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ABSTRACT 
This paper uses the hedonic method to examine the external effects of Rhode Island’s 
voluntary brownfield program. We hypothesize that housing price impacts are a 
combination of valuation of environmental improvement and response to information 
disclosure initiated by remediation. The results indicate that housing prices decline after 
nearby remediation, suggesting incomplete information about the presence of risk. 
Further, we find empirical evidence that price impacts and the degree of incomplete 
information are different across neighborhoods. Specifically, low housing value 
neighborhoods experience price declines following remediation while high value 
neighborhoods experience price increases, leading to an overall regressive impact.  
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1  INTRODUCTION 

A brownfield is a property that is polluted or contaminated with hazardous waste, which 

hinders its redevelopment or reuse. Proponents of brownfield remediation point to many benefits 

of cleanup: health and safety of neighborhood residents, revitalization of urban areas, and 

mitigation of urban sprawl. The Government Accountability Office (2005) estimates that 

450,000 brownfields exist nationwide in the United States, and many cities and states have 

ongoing agendas to remediate their sites. 

Brownfield prevalence is unequally distributed by income, race, and ethnicity, which 

raises concerns about environmental justice. This type of unequal exposure is common and well 

documented across criteria air pollutants, toxic air pollutants, and hazardous waste sites (e.g., 

United Church of Christ 1987, Brooks and Sethi 1997, Shaikh and Loomis 1999, Apelberg et al. 

2005, Pastor et al. 2005).1 Given unequal exposure, environmental improvement could lead to 

disproportional benefits for disadvantaged groups, as found by Bento et al. (2015) in the case of 

the 1990 Clean Air Act Amendments. Thus, a program aimed at cleaning and developing 

brownfields would intuitively have a disproportionately positive impact on low-income and 

minority communities. However, this progressive outcome relies on several assumptions, 

including that information about environmental quality is equal across neighborhoods.  

 The purpose of this paper is to estimate the external impacts of brownfield remediation in 

the residential property market and to examine heterogeneous impacts across neighborhoods and 

the distributional consequences of that heterogeneity. We examine a voluntary brownfield 

remediation program in Rhode Island2, in which the state offered to negate liability in exchange 

for owners assessing and, if necessary, remediating property to comply with toxicity regulations. 

Unlike a superfund site, properties may not be known to be brownfields until there is an 

environmental assessment as part of a sale or redevelopment. There is no database of existing 

brownfields in Rhode Island, only records of those that have been remediated. Thus, the process 

of remediation can reveal information previously unknown about a specific property, as well as 

raise concerns about risks of nearby properties. The presence of this incomplete information, 

                                                 
1 An additional set of papers seeks to disentangle whether it is inequality at the siting stage or if household mobility 
and housing market dynamics lead to the unequal exposure observed in the cross section (e.g., Been 1994, Depro et 
al. 2015).   
2 The State of Rhode Island is one of the oldest industrial centers in the United States, staking claim to Birthplace of 
the American Industrial Revolution with the opening of the first American water-powered cotton spinning mill in 
1789. Not surprisingly, most industrial activity is gone, but its remnants remain. 
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how it differs across neighborhoods, and how it impacts the house price response of remediation 

and distribution of benefits are the central research questions of this paper.  

 We observe 225 brownfields identified and cleaned over the period 2003-2013 and 

43,787 housing transactions within two kilometers (km) of those remediated sites. Our empirical 

method to assess the property value impacts of remediation is a dose-response model, in which 

we regress prices on a continuous measure of brownfield density. Our model also includes 

census block group and year fixed effects, as well as time-varying neighborhood variables such 

foreclosure rates. Prior work on brownfield remediation (e.g., Haninger et al. 2017) has used 

difference-in-differences methods, essentially comparing properties near a site to those further 

away before and after remediation. In our sample, however, brownfields are often tightly 

clustered – 79% are within 1 km of another site – which makes identifying a control group 

difficult.3  

 Results from our basic model suggest that remediation reduces nearby property values. 

The marginal effect of a single remediation 1 km from a house is -1.0%. If a house was just 0.5 

km from the brownfield site, the price impact would be -2.0%. Estimated impacts can be a 

combination of valuation of environmental improvement, consequences of information learned 

from cleanup, site characteristics, reuse choices, preference-based sorting following cleanup, and 

bias resulting from unobserved variables. Given our modeling strategy and additional empirical 

findings including immediate capitalization and consistency of impacts across site and reuse 

types, we argue that the price impact is composed only of a valuation effect and an information 

effect. As an illustration of this intuition, Figure 1 presents a hedonic price schedule for 

environmental quality.4 Suppose residents and potential buyers believe the environmental quality 

to be 𝑧𝑧3, however these beliefs are incorrect and the actual environmental quality is 𝑧𝑧1. 

Brownfield remediation improves environmental quality to 𝑧𝑧2, but also reveals the true baseline 

environmental quality. On net, remediation reduces housing prices from 𝑃𝑃(𝑧𝑧3) to 𝑃𝑃(𝑧𝑧2). In this 

light, we interpret our basic results as evidence that remediation led to significant information 

revelation, and the negative impact outweighed any valuation effect on sales prices of nearby 

                                                 
3 Despite the limitations, we also estimate difference-in-differences models to make sure our modeling assumptions 
are not driving the results. We present these results in the online appendix and conclusions are similar.  
4 For a complete discussion of the underlying theory that leads to the hedonic price schedule, refer to Taylor (2017). 
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properties. This conclusion is supported by other empirical findings of information disclosure 

affecting the implicit price of different amenities (e.g., Pope 2008, Guignet 2013).  

To explore distributional impacts and environmental justice concerns, we examine how 

house price responses may be different in neighborhoods with different socioeconomic 

characteristics. We build on recent work showing how the housing market is segmented 

(Kuminoff and Pope 2013, Landvoigt et al. 2015) and examine how the impacts of remediation 

may differ by market segment. Specifically, we investigate price responses in low, medium and 

high priced neighborhoods, and we posit that valuation and information may be different across 

these segments. These results suggest that remediation leads to price declines in low home value 

neighborhoods, whereas in high home value neighborhoods remediation leads to price increases. 

Further, in low value areas, proximity to unremediated brownfields does not impact prices, but in 

high value areas sales prices are less when near an unremediated brownfield. Together, these 

results give support and nuance to our conclusion that incomplete information is affecting price 

impacts. Low value areas appear to be less informed about existing brownfields and remediation 

reveals information, which leads to price declines (same as the example above illustrated using 

Figure 1). However, high value areas appear to be more informed about existing brownfields and 

valuation of remediation dominates the price effect of information. On Figure 1, this would be a 

move from 𝑧𝑧3 to 𝑧𝑧4. Further, these results indicate adverse distributional consequences of 

remediation as low-income and minority households disproportionately live in low house value 

neighborhoods.  

This article makes several contributions to the literature. First, this article serves as an 

evaluation of a brownfield remediation program, of which evidence is scant.5 Voluntary 

brownfield remediation programs are common across many states and large cities, and thus 

empirical evidence on their effects is needed. Using data from Chicago, Linn (2013), which is 

the most closely related study to ours in terms of design, estimates that the marginal effect of a 

single remediation in the prior year 1 km away is a 0.2% price increase. Haninger et al. (2017) 

find large, positive property value impacts of brownfield remediation, ranging from 5% to 15%, 

using a national sample of sites that received an EPA grant for cleanup. Why may our results 

differ in sign and what can be learned from differences? In contrast to this paper, Haninger et al. 

                                                 
5 However, many evaluations of superfund remediation exist (e.g., Messer et al. 2006, Kiel and Williams 2007, 
Greenstone and Gallagher 2008, Gamper-Rabindran and Timmins 2013, Mastromonaco 2014). 
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examine sites that are toxic enough to warrant federal cleanup funding.6 Thus, in their case, it 

may be less likely for remedial activity to be a source of new information for nearby residents. 

Further, the EPA awards grants based in part on community involvement and allows 

communities to have input into reuse; officials in EPA’s Office of Solid Waste and Emergency 

Response feel this may be a critical difference between programs based on their experience 

(Cooper et al. 2015). Additionally, federal cleanup money is often coupled with activities like 

community outreach and promotion of development, and job training grants can be awarded to 

cleanup communities too (EPA 2014), all of which could factor into estimated benefits. In 

contrast, under voluntary programs, the decision to remediate is often driven by development 

rather than toxicity, and the discovery of contamination may be new information. The context of 

Linn (2013) is another voluntary brownfields program that targets less toxic sites and exchanges 

liability for remediation. The magnitude of Linn’s estimates are much smaller than Haninger et 

al., which corroborates the idea that funding, community engagement or the degree of toxicity 

are important determinants of price effects.  

Second, this paper contributes to our understanding of how environmental policy can be 

regressive, a concern notably raised by Baumol and Oates (1988). When a policy is place-based, 

the main concern is that property values rise, but low-income renters do not receive the 

capitalization benefits and may be priced out of a neighborhood and suffer a welfare loss with 

relocation (Fullerton 2011).7 In contrast to these indirect means of regressive outcomes, this 

paper finds that environmental improvement reduces property values in low-income 

neighborhoods and increases values in high income areas. For the lowest income quintile, the 

ratio of annualized change in home value resulting from remediation to income is -2.5%; for 

highest income quintile, this same ratio is +0.5%. In contrast, Gamper-Rabindran and Timmins 

(2013) examine distributional impacts of superfund remediation and find that low value homes 

appreciate more than high value homes after cleanup. One possible explanation for this 

divergence in results is incomplete information about existing contamination in the case of 

brownfields, which is unlikely for a superfund site.  

                                                 
6 Using the website “Cleanups in my Community” (http://www2.epa.gov/cleanups/cleanups-my-community), we 
found little overlap (<5%) between our sample sites and those that received EPA grants.  
7 The empirical evidence supporting this idea, however, is mixed (Sieg et al. 2004, Grainger 2012, Bento et al. 2015, 
Lang 2015).  
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Lastly, hedonic valuation is a workhorse model in environmental economics, and 

typically estimated coefficients are interpreted as marginal willingness to pay (MWTP). 

However, there are myriad factors that can cause hedonic coefficients to separate from valuation 

(Kuminoff and Pope 2014), and this paper adds empirical evidence that casts doubt on this 

interpretation. Currie et al. (2014) find that property value impacts do not reflect the full extent 

of health impacts caused by manufacturing plants. Guignet (2013) finds that property prices only 

respond to water quality variation when home-specific well tests are done. Pope (2008) and 

Walsh and Mui (2017) show that the hedonic price gradient changes after mandatory information 

disclosure. Given health and safety concerns of brownfields, certainly the welfare of nearby 

residents improves with remediation, all else equal. However, our findings indicate that price 

changes do not reflect health and safety improvements and this wedge is likely driven by 

incomplete information.  

 

2  BACKGROUND 

2.1  Brownfields 

A brownfield is a property that is polluted or contaminated with hazardous waste, which 

hinders its redevelopment or reuse.8 In Rhode Island, the most common sources of 

contamination for brownfield sites are heavy metals (predominantly Arsenic and Lead), 

petroleum related byproducts (from leaking storage tanks and spills), Polychlorinated Biphenyls 

(from electrical transformers and substations), and historical remnants of the state’s 

manufacturing background. 

Inorganic heavy metals remain and the soils become sinks for these contaminants to leach 

into proximate ecosystems and food chains (Wuana and Okieimen 2011). In Rhode Island, 

industrialization started in the late 18th century with the onset of textile mills harnessing the 

power of local waterways. These mills later supported the manufacturing of tools, alloys and 

jewelry – industries that resulted in lasting heavy metal contamination. The high concentration of 

historical manufacturing centers along with the toxicity and mobility of contaminants over a two 

century period point to the large degree of uncertainty that investigators, regulators, and land 

owners encounter when attempting to sufficiently mitigate risk to humans and the natural 

environment. 

                                                 
8 See www.epa.gov/brownfields for more information. 

http://www.epa.gov/brownfields
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Hazardous wastes harbored within brownfields can have a predictable effect on the 

people that come into contact with them and their surroundings: unusual rates and rare forms of 

cancer (Cogliano 1998), birth defects and abnormal human development (Croen et al. 1997), and 

learning disabilities (Ciesielski et al. 2012). 

 

2.2  Remediation 

Banks, lenders, and corporate property buyers typically require real estate to have a site 

investigation on record before going forward with any transactions or development that may 

carry the risk of a hazardous waste liability. A site investigation is the initial assessment and 

testing of a property that determines if there are contaminants present and whether those 

contaminants exceed critical thresholds. These requirements change from state to state but are 

commonly based on the EPA’s recommendations. If a contaminant is found to exceed the state 

threshold, the site is deemed hazardous and in need of cleanup (remediation) under state or 

federal law. Cleanup typically takes less than six months. 

Remediation efforts aim to clean up the source of pollution and otherwise isolate the 

pathways in which the contaminants could affect humans, with the ideal goal being to restore the 

environmental health of the site to its pre-polluted state. Additionally, remediation can allow for 

the reuse of the land that would otherwise sit abandoned and hazardous. 

The historic nature of many brownfields can lead to a contaminated parcel of land 

changing hands one or more times, which creates a legal buffer between the current land owner 

and the historic polluter. The contemporary land owner is held legally liable for the cleanup costs 

associated with any hazardous waste discovered on their property, regardless of whether they 

were aware of the waste at the time of their purchasing the property.  

 

2.3  Rhode Island’s voluntary brownfield program 

 State governments focus on brownfields that are not so imminently hazardous as to 

warrant federal attention, but still present an environmental risk. Further, states and others see 

brownfield remediation and redevelopment as an important strategy in revitalizing urban 

neighborhoods and reducing urban sprawl. State level equivalents of the EPA manage cleanup 

efforts within their jurisdiction and will sometimes establish a voluntary brownfields program. 
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Voluntary programs have been accredited for a notable increase in the number of brownfield 

cleanups since their introduction (Linn 2013). 

In Rhode Island, the Site Remediation and Brownfields Program was created in 1993 by 

the Rhode Island Department of Environmental Management (RIDEM) Office of Waste 

Management (OWM).9 This program offers some legal protection for land owners that report a 

release of contaminants to RIDEM and agree to follow and complete the official remediation 

process outlined in the Rules and Regulations for the Investigation and Remediation of 

Hazardous Material Releases. Properties can be brought into the program either by voluntary 

entry for purpose of owners avoiding liability or by performing an environmental site assessment 

to clear the way for a real estate transaction. While it is voluntary for property owners to enter 

the program, this is misleading. After a site investigation has been conducted, the results are 

required to be reported to RIDEM. Thus, the choice not to enter the program would likely have 

legal ramifications. Once in the program, RIDEM works with the property owner to determine 

the best path forward that both minimizes the risk of human exposure and keeps cleanup costs at 

acceptable levels. 

Given the possible ignorance of current owners over the toxicity of their property, nearby 

residents may be uninformed as well, and Rhode Island’s program seeks to address this. 

Contaminated site owners are required by RIDEM to publicly notify the owners of land parcels 

that abut a brownfield parcel on two separate occasions throughout the remediation process.10 

The first time, abutters are notified of a pending site investigation to further investigate a 

suspected contamination. When the investigation is completed, the results of any findings are 

presented to abutters in the second notification, along with several remedial alternatives that are 

likely to take place. There is no public notification when remediation is complete.11 However, 

abutters have no legal obligation to inform prospective buyers (as in Pope 2008). While formal 

notification stops at current abutters, information is likely to spread further through observation 

of cleanup and through banks, which monitor areas of potential liabilities.  

 

                                                 
9 For more information, see www.dem.ri.gov/brownfields/default.htm 
10 See rule 7.07 of the Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases 
http://www.dem.ri.gov/pubs/regs/regs/waste/remreg11.pdf 
11 There are stipulations for special circumstances, such as the repurposing of a brownfield for use as a school, that 
warrant more extensive public outreach. 

http://www.dem.ri.gov/pubs/regs/regs/waste/remreg11.pdf
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3  DATA 

3.1  Brownfield data 

Brownfield remediation data were gathered from the public record, provided by the 

RIDEM OWM. We collected data on all sites remediated from October 2003 to March 2013. 

Prior to October 2003, the EPA did not require states to make data on remedial actions publically 

available, and RIDEM chose not to keep records.12 The RIDEM data included the name of each 

site, the approximate street address, site acreage, general source of contamination, and the date 

that the letter of completion was issued. The dataset did not include entry dates into the state 

brownfield remediation program. Combining address records from RIDEM with Google Maps, 

Google Earth, plat and parcel maps and tax assessor databases, we were able to identify exact 

longitude and latitude at the center of each brownfield parcel.  

During our time range, a total of 225 sites were remediated and this forms our sample. 

Figure A1 in the online appendix shows the geographic distribution of the sample brownfields. 

The highest concentration of brownfield sites is in the urban corridor of Providence. Other areas 

of high concentration tend to be located near major rivers, such as the Blackstone flowing south 

from Massachusetts into Providence, and along Narragansett Bay, both reflecting historical 

patterns of industry.  

RIDEM identified sites by their prior function or the primary source of contamination. 

Using this, we group all sample sites into three broad classifications: ‘Historical’ meaning a site 

used industrially many decades prior, ‘Synthetic compounds’ including heavy metals and 

Polychlorinated Biphenyls, and ‘Petroleum’ indicating oil contamination usually from 

underground storage tanks. Historical is the largest comprising 48%; Synthetic compounds and 

Petroleum make up 18% and 15%, respectively. The remaining 19% are either classified as 

something uncommon or unclassified.  

To complement the source contamination data, we manually collected reuse data. Using 

Google Maps, we determined how each sample remediated site is currently being used. 42% are 

used commercially and 18% are used for industrial purposes. 25% are redeveloped into 

residential areas or schools; the remediation burden is greater for this reuse because standards are 

                                                 
12 Not having remediation data prior to 2003 is a limitation of our study. We guard against prior remediation biasing 
our results by including census block group fixed effects, which control time-invariant neighborhood attributes, such 
as pre-2003 remediation.  
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more stringent. 15% were either classified as something uncommon or had not yet been 

developed. Table A1 in the online appendix summarizes the distribution of our sample into 

source contamination and reuse categories, as well as the transition frequency between groups. 

 

3.2  Housing data 

Our housing data were purchased from Warren Group and include nearly all Rhode 

Island transactions between October 2003 and February 2013. We have transactions data back to 

January 2000, which are used to measure pre-sample neighborhood average prices as described 

in Section 4. The data offer information on sales price, date of transaction, street address, living 

square feet, lot size, year of construction, number of bedrooms, full and half bathrooms, and 

whether or not the unit has a pool, fireplace, air conditioning or view of the water. Sales prices 

were adjusted for inflation using Federal Housing Finance Agency’s monthly Housing Price 

Index and brought to February 2013 levels. To get latitude and longitude, we geocoded all 

addresses to coordinates using the Rhode Island GIS E-911 geolocater.13 Using GIS, we 

calculated the Euclidian distance to all brownfields.  

To build our main sample, we include only transactions within 2 km of a site in order to 

exclude neighborhoods and properties dissimilar to those that experience remediation. We 

include only arm’s length transactions of single family homes. Lastly, we dropped sales with 

prices less than $25,000 and greater than $10 million. The final sample is 43,787 transactions 

representing 34,035 unique single family properties.  

We additionally added a set of spatial amenity variables using GIS. While foreclosure 

properties are not included in the main sample, we calculate the number of foreclosed properties 

per block group-year in order to control for price spillovers from those properties – consistent 

with Harding et al. (2009). Additionally, we calculate proximity to several time-invarient 

neighborhood features: highway exit, village center, major river, large lake, coastline, industrial 

center, Enterprise Zone, and to downtown Providence. One additional distance was taken to the 

nearest pre-sample CERCLIS site. Only sites on CERCLIS before the sample period began were 

included in order to gain a sense of how close each transaction was to a pre-sample hazardous 

waste site that warranted federal level attention.  

 

                                                 
13 Available at http://www.edc.uri.edu/rigis/. 

http://www.edc.uri.edu/rigis/
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3.3  Brownfield density index  

Many hedonic analyses apply difference-in-differences, where proximity to a changing 

amenity or disamenity define treatment and properties beyond a certain distance threshold are 

control units. However, in instances in which the attribute of interest is densely distributed and 

households can be impacted by multiple treatments, a simple distance variable is unlikely to 

sufficiently capture exposure. In our sample of 225 brownfields, 55% are within 0.5 km of 

another brownfield, 79% are within 1.0 km of another brownfield, and 92% are within 2.0 km of 

another brownfield. Because the spatial extent of effect is unknown, identifying a clear control 

group for most of our sample is difficult, and a difference-in-differences methodology is less 

appropriate than a continuous measure of exposure. 

 To measure exposure in our setting, we develop a brownfield density index (BDI) that 

can incorporate multiple, proximate brownfields. BDI assigns each transaction a continuous 

value that weights the proximity to remediated brownfields based upon the inverse distance to a 

transaction. Closer brownfields carry more weight, while those further away contribute less. This 

construction follows Linn (2013), who examined the similarly dense brownfield area of Chicago. 

We calculate several measures of BDI. The first, which is the key independent variable 

for most of our analyses, is the sum of the inverse distances to all brownfields within 2 km that 

are remediated prior to the transaction. 

𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 = �
1
𝑑𝑑𝑖𝑖,j𝐽𝐽

∙ 1�𝑡𝑡𝑖𝑖 > 𝑡𝑡𝑗𝑗� ∙ 1�𝑑𝑑𝑖𝑖,j < 2𝑘𝑘𝑘𝑘�                           (1)  

where J indexes all brownfields in our sample, 𝑑𝑑𝑖𝑖,𝑗𝑗 is the distance between house transaction i 

and brownfield j, and we limit the range of influence to be 2 km. 𝑡𝑡𝑖𝑖 is the date of transaction for 

housing transaction i, and 𝑡𝑡𝑗𝑗 is the date of completed remediation for brownfield j. Numerical 

examples help translate BDI into real experience. BDI would equal one if a single brownfield 

located 1 km from a house was remediated prior to the house’s transaction. Alternatively, if a 

house was 2 km from two brownfields that were remediated before the transaction, then BDI 

would also be one. Since the relationship with distance is inverse, a house located just .1 km 

from a remediated brownfield would have a BDI of 10. Due to the inverse nature, observations 

far from brownfields have a disproportionately small influence on estimating the relationship 

between remediation and housing prices, and as a result altering the 2 km cutoff does not 

qualitatively change results.  
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Second, we develop three BDI measures that distinguish time since remediation in order 

to allow heterogeneity in the effect on house prices over time. For example, remediation may be 

an immediate negative impact on nearby property values due to information revelation, but this 

effect may become zero or even positive as more time passes as households adjust to the 

situation and value the improvement. The first of the three measures is the density of remediated 

brownfields occurring less than six months before housing transaction i: 

𝐵𝐵𝐵𝐵𝐵𝐵_0_6𝑖𝑖 = �
1
𝑑𝑑𝑖𝑖,j𝐽𝐽

∙ 1 �𝑡𝑡𝑖𝑖 ∈ (𝑡𝑡𝑗𝑗 , 𝑡𝑡𝑗𝑗 + 6�� ∙ 1�𝑑𝑑𝑖𝑖,j < 2𝑘𝑘𝑘𝑘�                (2) 

where and 𝑡𝑡𝑗𝑗 + 6 is six months after brownfield j is remediated. The second and third BDI 

measures in this group use time windows of 6-18 months and more than 18 months.  

 Lastly, we create a time-invariant measure of brownfield density that captures the sum of 

inverse distances to all brownfields, regardless of remediation status. 

𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 = �
1
𝑑𝑑𝑖𝑖,j𝐽𝐽

∙ 1�𝑑𝑑𝑖𝑖,j < 2𝑘𝑘𝑘𝑘�                        (3) 

We use this variable (in a specification that includes 𝐵𝐵𝐷𝐷𝐼𝐼𝑖𝑖) to test the effect of unremediated 

brownfields on property prices. More details on model specifications are given in Section 4. 

 

3.4  Summary statistics 

Table 1 presents summary statistics that explain the data and illustrate the setting. In 

addition to brownfield and housing characteristics, we include Census 2000 block group data to 

understand resident characteristics.14 Column 1 presents basic means. The average BDI of a 

transacting property is 1.979, while average BDI total is 4.528 indicating that the average 

transaction is around both remediated and unremediated brownfields. The average sales price is 

$248,583, with just over a quarter-acre lot and just under 1,500 square feet of living area. The 

average median family income across neighborhoods in our sample is $47,210. On average, 

26.4% of our sample has a college degree and 11.2% are black or Hispanic.  

Column 2 compares our sample observations and neighborhoods to out-of-sample areas, 

namely transactions during the same time frame that are more than 2 km from any brownfield. 

The results show that out-of-sample houses sell for over $75,000 more, have two-thirds of an 

                                                 
14 Summary statistics for all variables used in regressions are available in Table A2 of the online appendix. 
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acre larger lot size, more living area, and are more likely to have central AC than in-sample 

houses. Further, out-of-sample residents have a larger family income by $9,178, are 4.6 

percentage points more likely to have a college degree, and are 5.4 percentage points less likely 

to be non-white.  

Columns 3 and 4 assess correlations between the housing and neighborhood 

characteristics and BDI. Each variable was separately regressed on BDI, and in Column 4 block 

group fixed effects were additionally included. Column 3 shows that BDI has strong, 

unconditional correlations with nearly all the housing and neighborhood characteristics. The 

correlations suggest that houses with high BDI have lower sales prices, smaller lots, less central 

AC and fewer bathrooms. Additionally, residents in high BDI areas have lower income, are less 

likely to have gone to college, and are more likely to be non-white. All of these correlations are 

consistent with intuition about environmental disamenities and environmental injustice. A 

concern is that if there are observable differences between high and low BDI areas, there may 

also be unobservable differences that bias regression estimates. However, when controlling for 

block group fixed effects, most correlations other than price become statistically insignificant or 

much smaller in magnitude. Our preferred regression specifications include block group fixed 

effects (or property fixed effects), which mitigates fears of unobservable variables biasing 

estimates.  

 

4  METHODOLOGY 

We use the hedonic price method to estimate the effects of brownfield remediation on 

proximate housing prices. Our basic specification is: 

ln(𝑝𝑝𝑖𝑖) = 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 + 𝑋𝑋𝑖𝑖𝜑𝜑 + 𝜀𝜀𝑖𝑖                (4) 

where 𝑝𝑝𝑖𝑖 is the sales price of transaction i, 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 is as defined in Equation (1), 𝑋𝑋𝑖𝑖 is a set of 

housing, location, and temporal controls and will be discussed in detail below, and 𝜀𝜀𝑖𝑖 is the error 

term. 𝛽𝛽 is the coefficient of interest and measures the effect of density of remediated brownfields 

on housing prices. As discussed in the introduction, we interpret 𝛽𝛽 as the combination of 

household valuation of environmental improvement and any consequence resulting from new 

information derived by remediation by households, lenders, or developers. Assuming valuation 

of environmental improvement is positive and new disclosure of old contamination is negative, a 

positive 𝛽𝛽 would suggest household valuation of environmental improvement overwhelms any 
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negative effect of new information. Whereas a negative 𝛽𝛽 may be interpreted as the negative 

impact of information revelation being larger than the valuation.  

First, 𝑋𝑋𝑖𝑖 includes structural housing characteristics (e.g., bedrooms, bathrooms) and 

measures of spatially-referenced attributes (e.g., distance to the coast, distance to pre-2003 

CERCLIS sites). Second, to guard against spatially correlated unobserved variables, we include 

fixed effects for each Census block group, of which there are 616 in our sample with an average 

of 71.1 observations per block group.  Third, the time span of our study includes the boom and 

bust of the housing market (see Figure A2 in the online appendix for the overall time trend 

observed), and we include month-year fixed effects to negate any correlation between 

macroeconomic conditions and remediation activity.  

However, recent research has shown that the boom-bust cycle was not uniform across 

space, even for neighborhoods within the same state or metropolitan area (Kuminoff and Pope 

2013). Further, Landvoigt et al. (2015) find that lower tier neighborhoods appreciated much 

more than upper tier neighborhoods in the boom part of the cycle, and that this was driven by the 

expansion of lending to subprime credit households. In our data, we find similar price dynamics 

(see Figures A3a and A3b in the online appendix). Given that properties and neighborhoods with 

high BDI tend to have lower sales prices and lower incomes, these differential price movements 

pose a challenge to identification. 

To account for these predictable, differential price trends across segments of the housing 

market, we include three additional sets of variables in 𝑋𝑋𝑖𝑖. First, we include town-year fixed 

effects to non-parametrically control for differing boom-bust cycles across the 35 towns in our 

sample. Second, we calculate the number of foreclosures occurring by year and block group and 

include this as an independent variable. Third, we calculate average pre-sample (January 2000-

December 2002) house prices for each census tract and interact this continuous variable with 

year-quarter fixed effects. This set of variables controls for different price segments of the 

market evolving differently.15 In a robustness check, we alternatively control for property-

specific pre-sample price interacted with year-quarter fixed effects, similar to Bajari et al. (2012).  

                                                 
15 Linn (2013) also includes pre-sample mean neighborhood prices interacted with time fixed effects, however, his 
motivation is to control for reverse causality. He argues that because property values incorporate expected future 
changes in value, including these variables will control for unobserved neighborhood trends.  
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In addition to Equation (4), we estimate models allow the effect of remediation to change 

in the time since remediation: 

ln(𝑝𝑝𝑖𝑖) = 𝛽𝛽1𝐵𝐵𝐵𝐵𝐵𝐵_0_6𝑖𝑖 + 𝛽𝛽2𝐵𝐵𝐵𝐵𝐵𝐵_6_18𝑖𝑖 + 𝛽𝛽3𝐵𝐵𝐵𝐵𝐵𝐵_18𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 + 𝑋𝑋𝑖𝑖𝜑𝜑 + 𝜀𝜀𝑖𝑖                (5) 

where 𝐵𝐵𝐵𝐵𝐵𝐵_0_6𝑖𝑖 is as defined in Equation (2) and 𝐵𝐵𝐵𝐵𝐵𝐵_6_18𝑖𝑖 and 𝐵𝐵𝐵𝐵𝐵𝐵_18𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 are defined 

analogously.  

 In Equations (4) and (5), identification comes from within block group variation. While 

these are small geographic areas, there could still be a concern that there are unobserved 

variables that vary within block groups and are correlated with both house prices and BDI. We 

employ two additional models to guard against this bias. First, we estimate a repeat sales model 

and include property specific fixed effects: 

ln(𝑝𝑝𝑖𝑖𝑖𝑖) = 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖𝜑𝜑 + 𝛼𝛼𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖                (6) 

where t denotes the time of sale. This model will capture all time-invariant spatial variables, but 

at the expense of losing 60% of our observations. Second, in an effort to capture unobserved 

variables correlated with BDI, we add BDI total, defined in Equation (3), to Equation (5):  

ln(𝑝𝑝𝑖𝑖) = 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 + 𝛾𝛾𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑋𝑋𝑖𝑖𝜑𝜑 + 𝜀𝜀𝑖𝑖                (7) 

Not only does the inclusion of BDI total improve the identification of 𝛽𝛽, but the interpretation of 

𝛾𝛾 can provide insights into the disamenity value of proximity to unremediated brownfields.16 If 𝛾𝛾 

is negative, this would suggest the community and potential buyers are aware of the brownfield 

and its associated risks and value non-proximate houses more. However, if this coefficient is 

zero, then the community and potential buyers may not value distance or may not be aware of the 

proximate hazards.  

 Lastly, we estimate variants of Equations (4), (6) and (7) that allow for heterogeneous 

impacts of remediation across space. We divide the sample into terciles of low, medium and high 

priced neighborhoods based on the average pre-sample (2000-2002) sales prices for each census 

tract. We then estimate models that interact indicator variables for each tercile with BDI and BDI 

total. These models enable inference into the price impact of remediated and unremediated sites 

by neighborhood wealth, which could be correlated with valuation of environmental goods, 

                                                 
16 Instead of the time invariant BDI total, it is tempting to include a measure of BDI for only unremediated 
brownfields. The problem with that switch is that BDI and BDI unremediated are highly collinear because 
remediation of a brownfield would decrease BDI unremediated and increase BDI by the same amount. As a result, 
including BDI unremediated dramatically changes the coefficient on BDI and its interpretation.  
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information about environmental goods, and bank lending practices. We then use the differential 

price changes to assess distributional impacts. 

 

5  RESULTS 

5.1  Basic Results 

Table 2 presents a suite of results from various specifications of Equation (4) in Panel A 

and Equation (5) in Panel B. Five columns represent five model specifications. Column 1 

includes housing and neighborhood characteristics only. Columns 2-5 build on the prior 

column’s specification, adding in turn year-month fixed effects, census block group fixed effects, 

year-town fixed effects, and pre-sample average house values interacted with year-quarter fixed 

effects.  

Beginning with Panel A, all coefficients show a negative and statistically significant 

effect of brownfield remediation on property values. The coefficient estimates range 

from -0.0244 to -0.0100, are all statistically significant at the 1% level, and decrease in 

magnitude as more controls are included. Among specifications in this table, Column 5 is our 

preferred model because it controls for spatial unobservables, differential housing market 

fluctuations by town and by market segment. However, the full suite of results suggests that the 

modeling choice does not qualitatively affect the estimated relationship between BDI and prices, 

and there is still enough within block group variation to identify the treatment effect. The 

estimated coefficients from our preferred model suggests that a one unit increase in BDI yields a 

1.0% reduction in house price. This translates into a marginal effect of -1.0% for a single 

remediation 1 km away, which would be a $2486 loss in an average house value. The mean 

value of BDI in our sample is 1.979, indicating that the average house sold for nearly 2% less 

than a house removed from any brownfield remediation, all else equal.  

Panel B supports the findings of Panel A, showing statistically significant negative 

coefficients across the board. The results further suggest the price impacts of remediation are 

immediate and relatively constant as time goes on. The coefficient on BDI 0-6 months in Column 

5 is -0.0080, stays nearly identical 6-18 months following remediation, and then grows slightly 

to -0.0116 beyond 18 months. Given the immediate nature of price impacts, it seems very 

unlikely that preference-based sorting is causing this result because it would take longer for 
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populations to turn over. For the remainder of the paper, given the similarity in results, we focus 

only on models using BDI as the main independent variable, as in Panel A. 

These results contrast with Linn (2013), the most closely related study to ours, and 

Haninger et al. (2017), which both find positive property value impacts of brownfield 

remediation. Linn (2013) estimates a coefficient of 0.0016 on the density of sites remediated 

prior to sale. Haninger et al. (2017) find much larger effects, ranging from 5% to 11% post-

remediation, when looking at EPA-funded remediated sites. As discussed in the introduction, a 

key difference between the EPA sites and Rhode Island’s voluntary program sites is that the EPA 

prioritizes community involvement and information availability prior to remediation. In sum, our 

results and the differences in programs lend support for the notion that brownfield remediation 

leads to new information about the environmental quality to buyers, developers or lenders, and 

prices respond negatively to that new information. As we explore extensions to this model, we 

will seek more evidence for this interpretation.  

 

5.2  Robustness checks 

Table 3 presents a series of specification that test the robustness of the results presented 

in Table 2. Column 1 presents results from estimating Equation (6), the repeat sales model, on 

the 7,752 properties that transact more than once during our sample time period. The magnitude 

of effect grows slightly to -0.0134. Column 2 presents results from estimating Equation (7), 

which includes BDI total. The coefficient on BDI is nearly unchanged from Table 2 Column 5. 

Both of these results suggest that results are not affected by unobserved variables that vary 

within block group and are correlated with both house prices and BDI. The coefficient on BDI 

total is small and insignificant, which could indicate that on average there is no disamenity value 

of unremediated brownfields. However, given the coefficients on BDI, it seems more plausible to 

interpret this statistical zero as evidence that there is no knowledge of unremediated brownfields. 

 Columns 3 and 4 show results from models that have alternative strategies for controlling 

market price segments experiencing the boom-bust cycle differently. Column 3 includes Census 

tract by year fixed effects, which provide a more flexible way of controlling for neighborhood 

dynamics than town by year fixed effects and pre-sample neighborhood mean prices interacted 



18 

with year-quarter fixed effects.17 The estimated coefficient on BDI is -0.0085, slightly smaller 

than when not using tract-year fixed effect, but still consistent with the basic results. Instead of 

modeling how neighborhood prices evolve through the boom-bust cycle, Column 4 uses pre-

sample prices of individual properties as predictors of price fluctuations, similar to the strategy 

of Bajari et al (2012). Specifically, for sample properties that additionally transact during the 

time frame January 2000-Septemeber 2003 (22.5% of the main sample), the pre-sample sales 

price is interacted with year-quarter fixed effects. The estimated coefficient on BDI is -0.0187.18 

Both columns suggest the modeling choice for how price segments experience the price cycle are 

not consequential for the results.  

 Columns 5 and 6 modify the definition of BDI by squaring and square rooting inverse 

distance to give more or less weight, respectively, to closer brownfields. The interpretation of the 

coefficient changes due to the changing units, but both coefficients are negative and statistically 

significant, which is consistent with other results. While not shown here, the results are also 

robust to modifying the BDI definition to only include brownfields within 1.5 km.  

 As an additional robustness check, we estimate difference-in-differences models for a 

variety of treatment and control distance bins. The results are presented in in Tables A3 and A4 

of the online appendix and strongly support the overall findings of negative price changes.   

 

5.3  Heterogeneity by neighborhood average house value 

Prices in different types of neighborhoods may respond differently to brownfield 

remediation. One source of heterogeneity could be wealth levels of a neighborhood and all that is 

correlated with wealth. Conventional wisdom may suggest that wealthier areas are more 

informed about environmental amenities, and remediation may not be new (negative) 

information. If the site is known to be contaminated, remediation may positively affect housing 

prices. Further, wealthier areas may be viewed as a safer investment for development or re-

development, and thus developers may be less concerned about discovery and remediation of a 

brownfield, and prices may not be negatively affected.  

                                                 
17 However, only tracts with sufficient observations could be included to identify tract-year fixed effects, otherwise 
Stata could not invert the matrices. Thus, only tracts with 200 observations or more were included in this column’s 
sample, which results in a loss of 18.4% of the main sample. The results are robust to changing the cutoff of 200.  
18 The Bajari et al. (2012) strategy is slightly different; they use the estimated residual from a prior sale to control for 
property unobservables. With the same sample used in Column 4 of Table 3, we estimated such a model and the 
coefficient on BDI was a statistically significant -0.0278.  
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Table 4 presents results from models that allow the house price impact of remediation to 

vary by neighborhood price level. We estimate three models: the first similar to the preferred 

specification from Table 2, the second adds BDI total, and a repeat sales model. In each 

specification, BDI is interacted with indicator variables for low, medium and high price 

neighborhood, definitions which are based on pre-sample sales and are time-invariant. 

Additionally, in Column 2, BDI total is interacted with the three indicator variables. 

 The coefficient on BDI in low price neighborhoods ranges from -0.0181 to -0.0208 and is 

statistically significant at the 1% level across all three specifications. For medium price 

neighborhoods, coefficients on BDI are always negative, but half the magnitude or less of the 

effect of BDI in low price areas. In contrast, coefficients on BDI in high price neighborhoods are 

twice positive and statistically significant, suggesting prices increase after remediation or at least 

do not decrease. In sum, these results reveal substantial and statistically significant heterogeneity 

in house price responses to remediation between neighborhoods of different house values.19  

In Column 2, the coefficient estimates on interactions with BDI total also reveal 

substantial and statistically significant heterogeneity across neighborhood types. The coefficient 

for BDI total in low price neighborhoods is statistically insignificant and small in magnitude, 

suggesting that houses located near unremediated brownfields in low price neighborhoods do not 

sell for a different price than houses further away. In contrast, the coefficients for BDI total in 

medium and high price neighborhoods are negative and statistically significant, with the 

coefficient for high price neighborhoods larger in magnitude. This suggests that prices are lower 

closer to unremediated brownfields in medium and high price neighborhoods.  

 If we return to the idea that coefficients on BDI reveal the net impact of valuation and 

new information, the coefficients in Table 4 tell an interesting story consistent with the idea that 

information is a critical element of price effects. In low price neighborhoods, results suggest that 

unremediated brownfields are not known to be a risk. Once remediation occurs, prices of 

proximate houses decline, suggesting new information about contamination is negatively 

impacting the price new buyers are willing to pay or the amount banks are willing to lend. 

However, in high price neighborhoods, results suggest that households possess information about 

                                                 
19 An alternative specification that includes BDI as a main effect and BDI interacted with I(medium price 
neighborhood) and I(high price neighborhood) was used to test statistical differences in price effects across 
neighborhood types. While the two models are essentially identical, we felt presenting results as in Table 4 better 
enabled interpretation of coefficients.  
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unremediated brownfields and place value on non-proximity. Further, we see prices increase 

after remediation, indicating the valuation effect is larger than the new information effect, which 

is consistent with households knowing about the brownfield prior to remediation. Interestingly 

though, it appears some stigma about the location may remain as coefficents on BDI are equal or 

smaller in magnitude than the coefficient on BDI total, suggesting prices do not fully recover 

post remediation. In medium price neighborhoods, the results indicate something in between, 

that households are at least somewhat aware of existing brownfields, but still prices may still 

decline after remediation, though much less than in low price neighborhoods.  

 

5.4  Heterogeneity by contamination type and reuse  

One alternative explanation to the heterogeneous price impacts estimated in Table 4 is 

that there may be different price impacts by type of contamination or reuse, and contamination 

and reuse patterns may be correlated with neighborhood characteristics. To test this, we create 

BDI measures specific to each contamination source and each reuse type and then estimate 

separate regression including only one source or type at a time. Table 5 reports the results. While 

there are differences in magnitude across contamination sources and reuse types, all coefficients 

are negative and all but one are statistically significant. These results suggest that correlations 

between contamination and reuse patterns and neighborhood characteristics are not driving the 

heterogeneity observed in Table 4. 

 

6  DISTRIBUTIONAL IMPACTS  

 In this section, we extend our analysis to think about how Rhode Island’s voluntary 

brownfield program impacted households across the distribution of wealth levels. We will 

consider welfare as measured by changes in house price proportional to income, which is 

commonly used in the literature (Fullerton 2011). Relating impacts to income is similar to 

thinking about tax incidence, and whether a tax is progressive or regressive. In the case of the 

impact of brownfield remediation, if welfare improves more for low-income households than 

high-income households, then the policy is progressive, and regressive if the opposite holds.  

In order to calculate our welfare measure, we first multiply sales prices by transaction 

specific BDI and by the corresponding coefficient estimate from Column 3 of Table 4, which 

yields the total impact of remediation on sales price. This number is then put in annual terms 
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assuming a 5% interest rate and 30-year mortgage. Annualized impacts are averaged by Census 

tract and divided by tract median family income from the 2000 Decennial Census to arrive at our 

welfare measure. A limitation of this analysis is that it does not account for impacts to renters, 

which on average are lower income than homeowners.  

Figure 2 plots welfare impacts against log median family income at the tract level. Each 

point in the data is given a diameter proportional to the average BDI of all observations within 

that tract, thus indicating which neighborhoods experienced more remediation. Immediately clear 

from the figure is a positive relationship between income and welfare. The average welfare 

impact for each quintile of income, from lowest to highest is: -0.0250, -0.0075, 0.0010, 0.0018, 

and 0.0055. These findings suggest a regressive impact of the program.  

 Given the negative correlation between brownfield prevalence and neighborhood income 

observed in Table 1, a program aimed at cleaning and developing brownfields could intuitively 

have a disproportionately positive impact on low-income areas. In the context of air quality, 

Bento et al. (2015) document a similar correlation between income and environmental quality, 

and find that the air quality improvements from the 1990 Clean Air Act Amendments 

disproportionately benefited low-income households. More similar to the context of brownfields, 

Gamper-Rabindran and Timmins (2013) find that superfund remediation disproportionately 

benefited low value homes. In the present case of Rhode Island’s voluntary brownfield program, 

however, the empirical evidence suggests a progressive outcome was thwarted by the presence 

and heterogeneity of incomplete information.  

 

7  CONCLUSION 

 This paper examines the external effects of a voluntary brownfield remediation program 

in the state of Rhode Island that reduces liability for owners of brownfield sites in exchange for 

remediation. There are many perceived benefits to brownfield remediation (e.g., reducing 

adverse impacts on human health, reducing urban sprawl, and promoting economic growth in 

inner cities), which makes it a popular activity across many policy spheres. Many state and city 

governments and the EPA see brownfield remediation as a priority, and indubitably thousands of 

cleanups will occur across the United States in the near future.  

 The empirical findings of this paper suggest that brownfield remediation reduces nearby 

property values. There is substantial heterogeneity in the property value impacts over space; we 
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find that the overall negative effects are driven by low-income neighborhoods. These findings 

lead us to conclude that there is incomplete information about contamination prior to remediation 

and discovery of contamination increases concern about nearby properties among current 

residents and potential buyers, as well as mortgage lenders and developers. 

The unequal and regressive distribution of impacts raises concerns about the popularity of 

brownfield remediation programs. Future research should strive to understand how individual 

programs and policies can be altered to avoid unintended consequences. Comparing our results 

to those of Haninger et al. (2017) suggests that external funding and community involvement 

may be critical for positive outcomes to be realized, and this supports the institutional 

understanding of experts at the EPA (Cooper et al. 2015). Interestingly, Rhode Island held and 

passed referendums in the 2014 and 2016 elections that provide a combined $10 million of 

matching grants for new brownfield remediation project costs. We are interested to see if this 

funding can alleviate the problems observed with the program thus far, but would additionally 

encourage community outreach and information dissemination to be coupled with this funding. 
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Tables and Figures 
 
 
 
 

Table 1: Summary Statistics 

Variables 

In-sample 
mean  

(std. dev.) 

In vs. out of 
sample  

(std. error) 

Relationship 
with BDI  

(std. error) 

Relationship 
with BDI, with 
block group FE  

(std. error) 
(1) (2) (3) (4) 

BDI 1.979    
 (2.883)    
BDI total 4.528    
 (4.724)    
Sales price (2013$) 248,583 -75,225** -7,938** -6,544** 
 (184,593) (2,144) (303) (1,785) 
Lot size (acres) 0.282 -0.671** -0.022** -0.001 
 (0.604) (0.012) (0.001) (0.001) 
Living area (square feet) 1,480 -166.7** -0.887 2.177 
 (622) (5.2) (1.031) (3.389) 
Central AC (1=yes) 0.257 -0.087** -0.014** -0.002* 
 (0.437) (0.003) (0.001) (0.001) 
Number of bathrooms 1.665 -0.187** -0.015** -0.003 
 (0.704) (0.005) (0.001) (0.003) 
Median family income 47,210 -9,178** -1,322**  
 (16,728) (122) (26)  
Proportion college graduate 0.264 -0.046** -0.005**  
 (0.168) (0.001) (0.001)  
Proportion non-white 0.112 0.054** 0.020**  
  (0.155) (0.001) (0.001)   
Notes: BDI is the sum of the inverse distances to all brownfields within 2km of a housing transaction that were 
remediated prior to the transaction. BDI total is a time invariant measure that equals the sum of the inverse distances to 
all brownfields within 2km of a housing transaction, regardless of remediation status. Median income, proportion of 
college graduates and proportion non-white come from the 2000 Decennial Census at the block group level. For 
Column 2, variables were regressed on an indicator for in-sample. For Columns 3 and 4, variables were regressed on 
BDI, and, in Column 4, block group fixed effects. In each of Columns 2-4, the regression coefficient and standard error 
are displayed. Sample size is 43,787 for columns 1, 3 and 4 and is 78,415 for column 2. * and ** indicate significance at 
5% and 1%, respectively. 
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Table 2 : The Effect of Brownfield Remediation on Housing Prices 

Variables 
Dependent Variable: Log Sales Price 

(1) (2) (3) (4) (5) 
Panel A: total effect of remediation      

 BDI -0.0249*** -0.0183*** -0.0128*** -0.0119*** -0.0100*** 
  (0.0041) (0.0038) (0.0033) (0.0031) (0.0027) 
 Adjusted R-squared 0.597 0.704 0.717 0.733 0.737 
       
Panel B: effect of remediation split by time 
horizon 

     

 BDI 0-6 months -0.0294*** -0.0158*** -0.0110*** -0.0094** -0.0080** 
  (0.0050) (0.0043) (0.0041) (0.0039) (0.0038) 
 BDI 6-18 months -0.0221*** -0.0146*** -0.0102** -0.0085** -0.0077** 
 

 (0.0077) (0.0051) (0.0042) (0.0036) (0.0033) 
 BDI 18 or more months -0.0245*** -0.0193*** -0.0147*** -0.0142*** -0.0116*** 
  (0.0043) (0.0042) (0.0040) (0.0037) (0.0033) 
  Adjusted R-squared 0.591 0.703 0.716 0.733 0.736 
Housing and neighborhood characteristics Yes Yes Yes Yes Yes 
Year-month FE No Yes Yes Yes Yes 
Census Block Group FE No No Yes Yes Yes 
Town X Year FE No No No Yes Yes 
Pre-sample mean price X year-quarter FE No No No No Yes 
Observations 43,787 43,787 43,787 43,787 43,787 
Notes: Each column of each panel results from a separate regression. In Panel A, BDI is the sum of the inverse distances to all brownfields within 2km of a housing 
transaction that were remediated prior to the transaction. In Panel B, a remediated brownfield only enters the BDI measure if it occurs in the time span specified by the 
variable. Housing and neighborhood characteristics include lot size, living area, house age bins, bedrooms, full bathrooms, half bathrooms, floors, parking spaces, total 
rooms, fireplaces, pool, central air conditioning, water view, and distance to the nearest: coastline, lake, river, village center, downtown Providence, industrial area, 
impoverished area, and pre-sample CERCLIS site. Pre-sample mean prices are census tract average sales prices for pre-sample years 2001-2003. Standard errors are shown 
in parentheses and are estimated using the Eicker-White formula to correct for heteroskedasticity and are clustered at the block group level. *, ** and *** indicate 
significance at 10%, 5% and 1%, respectively.  
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Table 3: Robustness Checks 

Variables 

Dependent Variable: Log Sales Price 

Repeat sales 

Include  
time-

invariant  
BDI total 

Tract X year 
FE 

Pre-sample 
sales price as 

predictor 

Use distance 
squared in 

BDI 
calculation 

Use root 
distance in 

BDI 
calculation 

(1) (2) (3) (4) (5) (6) 
BDI -0.0134*** -0.0103*** -0.0085** -0.0187*** -0.0022*** -0.0190*** 
 (0.0031) (0.0023) (0.0035) (0.0031) (0.0004) (0.0023) 
BDI total  -0.0004     
    (0.0021)         
Housing and neighborhood characteristics Yes Yes Yes Yes Yes Yes 
Year-month FE Yes Yes Yes Yes Yes Yes 
Census Block Group FE No Yes Yes Yes Yes Yes 
Town X Year FE Yes Yes No Yes Yes Yes 
Pre-sample mean price X year-quarter FE Yes Yes No No Yes Yes 
Property FE Yes No No No No No 
Tract X year FE No No Yes No No No 
Pre-sample sales price X year-quarter FE No No No Yes No No 
Observations 17,506 43,787 35,711 9,836 43,742 43,787 
Adjusted R-squared 0.859 0.723 0.717 0.789 0.723 0.724 
Notes: The Column 1 sample includes only properties that transact more than once, and the model includes property-specific fixed effects. Column 2 includes as an 
independent variable BDI total, which is the sum of the inverse distances to all brownfields, remediated and unremediated, within 2km of a housing transaction. Column 3 
adds Census Tract by year fixed effects to the Table 2 Column 5 specification and removes year-town FEs and pre-sample neighborhood mean price interacted with year-
quarter FEs. Column 3 only includes tracts with more than 200 observations in the sample. The Column 4 sample includes only properties that transacted January 2000-
September 2003 as well as the sample time frame October 2003-March 2013; then the pre-sample sales price (inflation adjusted and logged) is interacted with year-quarter 
fixed effects. For Columns 5 and 6, the definition of BDI is altered. Modifying Equation (1) to have an exponent on inverse distance, 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 = ∑ ( 1

𝑑𝑑𝑖𝑖,j
)𝑝𝑝𝐽𝐽 ∙ 1�𝑡𝑡𝑖𝑖 > 𝑡𝑡𝑗𝑗� ∙

1�𝑑𝑑𝑖𝑖,j < 2𝑘𝑘𝑘𝑘�, Column 5 sets p=2 and Column 6 sets p=0.5, as compared to the main results that set p=1. Squaring inverse distance produces a distribution of BDI with a 
long right tail; Column 5 drops transactions in the top 0.1% of the BDI distribution to reduce influence of outliers. See Table 2 for more details.  
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Table 4: Heterogeneous Effects of Brownfield Remediation by Neighborhood Value 

Variables 
Dependent Variable: Log Sales Price 

(1) (2) (3) 
BDI X I(low price neighborhood) -0.0208*** -0.0205*** -0.0181*** 
 (0.0024) (0.0024) (0.0037) 
BDI X I(medium price neighborhood) -0.0078** -0.0024 -0.0092* 
 (0.0040) (0.0037) (0.0049) 
BDI X I(high price neighborhood) -0.0010 0.0070** 0.0115* 
  (0.0019) (0.0030) (0.0059) 
BDI total X I(low price neighborhood)  0.0023  
 

 (0.0019)  
BDI total X I(medium price neighborhood)  -0.0079**  
 

 (0.0039)  
BDI total X I(high price neighborhood)  -0.0101***  
    (0.0034)   
Census block group FE Yes Yes No 
Property FE No No Yes 
Observations 43,787 43,787 17,506 
Adjusted R-squared 0.724 0.724 0.860 
Notes: Each column shows a single regression. Each regression includes housing and neighborhood characteristics, 
year-month fixed effects, year-town fixed effects, and neighborhood pre-sample mean price interacted with year-
quarter fixed effects. In columns 1 and 2, the sample is identical to Table 2. In Column 3, only properties transacting 
more than once are included. Neighborhoods (defined by census block groups) are sorted into three categories of 
low, medium and high house prices based on average sales price for January 2000-September 2003. I(low price 
neighborhood), I(medium price neighborhood) and I(high price neighborhood) are indicator variables based on that 
categorization. "X" indicates an interaction between two variables. See Table 2 for more details.  

 
 
  



29 

 
 
 
 
 

Table 5: Heterogeneous Effects of Brownfield Remediation by Contamination Source and Reuse Type 

Panel A: Contamination Source 
Historical Synthetic compounds Petroleum Other 

(1) (2) (3) (4) 
BDI  -0.0073** -0.0064 -0.0089** -0.0162*** 
  (0.0033) (0.0041) (0.0044) (0.0034) 
     

Panel B: Reuse Type Commercial Residential Industrial Other 
(5) (6) (7) (8) 

BDI  -0.0089** -0.0069** -0.0205*** -0.0217*** 
  (0.0035) (0.0032) (0.0050) (0.0038) 
Notes: Each column of each panel represents a separate regression, each with only one type of brownfield included in the calculation of BDI. 
For this table, BDI is calculated as the sum of inverse distances for all remediated brownfields of that type at the time of sale. "Historical" 
indicates a site of past manufacturing. "Synthetic compounds" include heavy metals and polychlorinated biphenyls. "Residential" includes 
both housing and schools. For contamination, "Other" either indicates that the contamination was unknown or there were too few instances of 
that type to form a group.  For reuse, "Other" either indicates that there were too few instances of that type to form a group or there was no 
reuse occurring. All models include all controls used in Column 5 of Table 2 and have a sample size of 43,787. See Table 2 in the main text 
for more details.  
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Figure 1: Hedonic price schedule for environmental quality  
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Figure 2: Distributional impacts of brownfield remediation 

 
Notes: Using results from Column 3 of Table 4, sales prices are multiplied by BDI and by the corresponding 
coefficient estimate to arrive at the total impact of remediation on sales price. This number is then put in annual 
terms assuming a 5% interest rate and 30-year mortgage. Annualized impacts are averaged by Census tract and 
divided by tract median family income from the 2000 Decennial Census to arrive at the y-axis value. Only tracts 
with 50 or more transactions in the sample are plotted (N=163, representing 98.4% of the main sample). Circle 
diameter is proportional to the average BDI of all observations within a tract, thus larger circles indicate 
neighborhoods that experienced more remediation. The mean of log median family income is 10.76, which 
translates into $47,210, and this appears as a vertical line on the graph. 
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Online Appendix 
 

INCOMPLETE INFORMATION AND ADVERSE IMPACTS  
OF ENVIRONMENTAL CLEANUP 

 
Corey Lang and Patrick Cavanagh 

University of Rhode Island 
 

(not for publication) 
 
 
 

 This appendix provides information, data, and results that supplement, but are not critical 

to, the analysis in our main paper.  

 Figure A1 shows the geographic distribution of the 225 sample brownfields. 

Figure A2 shows the average sales price trend for our sample. This plot reveals the 

increase in prices at the beginning of our sample period and the sharp downward trend at the 

onset of the housing crisis. 

 Figures A3a and A3b show neighborhood average price changes as a function of initial 

prices for the boom period 2002-2006 and the bust period 2006-2011, respectively. During 2002-

2006, low price neighborhoods increased in value about 20 percentage points more than high 

price neighborhoods. During 2006-2011, those low price neighborhoods experienced far greater 

price declines. These findings motivate inclusion of average pre-sample house prices by tract 

interacted with year-quarter fixed effects. 

 Table A1 gives frequency counts for contamination source and reuse type for our sample 

of 225 brownfields.  

 Table A2 gives sample means and standard deviations for all independent variables 

included in our hedonic regressions.  

 

Difference-in-differences  

 One concern about the main results is that the dose-response modeling strategy could be 

driving the results. Difference-in-differences is a commonly applied research design and is 

typically better suited to modeling a counterfactual that standard linear regression. Thus, it 

makes sense to apply that here. The basic difference-in-differences model is: 



2 

ln(𝑝𝑝𝑖𝑖) = 𝛽𝛽1𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 + 𝛽𝛽2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝛽𝛽3𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 

+𝑋𝑋𝑖𝑖𝜑𝜑 + 𝜀𝜀𝑖𝑖                (𝐴𝐴1) 

Given the close proximity of brownfields to each other and that they are remediated at different 

times, it is not straightforward to define treatment and control and pre and post, and we decided 

to anchor those definitions on the nearest brownfield. We define the treatment group as 

properties for which the nearest brownfield is less than 0.5 km away. The control group is 

defined as properties for which the nearest brownfield is between 1 and 2 km away. We omit 

properties for which the nearest brownfield is between 0.5 and 1 km away with the intent to 

create more contrast between treatment and control. We define post remediation as a binary 

variable equal to one if the nearest brownfield has been remediated and zero otherwise.  

 Panel A of Table A3 presents results from two difference-in-differences models, one 

cross sectional and one repeat sales, and only giving the coefficient on the key interaction term 

of the model (𝛽𝛽3 from Equation A1). The coefficients are similar to the main results in that they 

are negative and highly statistically significant. The magnitudes are substantially larger, but the 

interpretation is different. While the variables are binary, treatment likely often involves being 

proximate to several brownfields due to the clustered nature of brownfields in our sample. These 

results suggest that the main results are not being driven by the modeling strategy.  

 Panel B estimates the same models as Panel A, but uses only transactions that have a 

single brownfield within 2 km. These are isolated brownfields, and thus represent the cleanest 

treatment and control. Results here suggest a positive impact of remediation. While at first blush 

this appears to contradict our main findings and raises questions about our empirical strategy, the 

isolated brownfields occur in wealthier areas and these coefficients are consistent with the high 

price neighborhood results from Table 4. Thus, we do not view the Panel B results as valid 

treatment effects for the whole program. 

 Table A4 supports the difference-in-differences analysis presented in Table A3. Table A4 

varies the distance bins used for definition of treatment and control. Results are qualitatively 

identical to Table 6 and consistent with the main results. 

Difference-in-differences models that interact key variables with low, medium, and high 

price neighborhood indicator variables reveal similar price effects as those found in Table 4 

further supporting this conclusion. 
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Figure A1: Remediated Brownfield Sites, 2003-2013 
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Figure A2: Sales Price Trends over Sample Period 

 
Notes: Sales prices were first regressed on month fixed effects to remove predictable annual 
variation. Sample size is 43,787.   
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Figure A3a: Average Neighborhood Price Changes, 2002-2006 

 
 

 
Figure A3b: Average Neighborhood Price Changes, 2006-2011 

 
Notes: Average prices are determined for all sample neighborhoods, defined as Census Tracts, with at least 10 
observations in each of 2002, 2006 and 2011. The x-axis, log price, is the log of the average neighborhood sales 
price. The y-axis, price ratio, is the average neighborhood sales price in the later year divided by the earlier year. 
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Table A1: Transition Frequency from Contamination to Re-use 

  Type of Re-use  
  Commercial Residential Industrial Other Total 

Type of 
contamination 

Historical 41 28 21 18 108 
Synthetic 16 8 11 7 42 
Petroleum 19 4 4 6 33 

Other 19 16 4 3 42 
  Total 95 56 40 34 225 

Notes: Each cell represents the number of remediated brownfields that are of the given type of contamination and the given type of 
reuse. "Historical" indicates a site of past manufacturing. "Synthetic" stands for synthetic compounds and includes heavy metals 
and polychlorinated biphenyls. "Residential" includes both housing and schools. For contamination, "Other" either indicates that 
the contamination was unknown or there were too few instances of that type to form a group.  For reuse, "Other" either indicates 
that there were too few instances of that type to form a group or there was no reuse occurring.  
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Table A2: Housing and Neighborhood Summary Statistics 

 

Mean Standard 
deviation 

Sale Price ($2013) 248585 184594 
BDI 1.98 2.88 
BDI 0-6 months 0.23 0.71 
BDI 6-18 months 0.42 1.16 
BDI 18+ months 1.34 2.31 
BDI total 4.53 4.72 
Lot Size (acres) 0.28 0.60 
Number of floors 1.29 0.68 
Number of fireplaces 0.26 0.50 
Number of bedrooms 3.03 0.79 
Number of full bathrooms 1.46 0.63 
Number of half bathrooms 0.42 0.52 
Number of parking spots 0.08 0.32 
Living Area (100's sq. ft.) 14.81 6.22 
Total number of rooms 6.17 1.50 
House age at sale 3.05 1.40 
pool (1=yes) 0.04 0.19 
Central Air Conditioning (1=yes) 0.26 0.44 
View of water (1=yes) 0.00 0.04 
Distance to nearest highway exit (km) 3.97 3.94 
Distance to nearest village (km) 1.68 1.01 
Distance to downtown Providence (km) 14.08 12.43 
Distance to nearest lake (km) 1.08 0.69 
Distance to the coast (km) 5.46 5.49 
Distance to nearest river (km) 2.35 2.42 
Distance to nearest Industrial area (km) 0.67 0.56 
Distance to nearest Enterprise Zone (km) 3.15 6.52 
Distance to nearest CERCLIS site (km) 1.38 0.75 
Sample size 43,787 
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Table A3: Difference-in-Differences Estimates of Effect of Brownfield Remediation on 
Housing Prices 

  
Dependent Variable: Log Sales Price 

  
Cross section  Repeat sales 

  
(1) 

 
(2) 

Panel A: All Brownfields 
   

 
Treatment*Post remediation -0.0458*** 

 
-0.0859*** 

  
(0.0131) 

 
(0.0240) 

     
 

Observations 27,817 
 

10,798 

 
Adjusted R-squared 0.728 

 
0.838 

     Panel B: Only Isolated Brownfields 
   

 
Treatment*Post remediation 0.0741* 

 
0.0749 

  
(0.0412) 

 
(0.0565) 

     
 

Observations 8,843 
 

3,032 

 
Adjusted R-squared 0.703 

 
0.862 

Housing and neighborhood characteristics Yes 
 

Yes 
Year-month FE Yes 

 
Yes 

Census Block Group FE Yes 
 

No 
Town X Year FE Yes 

 
Yes 

Pre-sample mean price X year-quarter FE Yes 
 

Yes 
Property FE No 

 
Yes 

Notes: This table presents results of four difference-in-differences regression models, each of which regress 
log sales price on Treatment, Post remediation, their interaction, and a suite of control variables listed at the 
bottom of the table. Only coefficients for the interaction are shown. Treatment is binary and equals 1 when 
a property is within 0.5 km of a brownfield site. Treatment equals 0 when the nearest brownfield to a 
property is between 1 and 2 km. Properties are excluded if the nearest brownfield is between 0.5 and 1 km. 
Post remediation is binary and equals 1 if the transaction occurs after the nearest brownfield is remediated 
and 0 otherwise. Panel B only includes properties that have only a single brownfield within 2 km. See Table 
2 for more details.  
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Table A4: Difference-in-Differences Estimates of Effect of Brownfield Remediation on Housing 
Prices, varying distances that define treatment and control 

  
Dependent Variable: Log Sales Price 

Treatment distance band (km): 0-0.5 0-0.5 0-0.75 0-0.3 
Control distance band (km): 1-2 0.5-2 1-2 1-2 

  
(1) (2) (3) (4) 

Panel A: All Brownfields 
    

 
Treatment*Post remediation -0.0458*** -0.0258** -0.0384*** -0.0538*** 

  
(0.0131) (0.0106) (0.0102) (0.0208) 

      
 

Observations 27,817 43,827 36,316 22,813 

 
R-squared 0.7276 0.7232 0.7275 0.7244 

      Panel B: Only Isolated Brownfields 
    

 
Treatment*Post remediation 0.0741* 0.0687* 0.0403 0.1341 

  
(0.0412) (0.0369) (0.0255) (0.0963) 

      
 

Observations 8,843 10,720 9,685 8,575 
  R-squared 0.7029 0.6943 0.7031 0.7019 
Notes: This table presents eight regression results of Equation A1. For each column, the distance bands that define 
treatment and control are different and are listed at the top of each column. For example, in column 1, treatment equals 1 
when a property is within 0.5 km of a brownfield site, treatment equals 0 when the nearest brownfield to a property is 
between 1 and 2 km, and properties are excluded if the nearest brownfield is between 0.5 and 1 km. Post remediation is 
binary and equals 1 if the transaction occurs after the nearest brownfield is remediated and 0 otherwise. Panel B only 
includes properties that have only a single brownfield within 2 km. See Table 2 in the main text for more details.  
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