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PHY204 Lecture 26 [rln26]

Unit Exam III: Problem #3 (Spring ’12)
The coaxial cable shown in cross section has surfaces at radii 1mm, 3mm, and 5mm. Equal currents flow
through both conductors: Iint = Iext = 0.03A � (out). Find direction (↑, ↓) and magnitude (B1, B3, B5, B7) of the
magnetic field at the four radii indicated (•).

I

I

int

ext

1mm

3mm

5mm

7mm
r

Solution:

2π(1mm)B1 = µ0(0.03A) ⇒ B1 = 6µT ↑
2π(3mm)B3 = µ0(0.03A) ⇒ B3 = 2µT ↑
2π(5mm)B5 = µ0(0.06A) ⇒ B5 = 2.4µT ↑
2π(7mm)B7 = µ0(0.06A) ⇒ B7 = 1.71µT ↑

tsl437

In this lecture we work out further applications of Ampère’s law and the law
of Biot and Savart. All applications have to do with sources of magnetic field
in the form of steady currents. Steady currents produce time-independent
magnetic fields.

The slide on this page shows a coaxial cable in cross section. It consists
of an inner conductor and a surrounding outer conductor separated by an
insulator.

This is tailor-made for applying Ampère’s law. We use loops of radius, 1mm,
3mm, 5mm, and 7mm. Only the currents inside the loop matter.

Since both currents are flowing out of the page. It is expedient to integrate
counterclockwise. Then both currents count as positive. The solution on the
slide shows in detail how to do it.

Since the right-hand side of Ampère’s law is positive for each loop, the left-
hand side must be positive as well. Since we are integrating counterclockwise
and the result must be positive, it follows that the magnetic field is pointing
in the counterclockwise tangential direction to the (circular field line). At
the four point marked by bullets, the field is pointing up.
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Unit Exam III: Problem #2 (Spring ’08)

(a) Consider a solid wire of radius R = 3mm.
Find magnitude I and direction (in/out) that produces a magnetic field B = 7µT at radius r = 8mm.

(b) Consider a hollow cable with inner radius Rint = 3mm and outer radius Rext = 5mm.
A current Iout = 0.9A is directed out of the plane.
Find direction (up/down) and magnitude B2, B6 of the magnetic field at radius r2 = 2mm and r6 = 6mm,
respectively.

r

Iout

r
B

I

(b)(a)

2mm0mm 6mm8mm

Solution:

(a) 7µT =
µ0I

2π(8mm)
⇒ I = 0.28A (out).

(b) B2 = 0, B6 =
µ0(0.9A)

2π(6mm)
= 30µT (up).
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This slide features two more applications of Ampère’s law.

In part (a) we know the magnetic field at a certain distance from the center
of a long, straight wire seen in cross section and calculate magnitude and
direction of the current flowing through the wire. Note that that the radius
of the wire does not matter as long as the field point is outside, which it is.
The denominator in the expression on the right-hand side is the circumference
of the loop.

The field lines curl around the wire counterclockwise. The right-hand rule
then tells us that the positive current direction is �.

In part (b) we have a hollow cable, again shown in cross section. The current
is given and we calculate magnitude and direction of the magnetic field at
two points. For each point we construct a circular loop which is concentric
with the conductor. The inner loop has no current inside: IC = 0. Hence the
field is zero. All the current is inside the outer loop. Hence we have IC = Iout
for the outer loop. The denominator is again the circumference of the loop.

The right-hand rule tells us that the field at that radius is tangential to the
loop in directed counterclockwise. This means that that at the point marked
it is directed ↑.
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Unit Exam III: Problem #2 (Spring ’11)
The coaxial cable shown has surfaces at radii 1mm, 3mm, and 5mm. The magnetic field is the same at radii
2mm and 6mm, namely B = 7µT in the direction shown.

(a) Find magnitude (in SI units) and direction (in/out) of the current Iint flowing through the inner conductor.

(b) Find magnitude (in SI units) and direction (in/out) of the current Iext flowing through the outer conductor.

r
2mm 6mm

I

I

int

ext

B B

Solution:

(a) (7µT)(2π)(0.002m) = µ0Iint ⇒ Iint = 0.07A (out)
(b) (7µT)(2π)(0.006m) = µ0(Iint + Iext) ⇒ Iint + Iext = 0.21A (out)
⇒ Iext = 0.14A (out)
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Here we have another application of Ampère’s law involving a coaxial cable.

Our goal is to calculate the currents in the inner and outer conductors. The
only information given are direction an magnitude of the magnetic field at
two points.

When we decide to integrate counterclockwise around the loop, then the
loop integrals at both radii come out positive. This implies that the positive
current direction is out (�).

It is smart to first deal with an Amperian loop at radius 2mm because it
only contains one of the two unknown currents, namely Iint. The calculation
is worked out on the slide.

Now we consider the outer loop, which contains both currents. The relevant
current now is Iint+Iext but only Iext is still unknown. The calculation yields
Iint + Iext, from which we infer Iext.
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Ampère’s Law: Coaxial Cable
Consider a long coaxial cable, consisting of two cylindrical conductors separated by an insulator as shown in a
cross-sectional view.

There is a current I flowing out of the plane in the inner conductor and a current of equal magnitude I flowing
into the plane in the outer conductor.

Calculate the magnetic field B as a function of the radial coordinate r.

I

c

b r

a

(out)

(in)

I
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Stray magnetic fields are a potential source of trouble in electronic equipment.
Coaxial cables are a design that avoids stray magnetic fields if the currents in
the two conductors are equal in magnitude and opposite in direction, which
they frequently are in practical applications.

In the slide you see the cross section of a coaxial cable with an inner conductor
of radius c and an outer conductor of inner radius b and outer radius a. At a
particular instant in time, the current I is directed � on the inner conductor
and ⊗ on the outer conductor.

We assume that the current density is uniform across both conductors. Sym-
metry dictates that the magnetic field is tangential to circular field lines
and constant in magnitude along each such circle to make the loop integrals
simple.

What is the magnitude B of the magnetic field as a function of radial distance
r from the center of the cable? We employ Ampère’s law and declare � to
be the positive direction for the current, implying that we integrate along
circular Amperian loops in counterclockwise direction.

We begin with determining the magnetic field at a radius r < c, i.e. at a
location inside the inner conductor. For that purpose we must choose an
Amperian loop in the shape of a circle with radius r < c. Ampère’s law then
looks as follows:

2πrB = µ0I
πr2

πc2
⇒ B =

µ0I

2π

r

c2
: r < c.
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The loop integral on the left-hand side reduces to the product of the circum-
ference and the magnetic field to be determined. The right-hand side is the
product of the permeability constant and the current flowing through the
loop. That current is a fraction of I equal to the ratio of the cross sectional
area inside the loop and the total cross section of the inner conductor.

Next we consider a point at radius c < r < b between the two conductors.
Here the current that flows through the loop is I.

2πrB = µ0I ⇒ B =
µ0I

2π

1

r
: c < r < b.

For a point inside the outer conductor i.e. at radius b < r < a, the entire inner
current (counted positively) and a fraction of the outer conductor (counted
negatively) flow through the loop (dashed circle):

2πrB = µ0I − µ0I
πr2 − πb2
πa2 − πb2 ⇒ B =

µ0I

2π

1

r

a2 − r2
a2 − b2 : b < r < a.

Getting from the first equation to the second equation takes a couple of
intermediate steps in this case.

Finally, for a point outside the cable, at radius r > a, we have

2πrB = µ0I − µ0I = 0 ⇒ B = 0 : r > a.

The net current through the loop is zero, implying zero magnetic field. In
the graph below we show the magnetic field strength B in units of µ0I/2π
versus the radial distance r. This convention means that the actual magnetic
field (in units of Tesla) is the value read off the graph multiplied by µ0I/2π.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

r

B
/(
μ
0
I/2

π
)

c = 1, b = 3, a = 4
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Intermediate Exam III: Problem #2 (Spring ’07)

Consider two very long, straight wires with currents I1 = 6A at x = 1m and I3 = 3A at x = 3m in the directions
shown. Find magnitude and direction (up/down) of the magnetic field

(a) B0 at x = 0,

(b) B2 at x = 2m,

(c) B4 at x = 4m.

1 2 3 40
x [m]

BB2B0 4

I  = 6A1 I  = 3A3

Solution:

(a) B0 = − µ0(6A)

2π(1m)
+

µ0(3A)

2π(3m)
= −1.2µT + 0.2µT = −1.0µT (down),

(b) B2 =
µ0(6A)

2π(1m)
+

µ0(3A)

2π(1m)
= 1.2µT + 0.6µT = 1.8µT (up),

(c) B4 =
µ0(6A)

2π(3m)
− µ0(3A)

2π(1m)
= 0.4µT− 0.6µT = −0.2µT (down).
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We continue with an application of calculating the magnetic field in the vicin-
ity of two currents in long, parallel wires with currents in opposite direction.
We know that the magnetic field a distance r from the center of long, straight
wire is B = µ0I/2πr, directed tangential to circular field lines directed as
determined by the right-hand rule (see lecture 24).

For current I1, which is directed �, the field is directed ↓ to its left and ↑ to
its right. The opposite is the case for current I2, because it is directed ⊗. In
the presence of two currents there are two magnetic fields at each point, one
from each current. The resultant field to be calculated is the superposition
of both field.

In the solution shown on the slide, fields pointing ↑ are counted positively
and field pointing ↓ negatively.
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Magnetic Field Next to Current-Carrying Ribbon

Consider a very long ribbon of width w carrying a current I in the direction shown.

The current density is assumed to be uniform.

Find the magnetic field B generated a distance d from the ribbon as shown.

d

B I

0

dx

x

w

Divide the ribbon into thin strips of width dx.
Treat each strip as a wire with current dI = Idx/w.
Sum up the field contributions from parallel wires.

dB =
µ0

2π

dI
x

=
µ0I

2πw
dx
x

B =
µ0I

2πw

∫ d+w

d

dx
x

=
µ0I

2πw
ln
(

1 +
w
d

)
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In this application we wish to calculate the magnetic field generated by a
long current-carrying ribbon. The field point is some distance to the side.

The strategy we adopt for this calculation is to divide the ribbon into in-
finitesimal segments of width dx. Each such segment can then be treated as
a long, straight wire carrying the fraction dI = Idx/w of the total current.

The slide shows what the magnetic-field contribution dB of such a current
segment a distance x from the field point is. What remains to be done is to
sum up the contributions from all current segments that make up the ribbon.

On the previous page we had a similar situation but with just two wires. Here
we are dealing with infinitely many wire segments of infinitesimal width. The
sum turns into an integral, which is evaluated on the slide.

It is noteworthy that we can recover the result for a single wire by shrinking
the width w of the ribbon until it is much smaller than the distance d to the
field point. If we expand the logarithmic function in powers of w/d we have

ln
(

1 +
w

d

)
=
w

d
+ O

(w
d

)2

,

where the last expression is symbolic for terms of higher order, beginning
with a quadratic term. If w/d is tiny, e.g. 10−2, then (w/d)2 is much tinier,
namely 10−4, and (w/d)3 even tinier, 10−6. When we substitute the leading
power, w/d, for the logarithmic function in the result on the slide we obtain
the familiar result for a single wire: B = µ0I/2πd.
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Magnetic Field Application (3)

Two semi-infinite straight wires are connected to a segment of circular wire in three different ways. A current I
flows in the direction indicated.

(a) Find the direction (
⊙

,
⊗
) of the magnetic fields ~B1,~B1,~B3.

(b) Rank the magnetic fields according to strength.

B
1

L

L
I

I

B

L

L

2

I

B

L

L

3
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This slide shows three configurations of currents flowing through consecutive
segments of wire, two of which are semi-infinite straight lines. Between the
two straight segments the wire bends into a quarter circle. At the field points
indicated, vertical, horizontal, and circular segments produces a magnetic
fields of the following magnitude:

BV = BH =
µ0I

4πL
, BC =

µ0I

8L
.

Where do these expressions come from? The first expression, which applies
to both vertical and horizontal semi-infinite lines, is simply half the field
generated by an infinite line at a distance L from it. The second expression
is one fourth of the field generated at the center of a full circle of radius L.

In each configuration the magnetic field at the point marked, thus consists of
the sum of a term ±BV from the vertical straight segment, a term ±BC from
the bent segment, and a term ±BH from the horizontal straight segment.
The right-hand rule determines whether it is + or − in each case.

The solution for the convention that out (in) is positive (negative) reads,

B1 = BV −BC +BH , B2 = −BV −BC +BH , B3 = −BV −BC −BH .

The resultant field is positive in the first case and negative in the other two
cases. Hence the direction of B1 is � and the direction of B2 and B3 is ⊗.

Given that BV = BH are weaker than BC due to the fact that 4π > 8, it
follows that the strongest field is B3 and the weakest field B1.
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Magnetic Field Application (8)

Three squares with equal clockwise currents are placed in the magnetic field of a straight wire with a current
flowing to the right.

• Find the direction (↑, ↓, zero) of the magnetic force acting on each square.

(1)

(2)

(3)

tsl225

The task on this slide is somewhat similar to the task on quiz 20. There
we had four current-carrying squares positioned partially or fully in a region
of uniform magnetic field. Here we have three current-carrying squares in
a region of nonuniform magnetic field, namely the field generated by the
current from left to right inside the green wire oriented horizontally.

What matters is (i) that the magnetic field generated by the current in the
green horizontal conductor is directed � above it and ⊗ below it and (ii) that
the strength of that magnetic field decreases with distance from the green
conductor.

The consequence of (i) is that the magnetic force on each side of the current
squares is directed toward the inside above the green line and toward the
outside below the green line. Confirm this using the right-hand rule.

The consequence of (ii) is that the forces on the vertical sides of each square
are equal in magnitude and opposite in direction (← or →), which makes
the net horizontal force on each square is zero. Hence the net force must be
vertical (↑ or ↓) and come from the horizontal sides of the squares.

In square (1) the bottom side experiences a force up and the top side a force
down. The former is stronger than the latter and the net force is directed
↑. In square (3) the bottom side experiences a weaker force down and the
top side a stronger force up, thus producing a net force directed ↑ again. In
square (2) both horizontal sides experience a force down because here not
only the current direction switches but the magnetic-field direction switches
too. Hence the net force is directed ↓.
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Magnetic Field Application (4)

An electric current I flows through the wire as indicated by arrows.

(a) Find the direction (
⊙

,
⊗
) of the magnetic field generated by the current at the points 1, . . . , 5.

(b) At which points do we observe the strongest and weakest magnetic fields?

5

4

3

2

1

I

I
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When analyzing this situation, we assume that what primarily matters are
the horizontal portions of the current. The vertical portions are more distant
from the field points and can be neglected for the purpose of answering the
questions posed.

Next we note that all distances between field points and horizontal currents
are odd multiples of the distance R between any field point and the nearest
current.

For a simple albeit approximate quantitative analysis we assume that the
horizontal currents are very long. This allows us to introduce a reference
magnetic field, B0 = µ0I/2πR, which is the magnetic field generated at any
field point by one of its nearest-neighbor horizontal currents.

Magnetic fields generated by more distant horizontal currents are fractions
of B0 because the distance is a multiple of R.

The four magnetic-field contributions at each field point are directed perpen-
dicular to the page.

If we declare magnetic fields out (�) to be counted positively and fields in
(⊗) negatively, we thus obtain the following results:

B1 = B5 = B0

(
1− 1

3
+

1

5
− 1

7

)
' 0.72B0 �

B2 = B4 = B0

(
−1− 1 +

1

3
− 1

5

)
' −1.87B0 ⊗

B3 = B0

(
1 + 1− 1

3
− 1

3

)
' 1.33B0 �
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Force Between Perpendicular Lines of Electric Current

• Electric currents: Ia, Ib

• Magnetic field generated by line a: Ba =
µ0

2π

Ia

r
• Magnetic force on segment dr of line b: dFab = IbBadr

• Magnetic force on line b: Fab =
µ0

2π
IaIb

∫ r2

r1

dr
r

=
µ0

2π
IaIb ln

r2

r1

Ba
Ia Fab

I b

drr

r
2

1
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This application is related to what we discussed at the beginning of lecture
24, namely forces between straight current-carrying wires. We already know
that two currents that run along parallel wires in the same direction produce
an attractive magnetic force between the two wires.

What if the wires are perpendicular to each other? This slide is designed
to help us analyze any such case. It calculates direction and magnitude of
a straight segment of current Ib in the magnetic field of a long wire with
current Ia.

At the position of the segment, the magnetic field ~Ba generated by current Ia
is directed down. Therefore, the force ~Fab exerted on the segment is directed
parallel to the long wire as shown. We use d~Fab = Ibd~r × ~Ba to determine
that direction.

The force acting between endpoints ~r1 and ~r2 is not uniform . The magnitude
of total force Fab is worked out on the slide.

Now let us think of the segment shown as part of the current Ib in a long wire.
Then we pick another segment (not shown) positioned symmetrically on the
opposite side of current Ia. The force exerted on that segment is the same
in magnitude but opposite in direction because Ba has opposite direction at
that location.

How would the long wire with current Ib respond when it is oriented perpen-
dicular to the wire carrying Ia? The part to right of Ia will be pulled to the
front and the part to the left of Ia will be pulled to the back. This amounts to
a torque, which aims to align the two currents flowing in the same direction.
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Magnetic Field Application (10)

Consider two currents of equal magnitude in straight wires flowing perpendicular to the plane.

• In configurations (a) and (b), find the direction (→,←, ↑, ↓) of the magnetic field generated by the two
currents at points P, Q, R, S

R S

II

Q

P
(a)

R S

Q

P
II

(b)

tsl227

This is the quiz for lecture 26.

At all four points marked in configuration (a) and all four points marked in
configuration (b) each of the two currents in the long, straight wires generate
a magnetic field. When you add the two fields thus obtained, the resulting
field has one of the four directions indicated on the slide. None of the fields
vanish.
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