antisolvents, freeze-drying, and spray-drying. Many of these 

processes require the use of organic solvents which introduce extra problems like 

removal of trace amounts of such solvents from the products and their proper disposal 

for environmental safety.  In addition, the high energy and high temperatures 

involved in these processes may lead to thermal and chemical degradation of some of 

the drugs and ingredients. Therefore, a method that particulates a drug substance in a 

cGMP compliant manner, which produces controllable particle properties, and 

requires minimal downstream processing is definitely the most suitable method for 

manufacturing a  wide range of therapeutic agents [16,38]. 

 Several review articles [23, 38, 39, 54-66] already described supercritical fluid based 

technologies. Different authors have used different techniques to overcome various 

challenges faced in controlling the particle size and morphology. A wide variety of 

organic and inorganic materials have already been successfully processed in the form 

of nanoparticles employing the supercritical fluids as solvents or as antisolvents. 

Perrut and Jung [56] and Thakkar  et al [66] provided excellent summaries of large 

variety of pharmaceutical compounds being micronized or nanonized by the use of 

SCF based technologies. Kiran [39] provided a review of polymer solutions at high 

pressures with a focus on miscibility, phase separation and morphological 

modifications in supercritical or compressible dense fluids. The present review is 
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complementary to such reviews appeared in the literature. It provides a critical 

version on the current state of nano particle formation and compares their advantages 

and disadvantages.  

Table 4 provides a broad classification of SCF based technologies.  The main 

difference amongst these processes is the role a SCF, whether it acts as a solvent or 

an anti-solvent or as a solute, in formation of the particles.  These technologies are 

further modified based on the particle growth mechanisms and their collection 

environment. There are many more modified processes which are not described in 

this review article as they have not created a wide interest in the production of drugs 

or drug products. 
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Table 4:  SCF technologies used for particle formation.  

Process Acronym Role of 
Supercritical 

fluid 

Role of 
Organic 

solvent (if 
used) 

Mode of Phase 
separation 

RESS/RESOLV/RES

AS/RESS-SC 

Solvent Cosolvent  Pressure/Temperature 

induced 

GAS/SAS/ASES/SAS

-DM/SAS-EM 

Antisolvent Solvent Solvent induced 

SEDS/SAA/A-

SAIS/CAN-BD 

Antisolvent/ 

dispersing agent 

Solvent/non-

solvent 

Solvent induced 

PGSS Solute  Pressure/temperature/ 

solvent induced 

7.0 INFLUENCE OF OPERATING PARAMETERS 

In almost all of the SCF processes ,the morphology (crystalline, amorphous, or both), 

the particle size, shape and distribution of the resulting product depend on factors like 

the properties of the material [67, 68], the process variables i.e. the thermodynamic 

and aerodynamic factors [69-79], and to the design of the particle collection 

environment [22].  Among the thermodynamic factors temperature, pressure 

conditions, rate of addition of one component to another and, phase and composition 

changes during the expansion can be listed. The aerodynamic factors include impact 

distance of the jet against a surface, nozzle geometry and mechanical shear that a 

particle undergoes. Table 5 summarizes these functional variables, which affect the 

properties of the finished product in almost all SCF processes.  
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Table 5:  Material and process variables in SCF based processes that affect 

formation of particles with desired properties  

Material properties Process variables Desired outcomes 

Properties of Drug 

Substance: Chemical 

structure, m.p., Tg, [74] 

Thermodynamic properties 

[71,73]: Temperature [70], 

Pressure, Phase 

ratio/composition [67,68], 

Rate of addition of one 

component to another 

Spherical/fibrous 

particles 

 

Crystalline/amorphous 

particles 

 

Micro/Nano scale 

particles 

 

Properties of Polymer: 

Chemical structure, m.p., 

Tg,  

Aerodynamic properties: 

Nozzle geometry [70], impact 

distance of jet against a 

surface, Expansion volume 

Solubility or insolubility in 

scCO2 

Particle collection 

environment 

Solubility in co-solvent 
Reduced agglomeration of 

particles during expansion  

 

There are several studies carried out to predict the factors involved in the particle 

formation, size and properties and to correlate particle morphology with the 

processing parameters for RESS processes.  Kwauk and Debenedetti [70] proposed a 

mathematical model of aerosol formation. They argued that the particle size was 

highly responsive  to the temperature at which the solute is dissolved in the 
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supercritical fluid (the extraction temperature), and the temperature to which the 

saturated mixture is preheated isobarically prior to expansion (the pre-expansion 

temperature).  Reverchon and Pallado [71] proposed a hydrodynamic modeling for 

the same process. The expansion process was subdivided into three successive steps - 

at the nozzle inlet, along the nozzle itself, and in the expansion chamber. Three 

thermodynamic transformations, one for each step of the expansion process, were 

considered.  This also appears to be a successful model since the computed values 

compared reasonably well with the experimental data.  

Hirunsit et al’s [72] mathematical model concentrated on the wall friction in the 

nozzle and heat exchange with the surrounding in the supersonic free jet region. They 

tested their model experimentally by producing ibuprofen particles using RESS 

process.  Turk [73] demonstrated that the nucleation rate was highly responsive to the 

solubility of the drug and the unknown surface tension group. He argued that the 

classical nucleation theory was sufficient to describe the particle formation in RESS 

experiments. Influence of the thermodynamic behavior and solute properties on the 

homogeneous nucleation in the supercritical solutions in RESS applications were also 

theoretically studied [74, 75].  

Similar issues were also of interest in SAS applications. Lengsfield et al [76] 

investigated the atomizing pattern of the jets. Their modeling stressed that the 

microparticle formation resulted from nucleation and growth of the gas phase within 

the expanding plume, rather than nucleation within discrete liquid droplets.  Werling 

and Debendetti [77] developed a model to describe the two-way isothermal diffusion 

between a solvent and a dense gas antisolvent at conditions that are supercritical with 
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respect to the solvent–antisolvent mixture. The extent of droplet swelling or shrinking 

as a function of temperature and pressure was correlated to the difference in density 

and diffusivity between the solvent-rich and antisolvent-rich regions. The difference 

created in the droplet behavior at subcritical and supercritical conditions and their  

implications for particle production was also studied by the same researchers [77]. 

They concluded that supercritical conditions results in faster mass transfer suggesting 

that in the presence of a solute, in supercritical operations causes  a higher degree of 

droplet super-saturation, resulting in higher nucleation rates and smaller particles. 

Reverchon et al. [78], in their highly critical review, summarized the results obtained 

in a great number of studies. Like Lengsfeld et al., they stressed that the particle 

formation by supercritical antisolvent precipitation is based on the competition 

between the jet break up and liquid surface tension vanishing characteristic times. 

They argued that spherical particles are the result of droplet drying after effective 

atomization of the liquid solution. At a pressure greater than critical pressure, the 

particle formation mechanism is in competition with the surface tension vanishing 

followed by the formation of a gas plume. When the latter mechanism prevails, 

atomization is not obtained and the nanoparticles are produced by precipitation from 

the fluid phase.  The same group further demonstrated the proposed mechanism via in 

situ laser scattering techniques. They were able to study the location of first particle 

precipitation inside the vessel, the partial densities of all species in the system, the 

super-saturation, and overall mixture composition [79].  

Reverchon et al.[78], also tabled a large number of published work and listed drugs 

that were obtained in micron sizes with SCF, at different processing conditions. They 
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sought relationships  among the solute concentration, the vessel temperature, the 

pressure inside the vessel, and molar fraction of CO2 (XCO2). Upon studying the data 

available, they have concluded that the XCO2 larger than approximately 0.95 -0.97 is 

the most useful ratio for small particle production. At this condition, the binary 

mixture of CO2 and liquid organic solvent achieves the mixture critical point (MCP). 

The effects of solute concentration, the pressure and the temperature on the particle 

size and morphology were difficult to generalize, because data available was 

contradictory. 

Although each study has emphasized, the effects of one or two variables that are the 

most critical in obtaining small particles, due to the complexity of the procedure, 

there is not a published work which takes into account, expansion in the nozzle and in 

the jet, along with nucleation, growth, and agglomeration in addition to the factors 

mentioned above. 
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8.0 OPERATIONS WHERE SCF ACTS AS SOLVENT 

Rapid Expansion from Supercritical Solvent (RESS) [54, 57, 61, 62, 64]: This 

process is schematically illustrated in Fig. (1) The process is used when the solute 

(polymer, drug or drug-polymer matrix) freely dissolves in the supercritical fluid. The 

process involves saturation of the supercritical fluid with drug or drug-polymer 

matrix, followed by depressurization of the solution by passing through a heated 

nozzle into a low pressure chamber. The rapid decompression of the supercritical 

fluid containing the drug drives nucleation and particle formation. While the pressure 

is relieved, the solution experiences a Joule Thompson cooling due to large 

volumetric expansion.  

 

Fig. (1). Simplified schematic representation of  RESS equipment set up showing 

different component such as CO2 tank, pump, back pressure regulator, extraction 

vessel and particle collection vessel.  

Mishima and Matsuyama [80] patented a RESS process where an agitator was used in 

the extraction vessel. They prepared the solution of core and coating material in a 

supercritical fluid and the solution was expanded rapidly through a nozzle. Thus, 
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when the solvent power of supercritical fluid was dramatically decreasing, it resulted 

in the co-precipitation of both substances. However, the process caused 

heterogeneous dispersion of the drug in the coating material and necessitated the use 

of a surfactant. In order to avoid the heterogenity problem, the authors proposed the 

use of a high-pressure apparatus equipped with a column agitator, which can perform 

high shear mixing of the scCO2, drug particles and the polymer. The column agitator 

was equipped with holes which facilitated circulation of mixture inside the extraction 

vessel. The agitating column forced the materials to move towards the inner wall of 

the vessel, and the shear stress between the column agitator and the inner wall 

accelerated dispersion of the drug particles in the polymer solution. Fig. (2) provides 

a schematic illustration of the proposed column agitator device.  

 

Fig. (2). Schematic diagram of column agitator [80]. 

In any of the SCF based particle formation techniques, preserving the particle 

characteristics such as morphology and size is very critical; therefore, the particle 

collection is an important task. Particle agglomeration is a common problem found 

during RESS process which is worsened if residual amount of co-solvent remained in 
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the processed material. Researchers have used different particle collection 

environments in order to overcome the agglomeration problems which will be 

presented  in the following section of this article.  

8.1  Advantages and limitations of RESS 

RESS is an attractive method since it is a single step process which requires minimum 

to no organic solvent, and can be implemented relatively easily at least at a small 

scale. During the rapid expansion, the solute experiences both the pressure and 

temperature quenches simultaneously that enhance the precipitation process 

considerably.  

However, RESS process is only applicable to those solutes which exhibit good 

solubility in scCO2. Majority of the poorly soluble active pharmaceutical ingredients 

(APIs) have high molecular weights and polar bonds, and are excellent candidates for 

nanoparticle preparation. Unfortunately, many of them have low to negligible 

solubility in scCO2 at moderate temperatures (less than 60 °C) and pressures (less 

than 300 bar). Co-solvents, such as methanol, may be added to carbon dioxide to 

enhance solubility of the drug. However, such applications will alter environmentally 

safe nature of the RESS process. The need for removal of residual organic solvents 

will further increase the cost and complexity of the process.   

8.2  Summary of RESS applications for production of spherical nanoparticles 

Over the last 2 decades, RESS technology has been successful in the production of 

nano sized particles of drugs and polymers [38, 56, and 66]. Various modeling studies 

of RESS were summarized under section 8.0.  In this section, few examples from the 

literature will be provided in order to illustrate the versatility in processing conditions 
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and show how the researchers have modified the basic RESS process in order to 

avoid agglomeration problems. It is postulated that due to the fast motion between the 

solid particles and gas present in the expansion chamber, electrostatic charges that 

develop on the particle surfaces can be the reason of particle agglomeration which 

occurs during expansion process. Subsequently, needle like or fibrous particles can 

form instead of desired spherical particles [63]. 

Gaddermann et al. [81] produced pure naproxen nanoparticles and coated naproxen 

with polylactic acid using RESS. The authors demonstrated that the polylactic acid 

coating, stabilized the naproxen nano particles against agglomeration and 

coagulation. Using this technique, Varshosaz et al. [82] produced amorphous 

cefuroxime axetil (CFA) nanoparticles. They studied impact of the of nozzle 

temperature (changing between 50–70 °C) and the  extraction port temperatures 

(changing between 60–90 °C),  on the particle morphology and size. Amorphous 

particles having an average size of 159 nm were obtained at the  nozzle temperature 

of 60 °C and the extraction temperature at 90 °C. When the temperatures of the 

nozzle and the extraction column were decreased to 50 °C and 75 °C respectively, the 

particle size was increased to 465 nm. Reverchon et al. [83] showed the similar 

effects of  both the pre-expansion and the expansion chamber temperature by working 

with salicylic acid crystals. 

There are several variations of  the basic RESS process which were designed to 

minimize the agglomeration problems (Table 5). Amongst these, Rapid Expansion of 

a Supercritical Solution into a Liquid Solvent (RESOLV) [22] and Rapid Expansion 

from Supercritical to Aqueous Solution (RESAS) [84, 85] are the most notable ones. 
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In RESOLV, the traditional RESS is modified by expanding the supercritical solution 

into a liquid solvent instead of ambient air. Pathak et al. [22] demonstrated that 

RESOLV technique can successfully produce individual and spherical particles of 

naproxen and ibuprofen in nanoscales when they expanded the product  into aqueous 

solution containing PVP as a polymer. Without PVP, the particles obtained were 

nanosized, but agglomerated and non-spherical.  Mechanistically, the liquid at the 

receiving end of the rapid expansion in RESOLV, suppresses the particle growth in 

the expansion jet, thus allows nano sized and round particle production.   

In RESAS processes, expansion of supercritical solution through an orifice or tapered 

nozzle into aqueous solution containing a stabilizer(s) is used. This arrangement 

minimizes the particle agglomeration during the free jet expansion. The stabilizers 

utilized are mainly surfactants like, polysorbates, poloxamers and lecithins or 

hydrophilic polymers. Presence of a stabilizer minimizes the particle aggregation by 

rapidly reducing the surface free energy of the primary particles generated and via 

steric stabilization [84].  Tozuka et al. [85] successfully used 1% polyvinyl alcohol 

(PVA) for the same protective effect to produce  indomethacin nanocrystals of 300-

500 nm, via RESAS process. 

In order to overcome the low solubility of polar drugs in the SCF solvent, Thakur and 

Gupta [86] proposed a modified RESS process that used a solid cosolvent (RESS-

SC). They tested this process for nanoparticulating phenytoin by the use of menthol, 

utilized as the solid cosolvent. In the conventional RESS process, each particle is 

surrounded by the same drug particles in the expansion zone that results in 

coagulation and formation of larger particles, as illustrated in Fig. 3 (a). In the RESS-
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SC process, the drug particles were surrounded by particles of solid cosolvent like 

menthol . Hence, the particle growth could be minimized in the expansion zone 

resulting in smaller nanoparticles as schematically illustrated in Fig. 3 (b). Phenytoin 

particles surrounded by menthol, avoided surface to surface interaction with other 

phenytoin particles. The cosolvent (menthol) could be easily removed by sublimation 

using a lyophilizer following the particle recovery from the expansion chamber.  
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(a) 

 

 

 

 

 

 

(b)  

 

 

  

 

 

 

Fig. (3).  Schematic representation of particle formation in expansion zone during 

conventional RESS process (a) with RESS-SC process (b). 

9.0 OPERATIONS WHERE SCF ACTS AS AN ANTI SOLVENT 

GAS, SAS ASES and SEDS [31, 32]: Gas Antisolvent Process( also known as 

discontinuous process), (GAS)/ Supercritical Antisolvent Process (SAS) / Aerosol 

Solvent Extraction System (ASES) / Solution Enhanced Dispersion by Supercritical 

fluids (SEDS) exploit relatively low solubilities of the pharmaceutical compounds in 

scCO2. The drug of interest, a polymer (or both) is dissolved in a conventional 

(organic) solvent to form a solution. Solvents used include, but not limited to, 

Lyophilization

Nozzle 

Nozzle 
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dimethyl sulfoxide, N-methyl pyrrolidone, methanol, ethanol, acetone, chloroform 

and isopropanol. In order that the particle precipitation  occurs, the solute must be 

virtually insoluble in carbon dioxide while the organic solvent must be completely 

miscible with carbon dioxide at the precipitation temperature and pressure.  

Collection of the precipitated particles in the antisolvent processes is carried out in 

the same vessel where solvent extraction takes place. The particles are collected on 

the filters, located at the bottom of the vessel. Additionally, a drying cycle is 

performed at the end by passing a generous amount of SCF to remove any un-

extracted solvent.  Minor modifications of this basic principle are applied in GAS and 

SAS.  

   

9.1  Mechanism of particle formation in GAS, SAS/ASES 

Fig. 4 (a) is the schematic representation of the GAS process. In this process, the 

solute is first dissolved in a liquid organic solvent or solvent mixture, and a gas is 

employed to precipitate the solute. The gas used as the antisolvent  does not have to 

be at supercritical condition.  It is injected into the solution in a closed chamber, 

preferably from the bottom, in order to obtain uniform mixing . There is no 

atomization step. Due to dissolution of the compressed gas in the organic solvent, its  

solubilizing power on drug molecules lessens and diminishes when  it becomes 

supersaturated with the gas.during which the drug  precipitates in the form of the fine 

particles. The particles produced are washed with additional antisolvent to remove the 

remainder of the solvent.  
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GAS processes are batch and semi-continuous operations. They don’t work under 

constant pressure. The pressure varies continuously from 1 bar to the final pressure. 

GAS is favored by some researchers as it is a slow process and allows the growth of 

the particles in a controllable manner. However, it has rarely been successfully scaled 

up to an industrial magnitude. 

 

Fig. 4 (b) provides the schematic representation of the SAS process. Unlike GAS, this 

technique utilizes gas in its supercritical stage as an antisolvent for the solute.  In 

addition, the mechanism involved is different than that employed in the GAS process. 

The solute is first dissolved in a liquid solvent and then this solution is sprayed using 

a nozzle into a chamber which contains the supercritical fluid (antisolvent). The 

supercritical fluid dissolves in the liquid solvent droplets followed by a large 

volumetric expansion by reducing the solvent power of the liquid. As a consequence, 

the super saturation of the liquid mixture increases causing formation of small and 

uniform particles. Unlike GAS, this technology has produced favorable results during 

scale up to industrial capacity [87]. As mentioned before, the ASES (aerosol, solvent 

extraction system) is the same as SAS in principle. 
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Fig. (4).  Simplified schematic representation of  GAS (a)  and SAS/ASES (b)  

equipment set up showing components such as CO2 tank, pump, back pressure 

regulator, extraction vessel , and solution of API &/or polymer in organic solvent. 

9.2  Applications of GAS/SAS/ASES  

Kalogiannis et al. [88] used SAS technology to produce amorphous nanoparticles of 

amoxicillin within the range of 500 nm to 800 nm when they have used DMSO as the 

organic solvent. When they partially replaced dimethyl sulfoxide ( DMSO) with 

EtOH and MeOH, the particle size  was reduced to the range of 350 nm. Reverchon et 

al. [89] used semi-continuous SAS technique to produce rifampicin micro- and 

nanoparticles with controlled particle size (PS) and particle size distribution (PSD). 

SAS experiments were performed using different liquid solvents. When they used 

DMSO and 40 °C operating temperature, they obtained  amorphous nanoparticles 

with mean diameters ranging from 400 nm to 1000 nm.  HPLC analysis showed no 

degradation during supercritical processing. They also observed that, when the liquid 

concentration was increased, the mean PS increased and the PSD was widened.  
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Lee et al. [29] demonstrated that ASES could be a promising technique not only to 

reduce the particle size, but also to prepare amorphous solid dispersion of 

itraconazole with a hydrophilic polymer, HPMC 2910.  The particle size of solid 

dispersion prepared, ranged from 100 to 500 nm. Authors verified that itraconazole 

was molecularly dispersed in HPMC 2910 in an amorphous form.  

Production of round nanoparticles with  SAS and modified SAS methods is doable. 

Cefnidir was nanoparticulated to 150 nm size by Park et al. [90] by using methanol as 

the solvent. They calculated the Intrinsic Dissolution Rate (IDR) of the processed and 

unprocessed particles and found out that   cefidinir nanoparticles prepared with SAS 

had 9.42-9.94 times more dissolution.   

Sanganwar et al [91] and Chattopadhyay and Gupta [92]  modified the conventional 

SAS process in order to minimize the agglomeration of drug particles. Sanganwar et 

al [91] produced microparticles of a poorly water-soluble nevirapine using SAS 

method. The drug was simultaneously deposited on the surface of lactose and 

microcrystalline cellulose respectively in a single step, to reduce drug–drug particle 

aggregation. Another technique named as “Supercritical Antisolvent-Drug Excipient 

mixing (SAS-DEM)”, was used to minimize particle aggregation. In this method, the 

drug, dissolved in dichloromethane,  was precipitated in the scCO2 vessel, which 

contained suspended excipient particles. The SAS-DEM treatment was effective to 

minimize particle aggregation but has not interfered with the crystallinity or 

physicochemical properties of nevirapine. The drug/excipient mixture obtained, had a 

significantly faster dissolution rate compared to SAS processed drug microparticles 
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alone or of its physical mixtures prepared with the same excipients. Chattopadhyay 

and Gupta [92] also modified the conventional SAS technique and included a step 

where the solution jet was deflected by a surface, vibrating at an ultrasonic frequency, 

that atomized the jet into small micro droplets. This technique which is called SAS-

EM (enhanced mass transfer) produced griseofulvin nanoparticles of 130 nm size.  

Many more modifications of conventional SAS technique to overcome the challenges 

faced in SAS were reported. One such modification is called Supercritical-Assisted 

Atomization (SAA). SAA technique that was reported by Reverchon [93] was used to 

produce micro- and nanoparticles of several pharmaceuticals with controlled size and 

distribution. In this technique, controlled quantities of scCO2 was mixed with 

solutions containing a solid solute and the entire ternary solution is subsequently 

atomized through a nozzle. The technique successfully micronized some 

superconductor, ceramic, and catalyst  precursors as well as several pharmaceutical 

compounds, such as  carbamazepine, ampicillin trihydrate, triclabenzadol, and 

dexamethasone. Liquid solvents used to form the starting solution were methanol, 

water and acetone.  The author explained the mechanism of the t SAA process as,  

formation of primary small droplets by atomization of the liquid in the thin wall 

nozzle in Step 1. In Step 2, due to the extremely rapid release of CO2 from inside of 

the primary droplets,  the droplets formed broke up (decompressive atomization), by 

forming smaller secondary droplets. Creation of primary and secondary droplets 

eventually resulted in formation of submicron drug particles.  

Another modification of SAS was proposed by Rodrigues et al. [94] and is termed 

Atomization of Supercritical Antisolvent Induced Suspensions (ASAIS). 
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Mechanistically, ASAIS is similar to SAA where a small volume supercritical 

antisolvent is dissolved in line, with the liquid solvent before the liquid atomization 

for the solvent extraction step. Mixing of scCO2 in a small volume immediately 

before the nozzle orifice, leads formation of conditions such that causes the 

precipitation of the solute and the suspension formed in this way,  is then spray-dried 

for solvent separation. The process was successfully demonstrated to produce 

submicron particles of theophylline using tetrahydrofuran as the organic solvent. The 

authors argued that compared to other similar particle-production techniques, this 

approach allowed a more efficient control of the antisolvent process and reduced the 

volume of the high-pressure precipitator by several orders of magnitude.  

10.0 SOLUTION ENHANCED DISPERSION BY SUPERCRITICAL 

 FLUIDS (SEDS) 

Mechanism of particle formation Fig. (5): This technique is used more frequently in 

preparation of molecular level drug-polymer combinations and was patented by 

Hanna and York [95]. It uses SCF as an antisolvent and  dispersing agent.  The 

instantaneous contact of the liquid solution containing the drug and the polymer with 

the SCF, generates a finely dispersed mixture which leads to rapid particle 

precipitation. This technology is generally used to produce micro-spheres/capsules. 

The most important feature of the SEDS is the nozzle type. In this process, two types 

of coaxial nozzles are used; first one is a nozzle with two channels which allows 

introduction of the supercritical fluid and the drug solution or drug polymer mixture 

at the same time.  The second nozzle used has three channels which allows 

introduction of three different fluids at once [95], providing more choices in operating 
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variables. For example, dissolving the drug in an organic solvent and the polymer in 

an aqueous solution and introducing both solutions and SCF at the same time is 

possible.  Two different SCFs can also be introduced. The experimental arrangement 

of the SEDS process is shown in Fig. (5). Fig 5(b), shows the schematic 

representation of the three-channeled coaxial nozzle.  
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a)         

 

b) 

1

Solution of drug + organic 
solventSolvent 2

CO2

 

Fig. (5). Schematic drawing of SEDS (a) process and a simplified arrangement 

showing  three-channeled coaxial nozzle (b) used in SEDS process. 
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SEDS process produced particles of salmeterol xinafoate with a polymer matrix [95]. 

Two separate solutions of the active substance and the polymer 

(hydroxypropylcellulose) which was dissolved in acetone, were prepared, and co-

introduced with supercritical CO2 in a precipitator, using a three-passage nozzle. 

Analysis made, confirmed inclusion of the drug into the polymer matrix.  In this 

manner, Ghaderi et al. [96] produced spherical microparticles of hydrocortisone 

entrapped within the biodegradable polymer poly(D,L-lactide-co-glycolide) (DL-PLG) 

by using a combination of supercritical N2 and CO2, at 130 bar pressure and 380C 

temperature .  The use of N2 simultaneously with CO2 improved the homogeneity of 

mixing and led to a more efficient integration of the polymer and the drug.  

Chen et al. [97] produced nanoparticles of puerarin and microencapsulated them with 

poly(L-lactide) (PLLA) by using a modified SEDS process. The modification 

included an “injector” which injected nanoparticles of puerarin inside the polymer 

solution in dichloromethane . The Puerarin nanoparticles obtained, exhibited good 

spherical shapes, smooth surfaces and a narrow particle size distribution with a mean 

particle size of 188 nm. After microencapsulation, the Puerarin–PLLA microparticles 

had a mean size of 675 nm. A drug load of 23.6% and an encapsulation efficiency of 

39.4% was obtained. Data obtained clearly demonstrated that this process is a 

promising technique to prepare a drug–polymer carrier for a drug delivery system.  
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11.0 OPERATIONS WHERE SCF ACTS AS SOLUTE  

Particles from Gas Saturated Solution (PGSS): Fig. 6 provides schematic 

illustration of PGSS equipment set up. As discussed earlier, many drug substances are 

either polar or have high molecular weights. It is difficult to dissolve these 

compounds in CO2, which is a non polar solvent, even in a supercritical state without 

the aid of a cosolvent. On the other hand, scCO2 has the ability to diffuse into organic 

compounds, such as polymers. When scCO2 diffuses into the polymer, it lowers the 

melting point and decreases its viscosity. These characteristics are made use of in 

PGSS process.  

In the PGSS operations, the physical mixture of the drug and the polymer is first 

exposed to SCF. In the presence of SCF and elevated pressure conditions, the mixture 

starts to plasticize and melts. Following melting, further application of the scCO2 

dissolves the mixture further and viscosity decreases. This solution is then sprayed 

via a nozzle and a pressure control valve into a receiver. As the result of rapid 

depressurization, the dissolved supercritical fluid escapes leading to formation of 

composite microcapsules. This process is designed for making particles of materials 

that absorb supercritical fluids at high concentrations like poly(vinylpyrrolidone) 

(PVP), polyethylene glycol, polyethylene, polyester, D,L –PLA, PLGA.  

Sencar-Bozic et al. [98] made composite microparticles of nifedipine and poly 

ethylene glycol, (PEG 4000), using the PGSS process. They showed that the solid 

dispersions had increased dissolution rates of Nifedipine. Similar results were 
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reported for the anti-angina drug felodipine by Kerc et al. [19]. Rodrigues et al. [99] 

prepared the micro particles of theophylline with hydrogenated palm oil (HPO) by the 

PGSS process. Particle size obtained was about 3.0 μm in diameter. Spherical 

morphology with a regular surface was obtained at higher expansion pressures. This 

technology has successfully enlarged to an industrial scale [100].  

 

 

 

Fig. (6). Schematic representation of equipment set up of PGSS process. 

The PGSS process has similar advantages to those of the RESS processes.  It can be 

performed without using an organic solvents. It usually requires lower pressures and 

gas consumption than the RESS processes . One problem typically associated with 

the conventional PGSS process is separation of the ingredients as they pass across the 

pressure drop. This phenomenon can result in segregation of the components.  

Particles of the drug and the polymer are formed separately, but the polymer 

microspheres containing the drug could not be obtained  
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PGSS also has been modified to overcome the agglomeration and non uniform 

particle size distribution problems. 

Skekunov et al. [101] proposed a technique to overcome the segregation problem, by 

using two separate mixing chambers in the equipment set up. In the first chamber, the 

drug and the polymer are mixed to homogeneity, allowing them to melt in scCO2. 

This melt was then passed from first chamber to the second one where it was mixed 

with more SCF, causing further reduction in the viscosity of the melt. The mixture 

was finally sprayed and via further expansion occurred, the uniform micro-particles 

of the polymer-drug mix were obtained.    

Another  successful modification was proposed by Hu et al. [102] to produce 

coenzyme Q10 (CoQ10) nanoparticles. First, CoQ10/polyethylene glycol 6000 

composite particles were prepared by a PGSS process. Then, CoQ10 nanoparticles 

were obtained by introducing the composite particles into water. Results showed that 

CoQ10 slurry product had a median diameter of 190nm, The yield obtained via this 

method, was 89.8% when an operating pressure of 25 MPa and operating temperature 

of 800C was used.  

11.1  PGSS drying 

PGSS processes are also used for dependable drying of the drug products, without 

degrading the drug product or the polymer. This process is termed PGSS-drying , 

where CO2 is also used as a dispersing agent. Unlike traditional PGSS, PGSS-drying 

of an aqueous solution of solute (typically a polymer) is as follows: The aqueous 

solution of a polymer is brought into contact with carbon dioxide in a static mixer that 

is operating at high pressures (typically 100–150 bar ) and relatively high 
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temperatures (around 100 – 120 0C).  It is then sprayed into a vessel, at ambient 

pressure and lower temperatures which causes drying as the result of Joule–Thomson 

effect caused by the expansion.  

This is an advantageous technique compared to other drying processes such as spray-

drying. It allows drying of the solutions with a reduced thermal degradation or 

contamination of the solid substance, because the process is carried out in a closed 

system inertized with CO2. The only instrumental part of the process operating at the 

high temperature is the static mixer. This process was successfully used by Martin et 

al [103] to micronize polyethylene glycol from aqueous solutions, by producing 

spherical PEG particles with average particle sizes of 10 microns and residual water 

content below 1 %.   

11.2  Carbon dioxide assisted nebulization with a Bubble Dryer® (CAN-BD)  

This is also an example of a process where CO2 is used for drying purposes. CAN-

BD process can dry and micronize pharmaceuticals that are especially used in the  

pulmonary drug delivery. In this process, the drug is first dissolved in water or an 

alcohol (or both), and is mixed very well with near-critical or supercritical CO2 by 

pumping both fluids through a low volume tee to generate microbubbles and 

microdroplets. These microbubbles are then decompressed into a low temperature 

drying chamber, where the aerosol plume dries in seconds. Similar to PGSS drying, 

there is less decomposition of thermally labile drugs. In this method, there is no need 

for a high pressure vessel and the particles obtained are generally 1-3 microns in size 

[104].  
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12.0  CONCLUSION 

The SCF literature demonstrates that the complexity of the factors such as fluid 

dynamics, mass transfer, nucleation kinetics, phase composition, thermodynamics and 

aerodynamics are the cause of variations in size, surface properties, distribution and 

amorphous nature of the drug particles obtained.  Another problem to overcome, 

especially for nanosized drugs, is the agglomeration process. The effects of different 

particle collection environments on the agglomeration should be clarified. 

When a drug product is obtained in the presence of one or more polymers, fewer 

problems are encountered. The challenge is in the preparation of amorphous free 

flowing nanoparticles of drugs, with round surfaces and narrow particle size 

distribution, and scaling up related SCF process. Another area which requires further 

research in order to advance this technology is downstream processing of the drug 

particles into a suitable dosage form. It would be of no value to generate 

nanoparticles, if the drug substance cannot be collected as dry, agglomeration free 

powder or in some cases, in the form of a suspension. 

What is the importance of each factor in formation of nanosized particles of an 

insoluble drug? How do these factors interact during processing? Which of those 

factors would have stronger influence on the properties of the particles generated? In 

order to understand their relationship a step further, the morphological changes of 

particles during the precipitation at the pre entry stage of the orifice versus in the free 

jet may be examined for a start. The literature does not offer a clear picture of the 

effects of the solute properties and concentration, the influence of pressure, 
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temperature, and the nozzle geometry on the particle size, shape, surface properties 

and distribution.  As we continue to improve our fundamental understanding of the 

SCF chemistry, we can reliably scale up more of the SCF processes to obtain free 

flowing drug particles of nano sizes.  

Throughout the years, various modifications made on the original SCF process, 

improved the properties of the particles obtained and small spheres with smooth 

surfaces, and narrow particle size distribution were produced. However, scaling up 

several of SCF processes is still difficult.  It is is disappointing to realize that although 

the literature has numerous articles that have mechanistically investigated the particle 

formation process, commercializing this technology for the drug delivery applications 

has not been very successful.  

In spite of the disadvantages mentioned, and the questions remained unanswered to 

obtain more reliable and repeatable applications, the SCF technology appears to be an 

exciting tool to process nanoparticulated  drugs of the future. It has matured greatly 

over the last 10 years and has a great potential of becoming a key drug delivery 

technology in the near future.  
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ABSTRACT 

Particle size reduction to micro and nano scales using supercritical antisolvent (SAS) 

methodology is an effective and versatile option for solubility and bioavailability 

improvement of poorly water-soluble drugs. However, there are several factors that 

influence the particle morphology, particle size, and particle size distribution when 

SAS methodology is applied to produce nano particles. Hence, a successful 

application of SAS technology to drug particle production requires a careful 

evaluation of these factors. A fractional factorial 2(7-3) screening design of 

experiments is applied to supercritical antisolvent precipitation of griseofulvin using 

carbon dioxide (CO2) as an anti solvent, and acetone  as solvent. The design of 

experiment (DOE) proposed is useful for identifying the key factors involved in the 

SAS process in just a few runs at an early stage of experimentation. Seven factors 

were studied at two levels each. Mean particle size (PS), particle size distribution 

(PSD), and % yield of the SAS process were chosen as responses to evaluate the 

process performance.  

Statistical analysis of the results from DOE study identified the nozzle diameter and 

spray rate of organic solvent as two most significant factors affecting PS and PSD. 

Temperature of the precipitation vessel only impacted the particle size, whereas, the 

pressure, drug concentration and polymer concentration  affected PSD. Lastly, the 

yield of the SAS process was impacted by drug concentration, polymer concentration, 

and the pressure condition inside the precipitation vessel. We were able to rank order 

these factors in terms of their overall impact on all three responses. 
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 Based upon the outcomes of this study, an optimum and robust SAS process was 

developed.  Operating at 450C, 80 bar pressure, 20 mg/ml drug concentration, 5 

mg/ml polymer concentration,  solvent spray rate of 2 ml/min, CO2 addition rate of 40 

g/min, and using nozzle diameter of 150 µm,  in-situ nanoparticles d50 (volume based 

mean particle size of 50th percentile) of 0.362 µm were produced.  Scanning Electron 

Microscopy revealed that coprecipitates of drug and polymer were fluffy and fibrous 

in nature. DSC analysis as well as PXRD revealed that the co-precipitates were in 

crystalline form.  FTIR study of the products confirmed that there was no interaction 

between drug and the polymer. Lastly, formulations obtained with the SAS process 

had significantly improved rate of dissolution compared to that of the physical 

mixture of  as-is drug and the polymer.  
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1.0 INTRODUCTION  

Technologies that can effectively control particle formation are of utmost importance 

in the pharmaceutical industry. A reduction in particle size of poorly water soluble 

drug to the ultra-fine state such as nano scale, increases the surface area, results an 

increase in the dissolution rate, saturation solubility, and in turn, the bioavailability. 

Hence, particle size reduction to nano scale for poorly soluble drug has become a 

very popular process choice, enabling the use of such drugs1-4.  

There are two approaches generally used to reduce particles to the nanosizes: bottom-

up and top-down. In the bottom-up approach, a colloidal solution of drug is prepared 

and the solvent is evaporated obtaining controlled rearrangement of single atoms and 

molecules into larger nanostructures. Supercritical fluid based technologies utilize 

this approach. The top-down approach reduces the particle size of the drug particles 

using media milling or high pressure homogenization. Contrary to the supercritical 

fluid based technology, in top down methods of particle size reduction, it is difficult 

to control important characteristics of the final product, such as size, shape, 

morphology, and surface properties.   

 “Supercritical” is a state of a substance above its critical temperature (TC) and critical 

pressure (PC). A substance in its supercritical state is defined as a supercritical fluid 

(SCF). Carbon dioxide is the most preferred SCF for the processing of 

pharmaceuticals, because it has low critical temperature (31.2°C) and pressure (73.8 

bar or 7.4MPa), and is nonflammable, nontoxic and environmentally safe. It is highly 
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compressible and its density and thus the solvation power can be carefully controlled 

by small changes in temperature and/or pressure5, 6. The solvent strength of 

supercritical CO2 can be altered to simulate organic solvents ranging from chloroform 

to methylene chloride to hexane.  

Primarily there are two categories of SCF based particle formation techniques; using 

SCF as solvent or as an anti-solvent. Example of SCF use as the solvent is Rapid 

Expansion from Supercritical Solution (RESS) method while the processes that use it 

as the anti-solvent, include Supercritical Antisolvent Precipitation (SAS), and 

Solution Enhanced Dispersion by Supercritical fluids (SEDS). There are various other 

applications to these basic processes and are thoroughly reviewed by Sheth et al.,7. In 

the anti-solvent based process, the solute (drug and polymer) is soluble in the organic 

solvent, but not soluble in the supercritical CO2. Therefore, addition of this anti-

solvent induces the rapid removal of organic solvent causing the super-saturation and 

precipitation of the solute. Griseofulvin has negligible solubility in supercritical CO2, 

hence SAS technique was  chosen for this study.  

 There are number of factors in effect during SAS processing. These factors can be 

grouped into two main categories; formulation related, and process related. Physico 

chemical properties of the drug and the polymer8 (if used), drug and polymer 

concentration8, solubility or insolubility of drug and the polymer in solvent and 

scCO2
8 are the main formulation variables in effect during SAS processing. 

Thermodynamic properties9-10 such as the temperature, pressure, phase composition, 

rate of addition of one component to another; and aerodynamic properties11 such as 
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nozzle geometry and impact distance of jet against a surface are the most important  

process variables that impact the outcome of SAS precipitation. In order to design a 

robust SAS process, it is extremely important to understand the impact of all of these 

variables, on the desirable SAS product attributes, such as particle morphology, 

particle size, particle size distribution, and % yield of the process.  

Although several researchers12-16 have studied these variables, there is widespread 

disagreement amongst them. For example, Guha et al., 12 using Cholesterol & Poly 

(L-lactic acid) in dichloromethane (DCM) found that increase in pressure leads to 

smaller particle size. Similarly, Reverchon et al.,13 working with SAS and using 

griseofulvin, tetracycline, and amoxicillin  in dimethylsulfoxide (DMSO), and DCM 

also concluded that, increase in pressure leads  smaller particle size.  However, Lee et 

al.,14 who carried out SAS precipitation of  itraconazole and HPMC2910 in DCM-

Ethanol mixture,  found that an increase in pressure produced larger particles. 

Randolph et al.,15 as well, using SAS, found that an increase in pressure produced 

larger particles of Poly (L-lactic acid) from methylene chloride. Whereas, when Uzun 

et al.,16 carried out SAS processing using methanol on cefuroxime axetil in the 

presence of PVPK30, concluded that the change in pressure did not affect the particle 

size significantly.  

One of the reason of such wide-spread disagreements amongst the researchers,  in 

defining the variables that  impact particle properties during SAS process, is that  

effective variables in their SAS method were selected without a statistical test,  and 

that optimization studies were conducted only by modifying few selectively chosen 
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variables. Acceptance of some of the existing factors as insignificant, and not to 

include them into statistical calculations may mask or influence the degree of 

importance of the truly effective factors. Another reason of the variability observed in 

detection of significant variables, could be that the outcome of SAS processing 

depends on properties of drug and polymer, and their interaction with solvent and 

anti-solvent.  

Griseofulvin is a very difficult drug to transform into a coprecipitate form, and a 

review of the literature revealed that no author(s) have been successful in producing 

nanoparticles of GF, when conventional SAS methodology was applied. SAS tests 

performed using n-methyl pyrollidone (NMP) produced almost complete extraction 

of this antibiotic13; i.e., only traces of GF were found in the precipitation chamber at 

the end of the experiments. Chen et al.,17 Reverchon et al., 13, 18 and Foster et al.,19 

using SAS methodology for GF processing, and using organic solvents such as 

acetone, ethanol, dimethylformamide, and DMSO, obtained needle like particles 

ranging from 1 µm to several mm.   

Chattopadhyay and Gupta 20 modified the conventional SAS technique and included a 

step where the solution jet was deflected by a surface, vibrating at an ultrasonic 

frequency, which atomized the jet into small micro droplets. This technique which is 

called SAS-EM (enhanced mass transfer) produced GF nanoparticles of 130 nm, and 

may be considered as a success. However, there is no evidence that such a process 

could be scaled up to an industrial scale, whereas today,   the conventional SAS 

process has been scaled up successfully handling 100 kg lots 21. The failure to produce 
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nanoparticles of GF using conventional SAS method, suggests that physicochemical 

property of GF favors precipitation in the form of long crystals.  

We have used conventional SAS methodology to reduce the particle size of GF. 

However, our attempts were unsuccessful to produce nanoparticles of GF, which 

prompted us to explore a co-precipitation with a polymer. A polymer, which can 

potentially act as a crystal growth inhibitor would be added to the formulation.  Such 

an approach can be beneficial from two perspectives: firstly, it would prevent the 

uncontrolled crystal growth, and secondly, the polymer could act as a stabilizer to 

prevent the aggregation of formed micro particles.  

Simonelli et al.,22 stabilised sulfathiazole by inhibiting its crystal growth with 

Polyvinylpyrrolidone (PVP). It was found that the concentration and molecular 

weight of PVP affected the inhibitory function of PVP. These researchers reported 

that PVP provides a net like coverage, which controls the effective radius of 

protrusions from the crystal surface. Additionally Jarmer et al.,23 precipitated GF in 

the presence of polymer Poly (sebacic anhydride) using a modification of SAS 

process called PCA (particles from compressed antisolvent). These researchers 

reported that, the morphology of GF precipitates changed from several hundred 

micron long acicular structures in the absence of PVP to 1 to 100 µm crystals in the 

presence of polymer.  
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Selection of polymer 

There are various factors that affect the selection of a polymer in SAS processing, 

such as: a suitable drug-polymer interaction, solubility of a polymer in water, and in 

organic solvents, global regulatory acceptance, stabilizing ability of a polymer in an 

aqueous environment, and ease of  processibility. We identified three hydrophilic 

polymers, having different molecular structure, and ionic properties; namely 

Kollidon® VA64, HPMCAS, and Eudragit EPO®.   

Kollidon® VA64 is manufactured by free radical polymerization of 6 parts of N-vinyl 

pyrrolidone, and 4 parts of vinyl acetate. It is a non ionic polymer, widely used in the 

preparation of solid dispersion. It is freely soluble in water, acetone, and DMSO. It 

does not contain any H+ donor functional group.  

HPMC-AS (hypromellose acetate succinate) is a partially esterified derivative of 

hypromellose, where succinoyl and acetyl residues are bound to the cellulose 

backbone. It is practically insoluble in water, and has a pH dependent solubility in a 

buffered media. It is an anionic polymer, which has both H+ donor and H+ acceptor 

groups.  

EUDRAGIT® EPO is a cationic copolymer based on dimethylaminoethyl 

methacrylate, butyl methacrylate, and methyl methacrylate. It is also practically 

insoluble in water, and has a pH dependent solubility in buffered media.  

We wanted to develop a product that may be relevant clinically, and hence the 

pharmaceutical polymer selected  must be recognized by the United States FDA as 
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GRAS (generally regarded as safe) and must have prior precedence of being used in 

an oral dosage form. The polymer should be well tolerated, not known to have any 

toxicity, and must have been used for decades in the pharmaceutical industry for 

various applications. Finally, the selected polymer should be freely soluble in the 

organic solvent chosen for SAS processing, and in water.  

Table 1: Properties of pharmaceutical polymers identified for SAS co-precipitation  

Property/Polymer 
 

Kollidon® 
VA64 

HPMCAS-LF Eudragit® 
EPO 

Avg. molecular 
weight (g/mol) 

45,000 18,000 47,000 

Functional group  No H+ 

donor/acceptor 
H+ donor, and 
acceptor 

H+ acceptor 

Solubility in water Freely soluble Practically 
insoluble 

Practically 
insoluble 

Solubility in buffered 
media 

pH independent pH dependent  pH dependent  

Ionic property Non-ionic anionic cationic 

Solubility in Acetone Soluble Soluble Soluble 

Solubility in DMSO Soluble Soluble Practically 
insoluble 

Insolubility in scCO2 Yes Yes Yes 

Global regulatory 
acceptance 

GRAS* GRAS* GRAS* 

* Generally Regarded As Safe by US, Food & Drug Administration 
+Soluble in buffered media 

Finally, the goal of the studies shown in this dissertation was to address gaps in the 

literature. First of all, we will carry out a screening design of experiment (DOE), 

where practically all formulation and processing factors will be included and we 

believe that such a study will be more reliable in identifying the key variables 

involved.  Secondly, we will follow the changes in the particle size, particle size 
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distribution, and percent yield of product during the process, as the specific responses 

for measuring the process performance.  Lastly, we will apply the optimum operating 

variables and produce coprecipitates of GF which, when placed in an aqueous 

medium would yield in-situ micro and nanoparticles of GF having a narrow particle 

size distribution, while obtaining the highest yield and improved solubility.    

2.0 MATERIALS AND METHODS 

2.1 Materials 

The model drug griseofulvin (GF) was purchased as micronized API (lot # 

115H1180 ) through jet milling process, from Ria International (East Hanover, NJ). 

dimethyl sulfoxide (DMSO) (purity 99.8%)  and acetone (purity 99.5%)  were 

bought from Sigma Aldrich (St Louis, MO). Polystyrene latex microspheres (98 nm, 

150 nm, 310 nm, 900 nm, and 2000 nm), for checking the accuracy of Malvern 

instrument, were purchased from Magsphere, Inc. (Pasadena, CA). Liquid Carbon 

Dioxide (purity 99.9%, instrument grade 4.0 with siphon tube) was purchased from 

Airgas USA, LLC (Salem, NH).  

Model drug GF (Figure 1), an antifungal drug widely used for the treatment of 

mycotic diseases of the skin, hair, and nails has very poor aqueous solubility and low 

bioavailability. In the present study, GF, which has cLogP, measure of intestinal 

permeability, of 2.88, was selected as a model drug of Biopharmaceutics 

Classification System (BCS) class II drugs. The Biopharmaceutics Classification 

System is a guide for predicting the intestinal drug absorption provided by the U.S. 

Food and Drug Administration. BCS class II drugs have high permeability and low 
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solubility. The solubility of GF in water is only about 1 μmol/mol at 37 °C20 and it 

has dissolution rate limited absorption24. Thus, particle size reduction to nanosize is 

highly desirable. Hence, GF serves as a good model drug for demonstrating the utility 

of SAS for improving drug solubility and product performance by the formation of 

nanoparticles.  

 

 

Figure 1:  Chemical structure of Griseofulvin 

The chemical structure of three hydrophilic polymers (Eudragit EPO®, HPMCAS, 

and  Kollidon® VA-64) is shown in Figure 2. Kollidon® VA64 was obtained from 

BASF corporation (Florham Park, NJ). The methacrylic polymer, Eudragit EPO® 

was purchased from Evonik Degussa Corporation (Piscataway, NJ). The cellulosic 

polymer, HPMCAS-LF, manufactured by Shin-Etsu Co., Ltd. (Niigata, Japan) was 

donated by Biddle Sawyer Corporation (New York, NY). 
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Figure 2: Chemical structure of Eudragit EPO, HPMC-AS, and Kollidon VA64 

(from left to right) 



 

74 
 

 

2.2 Methods 
 
2.2.1 Description of SAS process 

 

Figure 3: Schematic diagram of Tharr SAS apparatus  

An SAS apparatus (model: SAS 50, Thar Technologies Co., USA) was used to 

generate GF-polymer co-precipitates. Figure 3 shows the schematic diagram of Tharr 

SAS system using supercritical carbon dioxide (SCCO2) as an anti-solvent.  The SAS 

50 system is made up of the following components: two high pressure pumps, one for 

the CO2 and the other for the organic solvent; a stainless steel particle collection 

vessel (0.5 L volume, 54 mm internal diameter and 218 mm internal height) 

consisting of the main body, the frit, and electric heating jacket ; and an automated 
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back pressure regulator (ABPR) of high precision.  Firstly, the CO2 coming from tank 

passes through low pressure heat exchanger (HE1) and was cooled down with a 

cooling bath operating at 4 °C to assure liquid state in the pump. The liquefied CO2 

was then pumped into particle collection vessel using a high-pressure pump through 

the spray nozzle.  CO2 was heated using another heat exchanger (HE2) before 

entering the precipitation vessel. Stainless steel orifice nozzles of 100 μ, 150 μ, and 

200 μ were used, depending on a particular experiment, as laid out in Table 5. The 

selection of organic solvent between acetone and DMSO was based on the quality of 

GF crystals obtained and ease of solvent removal from product. Acetone was 

preferred as the organic solvent. The flow-rate of CO2, and acetone were adjusted via 

using computer software. The pressure in particle collection vessel was controlled 

using an automatic back-pressure regulator (ABPR), and a temperature controller 

regulates the amount of heat being applied to the heating jacket.  

At the beginning of the experiment, acetone was sprayed for 10 minutes to establish 

the steady state condition. After that, the solvent pump was used to spray the solution 

of drug and polymer into the precipitation vessel through the spray nozzle. 

Approximately 150–200 mL of solution of drug and polymer was sprayed into the 

precipitation vessel. Rapid mixing between the organic solvent and SCCO2, and the 

fast diffusion of supercritical CO2 into the organic solvent produces a supersaturated 

solution and causes the drug & polymer to precipitate as fine particles, which were 

collected on a 0.22 μm Nylon filter, placed on top of 5 μ metal frit. Once sufficient 

powder was collected, the solution pump was switched off while supercritical CO2 

was continuously pumped into the precipitation vessel to wash-up the remaining 
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solvent residual for duration of approximately 60–80 min. The precipitation vessel 

was then depressurized gradually to atmospheric pressure using the vent valves. 

Finally, the powder was collected from the inside of the precipitator for further 

characterization. 

2.2.2 Testing reproducibility of SAS process 

In order to find out the variability of the processing method, two sets of experiments 

were repeated three times each. In these experiments, 150 ml of acetone solution was 

sprayed in the SAS vessel, and Kollidon VA64 was used as the polymer.  All 

experiments were carried out at 2 ml/min acetone solution spray rate, 20 g/min CO2 

rate, and nozzle diameter was kept at 100 µm. Drug concentration was tested at 15 

and 20 mg/mL, polymer concentration at 20% and 70%, temperature at 35 and 450C, 

and pressure at 80 and 85 bar. Particle size and particle size distribution 

measurements were performed using Malvern light diffraction method, as described 

in later sections. Table 2 summarizes the results, and shows that the yield of the 

process was 81 + 3.6 % for formulation with 70% polymer, and 88 + 3 % for 

formulation with 20% polymer; whereas d50 values were 239 + 31 nm, and 370 + 3 

nm for two different formulations. Lastly, the span values, measure of particle size 

distribution, were 5.377 + 0.47, and 2.534 + 0.03. We believe that the higher 

variability in particle size and particle size distribution for the first set of experiments 

in Table 2 (experiments 1-3) is due to high polymer content (70%) of those 

formulations which cause partial precipitation and blockage of nozzle.  Considering 

that these SAS experiments were carried out at a very small scale, overall the results 
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show that the SAS process is reproducible, while the formulation and processing 

conditions are varied.  

Table 2. Testing reproducibility of SAS process 

E
x
p 

Temp Pressure Drug 
Conc. 

Poly. 
conc 

Liq. 
spray 
rate 

CO2 rate Noz. 
dia. 

d50 Yield PSD 
Span 

 0C Bar mg/ml mg/ml(%) 
ml/mi

n g/min µm nm % 

1 35 85 15 35 (70%) 2 20*Liq 100 207 82 5.907

2 35 85 15 35 (70%) 2 20*Liq 100 268 77 5.011

3 35 85 15 35 (70%) 2 20*Liq 100 242 84 5.212

Average 239 81 5.377

Std. deviation 31 3.6 0.47

4 45 80 20 5 (20%) 2 20*Liq 100 366 89 2.559

5 45 80 20 5 (20%) 2 20*Liq 100 372 85 2.509

6 45 80 20 5 (20%) 2 20*Liq 100 372 91 2.536

Average 370 88 2.534

Std. deviation 3 3 0.03
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2.2.3 Evaluation of solubility of drug, and miscibility of  organic 

solvents in scCO2  

The RESS 50 (Tharr Technologies Co., USA) system was used for the preliminary 

solubility and miscibility evaluations. The system, schematically shown in Appendix 

A, is made up of the following components: a high pressure CO2 pump; a high 

pressure agitator; and a stainless steel extraction vessel with a sapphire view cell 

carved in the middle of vessel. The extraction vessel consists of the main body, an 

electric heating jacket, and an automated back pressure regulator (ABPR) of high 

precision.  

In this apparatus, firstly, the CO2 coming from tank passed through low pressure heat 

exchanger (HE1) and was cooled down with a cooling bath operating at 4 °C to 

assure liquid state in the pump. The liquefied CO2 was then pumped into extraction 

vessel using a high-pressure pump.  The CO2 was heated using another heat 

exchanger  (HE2) before entering the extraction vessel. The pressure in extraction 

vessel was controlled using an automatic back-pressure regulator, ABPR.  A 

temperature controller provides pre-specified heat to the heating jacket. Agitator 

mounted on top of the extraction vessel provides mixing to  the contents of the vessel.   

At the beginning of the experiment, an untreated as-is GF or raw organic solvent 

(acetone or DMSO) or mixture of GF and organic solvent, was placed in the 

extraction vessel. Agitator was turned on to gently mix the contents of the vessel. 

After that, the CO2 pump was turned on to fill the extraction vessel. Temperature was 
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gradually raised from 35 to 1000C, and the pressure gradually raised from 80 to 300 

bar. During this time, visual observations were made through the view cell.  

2.2.4 Characterization of particles 

2.2.4.1 Particle size and particle size distribution  

Particle size (PS) and particle size distribution (PSD) were measured using a 

Mastersizer® 2000 (Malvern Instruments Ltd., Malvern, UK). The Mastersizer® 

2000 uses the technique of laser diffraction to measure the size of particles. The 

technique of laser diffraction is based around the principle that particles passing 

through a laser beam will scatter light at an angle that is directly related to their 

size. The instrument can measure particles in the size range of 0.02 to 2000 µm25.  

Particle size distributions are calculated by comparing a sample’s scattering 

pattern by using Mie Theory, which provides a rigorous solution for the 

calculation of particle size distributions from light scattering data. Mie theory is 

based on Maxwell’s electromagnetic field equations26. It predicts scattering 

intensities for all particles, small or large, transparent or opaque.  In order to do 

particle size measurement by utilizing Mie theory, refractive index of the drug is 

required, which was measured using Reichert ® AR 200 digital refractometer 

(Reichert Technologies, Depew  NY ) and average value of refractive index of 6 

replicates was 1.34 + 0.005.  

Approximately 50 mg of SAS samples were added to 10 ml of DI water and 

sonicated for 1 minute prior to analysis.  Each particle size measurement was 

performed in triplicate, with about 1000 particles being measured at each run.  
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The results are reported in % volume distribution as it is more pharmaceutically 

relevant. Appendix B shows a typical report generated for each particle size 

measurement. We utilised d50, which is the diameter of 50th percentile of 

distribution, and the span, which is the width of the distribution based on the 10th, 

50th, and 90th percentiles, for comparing various SAS samples.  

Span = (d90 – d50)/d10 …………………………………….  Equation 1 

Instrument calibration: To verify the accuracy of measurements  made by laser 

light diffraction method, monosized latex standards of 98 nm, 150 nm, 310 nm, 

900 nm, and 2000 nm were tested in triplicate, using the method parameters 

described above. The standards were chosen based on expected particle sizes of 

SAS samples. d50 value obtained after measuring these standards were 86 + 0.3 

nm, 140 + 0.2 nm, 268 + 0.5 nm, 803 + 0.8 nm, and 2035 + 1.1 nm, respectively. 

The results, shown in Figure 4, provide an assurance that measurements made on 

SAS formulations will be accurate, within the instrumental limitations.  
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Figure 4. Volume based particle size distribution of polystyrene latex 

microspheres of various sizes 

 
Since particle size distributions obtained with SAS was bimodal, for testing the 

accuracy of the instrument in measuring mixture of small and large particles, 150 nm 

diametered standard was mixed uniformly with 2000 nm diametered standard, in the 

ratio of 90:10. Results, as shown in Figure 5, showed a bi-modal distribution with d50 

at 122 nm, and d90 at 1807 nm. Similarly, when 310 nm standard was mixed 
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uniformly with 900 nm standard, in the ratio of 70:30, a bi-modal distribution with d50 

at 0.314 nm, and d90 at 0.937 nm, was obtained.  

 

Figure 5. Volume based particle size distribution of 150 nm plus 2000 nm 

diametered polystyrene latex standards mixed at a ratio of 90:10 (TOP), and 310 

nm  plus 900 nm standards mixed at a ratio of 70:30 (BOTTOM).   
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In order to verify the reproducibility of Malvern particle size measurements, one 

of the SAS formulation sample was run 10 times. The average value for d50 was  

371.5 + 10.7 nm, with a relative standard deviation (RSD), also called coefficient 

of variation, of 2.88%. The results demonstrate that the reproducibility of 

measurements is acceptable.  

Samples obtained with SAS were sonicated prior to particle size measurement. 

Samples were exposed for 0, 0.5, 1, 3 and 5 minutes of sonication. Results 

showed that there was no further reduction in sample particle size after 0.5 

minutes sonication. Hence, 1 minute sonication was chosen as the standard 

sonication, which was sufficient to dissolve the polymer and to obtain sufficient 

de-agglomeration.  

2.2.4.2 Surface appearance 

The surface morphological analysis of the sample was performed using an ultra- high 

resolution digital light microscope , model VHX 600, manufactured by Keyence 

(KEYENCE America, Elmwood Park, NJ). Scanning Electron Microscopy (SEM) 

was performed at 15 kV accelerating voltage using model  TM-1000 Tabletop 

Microscope ® manufactured by Hitachi (Hitachi High-Technologies Europe GmbH, 

Germany) . Small amount of SAS formulation sample was applied on mutual 

conductive adhesive tape on aluminum stubs.  
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2.2.4.3 Zeta Potential  

Surface charge of nanoparticles was determined by zeta potential measurement on a 

Malvern Zetasizer 2000 HS (Malvern Instrument Ltd., Malvern, UK). The instrument 

was calibrated routinely with a −50 mV latex standard.  
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2.2.5 Description of the statistical method  

2.2.5.1 Design of Experiment (DOE)  

Determination of statistically significant variables of the SAS process was made by 

the use of DOE approach. Analysis of the data from DOE identifies the statistical 

importance of different factors on the measured responses, and the methods are 

described in basic textbooks27. We utilized MODDE® software (UMETRICS, 

version 9.0.0) for designing the fractional factorial study and for performing analysis 

on the data obtained.  

Using a conventional approach, to study k different factors, each having only two 

levels, the minimum number of experimental runs needed is 2 × 2 × ... × 2 = 2k. We 

identified seven factors in our DOE study. The factorial design would have required  

27, i.e., 128, experiments be conducted. To reduce the number of experiments, two 

level fractional factorial design, which is an accepted approach by the United States 

FDA28-29 and other researchers30-32, was selected  

In this method, some of the high-order interactions terms are replaced by an 

additional experimental factor. Although some information can be lost during the 

testing process, fractional factorial designs are very helpful as screening designs, 

because they allow for the separation of the important effects from the unimportant 

effects at an early stage of experimentation.33  
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2.2.5.2 Factor and level selection 

Seven factors that were identified and used for this screening DOE study were  

temperature (T) , and pressure (P) of the precipitator; drug concentration (Cd), and 

polymer concentration (Cp); organic solvent (Fliq ) and antisolvent (FCO2 ) flow rates; 

and nozzle diameter, dn.  The two levels for each of the seven factors selected are 

shown in Table 3. Values were chosen based on the preliminary experiments 

conducted with SAS while taking into account limitations of our equipment.  

Table 3.  Factors and Level selection for DOE  

 

Factor Abbr.
Levels 

(Low to High) 

Temperature T 35 to 550C 

Pressure P 80 to 120 bar 

Drug Conc. Cd 10 to 20 mg/mL 

Polymer Conc. Cp 20 to 70 % 

solvent spray rate FLiq 2 to 3 ml/min 

CO2 addition rate FCO2 10* FLiq,  to 20* FLiq  g/min 

Nozzle diameter dn 100 to 200 µm 
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The lower temperature limit of 350C is to ensure that all the experiments were carried 

out in the supercritical region. The upper temperature limit of 550C was established 

based on experience gained during the preliminary experiments with the process. It is 

further considered that a range of 20°C is sufficient to estimate the effect of 

temperature since such an increment leads to a large variation in the binary vapour–

liquid equilibrium diagram of the acetone-CO2 system.  

The pressure condition limits of 80 to 120 bar were set to ensure a high solubility of  

supercritical carbon dioxide in acetone, and with the aim of staying within or near the 

supercritical region (73 bar). At pressure conditions greater than 150 bar, and in the 

presence of acetone, the drug was freely soluble in supercritical carbon dioxide and 

no precipitation was seen inside the vessel.  

Drug concentration below 10 mg/mL resulted in no precipitation and hence was 

chosen as the lower limit. The upper limit of 20 mg/mL was established based on 

solubility limit of drug in acetone, which is 25 mg/mL. Polymer concentration limit 

of 20-70% was selected to see the effect of polymer on drug precipitation mechanism 

over a wide range of polymer concentration.    

Flow rate limits for acetone solution and supercritical carbon dioxide were 

established to obtain both a wide range of acetone mass fraction inside the 

precipitator vessel and a wide range of CO2/acetone flow ratio. In all of these 

experimental conditions, CO2 mole fraction was always maintained at 0.91 or higher. 

Maintaining high CO2 fraction is important to obtain optimum effectiveness of CO2 

as an anti-solvent, as reported by other researchers as well9.  
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It was noticed during the preliminary experiments that the low level acetone flow rate 

of 1 mL/min in combination with 200 μ diametered nozzle did not atomize the 

solution, and no precipitation could be obtained. As a result, a higher flow rate (2 – 3 

ml/min) was selected. We were limited to 100 µm diametered nozzle as the smallest 

nozzle diameter, because it was the smallest-diametered nozzle available in the 

market for this instrument. The upper limit of nozzle diameter was setup to 200 µm.  

2.2.5.3  Response identification  

Three responses which were d50 (particle diameter of 50th percentile of distribution), 

span (the measure of particle size distribution), and % yield, were selected. The yield 

in percentage is calculated as the ratio of the solute (drug + polymer) processed and 

the amount collected following SAS processing. Particles are collected on top of 0.22 

µm filter paper in the bottom of vessel, as well as scrapped from vessel walls. When a 

sticky mass is obtained around the nozzle apart from the bulk powder, this portion 

which was not usable was discarded and not considered in the yield calculation.  

 
    2.2.5.4  2(7-3) Fractional factorial design generation & data 

interpretation 
 
In 2(7-3) fractional factorial screening design 16 experiments were required. The 

design matrix is summarized in Table 4. Designs with factors that are set at two levels 

implicitly assume that the effect of the factors on the dependent variable of interest is 

linear. It is however impossible to test whether or not there is a non-linear (e.g., 

quadratic) component in the relationship between a factor A and a response, if A is 

only evaluated at two points (.i.e., at the low and high settings). Hence, in order to test  

that, the relationship between the factors in the design and the response is non-linear, 
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we included three more runs where all  factors are set at their midpoint. Such runs are 

called Center-point Runs (or center points) which  provide a measure of process 

stability and inherent variability and validate the curvature. As a rough guide 

recommended by National Institute of Standards and Technology (NIST)34, 

approximately 3 to 5 center point runs should be added to a  fractional factorial 

design.  

The statistical analysis of the data is carried out in three sections. Firstly, fitting of the 

model accepted to my findings will be evaluated, by performing Analysis of variance 

(ANOVA). Secondly, the important factors will be ranked, and finally the optimum 

processing as well as formulation conditions will be identified. The methodology is 

described in detail in a text book, written by creators of Modde® software35.  

When ANOVA is carried out on the responses obtained from the DOE, four key 

values are generated for each response: they are R2, Q2, Model validity, and 

Reproducibility.  R2 is the percent of the variation of the response explained by the 

model. R2 is a measure of fit, i.e. how well the model fits the data. Q2 is the percent of 

the variation of the response predicted by the model according to cross validation. Q2 

provides information, how well the model predicts new data. Model validity is a 

measure of the validity of the model. When the model validity value is larger than 

0.25, there is no Lack of Fit (LOF) of the model. Reproducibility is the variation of 

the response under the same conditions, compared to the total variation of the 

response under different conditions.   
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To interpret the influence of various factors on the measured responses, coefficient 

plots will be generated. The coefficient plot displays the coefficients, when the 

selected response is changed from low to high value, with the confidence interval as 

error bars.  
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Table 4: A Seven Factor Fractional Factorial (27-3) Design Matrix for SAS 

processing. 

Exp 
Name 

Run 
Order 

Temp. Pressure Drug 
Conc.

Poly. 
Conc. 

Liq. spray 
rate 

CO2 
rate 

Nozzle 
diameter 

  T P Cd Cp Fliq FCO2 dn 

  
0C 

1 

Bar 

2 

mg/ml

3 

mg/ml(%) 

4 

ml/min 

5=123 

g/min 

6=234 

µm 

7=134 

N1 14 35 80 10 2.5 (20%) 2 10*Liq 100 

N2 3 55 80 10 2.5 (20%) 3 10*Liq 200 

N3 13 35 120 10 2.5 (20%) 3 20*Liq 100 

N4 19 55 120 10 2.5 (20%) 2 20*Liq 200 

N5 4 35 80 20 5.0 (20%) 3 20*Liq 200 

N6 12 55 80 20 5.0 (20%) 2 20*Liq 100 

N7 8 35 120 20 5.0 (20%) 2 10*Liq 200 

N8 16 55 120 20 5.0 (20%) 3 10*Liq 100 

N9 11 35 80 10 23.3 (70%) 2 20*Liq 200 

N10 17 55 80 10 23.3 (70%) 3 20*Liq 100 

N11 7 35 120 10 23.3 (70%) 3 10*Liq 200 

N12 5 55 120 10 23.3 (70%) 2 10*Liq 100 

N13 10 35 80 20 46.6 (70%) 3 10*Liq 100 

N14 18 55 80 20 46.6 (70%) 2 10*Liq 200 

N15 1 35 120 20 46.6 (70%) 2 20*Liq 100 

N16 15 55 120 20 46.6 (70%) 3 20*Liq 200 

N17 9 45 100 15 12.3 (45%) 2.5 10*Liq 150 

N18 6 45 100 15 12.3 (45%) 2.5 10*Liq 150 

N19 2 45 100 15 12.3 (45%) 2.5 10*Liq 150 
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The Table 4 shows that out of 7 variables, three of them were confounded, or aliased. 

Confounded variables are shown in columns 5-7. We decided to alias spray rate of 

liquid  in column 5,  to columns 1-2-3, because the results of preliminary 

experiments and published literature 30 suggested that the interaction effect of 

temperature (column 1), pressure (column 2), and drug concentration (column 3) 

would be negligible compared to main effect of spray rate of the liquid. In a 

fractional factorial designs, the less probable interactions can be ignored. Therefore, 

by confounding such less probable three factor interactions of columns 1-2-3 with the 

spray rate of liquid, we think that the calculated effect of column 5 will mainly be 

due to spray rate of liquid. Using the similar justification, we confounded interactions 

between 234 factors with CO2 flow rate, and interactions between factors 134 with 

nozzle diameter.  
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 3.0 RESULTS AND DISCUSSION 

Prior to initiating SAS experiments of GF and polymer with organic solvent, a series 

of qualitative experiments were performed, to verify the insolubility of GF in 

pressurized CO2, the miscibility of acetone and DMSO in pressurized CO2, and the 

insolubility of GF in binary system of organic solvent plus pressurized CO2. A 

schematic diagram of the apparatus used for the solubility studies is shown in 

Appendix A. The results of these experiments, detailed in Appendix C and D,  

showed that both  acetone and DMSO have excellent miscibility with pressurized 

CO2, and scCO2 can act as an anti-solvent for GF. 

3.1 Production of GF particles with SAS  

Before initiating co-precipitation experiments, GF crystals were obtained without any 

polymer, to observe the changes occurring in the drug morphology and particle size. 

To define the working domain of SAS process, which was necessary to set up design 

of experiment; temperature (T) , pressure (P), solution flow rate (Fliq), CO2 flow rate 

(FCO2), and concentration of GF in solvent(Cd), were tested in the preliminary 

experiment. Using acetone and DMSO we varied the operating parameters in the 

range of : T = 45–90°C, P = 80–300 bar, Fliq  = 1 – 4 ml/min, FCO2 =10x to 30x Fliq , 

and Cd = 20% - 80% of saturation solubility in organic solvent. Nozzle diameter (dn) 

was kept constant at 100µm.  

No precipitation was observed at drug concentration lower than 40% saturation 

solubility in organic solvent, or pressures greater than 200 bar, due to increasing 
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solubility of GF in solvent-CO2 mixtures.  In case of acetone, 40% saturation 

solubility is 10 mg/ml, and in DMSO it is 24 mg/ml. Long fibrous and needle like 

product was obtained at Cd ≥ 40% of saturation solubility in organic solvent , and 

75 ≤ P < 200 bar.  Table 5 summarizes the variables tested in preliminary 

experiments.  

Table 5: Preliminary SAS experiments of GF using Acetone and DMSO  

Run 
# 

Org. 
Solvent 

Temp. 
0C 

Pressure 
bar 

Drug 
Conc. 

mg/mL 

Spray 
Rate 

ml/min 

CO2 
flow 
rate 

(g/min) 

Observation 

1 Acetone 45 120 10 4 45 
Crystalline long 
needles/fibers of 500 to 
2000 µm 

2 Acetone 50 205 10 2 60 no particles 

3 Acetone 45 170 10 2 20 
Crystalline long 
needles/fibers of 500 to 
2000 microns 

4 Acetone 90 90 9 2 20 no particles 

5 Acetone 90 150 20 1 20 
Crystalline long 
needles/fibers of 500 to 
2000 microns 

6 Acetone 75 80 10 2 20 
Crystalline long 
needles/fibers of 500 to 
2000 microns 

7 DMSO 40 150 20 2 30 no particles 

8 DMSO 50 225 23 2 30 no particles 

9 DMSO 50 80 25 2 60 
Crystalline long 
needles/fibers several 
mm long 

10 DMSO 50 150 25 2 60 
Crystalline long 
needles/fibers several 
mm long 

11 DMSO 45 200 50 2 30 

Crystalline long 
needles/fibers several 
mm 
 long 

12 DMSO 90 210 50 2 30 no particles 
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Untreated GF particles ( as is GF) comprises of irregular shaped  particles (Fig. 6) 

which have a mean particle size of 14 μ and size distribution of 5–21 μ, as measured 

by Malvern instrument.  

The product obtained by supercritical processing has much larger needle shape, 500 

µm to few mm in length  (Figure 6). The products obtained with acetone and DMSO 

were different in size, and uniformity. DMSO produced thicker, longer, non-uniform 

crystals (Figure 7-a), whereas acetone based GF crystals were thinner, shorter in 

length, and lot more uniform (Figure 7-b).  

 

Figure 6: Scanning electron microscopy (SEM) image of untreated as-is GF  
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Figure 7: GF precipitated from DMSO (top) and GF precipitated from Acetone 

(bottom) 
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3.2 Polymer effect on particle properties of GF 

Based on the selection criteria discussed in the introduction section, Kollidon® VA64 

(KVa64) was selected as the polymer for coprecipitation. When drug (GF) and 

polymer (KVa64) were coprecipitated, the size of the crystals changed significantly. 

Very light, voluminous and fluffy fibrous powders as typical of the scCO2-

precipitated samples were obtained in all experiments. Coprecipitated fibers were 1-

50 µm in length, as opposed to 500 µm to 2 mm long fibers obtained with GF. This 

change is likely to be the result of different precipitation mechanisms that the drug 

undergoes in the presence of polymer. During precipitation of sole GF, a nuclei is 

formed which can coalesce together to form large stable crystals. The growth of 

nuclei must be the predominant force causing formation of large and needle-shaped 

particles.  

Some polymers like HPMC36, polyethylene glycol36, PVP22, Poly (sebacic anhydride) 

23, are known to inhibit particle growth of the drugs that are treated with, by 

adsorbing on the surface of drug particles. Surface adsorption of KVa64 on GF drug 

crystals would have prevented the nuclei coalescence, and hence smaller particles 

were produced. Additionally, many polymers can act like a stabilizer and minimize 

the particle agglomeration.  

SAS processed material is analyzed for particle size, by dispersing it in an aqueous 

media. Malvern instrument detected  bimodal distributions of particle size through out 

this study, regardless of the processing conditions. In Figure 8, an example of particle 

size distribution  of the SAS coprecipitates, measured by Malvern instrument is 
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shown.  The appearance of the same material when investigated  under SEM, is 

shown in Figure 9. While performing an SEM analysis, a dry powder obtained from 

SAS processing is used, and it is difficult to de-agglomerate . The size of intact drug-

polymer mixture was approximately 5 to 10 µm.  

The size of the products obtained provides some information on the location of the 

particle precipitation. The bimodal distribution suggest the occurrence of the 

precipitation at multiple times and locations along the length of the precipitation 

vessel. The particles that are formed as soon as they come out of the nozzle would be 

smaller as compared to particles that are formed at the bottom of the vessel. Similar 

bimodal distribution was reported by Jarmer et al., 23 when they precipitated 

griseofulvin in the presence of polymer Poly (sebacic anhydride), using a variation of 

SAS process called PCA (Particles from Compressed Antisolvent). Their particle 

sizes ranged from 0.5 µm to 100 µm, with one peak observed around 1 µm, and 

second peak observed around 30 µm.  When Varughese et al., 37 precipitated 

indomethacin from dichloromethane using SAS technology; they also obtained 

bimodal particle size distribution, ranging from 0.1 µm to 100 µm.  
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Figure 8: Particle size distribution of SAS formulation containing GF and Kollidon 

VA64 (processed at 450C temperature, 85 bar pressure, 20 mg/ml drug concentration, 

5 mg/ml polymer concetration, 2 ml/min liquid spray rate, 40 g/min CO2 addition 

rate, and 100 µm nozzle diameter), measured by Malvern instrument 

 

Figure 9: Dry coprecipitates of GF & Kollidon VA64 obtained immediately after 

SAS processing, observed under SEM 
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3.3 Statistical analysis of data from DOE 

 
Table 6 summarizes the raw data obtained after executing experiments of Table 4 of 

each run from DOE. The d50 particle size of the products obtained  ranged from 140 

nm (experiment N8) to 950 nm (experiment N9). The lowest yield was 8%, for 

experiment N16 and the highest yield was 95%, in experiment N17. The low yields 

observed in experiments N2, N3, N4, N6, N9-N12, and N15-N16, appear to be the 

results of low drug concentration, and high pressure. The span value which is the 

measure of particle size distribution was ranged from 0.494 to 4.962. The smaller the 

span value, the narrower the distribution.  

The zeta potential values obtained ranged from -31.1 mV to -35.5 mV. However the 

zeta potential values were not used as one of the responses during the statistical 

analysis.  

The raw data was then analyzed using Modde® statistical software. Figures 10 – 13 

provide the outcome of analysis in a graphical manner.  
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Table 6: Results of experiments conducted using DOE 

Expt. Name d50 Yield PSD Span Zeta potential 
nm %  (mV) 

N1 396 88 4.962 -31.8 

N2 281 57 4.665 -32.5 

N3 237 17 3.325 -33.0 

N4 712 58 0.68 -33.5 

N5 711 76 2.599 -32.9 

N6 228 58 4.348+ -31.1 

N7 900 80 0.5 -31.5 

N8 140 87 3.982 -34.0 

N9 950 28 0.49 -34.5 

N10 175 33 4.469 -35.4 

N11 571 40 3.2 -35.5 

N12 233 25 3.222 -35.2 

N13 322 91 3.97 -33.8 

N14 658 75 0.494 -34.9 

N15 * 12 * * 

N16 * 8 * * 

N17 596 95 3.201 -34.5 

N18 546 85 3.352 -35.2 

N19 562 84 3.306 -31.7 

* particle size, and zeta potential data could not be obtained since the yield were too low,  
+ outlier  
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3.3.1 Summary of Fit Plot  

Summary of fit plot, shown in Figure 10, displays the 4 key values for each response. 

These values are; R Square (R2) , Q Square (Q2) , Model Validity, and 

Reproducibility.  

 

Figure 10: Summary of Fit Plot 
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Values close to 1 for  R2  indicate very good models with excellent predictive power. 

R2  value should be at least 0.5. In our experiments, R2  values were 0.93 for d50, 0.78 

for % yield, and 0.96 for PSD (span).  

Q2  values were 0.70, 0.58, and 0.80 for d50, % yield, and PSD (span) respectively. Q2  

value should be at least 0.1 for a good model, and should be at least 0.5 for a 

significant difference.  

A model validity bar of 1 represents a perfect model. When the model validity is less 

than 0.25 there is significant Lack of Fit (LOF). Model validity values were 0.29, 

0.46, and 0.1 for d50, % yield, and PSD (span) respectively  

There are many causes of LOF which result in poor "Model Validity". Statistical 

outliers as well as non-normally distributed responses can cause LOF. However, 

when there is true LOF, both R2 and Q2 will be small. If there is a good R2 and Q2    

(> 0.5) and a reproducibility value is close to 1.0, the lack of fit is probably artificial. 

We ran a normal probability plot of residuals to find the statistical outliers.  The 

normal probability plot of residuals displays the residuals (standardized or 

studentized) on a double log scale. This plot helps to detect statistical outliers and 

assess normality of the residuals. If the residuals are random and normally distributed, 

the normal probability plot of the residuals has all the points lying on a straight line 

between -4 and + 4 studentized or standardized standard deviation. When we plotted 

the normal probability plot of residuals, shown in Figure 11, we found that 

experiment number 6 was an outlier for particle size distribution. The outlier was not 

removed from the calculation. Finally, due to the reasons explained here, the low 
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values for model validity in case of particle size distribution (0.1) , was not cause for 

concern.   

 
 
Figure 11: Normal Probability Plot of Residuals 
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When the reproducibility bar is 1.0, the pure error is 0. This means that under the 

same conditions the values of the response are identical. If the reproducibility is 

below 0.5, it implies that there is a large pure error and  poor control of the 

experimental set up (the noise level is high). The validity of such models cannot be 

assessed. This also results in poor R2 and Q2.. In our experiments, the values for 

reproducibility were almost 1.0, for d50, % yield, and PSD.   
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3.3.2 Identification of statistically significant variables of SAS process 
 

The coefficient plot (Figure 12) displays the statistically significant factors that are 

affecting d50 (Figure 12-a), %  yield (Figure 12-b), and particle size distribution 

(Figure 12-c).  The data obtained is centered and scaled in this plot. The scaling of the 

data allows comparable coefficients. The size of the coefficient bar represents the 

degree of change in a response when a factor varies from low value to high value, 

while the other factors are kept at their averages. The coefficient is considered 

significant (different from the noise), when the 95% confidence intervals (shown as 

bars in Figure 11 a, b, and c) do not cross zero.  

 

Figure 12: Coefficient Plot 
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For the particle size (d50) response, three significant factors identified were; 

temperature, spray rate of liquid, and nozzle diameter.  The nozzle diameter was the 

most important factor impacting the particle size as it is the largest coefficient for d50 

response. When nozzle diameter increased from 100 to 200 µm, the particle size (d50) 

was also increased.  

Smaller nozzle diameter produced finer droplet and more pronounced atomization of 

the liquid spray, leading to smaller particles. The spray rate of liquid had an opposite 

effect on d50, compared to nozzle diameter. Increased spraying  rate can produce 

better atomization of the liquid spray, as more drug is available, super saturation will 

be reached quicker, leading to smaller particle sizes. Similarly, higher temperature 

increases the miscibility of acetone with scCO2; at the same time higher temperature 

of 550C may cause evaporation of acetone. Both of these phenomena ultimately result 

in quicker removal of acetone, and hence smaller particles are produced with increase 

in temperature. Additionally, higher temperature results in lower viscosity of polymer 

solution, which enhances mass transfer and more efficient removal of solvent, 

resulting in quicker precipitation and smaller particle size. The order of importance of 

the seven factors affecting d50 can be summarized as follows;  

For d50 :  dn (nozzle diameter) > T(Temperature) > Fliq (spray rate of liquid) > 

  P(pressure), Cd (drug conc), Cp(pol.conc), FCO2(rate of CO2) 

In Figure 12-b, similar analysis is shown for % yield. It can be seen that the polymer 

concentration has highest influence on % yield. The increase in % of polymer in the 

formulation causes reduction in the yield. The cause may be the presence of excessive 
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polymer which leads to precipitation in the nozzle, leading to low yield. Additionally, 

as stated earlier, higher polymer concentration causes increase in solution viscosity 

which leads to entanglement of polymer chains and delay in jet break up. This delay 

in jet break up makes solvent removal and mass transfer difficult, causing drug 

extraction instead of precipitation, causing low yield. Increase in the pressure also 

leads to a significant reduction in yield. This is understandable as increased pressure 

increases the solubility of drug in scCO2, leading to less precipitation of the drug.  

Drug concentration has an opposite effect on % yield. The yield increases with 

increasing drug concentration. This is due to availability of more drug in the liquid 

droplets causing quicker super saturation which prevents extraction of drug from the 

precipitation vessel.  

The order of importance of the factors affecting % Yield  can be presented as follows;  

For % Yield:  Cp(pol.conc) > P(pressure) > Cd (drug conc) > T(Temperature), Fliq 

 (spray rate of liquid) , FCO2(rate of CO2), dn (nozzle diameter)  

 

Finally, a similar analysis conducted for PSD shown in Figure 12-c, revealed that 

liquid spray rate had the most pronounced influence on PSD.  Additionally, there 

were four more factors that also had significant impact on the particle size. These 

were  pressure, drug concentration, polymer concentration, and the nozzle diameter.  

 

The explanation of this finding is as follows:  Consider that there are two opposing 

effects of increased  liquid spray rate: reduction in particle size and increase in 

particle size distribution. When the flow rate of liquid is increased, the precipitation 
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vessel contains larger quantity of solute (both drug and polymer).  Increased amounts 

of solute may reduce anti-solvent effect of CO2, and growth as well as coalescence of 

nuclei may dominate the process which will cause broader particle size distribution.  

Within the given operating conditions of our experiments, both of these phenomena 

are effective at any given time.  These competing mechanisms may also explain the 

bi-modal distribution of the particles.  

An increase in pressure, and drug concentration causing smaller PSD is explainable 

using the same arguments made in previous sections.  An increase in polymer 

concentration provides more availability of polymer for adsorption on drug nuclei, 

and hence more uniform drug crystals are produced, leading to smaller PSD. An 

increase in the nozzle diameter creating narrower PSD was unexpected. It could be 

that increased nozzle diameter, uniformly produced significantly larger particles, and 

hence the PSD was narrow. The order of importance of the factors for PSD  can be 

summarized as follows;  

For PSD:  Fliq (spray rate of liquid) > dn (nozzle diameter) > Cd (drug conc) > 

 P(pressure) > Cp(pol.conc) > T(Temperature), FCO2(rate of CO2),  
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3.3.3 Optimization using Sweet Spot Analysis 

Finally, based on the information gathered from the outcomes of statistical analysis, 

we carried out a Sweet Spot analysis which allowed us to predict the values for 

formulation and process variables, resulting in responses that we desire. We wanted 

to produce in-situ nano particles, hence we chose d50 range of 0 to 900 nm. A 

desirable yield of 70 to 100% would be efficient for the process. Lastly, a narrow 

PSD (span value of 0  to 3.0) would allow more predictable dissolution behavior. 

While performing the sweet spot analysis, drug concentration was kept constant at 20 

mg/ml as that was important to obtain high yield. Polymer concentration was fixed at 

20%, in order to formulate a product with minimum amount of polymer, and CO2 

addition rate was fixed at 40 g/min which was 20 times the spray rate of liquid.  

It can be seen from Sweet Spot analysis shown in Figure 13, that, in order to achieve 

the responses within the desired range described above, we could choose different set 

of values for the variables.   
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Figure 13: Sweet Spot Analysis
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A confirmation run was performed at a temperature of 450C, pressure of 80 bar, 

nozzle diameter of 150 µm, liquid spray rate of 2 ml/min, drug concentration of 20 

mg/ml, polymer concentration of 20%, and CO2 addition rate of 40 g/min. Properties 

of the produced product are summarized in Table 7, and they concur with predictions 

of sweet spot analysis.  

Table 7: Properties of optimized SAS formulation of GF coprecipitated with KVa64 

 d50 Yield (%)  PSD (Span) 

Optimized Formulation (Lot # OP1)  362 nm 89 2.711 
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4.0 CONCLUSIONS 

A conventional SAS process yields GF crystals which are needle shaped, and several 

mm long. Using the coprecipitation approach in SAS processing, one can successfully 

produce in-situ nanoparticles of GF having d50 value of approximately 0.4 µm.  The 

fractional factorial design 2(7-3) was applied for screening of large number of 

variables, allowing identification of statistically significant factors all within 19 

experimental run. The factors that impacted the particle size the most, were the nozzle 

diameter, temperature, and spray rate of liquid, in the order of decreasing importance. 

In case of particle size distribution, nozzle diameter, spray rate of liquid, drug 

concentration, pressure, and polymer concentration played significant roles. Whereas, 

the yield was affected by polymer concentration, pressure, and the drug 

concentration. Additionally, we were able to find optimum processing and 

formulation variables, which would consistently deliver product of high yield, small 

particle size, and narrow particle size distribution.  

Optimized SAS formulation of GF was crystalline in morphology, regardless of 

changing formulation and processing conditions. There was no evidence of any 

bonding between the polymer and the drug. BET surface area analysis demonstrated 

no significant differences in the surface area of optimized SAS formulation (5.2457 

m2/g) and the drug itself (5.2095 m2/g ). Zeta potential values of the SAS 

formulations indicated that the coprecipitates when added to an aqueous environment,  

formed a stable de-agglomerated suspension. The dissolution of the optimized 

formulation increased from 10% to almost 80% after 100 minutes. Finally, intrinsic 
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dissolution rate (IDR) of an optimized SAS formulation (0.0065 µg/cm2/min) was 

58% better than that of micronized GF (0.0038 µg/cm2/min) in physical mixture.
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ABSTRACT 

The objective of this study was to prepare and compare the physical and 

physicochemical characteristics of griseofulvin-polymer composite particles prepared 

using three different methods: (1) supercritical antisolvent (SAS) process, (2) spray-

drying process, and (3) the conventional solvent evaporation process.  The polymers 

used were Kollidon® VA64, HPMCAS-LF, and Eudragit® EPO.  Particle properties 

were analyzed using scanning electron microscopy, powder X-ray powder  (PXRD), 

differential scanning calorimetry (DSC), and Fourier transformed infra red (FTIR).  

Particle size and particle size distribution measurements were made using Malvern 

laser diffractometer. The dissolution behavior of pure API and solid dispersions were 

compared.  Amorphous solid dispersions of spherical shapes were obtained, 

independent of the type of polymer used, when spray drying process was used.  FTIR 

spectra indicated that the drug was hydrogen bonded to the polymers, during spray 

drying process, whereas, the drug remained in its crystalline form when the processing 

method was SAS or conventional solvent evaporation. Griseofulvin  particles,  used as 

unprocessed starting material, had a mean diameter of approximately 12 μ with a size 

range range between 5-20 μ. With the spray drying or SAS process, and using any of 

the three hydrophilic polymers, in-situ nanoparticles with the mean particle size of 0.3 

to 0.5 μ were obtained. These nanoparticles appeared to be associated with 

improvement in dissolution performance compared to unprocessed crystalline 

griseofulvin. It was concluded that physicochemical properties and dissolution of 

crystalline griseofulvin could be improved by physical modification such as particle 
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size reduction and generation of amorphous state using spray-drying process. The 

results also demonstrate that the crystalline nature of griseofulvin particles depends on 

the method of production. 

1.0 INTRODUCTION 

The enhancement of solubility and oral bioavailability of poorly water soluble drugs 

remain as the most challenging aspects of drug development. Amongst several 

approaches developed to improve the solubility of poorly soluble compounds, 

preparation of solid dispersion is a formulation strategy that is widely utilized by 

pharmaceutical scientists 1-2. Solid dispersions contain one or more active ingredients 

in an inert carrier or matrix at solid state which can be prepared by melting, solvent or 

melting solvent method 2. Many drug products commercially available in the world 

market3 contain poorly soluble active pharmaceutical ingredients, and are safe and 

effective when they are used as solid dispersions for the solubility enhancement. 

Besides solid dispersions, particle size reduction to micro and nano scale also appears 

as an effective and versatile option for solubility improvement 4-7.  Other approaches 

include formation of complexes8, chemical modification to pro drug or salt formation9, 

and lipid based drug delivery systems10.     

 

Various methods are cited in the literature for preparation of solid dispersion3. All of 

these methods involve mixing of drug with a matrix, preferably at a molecular level. 

These approaches can be broadly classified into two main categories; 1) Fusion 

method, 2) Solvent evaporation method. Fusion method, also called melt method, 
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requires high processing temperature, at which many active pharmaceutical 

ingredients may undergo degradation. Hot melt extrusion is an example of fusion 

method. Solvent evaporation method although requires milder processing conditions, 

has  a drawback of utilizing excessive organic solvents and difficulty in removing 

trace amounts of these toxic solvents left in the processed product. There are three 

sub-categories of solvent evaporation method:  conventional solvent evaporation, 

supercritical fluid based technologies11-12, and spray drying13-14.  

Solvent evaporation in its most simple and conventional form is carried out in a rotary 

evaporator under a reduced pressure and at an elevated temperature. The typical 

problem encountered in the conventional solvent evaporation process is the removal of 

the solvent from the mass of solids to an acceptable level quickly during the process. 

This is because the mass becomes more and more viscous during the “drying”, which 

prevents further evaporation of the residual solvent15-16.  

A modified and an improved version of conventional solvent evaporation technique is 

spray drying. In its basic form, spray drying is very simple process where 

droplets/particles are dried while suspended in the drying gas, turning a liquid feed 

into a small particulated dry powder in a single continuous process step.  Spray drying 

has been a preferred method in the industry for production of spherical, amorphous 

dispersions. For example, Jung et al.,17 demonstrated that the morphology of solid 

dispersions of itraconazole prepared via spray drying method, using methylene 

chloride and hydrophilic polymers like, Poloxamer® 188, PEG 20,000, PVP, HPMC, 

AEA® and Eudragit® E 100, were spherical in shape. These researchers performed 



 

125 
 

the spray drying at: 5 ml/min, pump speed; 800 l/h , air flow rate; 10–15 % aspirator 

level; 45°C , inlet air temperature; and 38°C, outlet air temperature. During  spray 

drying of tolfenamic acid (dissolved in ethanol), with  PVP K30, Thybo et al.,18 

obtained spherical amorphous solid dispersions. The spray drying was carried out in a 

co-current mode under the following set of conditions: inlet temperature: 115 ± 2°C; 

process air: 80 ± 2 kg/hr; atomization air flow: 6 kg/hr; and feed rate: 20 ± 2 g/min. 

These two examples show that irrespective of the processing conditions, the shape of 

the SD material was spherical. 

However, the spray drying process fails to produce high bulk density product. This is 

not desirable, as it would require further downstream processing for the densification 

of the material. Additionally, low product recovery and dust collection issues increases 

the cost of drying, and high initial investment is required compared to other types of 

dryers.  These limitations and a quest to develop a technique that is environmentally 

cleaner, and preserves the stability of pharmaceuticals,  lead us to explore the potential 

of supercritical fluid (SCF) based technologies for producing ultra fine polymer-drug 

mixture .  

Supercritical fluid (SCF) based technologies particularly gained popularity in the 

pharmaceutical industry as an alternative to conventional processes for preparation of 

micro and nano sized solid dispersions, due to several advantages it offers. Carbon 

dioxide, one of the SCF,  has low critical temperature (31.2 °C) and pressure (73.8 bar 

or 7.4Mpa), is nonflammable, nontoxic and environmentally safe; and hence can be 

used for processing pharmaceuticals including heat sensitive materials such as 
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biologicals. There are various categories of SCF based technologies depending on the 

role of SCF.  It may act as a solvent, an anti-solvent, or as a solute, in formation of the 

particles.  These technologies are further modified based on the particle growth 

mechanisms and their collection environment.  Rapid expansion of supercritical 

solutions (RESS), gas antisolvent precipitation (GAS), supercritical antisolvent 

precipitation (SAS), precipitation with compressed fluid antisolvent (PCA), solution-

enhanced dispersion by supercritical fluids (SEDS), precipitation from gas-saturated 

solutions (PGSS), are the main variations of SCF based approaches for particle 

formation19-22. These techniques have successfully produced micro and nano 

particles23-24 and in some cases amorphous solid dispersions have been successfully 

prepared25.   Among all of these SCF based techniques, SAS is of particular interest 

because most pharmaceuticals are insoluble in supercritical carbon dioxide (scCO2),  

and SAS is one of the technique that can effectively process such compounds. 

Additionally, SAS is the only technique amongst SCF based technologies, that has 

been successfully applied at an industrial scale26.  

Particle precipitation mechanisms are somewhat similar in SAS and in spray-drying. 

In both methods, a solution is sprayed through a nozzle and is allowed to atomize 

under elevated temperature in a one-step process.  The major difference is that SAS 

processing is carried out at an elevated pressure conditions, as opposed to an 

atmospheric condition used in spray drying.  In an earlier study, we reported the 

various processing and formulation factors that affect the reduction of particle size of 

griseofulvin. The goal of this study is to compare and evaluate the physiochemical and 
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dissolution properties of the products, produced by three methods mentioned here; 

SAS, spray drying, and conventional solvent evaporation.   

Griseofulvin, an antifungal drug widely used for the treatment of mycotic diseases of 

the skin, hair, and nails, was chosen as the model drug. The solubility of GF in water 

is only about 1 μmol/mol at 37 °C27, it has low permeability (Caco2 cell permeability 

of -4.44) 28 and it belongs to Biopharmaceutics Classification System (BCS) class II 

pharmaceuticals. It is a neutral drug, non-ionizable, and has 6 H+ acceptor functional 

groups (Figure 1)  

 

Figure 1: Chemical structure of griseofulvin 

There are various factors that affect selection of a polymer in  preparing solid 

dispersions, such as; possibility of drug-polymer interaction,  solubility of a polymer 

in water, and in organic solvents, global regulatory acceptance, stabilizing ability of an 

ionic polymer in an aqueous environment, and ease of  processibility. We identified 

three hydrophilic polymers, having different molecular structure, and ionic properties; 

namely Kollidon® VA64, HPMCAS, and Eudragit EPO®, shown in Figure 2.  

Polymers with different molecular structures, and ionic properties are selected to 
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understand their interaction mechanisms with griseofulvin in different manufacturing 

processes.  

  
 
Figure 2: Chemical structure of Eudragit EPO, HPMC-AS, and Kollidon VA64 (from 

left to right) 

Kollidon® VA64 is manufactured by free radical polymerization of 6 parts of N-vinyl 

pyrrolidone, and 4 parts of vinyl acetate. It is non ionic polymer, widely used in the 

preparation of solid dispersion. It is freely water soluble and has an excellent solubility 

in acetone, organic solvent chosen for our process. It does not contain any H+ donor 

functional group.  

HPMC-AS (hypromellose acetate succinate) is a partially esterified derivative of 

Hypromellose, where succinoyl and acetyl residues are bound to the cellulose 

backbone. It is  practically insoluble in water, and has a pH dependent solubility in a 

buffered media. It is an anionic polymer, which has both H+ donor and H+ acceptor 

groups. Obaidi et al.,29 showed that it can form strong hydrogen bonding with 

griseofulvin, in a spray drying process. Corey, et al.,30 demonstrated that HPMC AS 
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can provide a charge when nanoparticles are suspended in an aqueous environment, 

thus reducing or eliminating agglomeration of nanoparticles. 

EUDRAGIT® EPO is a cationic copolymer based on dimethylaminoethyl 

methacrylate, butyl methacrylate, and methyl methacrylate. It is also practically 

insoluble in water, and has a pH dependent solubility in a buffered media. Sarode et 

al.,31 showed that it can form hydrogen bonding with griseofulvin, in a hot melt 

extrusion  process. Chernysheva et al.,32 studied the effect of type of hydrophobic 

polymer on the nanoparticle size obtained through emulsification-solvent evaporation 

method. They postulated that Eudragit polymers due to their mild surface active 

properties, and ability to be ionized, provide very low interfacial tension, and produce 

small droplet upon exiting from the nozzle, and hence produce the smallest particles, 

compare to poly (D, L, lactide, co-glycolides) polymer which have no ionizable 

hydrophilic group.   

Based on the literature presented here, we propose to compare the production 

effectiveness of SAS, spray drying, and solvent evaporation methods, using three 

different polymers (Kollidon® VA64, HPMCAS, Eudragit® EPO) and choose the 

most practical, and cost effective method that can produce ultra fine particles of 

griseofulvin, and thus improve its dissolution. Solid dispersions obtained in that 

manner is  further characterized by determining their physicochemical properties via 

powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), 

differential scanning calorimetry (DSC), and microscope . The dissolution behavior of 

the pure API and in the solid dispersions are also discussed. 
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2.0 MATERIALS AND METHODS 

2.1 Materials 

The model drug Griseofulvin (GF) was purchased as micronized API (lot # 115H1180 

) through jet milling process, from Ria International (East Hanover, NJ). The 

vinylpyrolidone -vinylacetate copolymer Kollidon® VA-64 was obtained from BASF 

corporation (Florham Park, NJ). The methacrylic polymer, Eudragit EPO was 

purchased from Evonik Degussa Corporation (Piscataway, NJ). The cellulosic 

polymer, HPMCAS-LF, manufactured by Shin-Etsu Co., Ltd. (Niigata, Japan) was 

donated by Biddle Sawyer Corporation (New York, NY). Acetone (purity 99.5%)  

was purchased from Sigma Aldrich (St Louis, MO). Polystyrene latex microspheres 

(98 nm, 150 nm, 310 nm, 900 nm, and 2000 nm), for checking the accuracy of 

Malvern instrument, were purchased Magsphere, Inc. (Pasadena, CA). Liquid Carbon 

Dioxide (purity 99.9%, instrument grade 4.0 with siphon tube) was purchased from 

Airgas USA, LLC (Salem, NH).  
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2.2 Methods 

2.2.1 Supercritical antisolvent (SAS) Process 

An SAS apparatus (model: SAS 50, Thar Technologies Co., USA) was used to 

generate GF-polymer co-precipitates. The schematic diagram of Tharr SAS system 

using supercritical carbon dioxide (SCCO2) as an anti-solvent is shown in manuscript 

II. In that previous work, we studied the effect of various formulation and instrumental 

variables  on the effectiveness of SAS process. The optimized processing variables 

used in this work were: drug/polymer ratio of 80/20 (% w/w), in acetone with total 

concentration of 2.5 % (w/v);  precipitation chamber temperature of 450C; pressure of 

85 bar;  organic solvent addition rate of 2 ml/min ; CO2 addition rate of 40 g/min;  and 

nozzle diameter of 150 µm.  Liquid CO2 from the tank was pre-heated to 45°C in a 

heat exchanger and then pumped into the high-pressure precipitation chamber 

maintained at 45°C. After the system reached 85 bar , pure acetone was pumped for 5 

minutes  in order to reach equilibrium conditions inside the precipitation vessel. 

Acetone solution (100 ml)  containing drug and polymer was then pumped at 2 ml/min 

speed into the precipitation chamber through the 100 µm nozzle,  and meanwhile 

steady flow of CO2 (40 g/min) was maintained. The mixing of the organic solvent with 

compressed CO2 resulted in decreased solvation power of the solvent and super 

saturation developed over a short period of time.  Upon completion of spraying of 

solution, the compressed CO2 was flushed through the precipitation chamber for 

another 40–60 min to extract the residual organic solvent from the product. Then the 

system was slowly depressurized to the atmospheric conditions. Final products were 

collected from the 0.22 μ Nylon filter element and kept in a desiccator. Formulation 
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SAS1 contained Kollidon® VA64, SAS2 contained HPMCAS-LF, and SAS3 

contained Eudragit® EPO as the polymer matrix.   

2.2.2 Spray Drying Process (SD)  

SD experiments were performed using a Büchi Mini Spray Dryer B290 (Labortechnik 

AG, Switzerland) with a co-axial nozzle (1.2 mm diameter) with co-current flow. 

Approximately 100 ml of solution containing griseofulvin and the selected polymer 

(weight ratio: 80:20) in acetone were fed to the precipitation chamber of spray dryer. 

Drug:Polymer ratio of 80:20 was chosen for SD experiments, because this was the 

ratio used earlier for process optimized with SAS. The total concentration of the solute 

in solutions was 2.5 w/v %. The inlet temperature at the drying chamber was 

maintained at  65 ± 2°C and outlet temperature was 30 ± 2°C. The aspirator setting was 

88% and atomizing air was set at 5.5 cm (750 l/h). The spray feed rate was 6 

mL min−1. Formulation SD1 contained Kollidon® VA64, SD2 contained HPMCAS-

LF, and SD3 contained Eudragit® EPO as the polymer matrix.   

2.2.3  Solvent Evaporation Method (SE)  

As conventional for  solvent evaporation method, the drug (20 mg/mL) and carrier 

polymer (5 mg/mL) were dissolved in 100 mL of acetone in a round-bottom flask. The 

solvent was removed under vacuum in a Buchi RE-111 Rotavapor  (Labortechnik AG, 

Switzerland)  at 65°C and 45 rpm over 30-45 minutes. The resultant solid dispersion 

was scraped out with a spatula. Dispersions were then further dried in a vacuum oven 

set at 400C, for 24 hours. Formulation SE1 contained Kollidon® VA64, SE2 contained 

HPMCAS-LF, and SE3 contained Eudragit® EPO as the polymer matrix.   
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2.2.4 Preparation of the physical mixture 

The physical mixture of griseofulvin with various polymers were prepared as a 

control, in 80:20 (drug:polymer) w/w ratio,  by simple blending in a vial for 30 

minutes.  
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2.3 Characterization of formulated samples 

2.3.1 Microscopy 

A scanning electron microscope (SEM), model  TM-1000 manufactured by Hitachi 

(Hitachi High-Technologies Europe GmbH, Germany) was used to examine the 

particle size and morphology. The magnifications were altered in order to get clear 

images. The samples were fixed by mutual conductive adhesive tape on aluminum 

stubs. In addition to SEM, an ultra- high resolution digital microscope , model VHX 

600, manufactured by Keyence (KEYENCE America, Elmwood Park, NJ) was used to 

obtain 3-D images.  

2.3.2 Laser Diffraction Particle Size Analysis 

Particle size (PS)  and particle size distribution (PSD) were measured using a 

Mastersizer® 2000 (Malvern Instruments Ltd., Malvern, UK) . The Mastersizer® 

2000 uses the technique of laser diffraction to measure the size of particles.  

In our study, the output signal was converted into PSD by using Mie theory. The 

refractive index of the drug was measured using Reichert ® AR 200 digital 

refractometer (Reichert Technologies, Depew  NY ) and average value (n=6) was 

found to be 1.34. Approximately 50 mg of processed product was added to 10 ml 

of dispersing media and sonicated for 1 minute prior to analysis.  Each particle 

size measurement  was performed in triplicates, with about 1000 particles being 

measured in each run.   

The results are reported in % volume distribution as it is more pharmaceutically 

relevant. Results are expressed as D(4,3) , d50, and span; denoting the volume 
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weighted mean diameter , diameter of 50th percentile of distribution,  and the span 

is the width of the distribution based on the 10th , 50th, and 90th percentile. 

Span = (d90 – d50)/d10 …………………………………….  Equation 1 

Sample measurements were done in two different dispersing media; n-hexane and 

phosphate buffer (pH 6.8) . Measurements done using n-hexane provides particle size 

of intact drug-polymer coprecipitates, as neither dissolves in n-hexane. Whereas,  all 

polymers are completely soluble in phosphate buffer (pH 6.8), and hence that 

dispersing media provides measurement of in-situ particles of GF alone.  

Prior to performing particle size measurements of processed samples, the accuracy and 

reproducibility of Malvern laser light diffraction method was challenged using 

polystyrene latex microspheres of known diameter.  The choice of dispersing media 

did not affect the accuracy, or reproducibility of measurements. The details of these 

experiments can be found in manuscript II.  

2.3.3 Powder X-Ray Diffraction (PXRD) 

The morphological characteristics of the substance was determined using Powder X-

Ray Diffraction (PXRD). PXRD was performed using Bruker D8 Advance Powder X– 

Ray Diffractometer (Brukler Corporation, Madison, WI). Samples were analyzed 

using a Cu (ƛ=1.54) K α radiation. The X-ray pattern was collected in the 2θ  range of 

1 to 400 in the step scan mode (scan speed 0.270/sec and  step size 0.0045°). PXRD 

depicts sharp peaks for crystalline substances and disappearance of these peaks 

indicates a transformation of a crystalline substance into an amorphous form. 
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2.3.4 Fourier Transformed  Infrared Spectroscopy (FTIR) 

FTIR spectra were collected on a Nicolet 6700 from Thermo scientific (Thermo Fisher 

Scientific Inc., Pittsburgh, PA) . Powders were measured directly using the smart orbit 

accessory. Spectra were collected  from 400 – 4000 cm-1 using 64 scans at a 

resolution of 4 cm-1. Spectra were analyzed using the Omnic software (v.7.2).  

2.3.5 Thermal Analysis 

Differential Scanning Calorimetry  (DSC) was performed by using a DSC Q 2000 ® 

differential scanning calorimeter (TA Instruments, New Castle, Delaware). 

Calibrations were performed prior to analysis using pure samples of indium and zinc. 

For Melting point (Tm) determination a conventional DSC method was run at 100C 

per minute and samples were scanned from 100C to 250 0C. For glass transition 

temperature (Tg) determination, a modulated DSC method was run at 3 0C  per minute 

(modulations were performed at 0.6460c every 40 seconds) and samples were scanned 

from 0 to 2000C . The measurements were carried out in a hermetically sealed 

aluminum pans under nitrogen atmosphere using approximately 6 - 8 mg of sample. 

Melting point (Tm) and glass transition temperature (Tg) values were determined by 

the Pyris software.  

2.3.6 Dissolution Rate and Intrinsic Dissolution Rate (IDR) 

The dissolution rate and IDR of griseofulvin samples were measured in Distek® 

Dissolution Apparatus (Distek, North Brunswick, NJ)  equipped with UD-lite® fiber 

optic measurement capability. Solid dispersion samples from  SD, SE, and SAS 

processes were compressed into 100 mg tablets using a flat faced ¼”  round tooling, 
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under carver press. Each tablet contained equivalent of 7 mg of drug, polymer, and 

lactose was used as filler. The physical mixtures of drug and a polymer were  also 

compressed into tablet having the same ratio of drug to polymer, and the filler. 

Dissolution media was pH 6.8 phosphate buffer (0.05M) which was considered to be 

a simulated intestinal fluid (SIF). The dissolution analysis was performed in 500 ml 

SIF at UV wavelength of  295 nm using USP dissolution apparatus type II, at 370C, 

50 rpm. 

In conventional dissolution studies using tablet or powder, factors such as rate of 

wetting, effect of particle size and hence specific surface area, disintegration, 

clumping etc., can affect the rate of dissolution. Whereas, intrinsic dissolution rate 

(IDR), using Wood’s apparatus, provides a constant surface area, and permits a 

constant hydrodynamic system and in general avoids many of the problems associated 

with powders or tablet.  

For Intrinsic dissolution studies, a Distek stationary disk system was used to prepare 

the compact pellets and perform the test. Approximately 200 mg of solid dispersion 

sample from different processing methods, was compressed with the aid of a benchtop 

Carver press (Carver, Inc., Wabash, IN, USA) at 4000 psi with a dwell time of 10 

seconds to form a compact pellet of 0.5 cm2 exposed surface area. Assemblies, each 

composed of the pellet, die, gasket, and a polypropylene plastic cap, were immersed 

with the pellet side up, into the bottom of flat-bottom dissolution vessels containing 

500 mL of SIF at 37°C. The USP Apparatus II paddle was positioned 1 inch above the 

assembly and rotated at 50 rpm.  
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3.0 RESULTS AND DISCUSSION 

3.1 Microscopy   

The microscopy pictures showed that the micronized drug purchased had irregularly-

shaped, crystalline structures , and were approximately 5 -20 µm in dimensions 

(Figure 3). The solid dispersion samples obtained by the SAS process, were fibrous, 

and needle- shaped, independent of the type of polymer used (Figure 4). The length of 

the intact needles was approximately 1 – 10 µm, and the thickness was less than 1 µm. 

In contrast, spray-dried micro-particles were spherical  (Figure 5) in shape for all three 

polymers used.  Lastly, the morphology of crystalline particles obtained via 

conventional solvent evaporation process was plate like and irregular shaped (Figure 

6).  

 

 
Figure 3. Scanning Electron Microscopy (SEM) image of micronized Griseofulvin 

API  
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Figure 4. Scanning Electron Microscopy (SEM) images of SAS formulations of GF 

with Kollidon VA64(a), HPMC-ASLF (b), and Eudragit EPO (c) 
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Figure 5. Scanning Electron Microscopy (SEM) images of spray dried formulations of 

GF with Kollidon VA64(a), HPMC-ASLF (b), and Eudragit EPO (c) 
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Figure 6. Scanning Electron Microscopy (SEM) images of solvent evaporation 

method  formulations of GF with Kollidon VA64(a), HPMC-ASLF (b), and Eudragit 

EPO (c) 
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As it was experienced earlier by many workers17-18 who studied several drugs of 

different origin, and very different polymers, our drug, griseofulvin, and selected 

polymers (Kollidon® VA64, HPMCAS-LF, Eudragit® EPO) also formed spherical 

amorphous particles, when spray drying process was applied. The mechanism of 

particle formation during spray drying might explain this roundness and smoothness. 

At first, there is formation of small or micro sized droplets at the end of nozzle. These 

droplets meet a stream of hot air and they lose their moisture very rapidly while still 

suspended in the drying air. The dry powder is then separated from the moist air by 

centrifugal action in a cyclone separator . This cyclonic movement of particles during 

the drying process prior to reaching the final collector is most likely giving the 

particles the spherical shape and smoothness33-34. 

Crystalline, needle shaped morphology of GF particles processed via SAS technique 

has been observed by other researchers as well. Foster et al.,35and Reverchon et al., 36  

found that GF by itself (without any polymers) tend to precipitate out as crystalline, 

long needles of several hundred microns long when SAS process was used. In our 

study, we applied the coprecipitation approach. Even though the coprecipitates of GF 

and all three polymers were  fibrous and needle shaped, the length of the needle 

became significantly shorter (d50: 2.3 to 3.7 µm), compared to GF precipitated alone 

(500 µm to 1mm  through SAS process (Figure 7).  Obviously, the presence of 

polymer used is affecting the crystallization of GF resulting in modified morphologies. 

The reduced size may be the result of adsorption of the polymer onto fast growing 

drug crystal faces. Researchers like Jarmer et al.,37 also studied the precipitation of GF 
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in presence of polymer Poly (sebacic anhydride) using a modified SAS process called 

PCA (particles from compressed antisolvent). They found that while the particle size 

of GF, when processed alone was around 500 µm, it reduced to 1-100 µm, when 

processed with  Poly (sebacic anhydride).  

 
Figure 7: GF precipitated alone from acetone via SAS process  
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3.2 Particle size (PS) and particle size distribution (PSD) measurement  

PS and PSD of SAS, and spray dried formulations were measured by laser diffraction 

method, as obtained. Samples obtained with solvent evaporation method  were 

collected in the form of films by scraping the walls of glass flask, and hence the 

samples were crushed using mortar and pestle prior to particle size measurement, in 

phosphate buffer (pH 6.8) or in n-hexane.  

The particle size measurements of the SAS formulations for each polymer, using two 

different dispersing media, are summarized in Table 1, and Table 2. Using n-hexane as 

the dispersing media, volume weighted mean diameter (D(4,3)) of all intact samples 

ranged between 2.9 µm to 5.0 µm, whereas d50 value ranged between  2.3 µm to 3.7 

µm .  When the particle size measurement was done using phosphate buffer (pH 6.8) 

as the dispersion media, an in-situ nanoparticles of GF had volume weighted mean 

diameter (D(4,3)) of 0.5 µm, and the d50 value was approximately 0.4 µm.  
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Table 1.  Particle size distribution data of SAS, spray dried, and solvent evaporation 

formulations in n-hexane  

 

  
SAS Spray Drying 

Solvent 
Evaporation 

D(4,3) d50 Span D(4,3) d50 Span D(4,3) d50 Span

Kollidon 
VA64 

Mean 
(n=3) 

5.0 3.7 3.1 15.9 12.9 2.2 332.4 271.2 2.4 

Std. 
Dev 

0.1 0.2 0.2 0.6 0.3 0.1 10.9 9.2 0.1 

HPMCAS-
LF 

Mean 
(n=3) 

4.3 2.8 2.7 2.5 1.9 1.6 377.5 290.7 2.7 

Std. 
Dev 

0.2 0.1 0.2 0.2 0.2 0.2 22.5 27.3 0.1 

Eudragit 
EPO 

Mean 
(n=3) 

2.9 2.3 1.9 3.9 2.5 3.0 358.0 287.0 2.5 

Std. 
Dev 

0.2 0.1 0.1 0.1 0.1 0.1 23.5 17.8 0.2 

 
 
Table 2.  Particle size distribution data of SAS, spray dried, and solvent evaporation 

formulations in phosphate buffer (pH 6.8) 

 

  
SAS Spray Drying 

Solvent 
Evaporation 

D(4,3) d50 Span D(4,3) d50 Span D(4,3) d50 Span

Kollidon 
VA64 

Mean 
(n=3) 

0.50 0.40 2.3 0.91 0.343 4.8 24.70 18.30 3.0 

Std. 
Dev 0.02 0.02 0.06 0.02 0.01 0.10 1.44 1.66 0.10 

HPMCAS-
LF 

Mean 
(n=3) 

0.55 0.37 2.5 0.76 0.375 3.8 28.30 21.50 2.8 

Std. 
Dev 

0.04 0.01 0.1 0.05 0.022 0.1 3.15 5.35 0.1 

Eudragit 
EPO 

Mean 
(n=3) 

0.54 0.37 2.6 0.62 0.340 3.6 82.20 28.10 4.9 

Std. 
Dev 

0.01 0.01 0.08 0.02 0.01 0.06 4.56 5.03 0.36 
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The particle size measurements of the spray dried formulations for each polymer, was 

also carried out in the same manner, and results are summarized in Tables 1 and 2. 

Using n-hexane as the dispersing media, volume weighted mean diameter  (D(4,3)) of 

intact SD solid dispersions ranged between 2.5 µm to 15.9 µm, and the d50 value for 

all intact SD formulations ranged from 1.9 µm to 12.9 µm. Once the polymer is 

dissolved from the spray dried amorphous solid dispersion, the drug  crystallizes out in 

the form of nano particles. We were able to verify the crystalline nature of GF by 

observing the birefringence under  polarized light microscopy (Figure 8). As shown in 

Table 2, when phosphate buffer (pH 6.8) was used as the dispersion media, the volume 

weighted mean diameter  (D(4,3)) of in situ nano particles ranged between 0.6 µm to 

0.9 µm, whereas the corresponding d50 value for all spray dried formulations was 

approximately 0.3 µm.  

 

Figure 8.  Polarized light microscopy image showing birefringence of spray dried 

formulation of GF dispersed in phosphate buffer (pH 6.8) 
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Lastly, the particle size measurements of the solvent evaporation method formulations, 

carried out in the same manner, are also reported in Table 1 and Table 2. The volume 

weighted mean diameter (D(4,3)) of all intact samples ranged between 332.4 µm to 

377.5 µm, whereas d50 value ranged between  271.2 µm to 290.7 µm .  As mentioned 

before, solvent evaporation method samples were collected in the form of film, and 

were gently crushed prior to sample measurement. Hence, these results which are 

largely different from SAS, and SD process, is explainable. When the particle size 

measurement was done using phosphate buffer (pH 6.8) as the dispersion media, the 

in-situ particles of GF had volume weighted mean diameter (D(4,3)) of  24.7 to 82.2 

µm, and the d50 value was 18.3 to 28.1 µm. As opposed to SAS and SD process, which 

produced in-situ nanoparticles of GF, solvent evaporation process resulted in 

extremely large particles of GF in-situ.  
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3.2.1 Analysis of Variance (ANOVA)  

ANOVA was performed on d50 values to see if the type of polymer used (Kollidon® 

VA64, HPMCAS-LF, Eudragit® EPO), or the kind of process applied (SAS vs spray 

drying) had any significant impact on the particle size of intact drug polymer mixture. 

Results as summarized in Table 3, show that F value of polymers, and that of process 

(SAS and SD)  is larger than their F critical values, hence null hypothesis is rejected, 

and there is statistically significant difference in particle size amongst three different 

polymers, and between SD and SAS processes. The d50 values from solvent 

evaporation method formulation were not used for ANOVA test, as it was evident 

without any doubt that, those particles were significantly larger than the SAS or SD 

process particles.  

It is also evident from the Table 3 that amongst the three polymers tested, ionic 

polymers (HPMCAS-LF and Eudragit EPO), produced smaller particles in SAS and 

spray drying process, as compared to non-ionic polymer (Kollidon VA64).  Ionic 

polymers provide low interfacial tension, and tend to produce smaller droplet upon 

exiting from the nozzle (in both SAS and spray drying process), and hence produced 

the smallest particles, compare to Kollidon VA64 which have no ionizable hydrophilic 

group.  
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Table 3: Statistical comparison of particle size (d50)of intact GF coprecipitates 

produced via SAS vs Spray Drying process, using different polymers, by application 

of Analysis of Variance (ANOVA) 

Summary  

Polymer Process d50(Mean) Std.Dev n 

KollidonVA64 SAS 3.7 0.2 3 

 
Spray 
Drying 

12.9 0.3 3 

  Solv.Evap 271.2 9.2 3 

HPMCAS-LF SAS 2.8 0.1 3 

 
Spray 
Drying 

1.9 0.2 3 

  Solv.Evap 290.7 27.3 3 

Eudragit EPO SAS 2.3 0.1 3 

 
Spray 
Drying 

2.5 0.1 3 

  Solv.Evap 287 17.8 3 

ANOVA Table 

Source of 
Variation 

SS df MS F P-value F crit 

Polymers 139.3641 2 69.68205 1790.545 1.38765E-15 3.885294
Process 36.83680556 1 36.83681 946.556 8.73047E-13 4.747225
Interaction 93.29774444 2 46.64887 1198.686 1.52638E-14 3.885294

Within 0.467 12 0.038917

Total 269.96565 17         
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 3.3 PXRD 

The micronized GF obtained from supplier, is crystalline with well-defined peaks in 

PXRD (Figure 9). PXRD of GF solid dispersion samples prepared by the solvent 

evaporation and SAS methodology show that the material morphology remained 

crystalline. PXRD patterns of untreated GF matches that of all samples prepared using 

solvent evaporation and SAS method, independent of type of polymer used. In 

addition, PXRD patterns of the physical mixtures of GF and polymer samples were 

similar to that of untreated, GF, indicating the drug remained in crystalline form in the 

physical mixtures. In contrast, spray drying yielded an amorphous solid dispersion as 

was evident from the absence of peaks in the powder XRD scans. 

The crystal structure is considered to be highly ordered structure, repeating itself in 

three dimensions. However, in practice, there are always imperfections in the crystal 

lattice such as point defects (e.g. vacancies, impurity defects etc), line defects (e.g 

edge dislocation) and plan defects (e.g grain boundaries)38. The level of such 

imperfections are likely to increase many fold during rapid drying process such as 

spray drying. Hence, spray drying process produced amorphous morphology.   

During SAS processing, there was multicomponent system of drug, polymer and 

solvent. The presence of drug and polymer could have affected the solubility of 

acetone in scCO2. Reverchon et al.,36 hypothesized that when there is incomplete 

miscibility between the organic solvent and the scCO2, the particle formation takes 

longer duration, and particles are formed at the bottom of the vessel  only when the 

organic phase reaches the super-saturation. This process takes longer duration  (as 
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compared to spray drying) and hence that may have allowed preferred packing of the 

molecules into its most stable form, the crystalline form.  This is why our SAS process 

yielded crystalline morphology, and spray drying process produced amorphous 

material.  

 

Figure 9. PXRD of untreated as-is GF, SAS formulations, spray dried formulation, 

and solvent evaporation method formulations. 
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3.4 Thermal Analysis 

DSC curves of micronized GF obtained from supplier, SAS coprecipitate, solvent 

evaporated solid dispersion, and spray-dried samples to corroborate the amorphicity 

and/or crystallinity of GF in the solid dispersion, are shown in Figure 10.  All samples 

were dried at 900C for 10 minutes to eliminate any plasticizing effect from residual 

organic solvent.   Untreated GF gave a melting endotherm at around 219°C indicating 

that the drug is in crystalline form. Melting of GF was observed between 215 to  

218°C with SAS processed coprecipiates, and  the solvent evaporation process 

samples.  DSC analysis is in agreement with PXRD and provided further evidence that 

the SAS processed material and solvent evaporation process material  are crystalline in 

nature.  

There was complete disappearance of drug melting endotherm for spray dried 

materials. Independent of the type of polymer used, all spray dried formulations of GF 

were amorphous and their glass transition temperature (Tg) was calculated . Tg of 

spray dried formulation containing Kollidon VA64, HPMCAS-LF, and Eudragit EPO 

were 82.70C , 93.90C and 90.10C , respectively.  The change in glass transition 

temperature reflects different noncovalent interaction between the drug, Griseofulvin 

(Tg 890C)  and polymers, Kollidon VA64 (Tg 1130C ), HPMCAS-LF (Tg 1230C ), 

and Eudragit EPO (Tg 550C). These findings are also compatible with their PXRD 

observations. The similarity in DSC curves and PXRD patterns with spray-dried 

samples  indicated that drug was amorphously dispersed in the polymer.   
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Figure  10. DSC curves of  untreated GF, SAS formulation, spray dried formulation, 

and solvent evaporation method formulation. 

3.5 FTIR Analysis 

FTIR is an effective technique in detecting presence of interaction in drug-carrier solid 

dispersions. The appearance or disappearance of peaks and/or the shift of their 

positions are often an indication of interactions such as hydrogen bonding.39 To 

examine the possibility of hydrogen bond formation, an FTIR study was undertaken.  

As shown in Figure 11(b), GF has two characteristic peaks; the first peak (1,704 cm−1) 

corresponds to the stretching of carbonyl group of the benzofuran, and the second 

peak (1,658 cm−1) corresponds to the stretching of the carbonyl group of cyclohexene. 

These  FTIR spectra of GF were in agreement with published work of Nair et al.,40. 
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The FTIR results showed that there is a broadening of the GF carbonyl peak at 

1,704 cm−1, and slight shift in 1,658 cm−1 peak, in the binary solid dispersion of spray 

dried formulations with all polymers (Figure 12). The broadened peaks indicated that 

the drug has formed hydrogen bonds, resulting in the shift of the peak. The broadening 

also refers to the distribution of free and bound carbonyl groups of GF. FTIR spectrum 

from SAS and solvent evaporation processes showed no discernible differences.  
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a)      

 

b) 

 

Figure 11: FTIR Spectrum of griseofulvin API (un-processed), showing entire 

spectrum (a), and the region of interest (b).   
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Figure 12. FTIR spectrum of spray dried formulations vs. Griseofulvin API  
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3.6 Dissolution Study 

The drug dissolution behaviors of SAS formulations, spray-dried formulations, and 

solvent evaporation method formulations, were compared  to untreated GF in physical 

mixture with a water soluble polymer (Kollidon VA64) . It can be seen in the Figures 

13 and 14, that enhancement of GF dissolution rate was achieved in SAS and spray 

dried formulations. Dissolution curves of spray dried and SAS coprecipitates showed 

the steep initial slope and the dissolution rate was more than 8 times higher than raw 

drug after 100 minutes of dissolution. 

In regards to the physicochemical properties studied in this work, similar mechanisms 

seemed to govern the dissolution of GF , independent of the type of  polymer used in 

the solid dispersion.  The dissolution profiles of products prepared by spray drying, 

and SAS enhanced the dissolution of GF to all most the same extent; whereas solvent 

evaporation method formulation did not improve the rate of dissolution of GF.  

GF in spray dried solid dispersions was amorphous, however in SAS formulation it 

was crystalline. Prior to starting the dissolution, our expectation was that spray dried 

formulation would be better in rate of dissolution compared to SAS formulations. It 

was surprising to find that there was apparently no difference in rate of dissolution 

between SAS and spray dried formulations. This is because the improvement in 

dissolution was due to reduction in particle size. SAS formulation when exposed to 

phosphate buffer produces nano crystalline GF in situ.  Similarly, amorphous GF solid 

dispersion from spray drying process undergoes fast re-crystallization when exposed 

to aqueous environment  (as confirmed in polarized light microscopy), and leads to 
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formation of nano crystalline material in situ, identical to SAS formulation. Thus, it is 

the small particle size (of SAS and spray dried processes) with large surface area, 

which facilitate the disintegration of the solid dispersions, and provides faster rate of 

dissolution. It was confirmed by Malvern laser light diffractometer, that particle size 

of in situ GF was identical in SAS and spray drying process.  

 

 

Figure 13. Dissolution of  griseofulvin from tablets made with  spray dried 

formulations vs physical mixture of GF with Kollidon VA64 
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Figure 14. Dissolution of griseofulvin from tablets made with  SAS formulations vs 

physical mixture of GF with Kollidon VA64 

 

Figure 15. Dissolution of  griseofulvin from tablets made with  solvent evaporation 

method  formulations vs physical mixture of GF with Kollidon VA64 
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Intrinsic dissolution rate (IDR) 

Apparent IDR of formulations manufactured by three different methods, and three 

different polymers, were calculated by measuring the slope of concentration (µg/mL) 

vs time (min)  profile;  and are compared to that of physical mixture of GF with 

KollidonVA64.  The IDR of pure GF in physical mixture with polymer is 0.0038 

µg/cm2/min. Table 4 shows the IDR of various formulations prepared by SAS, spray 

drying, and solvent evaporation processing. The IDR of SAS formulations ranged 

between 0.0058 µg/cm2/min to 0.0065 µg/cm2/min, which was an improvement of 

53%  to 71%.  The IDR of spray dried formulations ranged between 0.0063 

µg/cm2/min to 0.0068 µg/cm2/min, which was an improvement of 66% to 79%.  

Whereas, the IDR of solvent evaporation process formulations ranged between 0.0036 

µg/cm2/min to 0.0039 µg/cm2/min, and showed almost no improvement.  
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Table 4: Intrinsic Dissolution Rates of various solid dispersions (mean + SD, n=3) 

Intrinsic Dissolution Rate (µg/cm2/min) 
 

SAS Spray Drying 
Solvent 

Evaporation 
Kollidon® VA64 0.0065 + 

0.0011 
0.0063 + 
0.0015 

0.0037 + 
0.0008 

HPMCAS-LF 0.0058 + 
0.0008 

0.0068 + 
0.0007 

0.0039 + 
0.0002 

Eudragit® EPO 0.0062 + 
0.0014 

0.0062 + 
0.001 

0.0036 + 
0.0009 

Physical Mixture 
of GF + Kollidon 
VA64 

0.0038 + 0.0005 
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4.0 CONCLUSION 

SAS, spray drying, and conventional solvent evaporation techniques were evaluated 

for their potential to produce rapidly dissolving dosage form of griseofulvin, a BCS 

class II API, with hydrophilic polymers. The properties of the product, and key 

processing attributes are summarized in Table 5.  

Table 5. Comparison of SAS, spray drying, and solvent evaporation methods, for 

preparation of GF coprecipitates  

  Process 
Temp. 
(0C) 

Process 
Yield 
(%) 

d50 
intact 
(µm) 

d50 
in-
situ 

(µm) 

DSC 
(Tm /Tg) 

(0C) 

PXR
D 

FTIR 
Interact

ion? 

IDR 
µg/cm2

/min 

S

A

S 

KVA64 
45 89 3.7 0.4 

Tm  

215.0 
C No 

0.006

5 
HPMC
AS-LF 45 91 2.8 0.37 

Tm  

216.9 
C No 

0.005

8 
Eudragi
t EPO 45 60 2.3 0.37 

Tm  

217.1 
C No 

0.006

2 

S

D 

KVA64 
65 54 12.9 

0.34

3 
Tg  82.7 A Yes 

0.006

3 
HPMC
AS-LF 65 60 1.9 

0.37

5 
Tg  93.9 A Yes 

0.006

8 
Eudragi
t EPO 65 63 2.5 0.34 Tg  90.1 A Yes 

0.006

2 

S

E 

KVA64 
65 95 271.2 18.3 

Tm  

218.0 
C No 

0.003

7 
HPMC
AS-LF 65 92 290.7 21.5 

Tm  

216.9 
C No 

0.003

9 
Eudragi
t EPO 65 90 287.0 28.1 

Tm  

217.9 
C No 

0.003

6 

Tm = melting point, Tg = glass transition temperature, C= Crystalline, A= 

Amorphous,
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It was shown that the properties of GF-polymer coprecipitates are influenced by the 

processing methods. Overall, SAS is the most desirable process, as it had reasonably 

high product yield. The product obtained was crystalline, and was subjected to the 

lowest temperature during processing. Due to crystalline morphology and exposure to 

milder processing conditions, it is expected to have the least stability complications. 

On the whole, it is a promising approach to produce crystalline solid dispersions in a 

few processing steps. However, the complexity of the process must be weighed 

against its benefits. 

From downstream dosage form processing perspective, spray dried products being 

spherical in shape, would be desirable compounds as they would have good powder 

flow characteristics. The amorphous GF was molecularly dispersed in the spray dried 

solid dispersions of each polymer through hydrogen bonding. However, due to low 

polymer content (20%), the drug re-crystallizes rapidly in an aqueous environment. 

Therefore, it is assumed that the drug would undergo rapid recrystallization during 

storage. In spite of several prediction methods available to measure reversion to 

crystallinity, it is still a difficult task to determine accurately and to control. Hence, we 

conclude that the spray drying process is not desirable for this formulation.  

We expect almost the same cost of operation for SAS and SD processes. Conventional 

solvent evaporation process was the least desirable one even though it was the least 

expensive, as it did not improve the rate of dissolution of GF.  
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 APPENDICES 

Appendix A 

 

Figure A.1: Schematic representation of RESS apparatus for solubility and miscibility 

evaluations 
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Appendix B 

 
Figure B.1: Particle size analysis report generated by Malvern instrument 
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Appendix C 

 
Verification of miscibility of organic solvents in scCO2 

During the SAS process, when the organic solvent is added to the anti-solvent, the 

dissolution of massive amount of anti-solvent in the solvent causes enormous  

expansion of the liquid solvent. This phenomenon is called “volumetric expansion”   

which plays a vital role in the precipitation process. Volumetric expansion curves for 

acetone is available in the literature38 at 330C. Researchers revealed that when CO2 is 

added to a closed vessel containing acetone, the volume of acetone increases slowly 

with CO2 mole fraction increasing from 0 to 0.8. However, acetone is expanded by 

500 to 700% of its original volume, when the CO2 mole fraction is > 0.85. DMSO also 

undergoes such large volumetric expansion in presence of CO2, as reported by 

Kordiowski et al39.   

We wanted to observe and verify these phase behavioral changes when CO2 is added 

to a closed vessel containing acetone or DMSO. These experiments were performed 

using RESS 50 apparatus as shown in Appendix A. We could observe through the 

view cell that both acetone and DMSO level levels would rise as more and more CO2 

was added to the vessel. The results are summarized in the Table C.1.  
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Table C.1. Miscibility and volume expansion of organic solvents with scCO2 

Contents of 
extraction vessel 

Temperature  
(OC) 

Pressure   
(bar) 

Observation                      
(made through view cell) 

25 ml Acetone + 
CO2 

30 50 

Three phase system of acetone, 
liquid CO2, and vapors of  CO2. 
Acetone level rises due to CO2 being 
absorbed into it. 

25 ml Acetone + 
CO2 

35 80 
No phase boundary between acetone 
and scCO2, indicating excellent 
miscibility.  

25 ml Acetone + 
CO2 

100 300 

No phase boundary between acetone 
and scCO2, indicating excellent 
miscibility. Acetone level risen ~5-6 
times. 

25 ml DMSO + 
CO2 

30 50 

Three phase system of DMSO, 
liquid CO2, and vapors of  CO2. 
DMSO level rises due to CO2 being 
absorbed into it. 

25 ml DMSO + 
CO2 

35 75 
No phase boundary between DMSO 
and scCO2, indicating excellent 
miscibility.  

25 ml DMSO + 
CO2 

100 300 

No phase boundary between DMSO 
and scCO2, indicating excellent 
miscibility. DMSO level risen ~5 
times. 
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Appendix D 
 

Verification of in-solubility of GF in acetone-CO2 & DMSO-CO2 system 

At the beginning of the experiment, 100ml of acetone solution containing GF (25 

mg/mL) was placed in the extraction vessel. Agitator was turned on to gently mix the 

acetone solution. When looked through the view cell, a clear acetone solution is seen, 

and agitator can be seen. After that, the CO2 pump was turned on to fill the extraction 

vessel. Temperature was gradually raised from 350C to 600C, and pressure was 

gradually raised from 0 to 150 bar, and observations were made through the view cell. 

The solubility or insolubility of GF in CO2 + acetone was judged by the visual 

appearance of cloudiness. We found that at 400C and 100 bar, the vessel was 

extremely cloudy, and agitator could not be seen, providing evidence that scCO2 acts 

as an anti-solvent for GF. Experiments were then repeated by using DMSO as the 

organic solvent, at a GF concentration of 60 mg/ml. The results are summarized in the 

Table D.1.   Even though these experiments were not quantitative in nature, they 

provided clear evidence that SAS technique can be applied for precipitation of GF 

from acetone or DMSO as the organic solvent.  

Gioannis et al.,40 conducted quantitative solubility determination of GF in presence of 

acetone. The solubility measurements for the GF–CO2–acetone system were 

performed at 390C at 60 and 100 bar, and at 530C and 100 bar. They found that there 

was dramatic reduction in solubility of GF in acetone with increase in mole fraction of 

CO2. At a CO2 mole fraction of 0.9, pressure between 60 – 100 bar, and temperature 

between 390C to 530C, the solubility of GF in the binary system was approximately 

0.0005 mol/mol .  
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Table D.1. Determination of solubility/insolubility of GF in acetone-scCO2, or 

DMSO-scCO2 system, by appearance of cloud point   

Contents of 
extraction vessel 

Temperature  
(OC) 

Pressure   
(bar) 

Observation (made through view 
cell) 

25 ml Acetone + 
GF (25 mg/mL) 

35 1 Clear acetone solution. 

25 ml Acetone + 
GF (25 mg/mL) + 

CO2 
35 80 

Vessel cloudy, indicating drug is 
starting to precipitate out 

25 ml Acetone + 
GF (25 mg/mL) + 

CO2 
40 100 

Vessel extremely cloudy, indicating 
drug is almost insoluble at this 

condition. Agitator bar not visible 
due to extreme cloudiness. 

25 ml Acetone + 
GF (25 mg/mL) + 

CO2 
60 150 

Vessel extremely cloudy, indicating 
drug is almost insoluble at this 

condition. Agitator bar not visible 
due to extreme cloudiness. 

25 ml DMSO + GF 
(60 mg/mL) 

35 1 Clear DMSO solution. 

25 ml DMSO + GF 
(60 mg/mL) + CO2 

35 75 
Vessel very cloudy, indicating drug 

is starting to precipitate out 

25 ml DMSO + GF 
(60 mg/mL) + CO2 

40 90 

Vessel extremely cloudy, indicating 
drug is almost insoluble at this 

condition. Agitator bar not visible 
due to extreme cloudiness. 

25 ml DMSO + GF 
(60 mg/mL) + CO2 

60 150 

Vessel extremely cloudy, indicating 
drug is almost insoluble at this 

condition. Agitator bar not visible 
due to extreme cloudiness. 
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Appendix E 
Physicochemical Characterization 
 
E.1 Thermal Analysis and PXRD 
 

Differential Scanning Calorimetry  (DSC) profiles were obtained by using a DSCQ-

2000 ® (TA Instruments, New Castle, Delaware) differential scanning calorimeter. 

Calibrations were performed prior to each day of analysis using pure samples of 

indium and zinc. The measurements were carried out in a hermetically sealed 

aluminum pans at a scanning rate of 100C per minute under nitrogen atmosphere using 

approximately 6 - 8 mg of sample. Melting point (Tm) values were determined by the 

Pyris software.  

The crystalline properties of the samples obtained by SAS were determined by Powder 

X-Ray Diffraction (PXRD) using Bruker D8 Advance Powder X– Ray Diffractometer 

(Brukler Corporation, Madison, WI). Samples of interest were analyzed using a Cu 

(ƛ=1.54) K α radiation. The X-ray patterns were collected in the 2θ  range of 1 to 400 

by scan speed of 0.270/sec and  step size of 0.0045°. 

DSC curves of pure untreated GF, and an optimized SAS formulation (lot # OP1) are 

shown in Figure E.1. Pure GF gave a melting endotherm at around 219°C indicating 

that the drug is in crystalline form. As shown in Table E.1, melting of GF could be 

observed between 216°C to  219°C with all of the SAS formulations (N1 to N19, and 

OP1). Thermal analysis shows that processing and/or formulation variables did not 

affect the crystalline nature  of drug.  
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Raw GF is crystalline in nature with well-defined peaks. PXRD of GF coprecipitates 

after SAS processing shows that the material morphology remained crystalline, 

independent of changes in processing and/or formulation variable. As shown in Figure 

E.2, the PXRD patterns of the optimized formulation produced from SAS  were super 

imposable to the spectra of drug from the supplier. These findings were consistent 

with the results obtained by DSC.  

In our study, there was multicomponent system comprising of drug, polymer and 

organic solvent. The presence of drug and polymer may have shifted the phase 

equilibrium and affected the solubility of acetone in scCO2, and hence the efficiency 

of SAS process to remove the solvent from the feed is reduced. This long duration 

likely allowed preferred packing of the molecules into its most stable form, the 

crystalline form.   
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Table E.1. Summary of thermal analysis and PXRD on SAS formulation of GF from 

DOE study 

SAS 
Formulation 

Lot # 

Melting Point 
from DSC  

(0C) 

Morphology 
from PXRD 

Untreated  
as-is drug 

218.28 Crystalline 

N1 218.44 Crystalline 
N2 219.02 Crystalline 
N3 219.16 Crystalline 
N4 217.31 Crystalline 
N5 218.49 Crystalline 
N6 218.44 Crystalline 
N7 216.64 Crystalline 
N8 218.42 Crystalline 
N9 219.02 Crystalline 
N10 219.16 Crystalline 
N11 218.49 Crystalline 
N12 217.31 Crystalline 
N13 218.42 Crystalline 
N14 219.02 Crystalline 
N15 218.16 Crystalline 
N16 217.95 Crystalline 
N17 216.55 Crystalline 
N18 216.90 Crystalline 
N19 218.55 Crystalline 
OP1 217.69 Crystalline 
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Figure E.1: DSC thermograms for optimized SAS formulation vs untreated as-
is GF 

 

Figure E.2: PXRD spectra of optimized SAS formulation vs untreated as-is GF 
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E.2 Fourier Transform Infra-Red (FTIR) 

FTIR spectra were collected on a Nicolet 6700 from Thermo scientific (Thermo Fisher 

Scientific Inc., Pittsburgh, PA) . Powders were measured directly using the smart orbit 

accessory. Spectra were collected  from 400 – 4000 cm-1 using 64 scans at a 

resolution of 4 cm-1. Spectra were analyzed using the Omnic software (v.7.2).   

FTIR spectrums were obtained for the untreated GF and an optimized SAS 

formulation (OP1), and are shown in Figure E.3 & E.4. The spectra of the GF in SAS 

formulation is similar to that of the untreated GF from supplier, with no shift of peaks 

due to SAS process. These results are in agreement with DSC and PXRD to show that 

there is no significant change in the physicochemical properties of GF. Also, there is 

no evidence of any interaction between drug and polymer.  
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a)   

 

b) 

 
Figure E.3: FTIR Spectrum of griseofulvin API (un-processed) , showing entire 
spectrum (a), and the region of interest (b).   
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Figure E.4: FTIR spectra of optimized SAS formulation vs Griseofulvin API 

 

E.3 Zeta Potential  

The zeta potential value is an important particle characteristic as it can influence both 

particle stability as well as particle mucoadhesion. The electrostatic repulsion between 

particles with the same electric charge prevents the aggregation of the spheres41. 

Hence, more pronounced zeta potential values either positive or negative, can stabilize 

particle suspension. When SAS solid dispersion of drug and polymer is added to 

water, the polymer dissolves, leaving behind a suspension of drug particles. The zeta 

potential measurements were done to understand the characteristics of drug 
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suspension. A value lower than 30mV indicates that there is aren’t enough charges on 

the particles to keep them in a stable, non-aggregated state. On the other hand, a large 

zeta potential value (>30mV) could support our argument that during particle size 

measurement we are measuring individual particles. The zeta potential values for our 

formulations (N1 to N19, and OP1) ranged from -31.1mV to -35.5mV, as shown in 

Table 6. 

E.4 BET Surface area analysis  

The specific surface area of samples was determined following the Brunauer–

Emmett–Teller (BET) method of nitrogen adsorption/desorption at −196 °C with  

Tristar II® surface area and porosity measurement instrument manufactured by 

Micromeritics™ (Micromeritics Instrument, USA). BET surface area measurement 

was done only on the samples of optimized SAS formulation (lot # OP1).  

BET surface area measurements were done for untreated GF from supplier and for 

optimized formulation of SAS coprecipitates  (OP1). BET surface area value of  

5.2457 m2/g for SAS formulation was not significantly different from a value of 

5.2095 m2/g for untreated Griseofulvin. However, it should be noted that untreated 

GF is a micronized material. Secondly, SAS coprecipitates of drug and polymer 

together are not that much different in particle size compared to untreated GF. It is 

only in the in-situ conditions when the polymer is removed, the drug particle size is  

nano sized. Even though the BET surface area of SAS drug is similar to untreated  

drug from supplier, the SAS drug is expected to have better solubility and rate of 

dissolution.  
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E.5 Dissolution and intrinsic dissolution rate 

Dissolution studies were performed by USP Dissolution Apparatus Type II , paddle 

method using Distek® dissolution apparatus (Distek, Inc., North Brunswick, NJ). The 

apparatus was equipped with UD-lite® fiber optic measurement capability. Solid 

Samples obtained with SAS processing were compressed into 100 mg tablets using a 

flat faced ¼” round tooling, under carver press. Each SAS formulation tablet 

contained equivalent of 7 mg of GF, the polymer Kollidon VA64 (1.75 mg) and the 

filler (Lactose). The physical mixture of GF (7 mg) and Kollidon VA64 (1.75 mg), 

were also compressed into 100 mg tablets using lactose as the filler. The dissolution 

analyses were performed in 500 ml of pH 6.8 phosphate buffers (0.05M), also called 

as simulated intestinal fluid (SIF),  at 370C, 50 rpm stirring speed, and the drug 

dissolved was analyzed at UV wavelength of 295 nm.  

Intrinsic dissolution rates (IDR) were determined by using Distek stationary disk 

(Distek Inc., USA) system. Approximately 200 mg of SAS processed sample were 

compressed with the aid of a benchtop Carver press (Carver, Inc., Wabash, IN, USA) 

at 4000 psi with a dwell time of 10 s to form a compact pellet of 0.5 cm2 exposed 

surface area. Assemblies, each composed of the pellet, die, gasket, and a 

polypropylene plastic cap, were immersed with the pellet side up, into the bottom of 

flat-bottom dissolution vessels containing 500 mL of SIF at 37°C. The USP Apparatus 

II paddle was positioned 1 inch above the assembly and rotated at 50 rpm.  

The dissolution profiles of tablets containing SAS formulation are compared in Figure 

E.5 to that of physical mixture of GF and Kollidon VA64 in the same ratio as in SAS 
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formulation. After 100 minutes, the amount dissolved from SAS formulation (80%) 

was more than 8 fold better compared to only 10% dissolved for micronized drug 

from supplier. The increased dissolution of the SAS drug is due to the decrease in 

particle size. According to Noyes Whitney equation42, particle size reduction leads to 

increase in surface area and that leads to improvement in the rate of dissolution. In 

addition, we carried out an intrinsic dissolution study. As shown in Figure E.6, 

intrinsic dissolution rate (IDR) of a SAS formulation (0.0065 µg/cm2/min) was 58%  

better than that of micronized GF (0.0038 µg/cm2/min)  in physical mixture.  



 

186 
 

 
Figure E.5:  Comparative dissolution of optimized SAS formulation vs physical 
mixture of as-is drug with Kollidon VA64. 
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Figure. E.6:  Intrinsic dissolution of optimized SAS formulation vs physical 
mixture of as-is drug with Kollidon VA64. 
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