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Growth in the presence of glucose, even under highly aerobic conditions, significantly reduced the activities
of three tricarboxylic acid cycle enzymes, citrate synthetase, a-ketoglutarate dehydrogenase, and malate
dehydrogenase, in suicidal but not nonsuicidal Aeromonas strains. Pyruvate dehydrogenase activity, however,
was significantly increased. The activities of all of the enzymes, as well as the glucose-mediated increase in acetic
acid production, were shown to be regulated by catabolite repression. The regulator protein is the same one
which regulates the utilization of several sugars.

In an earlier paper (11), we described a phenomenon in
which certain strains ofAeromonas spp., including all Aero-
monas caviae and some A. sobria isolates, were not recov-
erable after 24 h when grown in nutrient broth supplemented
with glucose. It was shown that death of the cells was due to
the accumulation of acetic acid, which is produced in large
quantities by these strains even when the cultures are
incubated under highly aerobic conditions. The phenomenon
was termed "suicide," and the requirements for its manifes-
tation were consistent with the absence of these Aeromonas
biotypes in acidic lakes in New England and their recovery
from alkaline waters in Israel and from sewage at both
locations. In this paper, we examine the possibility that the
increased production of acetic acid by suicidal aeromonads
was achieved by a shutdown of the tricarboxylic acid (TCA)
cycle and the diversion of acetyl-coenzyme A produced from
pyruvate to the production of acetic acid. We also identify
the regulatory mechanism.

Production of acetic acid. Accumulation of acetic acid in
nutrient broth-glucose (NBG) (11) shake cultures of the
nonsuicidal strains was greatest during the lag period, in-
creased only slightly when the growth and glucose utilization
rates were maximal, and then decreased, presumably be-
cause acetate was used as an energy source once the glucose
was metabolized (Fig. 1A). In the suicidal cultures (Fig. 1B),
however, acetic acid continued to be produced until both
growth and glucose utilization were prematurely inhibited by
the accumulation of acetic acid in its un-ionized form (11).
About 43% of the glucose catabolized by the suicidal strains
and only 8 to 12% of that used by the nonsuicidal isolates
could be accounted for by the acetic acid in the cultures.
When the pH of the suicidal cultures was maintained be-
tween 6.5 and 7.0, however, the optical density reached a
maximum of 1.8, all of the glucose was metabolized, and
considerably more acetate was produced, with most of it
appearing early in the exponential growth phase (Fig. 2A).
Escherichia coli resembled the suicidal aeromonads in that
high acetate levels also were produced, there was a sharp
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decrease in pH after 3 h, and about 45% of the glucose
metabolized could be accounted for by the acetic acid
produced. With E. coli, however, most of the acetic acid was
produced as the cell population was passing into the station-
ary phase, and there was little, if any, acetic acid-mediated
death of the cells.

Inhibition of TCA cycle enzymes and stimulation of pyruvic
dehydrogenase activity. The specific activities of three en-
zymes in the TCA cycle, malate dehydrogenase (18), a-
ketoglutarate dehydrogenase (8), and citrate synthetase (13),
in cell-free extracts from Luria broth (LB) cultures were
essentially the same whether the nonsuicidal strains were
grown in the presence or absence of added glucose or when
the suicidal strains were grown in its absence. However,
when the suicidal strains were grown in LB supplemented
with glucose, the specific activities of all three enzymes were
appreciably and significantly decreased (Table 1). LB with
glucose, which has a greater buffering capacity and less
glucose (0.3%), was used instead ofNBG to minimize acetic
acid-mediated death of the cells. Pyruvate dehydrogenase
activity also was similar with the nonsuicidal strains grown
in the presence or absence of glucose and the suicidal strains
grown in its absence. When glucose was added to the
cultures of the suicidal strains, however, pyruvate dehydro-
genase activity was significantly increased rather than de-
creased (Table 1).

Effect of cAMP on activities of the enzymes and acetic acid
production. The addition to LB with glucose of filter-ster-
ilized cyclic AMP (cAMP) at a final concentration of 3 x
10-2 M reversed the glucose-mediated inhibition of the
activities of the three TCA cycle enzymes and its stimulation
of pyruvate dehydrogenase activity in suicidal aeromonads
(Table 1). The activities of the four enzymes in the extracts
from the cultures of the nonsuicidal strains were not signif-
icantly altered by the addition of cAMP. Moreover, the
addition of cAMP to NBG shake cultures of suicidal Aero-
monas strains reduced acetic acid production, increased the
pH, and, because of this, prevented acetic acid-mediated
death of the cells (Fig. 2B).

Identity of the catabolite repressor protein. Mutants which
simultaneously lost the abilities to utilize lactose, arabinose,
and galactose in cAMP-containing media were sought by
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FIG. 1. Acetic acid production relative to glucose utilization, growth as optical density (O.D.), and pH in NBG shake cultures incubated
aerobically. (A) Nonsuicidal Aeromonas strain (2BT); (B) suicidal Aeromonas strain (OP2).

nitrosoguanidine mutagenesis (3). Two types of mutants
were obtained (6, 14) (Table 2). Adenylate cyclase (Cya-)
mutants fermented the three sugars only upon the addition of
cAMP to the media, while "Crp-" mutants did not ferment
the sugars even when cAMP was added. The presumed Crp-
mutants, in contrast to the wild-type strain, remained sui-
cidal even when cAMP was added to the media. The uptake
of cAMP by the presumed Crp- mutants was examined,
since a loss of the ability to transport cAMP would have
produced similar findings. The uptake of [3H]cAMP by the
CRP mutants was not significantly different from that of the
Cya- mutants or the parental strain, OP2.

Catabolite repression of the TCA cycle enzymes leading to
the production of acetic acid under highly aerobic conditions
and depression by cAMP also occurs in E. coli (1, 7, 9, 10,
18). E. coli differs from the suicidal aeromonads, however, in
that oxidative phosphorylation and the synthesis of cy-

tochromes also are repressed (2, 5), and the acetic acid is
produced late rather than early in the growth cycle.
The increase in pyruvate dehydrogenase activity in A.

caviae would not only increase the production of acetic acid
but also compensate somewhat for the loss in energy due to
the glucose-mediated catabolite repression of the TCA cy-

cle. Since neither succinate nor propionate is produced in
the shake cultures (11), we conclude that oxidative phos-
phorylation remains operative and that the increase in pyru-
vate dehydrogenase activity increases the energy available
from the oxidation of the pyruvate to acetyl-coenzyme A.
Since the production of pyruvate is regulated by the levels of

AMP and ADP in the cells (17) and pyruvate in turn regulates
the synthesis of the pyruvate dehydrogenase complex (4),
we speculate that the glucose-mediated increase in pyruvate
dehydrogenase activity is secondary to the partial shutdown
of the TCA cycle.

TABLE 1. Effects of glucose on enzyme activities and reversal
by cAMP in suicidal strains of Aeromonas spp.

Sp act in cells grown aerobically withb:
Enzyme'~ Aeromonas

type No glucose Glucose cAMP

MDH Suicidal 15.7 3.3* 14.7
Nonsuicidal 15.1 12.5 15.1

KDH Suicidal 10.7 2.4* 11.0
Nonsuicidal 11.5 11.2 11.5

CSN Suicidal 1,164 209* 1,170
Nonsuicidal 948 955 1,123

PDH Suicidal 216 950* 167
Nonsuicidal 205 264 215

MDH, Malate dehydrogenase; KDH, ax-ketoglutarate dehydrogenase;
CNS, citrate synthetase; PDH, pyruvate dehydrogenase.

b Means from four assays (duplicate assays on extracts from two strains).
Specific activity is expressed as micromoles of substrate converted per minute
per milligram of protein for MDH, KDH, and PDH and as nanomoles of
substrate converted per minute per milligram of protein for CSN. *, Signifi-
cantly different from nonsuicidal strain, when glucose was omitted or cAMP
was added, at P < 0.01.
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FIG. 2. Acetic acid production relative to glucose utilization, growth as optical density (O.D.), and pH in 30°C NBG shake cultures of
the suicidal Aeromonas sp. strain OP2. (A) pH maintained between 6.5 and 7.0; (B) cAMP added to medium at a final concentration of
3 x 10-2 M.

The metabolism of A. caviae appears to be extremely
well adapted to growth in calcium-rich alkaline environ-
ments such as those from which most of the strains were
isolated. Unlike the nonsuicidal aeromonads, A. caviae
can grow anaerobically in a glucose-mineral salts medium
(11), is anaerogenic, and does not produce 2,3-butanediol
as a fermentation end product (15). Also, it utilizes a
number of 3-glycosides, including cellobiose, esculin, sali-
cin, and lactose; this is due in part to the presence of a
13-glycosidase with broad specificity for p-glucosides and
,-galactosides (M. Rodgers, personal communication). The
most probable explanation for the adaptation towards the

TABLE 2. Fermentation and suicide reactions of Crp- and Cya-
mutants in the presence of cAMP

Mutant type No. of isolates Fermentation of Suicide'examined Lac, Ara, Gala

Crp- 3 _b +
Cya- 5 +b
Parent +
a Mutants and parent ferment glucose with and without cAMP and are

SUIC+ without cAMP.
b Lactose (Lac), arabinose (Ara), and galactose (Gal) were not fermented in

the absence of cAMP.

production of acetic acid by A. caviae is the mobilization of
soluble phosphate from insoluble Ca3(PO4)2. A second pos-
sibility is that the acetic acid acts to liberate nutrients from
associated algae. These possibilities need to be examined
ecologically.

We gratefully acknowledge suggestions and assistance from Paul
S. Cohen.
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