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A critical review of recommendations to increase dietary protein
requirements in the habitually active

Linda S. Lamont*

Department of Kinesiology, University of Rhode Island, Kingston, RI, USA

Abstract

Some scientists and professional organisations have called for an increase in dietary protein for those who reach a threshold level of exer-

cise, i.e. endurance athletes. But there are individual scientists who question this recommendation. Limitations in the procedures used to

justify changing the recommended daily allowance (RDA) are at issue. N balance has been used to justify this increase; but it is limiting

even when measured in a well-controlled clinical research centre. Experimental shortcomings are only exacerbated when performed in

a sports or exercise field setting. Another laboratory method used to justify this increase, the isotope infusion procedure, has methodologi-

cal problems as well. Stable isotope infusion data collected during and after exercise cannot account for fed-state gains that counterbalance

those exercise losses over a 24 h dietary period. The present review concludes that an adaptive metabolic demand model may be needed to

accurately study the protein health of the active individual.

Key words: Nitrogen balance: Stable isotope tracer infusion: Protein recommended daily allowance for athletes: Dietary

protein needs of athletes: Endurance athletes

Introduction to the scientific dialogue

Protein and amino acids only contribute 2–3 % of the total

energy needs during endurance exercise and it is unclear

whether this leads to an increased demand for these nutri-

ents(1–3). The debate as to whether dietary protein should

be increased in those who habitually train has been

ongoing. One position paper published in the year 2000

recommended an increase in dietary protein for the endur-

ance athlete; however, this statement was revised in

2009 to indicate that no increase was necessary(4,5). This

issue has transcended the point where it is an academic

discussion because it has affected a misunderstanding in

the lay public about dietary protein health(2). Nutrition

supplement stores and on-line web sites consistently rank

protein pills and powders among the top dietary aids

sold(6). These supplements are widely used but there

appears to be a general misunderstanding about them.

Young individuals are one age group that consumes and

misuses supplemental amino acids and protein as nutri-

tional aids(7–9). A meta-analysis pooled fifty-one studies

of 10 000 high-school athletes and reported that nearly

half the sample consumed supplements (46 %)(7,8). But

only ten out of 328 college athletes (3 %) were correctly

able to identify the recommended daily protein energy

needed for health(9). About half the sample believed

protein was the main energy source for muscle and one-

third thought that protein supplementation was necessary

to improve athletic performance(9). These findings attest

to a misunderstanding of exercise and protein health

among those who exercise.

One serious problem with recommending an increase in

dietary protein is that there are training-induced adap-

tations in amino acid economy that have not been

accounted for in the laboratory methodologies used. In

addition, modification of the N balance procedures to a

sports field setting may be convenient(10–14) but it presents

numerous methodological shortcomings. Limitations of

N balance, even when performed in a well-controlled

clinical research setting, are known, and 25 years ago the

nutritional scientist Dr Vernon Young(15) cautioned that:

‘. . . nutritional balance studies have provided useful and

important data about human protein and amino acid

requirements, as well as about changes in protein and

amino acid metabolism under various pathophysiological

states. The technique is likely to continue to serve as a

tool in nutritional studies, but its major limitations should

be better appreciated. Reliance on this classical method

as a principal procedure in studies of human nutrient

requirements cannot be justified and, indeed, could be

misleading.’

*Corresponding author: Dr Linda Lamont, fax þ1 401 874 4215, email lamont@mail.uri.edu

Abbreviation: RDA, recommended daily allowance.
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Although this quote was not directed to the sports

nutrition community, the chance for making misleading

recommendations using N balance data are just as relevant.

Misunderstandings in the general public about protein

nutrition attest to the need for a cautionary tone when

giving dietary advice. The present review outlines this

controversy and focuses on the experimental limitations

in studying protein needs of the endurance athlete. It

concludes that the recommendations to raise the protein

recommended daily allowance (RDA) above that recom-

mended for the healthy, sedentary adult have not been

justified.

Exercise studies using field-based metabolic balance

Our ability to study whole-body protein metabolism is

limited to a few procedures; one of the oldest is the

N balance technique. N balance measurements require

the collection of all N leaving and entering the subject in

order to assess N equilibrium(16). N output (N leaving the

body) is determined from the N in sweat, urine, faeces

and other miscellaneous routes of elimination. N intake

(N entering the body) is determined by dietary analysis.

Equilibrium (positive or negative N balance) is calculated

from these N intake and output data. Professor John Water-

low(16) published an extensive review of N balance in

Nutrition Research Reviews many years ago. His review

makes clear that N balance is a complex metabolic mystery

that we do not fully understand. How changes in dietary

protein translate into alterations in urea cycle activity still

perplexes nutritional scientists. Recent research indicates

that the urea cycle, comprised of five enzymes, requires

additional enzymes and mitochondrial amino acid trans-

porters to function and that major regulators of the liver’s

urea cycle enzyme expression include glucagon, insulin

and glucocorticoids(17). Urea N production can exceed N

intake – and only through a transfer of the urea N pro-

duced to the colon, where it is hydrolysed into NH3, can

N balance be attained. Urea kinetics measured during

exercise demonstrated that there are increases in

branched-chain amino acid oxidation without a simul-

taneous increase in the rate of urea production(18).

Current dietary recommendations are that dietary protein

should equal the intake necessary to maintain N equili-

brium as measured with multi-level N balance studies.

Although this procedure allows for the determination of

positive or negative N balance, it does not reveal the

specific ways in which a new state of balance has been

achieved. The equilibrium measure known as the

‘estimated average requirement’ can be expressed as a

reference value (mean þ 2 standard deviations). This

reference or RDA can be used prescriptively to ensure

that there will be a low risk of consuming less protein

needed for optimal health(19,20). The protein RDA for

endurance athletes was amended in response to N balance

analyses some years ago(4,21–25). It was increased from

0·8 g/kg per d as recommended for the healthy adult to

1·2–1·4 g/kg per d for the endurance athlete. Adoption of

this nutritional change is now commonplace in sports

nutrition textbooks(26–30) but it has fallen short of scientific

standards needed for its defence(1–3).

N balance is far from an ideal laboratory procedure.

When applied in a field setting the experimental limitations

are accentuated and the data accuracy eroded because of a

lack of control over the research environment. Fig. 1 out-

lines the measurements used in these exercise studies:

sweat and/or urinary urea N (accounting for about 90 %

of N excretion). But other routes of N output such as

faecal, dermal or miscellaneous losses were not measured

or were indirectly estimated(10–14). Faecal N could have

been detectable because not all protein is completely

absorbed and N not reabsorbed is secreted into the gastro-

intestinal tract. Also there was a lack of measurement of

urinary ammonia, uric acid and creatine which are substan-

tial contributors to N output(19,31). Renal blood flow and

glomerular filtration rate decrease during prolonged exer-

cise which further compounds the incomplete measure of

N output in these balance studies(32). Prolonged exercise

can enhance urea reabsorption but it is unknown how

these changes in kidney function influence urinary markers

of whole-body protein catabolism(33). Lastly, the slow turn-

over rate of the urea pool makes it difficult to determine

the length of the collection period needed to ensure

measurement accuracy(18).

N balance studies of endurance athletes have been used

to justify an increase in dietary protein but they have had

methodological issues on the N input side of the balance

equation as well. Alterations in protein intake can take

weeks, if not months, to attain a new steady state in

N metabolism(34). When N intake is above minimum

requirements (as is likely in many athletes), N balance

remains unrealistically positive for a long time(35). This is

a methodological issue that has not been adequately

addressed in sports nutrition experiments. Studies indicate

that an adequate dietary control would require at least

N in N out

Amino acid poolDietary protein

Urine
Urea N, ammonia,
uric acid, creatine

Shed epithelial cells
Sweat urea N

Nasal secretions
Menstrual fluid
Semen
Hair clippings

Faecal

Miscellaneous

Skin

Fig. 1. The nitrogen balance model for determining protein requirements as

adapted from Fukagawa & Fisher(19). Note those variables that are italicised

have not been measured with the field-based nitrogen balance (some studies

have estimated these).
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3–4 weeks and most have used an abbreviated dietary

control period of 3–12 d. This dietary approach is still

being employed in N balance experiments(36). Also field-

based metabolic balance must by its very nature employ

food diaries or dietary recall to estimate nutrient intake, a

procedure known to produce issues with memory gaps

and inconsistencies in judging portion size(37,38). A few

studies have used prepackaged meals as a way to control

for protein intake; but subject compliance is difficult to

ensure. The accuracy of measuring N input during the

balance measurement can be highly dependent on the

athlete’s compliance. Lastly, because protein intake is

provided and monitored in the field as opposed to a

clinical research centre, software analysis of nutrient con-

tent provides an additional step for computational error.

Peripheral issues make an impact on the accuracy of

field-based N balance measures as well. Criticisms of

adapting N balance to the field setting include an inability

to control for: state of aerobic training, steady-state energy

balance, and habitual training intensity(39). Previous

research indicates that dietary protein efficiency adapts

and N retention improves with aerobic training(40). This

previous experiment reported that protein requirements

were reduced in the endurance athlete(40) because of

these training-induced adaptations in whole-body protein

metabolism. This study underscores that experimental

accuracy of field-based N balance measures is difficult to

ensure. In addition, it highlights the impact of energy

intakes on N balance and underscores that increases in

energy intake in and of itself can improve both N retention

and dietary protein efficiency(39,40). Munroe highlighted

some 30 years ago that N balance is extremely sensitive

to energy intakes(41) and there are reports of fasting

subjects reducing N loss with just small amounts of

non-protein energy(42). Both dietary carbohydrate and fat

reduce net whole-body protein use. Increases in daily

energy intakes will reduce the need for protein to maintain

N balance. In fact, 30 % of the variance in N balance can be

accounted for by energy intakes(43). Cross-sectional com-

parisons between sedentary and well-trained subjects

have not (and probably cannot) match for energy con-

sumption. Because athletes require greater energy than

their sedentary counterparts, field-based N balance studies

will always be problematic. Another peripheral issue to the

accuracy of N balance applied to the sports setting is that

hydration influences urinary urea concentration in a

manner independent of whole-body tissue protein break-

down(44). High dietary protein intakes increase urea

excretion (renal solute) that in turn heightens the need

for water(44). Finally, there are sex differences in the contri-

bution of protein and amino acids to whole-body energy

needs(45–48) and these have not been included in the pro-

tein RDA recommendations for the habitually active.

One nutritional scientist cautions that making

generalisations about protein health from N balance over-

simplifies a very complex biochemical process(20) and the

reproducibility of the N balance method itself is poor(15).

These limitations exist even when performed in a well-

controlled clinical research centre where test kitchens can

strictly control for dietary intakes, physiological samples

can be collected in total, and the activity level and

energy balance of the subject can be strictly monitored

and assured.

To summarise, the recommendation to increase protein

intake, as determined from N balance, has had serious

methodological problems on both the input and output

sides of the equation. The procedure is a ‘black-box’

technique that does not allow for an assessment of the

metabolic pathways involved in whole-body amino acid

and protein metabolism. The estimates that this procedure

has provided have often been unrealistic(2,44). For instance,

one sport scientist calculated that athletes placed on 2·5 g

protein/kg body weight per d had a positive N balance

of 17 g each day. But this would be an impossible lean

tissue gain of 110 kg/year(2,13,44). Some argue that errors

such as these are due to an exercise-induced expansion

of the circulating urea pool as well as a physiological

limit to the rate of urea excretion(2).

Exercise tracer studies

The accuracy of N balance can also be questioned because

other biochemical procedures have provided contradictory

experimental results. Contemporary studies of stable iso-

tope tracers such as glycine and leucine ([15N]glycine and

[13C]leucine) have been used to study whole-body protein

metabolism in the endurance athlete. Glycine tracer meth-

odology can be useful because a shorter experimental time

will be necessary as NH3 is the endproduct sampled. This

procedure has been standardised and validated(49) and col-

lection periods of 12 h have been found to be suitable to

study whole-body protein metabolism(50,51). A urea tracer,

[15N]urea, has also been studied but it is difficult to deter-

mine a suitable collection period because of the slow turn-

over rate of the urea pool. Whole-body protein turnover

measured with the glycine isotope showed no difference

between young and middle-aged endurance trained men

or between sedentary men (although differences in

N balance were found)(11). No training effect was reported

for protein turnover when glycine tracer experiments were

conducted in young female gymnasts engaged in intensive

training(52). This tracer methodology was also used to study

an unassisted Antarctic crossing that required extreme

dietary energy intakes. These subjects maintained protein

synthesis throughout this ultra-endurance event(53).

A label of the essential amino acid leucine has also been

used to study whole-body protein metabolism during

endurance exercise and a comparison between the glycine

and leucine tracer techniques has been performed(54).

A stable isotope infusion of the branched-chain amino

acid [1-13C]leucine indicated that there was no difference

in amino acid oxidation between rested, fasting endurance
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trained athletes when compared with age-, sex- and body

weight-matched sedentary controls(55,56). A 6 h study of

leucine oxidation during resting conditions found that the

athletes and sedentary controls had similar oxidation

rates when expressed per unit of whole-body muscle

mass(55). This cross-sectional comparison suggests that

habitual exercise does not alter resting protein needs. But

when protein requirements are determined it will also be

important to determine if there are physiological differ-

ences during exercise training.

Most athletes train a few hours each day and their need

for protein will be altered if there is a prolonged increase in

the use of this macronutrient for energy requirements.

Branched-chain amino acid oxidation during aerobic exer-

cise has been studied in numerous experiments(18,56–62)

and a graph of these can be found in Fig. 2. During pro-

longed exercise, leucine oxidation increases approximately

two-fold over resting needs and this has been modestly

correlated with oxygen consumption (exercise VO2;

R 0·69). This statistical relationship suggests that amino

acid use during exercise can be regulated by many factors

other than training intensity(63) including: carbohydrate

availability(64,65), NADH:NADþ ratio, acyl-CoA:CoA ratio,

ketoacid availability(66) and b-adrenergic receptor stimu-

lation(58). Also important to the athlete’s requirement for

dietary protein is the response during exercise recovery

in which there are reports of a drop in leucine oxidation

below resting values(57,67).

Another important stable isotope tracer study(68) high-

lighted that moderate exercise at energy balance does

not affect leucine equilibrium or N retention over the

subsequent 24 h period. The subjects were able to stay in

leucine balance and had no additional protein need after

undergoing two, 90 min exercises during both a fed and

a fasted state. This underscores that acute increases in

amino acid and protein use during exercise cannot be

extrapolated to indicate that there will be an increased diet-

ary requirement(68). It also indicates that the protein

requirement (protein RDA) can only be determined with

an appropriate research design. The research design must

account for both protein losses and gains throughout the

diurnal cycle. Although this study reported that amino

acid oxidation increased during exercise, this increase

was offset throughout the daily feeding cycle.

There are other experiments that have measured whole-

body amino acid and protein metabolism using research

designs that allow for an assessment of training adaptations.

These designs include: a cross-sectional comparison of

trained and sedentary individuals as well as a brief exercise

intervention. The cross-sectional comparison showed leu-

cine oxidation to be similar in the well-trained athlete

when compared with the untrained, sedentary control exer-

cising at similar moderate intensities (half of maximal

capacity). Amino acid oxidation expressed in relative

terms, i.e. per unit of oxygen consumed (or fat-free mass)

did not differ between endurance-trained (28mmol/kg

body weight per litre oxygen) and sedentary control subjects

(34mmol/kg body weight per litre oxygen)(55). This study

does indicate that there are training-induced adaptations

that lower the need for branched-chain amino acids, an

observation consistent with the study by Butterfield & Callo-

way that physical activity enhances protein efficiency(40). An

exercise intervention is another research design that can be

used to study protein requirements for the habitually

active(56). Subjects engaged in a 38 d training programme

had a reduction in the oxidation of branched-chain amino

acids and, importantly, a reduction in the regulatory

enzyme in this oxidative pathway. Again, these data indicate

that training-induced metabolic adaptations will decrease

the need for whole-body amino acids and protein(56). Both

of these experiments contradict the recommendation to

increase dietary protein in the habitually active individual.

Instead, they indicate that small amounts of protein are

used during exercise and that with training the need for

this nutrient is down-regulated. Aerobic training causes an

enhanced metabolic efficiency of protein used at the

whole-body level. Table 1 (18,55,69,70) outlines that the absol-

ute amount of whole-body protein oxidised during a 1 h

McKenzie et al. (2002)(56)
ExerciseRest

E
xp

er
im

en
t

0 20 40 60 80 100

Lamont et al. (1999)(57)

Lamont et al. (1995)(58)

Knapik et al. (1991)(59)

Young & Torun (1981)(60)

Millward et al. (1982)(61)

Wolfe et al. (1982)(18)

Hagg et al. (1982)(62)

Leucine oxidation (µmol/kg body weight per h)

Fig. 2. Rate of leucine oxidation during acute endurance exercise. Redrawn using data from several sources(18,56–62).
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endurance exercise at half of maximal capacity is quite small

and amounts to the protein in one egg or a small serving of

cashew nuts. Some have argued that low to moderate exer-

cise does not negatively make an impact on protein balance

but the elite athlete engages in intense training and therefore

will be at risk(31). The subjects used for this computation

were marathon runners, tri-athletes and long-distance

cyclists and this calculation shows a marked inconsistency

between the data provided by N balance and whole-body

isotope infusion(31).

Time for a new approach?

Problems inherent to N balance and the fact that

whole-body stable isotope tracers provide contradictory

calculations indicate that there are methodological

problem(s). N balance has provided unreasonable

estimates and attests to the warnings by many that this pro-

cedure is problematic(1–3). Stable isotope experiments have

been short term and cannot assess long-term adaptations or

amino acid or protein balance throughout a daily feeding–

fasting cycle. This suggests that a new experimental model

or laboratory procedure may be necessary to provide an

accurate picture of protein health in the habitually active

individual(3,20). Any new model must account for the various

metabolic adaptations that occur with training such as:

alterations in dietary protein efficiency, changes in the oxi-

dative pathway of individual amino acids and changes in

the intracellular reutilisation of amino acids from proteolytic

pathways. An adaptive metabolic demand model as pro-

posed by Millward(20) may be useful to consider in this

regard (see Fig. 3). Although this model is much more

labour intensive, it has the potential to allow for an accurate

assessment of the athlete’s dietary protein needs. Both acute

and chronic adaptations to a dietary change and/or altera-

tion in exercise volume are incorporated into the model.

As outlined in Fig. 3 it can be divided into: (1) a fixed com-

ponent that meets obligatory demand; (2) a variable adap-

tive component that is relatively insensitive to short-term

dietary manipulations and that can change over the long

term; and (3) inter-individual (and training-induced)

variations in dietary protein efficiency. In the athlete there

are losses of amino acids and protein during the fasting

state and with exercise, but there are fed-state gains.

Amino acids may be used to fuel exercise energy needs

Table 1. Whole-body protein oxidised during 1 h of moderate endur-
ance exercise(70)*

Leucine oxidation of well-trained endurance athlete who is
77 kg body weight

52mmol leucine oxidised/kg per h of exercise(55)

Assuming 590·0mmol leucine in each g of whole-body protein(18)

This cyclist would oxidise 6·77 g of whole-body protein during
a 1 h workout

(52mmol £ 77 kg £ 1 h ¼ 6·77 g)†
By contrast, the daily need (using recommended changes in protein
RDA from 0·8 to 1·4 g/kg) would require this same athlete to
consume an additional 46·2 g protein per d
(77 kg £ 0·8 g/kg ¼ 62 g/kg ! 77 kg £ 1·4 g/kg ¼ 108 g/kg)

RDA, recommended daily allowance.
* The limitations of using leucine as a representative tracer of whole-body protein

are acknowledged and discussed in depth elsewhere(70).
† This equals the amount of protein in one hard-boiled egg or one-third of a cup of

cashew nuts(69).

Obligatory metabolic demand

Adaptive metabolic demand
Dietary
protein

Habitual dietary intake
alters amino acid oxidation
rate – changes are slow
with dietary alterations
Postprandial or post-absorptive
conditions: fasting losses and
fed-state gains
Adaptations in amino acid
oxidation with training
and during exercise
recovery

Dietary protein
inefficiency

N loss

Fasting
losses

Balance regulation during
the diumal cycle

Feeding
gains

Fig. 3. Fate of dietary protein: an adaptive metabolic demand model of protein requirements as proposed by Millward(20). This figure was altered with written per-

mission to include those factors relevant to the sport nutrition setting. Note the addition of acute exercise and recovery effects on amino acid catabolism to the

model. The adaptive behaviour of amino acid oxidation is a determinant of the metabolic demand for protein in the endurance athlete.
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but the contribution is small and this process has been

shown to become more efficient with habitual training. In

the endurance athlete, then, protein requirements would

be defined as the intake needed to balance N losses

(amino acids used during exercise and recovery). Lastly,

a long-term study design needs to be employed to

adequately account for feeding-state gains that replenish

exercise losses. Other approaches maybe useful as well.

Genomic and proteonomic studies may provide a new

approach to studying this issue. But until agreement can

be found between laboratory procedures it seems unwise

to recommend a change in dietary protein intake for the

habitually active individual.

Conclusions

There are public health consequences to recommending

an increase in dietary protein consumption. Even moderate

changes in dietary protein have metabolic conse-

quences(71), not the least of which are alterations in the

risk for chronic disease as well as negative impacts on

cancer-protective metabolites in the colon(71–73). In

addition, many unsuspecting athletes are using amino

acid supplements, protein powders and pills, and run the

risk of ingesting contaminants in these unregulated pro-

ducts. Unnecessary amino acid supplementation can

induce imbalances in amino acid ingestion that may

cause adverse effects(74,75). The laboratory techniques

used to justify increasing the protein RDA has had numer-

ous experimental limitations and therefore its accuracy is

difficult to ensure. The ‘black-box’ nature of the balance

model does not allow for the assessment of those meta-

bolic adaptations and dietary efficiencies that accrue with

chronic training. Short-term studies of amino acid

oxidation during exercise cannot adequately account for

fed-state gains over a 24 h diurnal period. These scientific

shortcomings suggest that calls to increase the protein

RDA for the habitually active or endurance athlete are

not substantiated. A modification in laboratory procedures

and methodology may provide greater fidelity to the diet-

ary protein requirement for the habitually active individual.
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