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A j-walkin g algorith m for microcanonica l simulations : Applications
to Lennard-Jone s clusters

E. Curotto and David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

~Received 30 January 1998; accepted 21 April 1998!

The j-walking method, previously developed to solve quasiergodicity problems in canonical
simulations, is extended to simulations in the microcanonical ensemble. The implementation of the
method in the microcanonical ensemble parallels that in the canonical case. Applications are
presented in the microcanonical ensemble to cluster melting phenomena for Lennard-Jones clusters
containing 7 and 13 particles. Significant difficulties are encountered in achieving ergodicity when
Metropolis Monte Carlo methods are applied to these systems, and the difficulties are removed by
the j-walking method. © 1998 American Institute of Physics. @S0021-9606~98!50129-8#

I. INTRODUCTION

The j-walking method1,2 has proved to be useful in over-
coming quasiergodicity problems for Metropolis Monte
Carlo simulations3 in the canonical ensemble. These prob-
lems in achieving ergodicity arise in a Monte Carlo simula-
tion when the underlying potential energy surface has dis-
connected but important regions of configuration space
separated by significant barriers. At low temperatures the
large barriers can trap the system in one region of space so
that other important parts of space are either neglected com-
pletely or not sampled with sufficient frequency. In the j-
walking method, Monte Carlo moves are attempted to all
important regions of configuration space using a series of
external ergodic distributions generated at high temperatures.
The original j-walking method developed for classical Monte
Carlo simulations in the canonical ensemble1 has been ex-
tended to quantum simulations2 and enhanced using histo-
gram techniques.4 Parallel versions of the j-walking
method5,6 are also available enabling ergodic simulations for
increasingly large systems.

In the current work we demonstrate that the j-walking
method can be extended to microcanonical simulations, and
we show that difficulties can be at least as troublesome in the
microcanonical ensemble as in the canonical ensemble. Our
approach to microcanonical simulations uses methods devel-
oped by Pearson et al.7 and applied to physical systems8–10

including a recent study of Lennard-Jones clusters.11 The
contents of the remainder of this paper are as follows. In Sec.
II we derive the key expressions for simulations in the mi-
crocanonical ensemble. We then show how j-walking can be
applied to insure ergodic simulations using the derived ex-
pressions. In Sec. II I we provide the computational details,
and in Sec. IV we apply the methods to 7- and 13-particle
Lennard-Jones clusters. We calculate both the temperature
and heat capacity and demonstrate the difficulties in attaining
ergodic simulations with ordinary Metropolis Monte Carlo
methods. We summarize our findings in Sec. V.

II. THEORY

A. Basi c formulas

In this section we develop the key expressions used for
microcanonical simulations. Although the results of this sec-
tion are not new, we include the discussion to make the
j-walking approach to microcanonical simulations as clear as
possible.

We begin by expressing the classical microcanonical
density of states for a system having energy E, number of
particles N and occupying volume V of coordinate space

V~E,V,N!5
1

N!h3NE d3Nrd3Npd~E2H~p,r !!. ~1!

In Eq. ~1! H(p,r ) is the classical Hamiltonian, and p and r ,
respectively, label the momenta and coordinates of the par-
ticles in the system. Using Eq. ~1! it is easy to demonstrate
the standard Laplace transform connection between the mi-
crocanonical density of states and the canonical partition
function Q(T,V,N)

Q~T,V,N!5E dEV~E,V,N!e2bE, ~2!

whereb51/kBT with T the temperature and kB the Boltz-
mann constant. Using the expression for the classical canoni-
cal partition function

Q~T,V,N!5
1

N! S 2pm

bh2 D 3N/2E d3Nre2bU~r ! ~3!

with U(r ) the potential energy, the microcanonical density
of states can be obtained from the Mellin inversion integral

V~E,V,N!5
1

2p i Ec
ebEQ~T,V,N!db ~4!

to obtain12
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V~E,V,N!5S 2pm

h2 D 3N/2
1

N!G~3N/2!

3E d3NrQ~E2U !~E2U !3N/221, ~5!

where Q(x) is the step function

Q~x!5H 0, x,0

1, x.0
~6!

and G(x) is the gamma function.13 Microcanonical averages
for any coordinate dependent variable can then be obtained
by averaging with respect to the unit normalized density
function

PE~r !5
~2pm/h2!3N/2@1/N!G~3N/2!#

V~E,V,N!

3Q~E2U~r !!~E2U~r !!3N/221. ~7!

For example, the average kinetic energy of a system can be
expressed

^K&5

E d3NrQ~E2U !~E2U !3N/221~E2U !

E d3NrQ~E2U !~E2U !3N/221

~8!

where ^& denotes an average with respect to Eq. ~7!.
A quantity related to the microcanonical density of states

is the phase space volume given by

F~E,V,N!5
1

N!h3NE d3Npd3NrQ~E2H~p,r !! ~9!

so that

dF~E,V,N!

dE
5V~E,V,N!. ~10!

Using Laplace transform methods similar to those leading to
Eq. ~5!, it is easy to show that

F~E,V,N!5
1

N!G~3N/211!S 2pm

h2 D 3N/2

3E d3NrQ~E2U !~E2U !3N/2. ~11!

Alternatively, Eq. ~11! can be verified by using Eq. ~10! to
produce Eq. ~5!. The entropy in the microcanonical ensemble
can be defined by

S5kB ln F. ~12!

In the thermodynamic limit , the definition given in Eq. ~12!
agrees with textbook definitions of the entropy in terms of
V(E,V,N) ~to order 1/N).7 By using Eq. ~12! as the defining
relation for the entropy, for any N the thermodynamic iden-
tity (]S/]E)N,V51/T leads to the expression

kB^T&5
G~3N/2!

G~3N/211!

3

E d3NrQ~E2U !~E2U !3N/221~E2U !

E d3NrQ~E2U !~E2U !3N/221

~13!

5
2

3N
^K&. ~14!

Consequently, we can identify the average temperature in the
microcanonical ensemble with the average kinetic energy for
any value of N.

By direct differentiation of Eq. ~13!, the heat capacity
CV5(]E/]^T&)N,V can be shown to be given by

CV

NkB
5H N2

2

3
^E2U&S 3N

2
21D K 1

E2U L J 21

. ~15!

Unlike the manifestly positive expression for the heat capac-
ity in the canonical ensemble

CV

NkB
5

^E2&T2^E&T
2

N~kBT!2
, ~16!

where ^&T denotes a canonical average, Eq. ~15! is not guar-
anteed to be positive for small N. In the microcanonical en-
semble, only in the thermodynamic limi t can the heat capac-
ity be expressed in terms of a fluctuation ~of the kinetic
energy!7,14 and necessarily be positive.

B. Microcanonica l j-walking

To evaluate coordinate dependent properties in the mi-
crocanonical ensemble, averages can be evaluated using the
weight function given in Eq. ~7!. In the Monte Carlo
method15 such averages are determined by executing a ran-
dom walk where the points in configuration space are visited
with probability PE(r ). The walk is generated by performing
trial moves with some unit normalized distribution T(r0

→rn) where r0 is the current configuration of the system and
rn is some trial configuration. Detailed balance provides a
sufficient condition for the walk to visit space ~asymptoti-
cally! with probability PE(r ). Detailed balance can be
satisfied15 by accepting the trial moves with probability

p5minH 1,
PE~rn!T~rn→r0!

PE~r0!T~r0→rn!J . ~17!

In the Metropolis method3 for multiparticle systems, the
moves are attempted for one particle at a time with a uniform
distribution. If an attempt is made to change the x-coordinate
of particle i from xi ,0 to xi ,n the Metropolis trial probability
is given by

T~xi ,0→xi ,n!5H 1/D, uxi ,n2xi ,0u,D/2

0, otherwise.
~18!

For the case of such Metropolis walks, the T-factors cancel
in the numerator and denominator of Eq. ~17!.

In practice such Metropolis walks can cause ergodicity
problems that can be expected to be particularly severe in
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microcanonical simulations. If two regions of configuration
space are separated by energy barriers that are greater than
the system energy, a walk begun in one region may never
reach other important regions of configuration space. As in
canonical simulations acure for such ergodicity problems is
possible by executing a high energy walk known to be er-
godic and storing the resulting configurations to an external
distribution. In microcanonical simulations, the energy rather
than the temperature is used as the parameter to generate
information about important regions of the underlying poten-
tial energy surface.

In a microcanonical j-walking simulation an initial high
energy, Eh , is chosen so that a Metropolis walk at that high
energy can be expected to be ergodic. During the high en-
ergy Metropolis walk, configurations are captured periodi-
cally and stored to a file. The configurations so chosen need
to be sufficiently separated in the Metropolis walk so that
correlations between the configurations are broken. At lower
energies, a Metropolis walk is again executed for the major-
ity of Monte Carlo points. Additionally, a fraction PJ of the
moves are attempted to configurations in the high energy
distribution, PEh

(r ); i.e., we take

T~r0→rn!5PEh
~rn!. ~19!

The configurations are chosen from the high energy distribu-
tion at random as afurther method to break the correlations
between points in a Metropolis walk. Because the high en-
ergy distribution can be expected to be ergodic and covers all
important regions of configuration space, the jumps to the
high energy distribution enable the simulation to overcome
any energy barriers that separate the important regions of
space. To insure detailed balance attempted moves to the
high energy distribution are accepted with probability

p5minH 1,
PE~rn!PEh

~r0!

PE~r0!PEh
~rn!J . ~20!

As in canonical j-walking, the procedure discussed in the
previous paragraph is useful provided an adequate fraction of
attempted moves to the high energy distribution are ac-
cepted. When the energy separation between E and Eh be-
comes large, the fraction of accepted moves can become low.
To avoid the low acceptance rate, additional external distri-
butions at increasingly low energies are stored for j-walking
to still lower energies. When the storage requirements be-
come prohibitive, parallel implementations of the j-walking
algorithm can be used.5 In the microcanonical ensemble the
procedures for generating multiple distributions are identical
to the canonical procedure, and we provide no additional
details here. Fuller accounts can be found in the original
canonical literature.1,2

III. COMPUTATIONAL DETAILS

To investigate the utility of the j-walking scheme for
microcanonical simulations, we study the energy as a func-
tion of calculated temperature and heat capacity as afunction
of calculated temperature of Lennard-Jones clusters contain-
ing 7 and 13 particles. The potential surfaces for Lennard-
Jones clusters have many minima, and it is convenient to

refer to these minima as isomers. The isomers are separated
by energy barriers that can be significant, and ergodicity
problems associated with simulations of clusters have been
discussed extensively.16,17 The ergodicity problems are par-
ticularly serious in ranges of temperatures or energies asso-
ciated with phase changes. Phase change regions in clusters
occur over a range of temperatures and energies where
isomerization transitions become important. The phase
changebehaviors that haveoften been associated with cluster
melting, have been characterized by many differing proper-
ties depending on the ensemble used. In molecular dynamics
simulations cluster melting has been discussed in terms of
fluctuations in the average kinetic energy between distinct
rigid solidlike and fluid liquidlike phases.18 In canonical
simulations heat capacity anomalies have often been dis-
cussed in terms of cluster melting phenomena.17 Phase
change regions in Lennard-Jones clusters have proved to
provide a fruitful ground for the development and testing of
the canonical j-walking algorithm. We find these Lennard-
Jones clusters to be similarly useful in microcanonical j-
walking simulations.

We describe the Lennard-Jones clusters with the stan-
dard potential model

U~r !54e(
i , j

N F S s

r i j
D 12

2S s

r i j
D 6G ,  ~21!

where r i j is the distance between particles i and j , ande and
s are the standard Lennard-Jones energy and length param-
eters, respectively. Because we consider energy ranges above
the threshold for evaporation, we also enclose each cluster
within a spherical hard-wall constraining potential about its
center of mass. We choose the radius of the constraining
potential to be 4s for both 7- and 13-particle Lennard-Jones
clusters, the same value used by Frantz17 in studies of
Lennard-Jones clusters using canonical j-walking.

In the results that follow we compare the heat capacity
of the 7-particle cluster and the energy of the 13-particle
cluster as afunction of temperature obtained using ordinary
Metropolis Monte Carlo methods and j-walking methods.
For each case the Metropolis calculations are initiated from
the lowest energy isomer ~the pentagonal bipyramid for the
7-particle cluster and the icosahedron for the 13-particle
cluster!, and each energy point consists of 107 warm-up
moves followed by 107 Monte Carlo moves where data are
accumulated for the 7-particle cluster, and 108 warm-up
moves followed by 108 Monte Carlo moves where data are
accumulated for the 13-particle cluster. At the end of each
Metropolis Monte Carlo calculation, the final configuration
is stored in a file and used as the initial configuration for the
next higher energy point. The temperature is evaluated using
Eq. ~13!, and the heat capacity is evaluated using Eq. ~15!.

The j-walking calculations are initiated from a random
configuration of atoms confined within the constraining vol-
ume. The initial energy for the 7-particle cluster is 210e,
and the initial energy for the 13-particle cluster is 224e. At
the initial energy a Metropolis walk consisting of 108 moves
is executed, and an external distribution is generated contain-
ing 105 elements for j-walking from lower energies. At lower
energies the calculations consist of 106 Metropolis Monte
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Carlo moves used to warm-up the system, followed by 106

Monte Carlo points with jumps made to the external high
energy distribution with a probability PJ51/10. When the
acceptance rate for attempted jumps drops below 10%, anew
external distribution is generated consisting of 105 elements.
This external distribution is generated using j-walking to the
previously created high energy distribution. This process is
continued to the lowest energy of the calculation. The entire
j-walking procedure is repeated ten times for the 7-particle
cluster and 100 times for the 13-particle cluster so that the
total number of j-walking and Metropolis Monte Carlo
moves are the same.

IV. RESULTS

The computed heat capacity as a function of the com-
puted temperature for the 7-particle cluster is shown in Fig.
1. In Fig. 1 the left hand panel displays the results of the
Metropolis Monte Carlo simulation and the j-walking results
are given in the right panel. The error bars represent two
standard deviations of the mean. The substantial difference
in the errors between the Metropolis and j-walking results is
evident. Evident from the small graph inset in the left panel
is a systematic difference between the two results at low
temperatures ~less than kBT/e50.1). In the inset, the lower
graph does not include j-walking whereas the upper curve
does include j-walking. The heat capacity determined from
the j-walking calculation is consistently higher than the heat
capacity found from the Metropolis calculation except for
the lowest calculated energies. By examining the structural
features associated with configurations obtained from both
calculations, we can identify each configuration with an iso-
mer. The structural comparison algorithm, which has been
used recently to facilitate the search for isomers in nickel
clusters,19 has been modified to compare a walking configu-
ration to each known isomer. The frequency of occurrence of
the isomer is determined by a criterion that uses the lowest
average atom-to-atom distance between the known isomer
and the walking configuration. At the end of the walk one

obtains the probability for the system to be in the ‘‘vicinity’’
of a given isomer. This approach is similar to an inherent
structure study20 where the configurations of a fluid are
quenched to the nearest isomer. Using these methods, we
find that the Metropolis configurations are always identified
with the lowest energy isomer ~the pentagonal bipyramid!
for the temperature range graphed in the small box of the left
panel of Fig. 1, whereas some of the configurations have the
structures of the higher isomers in the j-walking simulation
at these low temperatures. The cluster isomerizes at an en-
ergy lower than predicted by Metropolis Monte Carlo, and
the small error bars computed at low temperatures in the
Metropolis calculations are artificially low. When the system
begins to isomerize in the Metropolis calculation, the com-
puted errors in the heat capacity become large and the com-
puted random errors in the temperature are significantly
larger than the resolution of the graph. In the j-walking cal-
culation the errors in the computed temperatures are smaller
than the resolution of the graph.

The qualitative shape of the heat capacity as a function
of temperature for the 7-particle cluster does not match well
the heat capacity curve obtained by Frantz17 using canonical
j-walking methods. In the microcanonical ensemble the heat
capacity has awell defined maximum at kBT approximately
equal to 0.15e. In the canonical ensemble the heat capacity
has aplateau at about kBT50.2e. In both the canonical and
microcanonical ensembles, CV /(NkB) approaches 2.57 as
T→0, the equipartition result.

Figure 2 displays graphs of the energy as a function of
the calculated temperature for the 13-particle Lennard-Jones
cluster. The left panel represents the results of the Metropolis
Monte Carlo simulation and the right panel represents the
j-walking results. The statistical error is clearly reduced sig-
nificantly by the j-walking method. The large slope at
kBT/e50.28 is similar to that seen in other microcanonical
simulations on this system,21 and the large slope region has
often been associated with cluster melting. As might be ex-
pected from the importance of isomerization transitions in

FIG. 1. The heat capacity as afunction
of temperature for the 7-particle
Lennard-Jones cluster. The left hand
panel represents the Metropolis results
and the right hand panel represents the
j-walking results. Each calculation in-
cludes 107 Monte Carlo points, and the
significant reduction in the statistical
noise by the j-walking method is evi-
dent. The small inset in the left panel
presents both the Metropolis data-
~lower portion! and the j-walking da-
ta~upper portion! at the lowest calcu-
lated temperatures. The systematic
deviation is a result of low energy
isomerization transitions that are not
captured by the Metropolis calculation.
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the melting region, the difference in statistical errors between
the Metropolis Monte Carlo results and the j-walking results
are greater in the melting region than for other regions of
temperature. We do not display the heat capacity for this
system, because the slope of the caloric curve in the melting
region is too large to obtain statistically meaningful results,
even for the large number of Monte Carlo points used in the
calculation.

V. DISCUSSION

We have demonstrated that j-walking methods can be
applied to insure ergodic simulations in the microcanonical
ensemble using methods that are similar in spirit to the origi-
nal j-walking method in the canonical ensemble. The diffi-
culties in achieving ergodicity in microcanonical simulations
of Lennard-Jones clusters are pronounced and qualitatively
greater than difficulties that have been seen in canonical
simulations. In the canonical ensemble at any temperature
there can be events that can overcome barriers between sepa-
rated regions of configuration space. In the microcanonical
ensemble regions of space separated by barriers greater than
the available energy are completely inaccessible to each
other. We speculate that the total lack of connectivity be-
tween regions of space in the microcanonical ensemble may
make it particularly difficult to achieve ergodicity.

The simulations discussed in this work are true microca-
nonical simulations in the sense that we have made no effort
to impose conservation of the total linear and angular mo-
menta as would be imposed naturally in amolecular dynam-
ics simulation on these systems. The imposition of such
conservation constraints represents a straightforward modifi-
cation of the results presented here.
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