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A heat capacity estimator for Fourier path integral simulations

J. P. Neirotti and David L. Freeman®
Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston,
Rhode Island 02881-0809

J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

(Received 18 October 1999; accepted 8 December)1999

Previous heat capacity estimators useful in path integral simulations have variances that grow with
the number of path variables included. In the present work a new specific heat estimator for Fourier
path integral Monte Carlo simulations is derived using methods similar to those used in developing
virial energy estimators. The resulting heat capacity estimator has a variance that is roughly
independent of the number of Fourier coefficierkg{) included, and the asymptotic convergence
rate is shown to be proportional td@{axwhen partial averaging is included. Quantum Monte Carlo
simulations are presented to test the estimator using two one-dimensional models and for
Lennard-Jones representations of;NefFor finite k., Using numerical methods, the calculated
heat capacity is found to diverge at low temperatures for the potential functions studied in this work.
Extrapolation methods enable useful results to be determined over a wide temperature range.
© 2000 American Institute of Physids$0021-9606800)50809-5

I. INTRODUCTION shown to increase witk,,,. The H-method gives an energy
with a variance that is, at most, weakly dependenkgp,,

|BUt the terms in the estimator include derivatives of the po-
ﬁténtial and integrations with respect to the time variable that

Monte Carlo(MC)*! and molecular dynamics techniqées
have been essential in the understanding of many partic
systems at nonzero temperature. These methods allow t e .
implementation of microscopic statistical mechanics model§3" be_d|ff|cult and expensive to gvaluate.
without introducing uncontrolled approximations. Although  Estimators for the heat capacity of quantum systems are
the MC method was originally used to simulate classicalPPt@ined by differentiating the expression for the average
systems, several algorithms have been developed to apply§1€"dy using either the T-method or the H-method with re-
to quantum systenis® A large number of these algorithms spect to temperature. The resulting estimators have been

uses the path integral method, inspired by Feynman's formu<alled the TT-method or the TH-meth8diepending on the
lation of statistical mechanids. estimator for the energy used. The differentiation with re-

In the present work we use the Fourier path integraSPect to temperature results in an estimator with a variance
(FPI) method®* in which paths are expressed as a Fourietthat increases with another factorlof.x. Consequently, the
series. In this method, the extremes of the path are two pointégriance in the heat capacity of the TT-method grows as
in configuration space, and the Fourier coefficients are extréimax and the variance in the heat capacity in the TH-method
degrees of freedom associated with the quantum character gfows aKmax.
the problem. Because the number of Fourier coefficients re- As with discretized path integral methot it is pos-
quired is infinite, for practical calculations the Fourier seriessible to develop an energy estimator, based on the T-method
is truncated by includind,,a terms. result, where the terms leading to an ill-behaved variance are

Several estimators of the energy have been developed explicitly eliminated® This estimator has been called the
the FPI method® Each of these estimators gives the samevirial energy estimatdf (hereafter referred to as the
average energy in the limit of an infinite number of FourierV-method estimatgr because it is based on the virial theo-
coefficients, but with differing levels of statistical noise in a rem. The convergence rate of the virial energy estimator is
simulation. One approach, often called the T-methiob-  identical to the convergence rate when the T-method is used
tained by differentiating the canonical partition function with to evaluate the energy, but the variance of the virial result is
respect to the temperature. Another technique, called thenly weakly dependent oky,. As with the T-method and
H-method is obtained by direct application of the quantum the H-method, the heat capacity in the V-method can be
Hamiltonian operator on the density matrix. A third methodevaluated by direct temperature differentiation. As a result of
based on the virial theorem is discussed below. Thehjs additional temperature differentiation, the resulting esti-
T-method estimator is easy to compute, consisting primarilynator for the heat capacity has a variance that grows linearly
of terms needed during the quantum random walk. Howeveln k  |n this paper we use methods analogous to those
the variance of the energy in a T-method calculation can bggeqd in deriving the V-method estimator for the energy to
derive an estimator for the heat capacity whose variance is,
dElectronic mail: freeman@chm.uri.edu at most, weakly dependent &,,,. We illustrate the estima-
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tor with applications to some one-dimensional model prob-

P (X XiB)  fdaexd -5, )

lems, and to quantum Mg In addition to its intrinsic inter- max = ’ (5)
est, the Ng; calculation uses the first application of the pf(f"?a)x(X,X';ﬁ) Jda exp{—S(kfnf;x}
extrapolation methods outlined in Ref. 8.
The remainder of this paper is organized as follows: inwheresSy__ is the action
Sec. Il we briefly review the basic expressions used in the
FPI method and derive an estimator for the specific heat. We Kmax a? _
also demonstrate how to remove the terms that cause the Skmax(x,x’,a;,B)=k21 27'2+ﬂvkmax’ (6)
variance of the heat capacity to increase with increasing K
Kmax- In Sec. lll we present some sample results for twoyith
one-dimensional model systems and a detailed calculation of
the heat capacity for quantum Nemodeled by Lennard- 5 28h?
Jones forces. We summarize our results in Sec. IV. k=" 7
m(k)
Il. THE VIRIAL HEAT CAPACITY ESTIMATOR and the line abov# in Eq. (6) represents a path average
A. The FPI method . 1
Although the FPI method has been explained in detail ~ Jmax fo du dXe, (W] ®)

elsewheré, it is useful to begin the present discussion with

an outline of the key ideas and formulas. In that way theThe notationaZ implies the sum of the squares of all com-

derivation of the heat capacity estimator can be made cleaponents ofa, and superscriptsfp) like those appearing in

In what follows, we letd be the total dimensionality of the EQq. (5) imply the free particle result where the potential en-

system. For example, for aN particle system in three di- ergy is set to 0. Additionallya denotes the truncated set of

mensionsd=3N. In the following, we assume all particles Kmax Fourier coefficients.

have massn, the extension of the formulas to many particles  In this paper, where we focus on the energy and the heat

of differing masses being straightforward. capacity, only the diagonal elements of the density matrix
In path integral approaches to quantum statistical meare required. In such cases, it is possible to express the ex-

chanics, the quantum density matrix at temperafuie ex-  pectation value of any coordinate-dependent quarkity)

pressed as a path integral in imaginary time by the expression
PO B) JdxdaAx)exp— S _(x.xaB)}
:<X'|e_’BH|X> 1) A= Jdxdaexp{— S _(x,x,ap8)} ' ©
:f Dx(r)ex;{ —Efﬁth+1m).(2(T)+V[X(T)]]), To find the exact expectation value éfin Eq. (9), it is
filo 2 necessary to determine the limit kg,,— . It has recently

been showhthat expectation values, like those appearing in
wherex andx’ represent the particle coordinatesdidimen-  Eq. (9), converge asymptotically to the exact expression as
sions, V(x) is the potential energy, and=1/kgT with kg  1/kmax. TO improve the convergence rate, it is possible to use
the Boltzmann constant. In the FPI method the paths arpartial averaginﬁ8 which approximately includes contribu-
expanded in a Fourier sine series about a straight line pattions from the ignored terms in the Fourier series. In partial

connectingx to x’ averaging, the potential energy appearing in Hj.is re-
- placed by an effective potential of the forfusing the gra-
X(U) =X+ (X' —X)u+ E a sin kru, &) dient approximation, see Ref) 8
k=1

(pa) = 1.2 2
whereu is the reduced time variable= 7/(B8#%) that ranges VEEGW=V00 + 207 (W VRV, (10

between 0 and 1, ang} is a vector containing théd compo-  \yhere
nents of thekth Fourier coefficient associated with the
d-dimensional coordinate. The result of this sine expansion is Bh2 Kmax
. . . . 2 _ —1)— 2 2 nZ k (11)
to replace the integration over all paths by an ordinary Rie- o“(u) m u(u—1) = oy SIn” Kru.
mann integral over all the Fourier coefficients. In practical N
applications it is usual to truncate the infinite summation inysjng the partial averaged action
Eq. (3) after the firstk,,,, coefficients. The resulting approxi-

mate path is written Kmax ﬁ
i Soaxap)= 2 =5+ Ve, (12
X (UW)=X+(X'—X)u+ 2, a, sinkmu. (4) k
max k:l

to replace the action in E@®), coordinate dependent expec-
Using Eq.(4), it is possible to showthe resulting expression tation values converge asymptotically to the exact result as
for the density matrix, given by 12,2 In the derivations that follow, partial averaging is
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assumed. The corresponding primitive FPI results can be ob-  kmax 52 1
tained by replacing/(P? by V wherever it appears. P .- S — (21)

B. The heat capacity estimator

As mentioned in the Introduction, different energy esti- =5as e~ gﬂ‘ﬁ;’% (22)
mators have different properties, even though their values in
the limit k. are the same. In this work we restrict and
attention to the V-estimatdrbecause the V-estimator ex- K
pression is not costly to evaluate and has a variance that does l
not grow with increasindsax. In deriving the expression for B
the V-estimator for the enerdythe terms whose variance do
grow with k.« can be shown to cancel and are explicitly we find
removed. In what follows, we apply the same technique to
develop a heat capacity estimator that is also well-behaved. <CV>kmax o )
The resulting expression is valid only for systems with po- k—B:'B UE Nk (Bliad ~BE =B )k
tential energies having well-defined derivatives through

fourth order. B EA (pa) B Kmaxt 1
To begin, we define ﬁ[ < EZaSkmax ) d 2 <E>kmax '

1. Kmaxt 1
Sk oV Sma” 2
>k SV, TS5 (23

max
kmax

a=x-V .+ 2 a.Vy, (13 29
k=1 where

which we call the virial operator. In terms of the virial op- - —
erator, we express the total energy in the V-methddl by (Ekpadkmac 2$OVK ko T (Vi (25
(14 The estimator for the heat capacity given in E2¢) has

= 1/ov/(Pd) v(Pa) _\/
(Bl = 200V et (Vi Vina _ _ _ _ :
_ a variance that increases linearly wikh,... The variance
It has been provétthat the V-estimator of the energy con- pehavior is a consequence of the last two terms on the right-

max

verges asymptotically to the exact resultigs,; i.e., hand side of Eq(24). Using the same strategy as in the
(E)..=(E)y +O(k;§X)VT, (15) derivatio_n of the V-method for the energy, we r_eformulate
max Eqg. (24) in such a way that the terms that otherwise produce

as Kmax— . the lineark . growth of the variance are canceled analyti-

The expression for the specific he&y can be obtained cally, not numerically. To make the cancellations explicit,
by temperature differentiation of the total energy V-estimatonwe integrate by parts and find that

HE)k aS(PAy ={a
<CV>kmaX: _ kBIBZ 0’;'3 max_ (16) <Ea’8 kmaQ Kimax d(kmax+ 1)<E>kma>< <aE>kmax. (26)
. btai Substituting Eq.(26) into Eq. (24), we obtain the final ex-
Rewriting Eq.(16), we obtain pression for the heat capacity
C ISP
(s {5 +<Em o 1
ks Bl B[ A E ke (Bliod B3 @B
aS(kﬁfe?x _B<E_ Ekmanmax' (27)
_<E>kmax ap ! 17) . . L .
Kma Equation(27) is the principal result of this paper. The con-
where vergence rate as a function kf,,, of the heat capacity ob-
tained from EQ.(27) is the same as the convergence rate
JE 1. — 2 — given in Eq.(24), but the variance of the estimator expressed
AV ( L) Z(ypa) _
B Zﬁa(vkmax Vinad B(Vkmax Vil 18 Eq. (27) is only weakly dependent dky,.x. TO determine
and this convergence rate, we rewrite E@6) in the form
E +A)—(E
38(kpa) 1 Kmax i - <C > ~ k leim< >kmax(,3 ) < >kmax(,8).
R AV e VIR (19 Vikmax - TBE T A
B B =1 20_5 max max -
(28)
In deriving Eq.(19), we have used the relation Because each term on the right-hand side of @§) con-
VP VP v, verges asymptotically a2, we can then write for the heat
aﬁmax — maxﬂ max (20) CapaC|ty

Using (Cy)=(Cy)  TOkua) VB, (29)
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askmax— . The asymptotic convergence characteristics ex- 100 T y T y
pressed in Eq(29) can also be verified directly using the
methods described in Ref. 8.

The derivation of the heat capacity estimator presented

above needs modification for systems having a potential en- ® Ky =1

. . 0.75 | " K =2 L
ergy that is independent of the coordinate of the center of ks
mass. An example of such a system is the 13-particle neon \ Ak Z30

cluster examined in Sec. lll. For such systems, just like the
case for the virial energy estimatbthe free motion contri-

bution of the center of mass is excluded by application of Eq.
(27). For such systems the correction &322 must be added N
explicitly. .

lll. APPLICATIONS 025 | \ l
A. One-dimensional systems \

Simulations of single-basin one-dimensional systems \ A
can be performed in sufficient detail to provide useful results >
for initial investigations. In this subsection we investigate 0.00 - L ~ =
two model one-dimensional systems; the harmonic oscillator Y
and a Lennard-Jones cééeften used to model the features - N ]
FIG. 1. Specific heat virial estimator i&=#% Bw for several values o,

of liquids. The thermodynamic properties of the harmonlCin the one-dimensional harmonic oscillator. The lines are the analytical ex-

OSCi”f_itor can b_e evaluated analytically, and the analytic €Xpressions for the V-estimator &rom left to right kya=1, 2, and 5. The

pressions provide a useful way of understanding the basiwick line at the right is the exact expression @y at the infinitek gy limit.

structure of the method. The data points are taken from Monte Carlo simulations. The error bars are
For the oscillator we define the parametgrfiwg,  Smaller than the resolution of the graph.

wherew is the oscillator frequency. Using either EG4) or

Eq. (27) the specific heat can be shown to take the form

in excellent agreement with the analytical res(iEs. (30)],

(CV )k max y* and the statistical errors in the simulations are smaller than
T k. fA T o o the plotted points on the graph.
ke =1Lyt (km)7] From Fig. 1 and an analysis of E(0), divergent be-
2 kmax, (k)2 havior of the heat capacity at low temperatutesge y) is
+321_8S 2 > 3 evident, and for a given temperature it is necessary to include
1 k=1 [y (km)7] sufficient Fourier coefficients to obtain meaningful results. A
1-8S,)\2 useful approach to the problem of determining the size of
+2|1°gs ) —2,3<V(kﬁqa) Koo (30) k. Needed is the use of extrapolation methbeigich we
. now illustrate with the second one-dimensional model prob-
where lem, the Lennard-Jones cdge
Kmax 72 1— 882

V(X)=4e

v(Pa) =
2B<Vkma Kmax I(Zl ,y2+(k77-)2 - 1-8S;

o 12 o 6+ o 12 o 6
X+« X+« X—a X—a |
(34)
1 kmax l . . . .
] (31) This potential has been used to model simple quantum lig-
6 &1(km)?)’ uids in previous work! The potential curve has one single
minimum between two strongly repulsive walls located at

Kmax 32/ (k)2 + «. The parameters, o, anda have been chosen to model
Si=2, (k)2 (32 Jiquid argon with ¢=119.4 K,0=3.405A,a=1.2 o, and
m=39.948 ami
Kmax 02 024 2 (kar)2 Metropolis MC simulations have been performed using

=2 55 712" (B3 Kkma=1,5, 7,10, 15, 20, 30, and 50, with data accumulation
k=1 (km)® [y~+(km)?] ; 5
over 18 passes after a warmup period of°l@asses. The
and the primes on the summations in E@))—(33) imply  number of quadrature points in theintegrations has been
that only odd values ok are to be included. We have used chosen to be mg82,4xk,.4 using Gauss—Legendre
this expression together with Metropolis MGand Eq.(27) quadrature. As found in our study of the harmonic oscillator,
to test the virial estimator. Figure 1 shows results of simulathe heat capacity is found to be divergent numerically for
tions of 1¢ passes akya=1, 2, 5, and 30. The number of fixed k., in the limit of low temperatures. In the case of the
guadrature points used in the integrals has been set to Lennard-Jones cage potential, as well as the Lennard-Jones
maxX32,4X k¢ Gauss—Legendre points. The MC data arecluster discussed in the next section, the limiting form of this
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with a simulation of the quantum properties of ;hleand
contrast the calculated heat capacity with that obtained from
a classical simulation. Classical 13-particle Lennard-Jones
clusters have well-defined heat capacity maxihand neon

[ clusters are known to have significant quantum
-7 1 contributions? 819

[ The potential energy used in this work is the pairwise
additive Lennard-Jones potential modified with a constrain-

0.05

-0.05

-0.15

Loas s ol _1_2'... '

0200 o0z o0a 606 5005t 003 ing potential
12 13 12 6
—~~ g g
S V(x)=4e>, > [(—) —(— +Ve(x), (39
i=1j=i+1 [\l Fij
~

wheree=35.6 K ando=2.749 A , andrj; is the distance
between particles and | in the cluster. The constraining
potential V(x) is introduced because at finite temperatures
the cluster has a finite vapor pressure, and the constraining
potential insures the cluster contains 13 atoms over the
course of the entire simulation. The form of the constraining
potential used in this work is identical to that employed
elsewheré?

-2 > |Xi - Xc.m.| 20
kmax Ve(x)= 82 —R )
i=1 c

FIG. 2. Specific heat virial estimator as a functiorkgf, at fixed values of s . T . .
T for the one-dimensional Lennard-Jones cage potential. The circles are th\e{herex' is the coordinate of particleand X.C-m- 1S _the pQSI
results from simulations and the lines are the best linear fit for the datdlOn Of the center of mass. In some previous simulations of

points. Lennard-Jones clusters of this sizehe constraining radius
R. has been set to 4r. In the current studies, we have

divergence takes the form of a power @, The exponent encountered difficulties insuring an ergodic simulation with
9 P § P the constraining radius set to & owing to transitions to

n of the power law is not universal and depends on the form lik hiah h dici
of the potential energy function. For the three potentials ex-gas'I e structures at higher temperatures. These ergodicity

amined in this work. numerical studies suagest ihas an problems have been solved by setting the constraining radius
. ' . 99 toR.,=2 o. For the classical system, the heat capacity melt-
integer that depends on the potential.

The heat capacity data as a functionkqﬁx for several ing peak location and height have been found to be indistin-

temperature values are shown in Fig. 2. As predicted by EOguishable in simulations using these two values for the con-
. . - e ; training radius. Differences in the heat capacity have been
(29), the estimator is linear ik2,, and the linear behavior 9 pactty

max seen only at temperatures higher than the melting peak maxi-

can be used to extrapo_late the hea_t capacity at a part'c'“."%um owing to differences in the analog of boiling behavior.
temperature. We use this extrapolation method to determine The simulations have been performed using the parallel

the heat capacity of Neas discussed in the next section. o i 21 of the J-walking Monte Carlo algorith/f.The de-

tails of the parallel J-walking algorithm and the application
of J-walking to quantum systems are presented elsewltfére,
Much has been learned about the behavior of clusterand we make no effort to review the approach here. In the
from classical simulations of their thermodynamic parallel J-walking application to Ng, the initial high tem-
properties>~1® For example, much can be learned aboutperature set of generating processors has been fixed at 13.1
nucleation rates from the study of the free energy of formaK. The simulations have consisted of®1®armup passes
tion of the clusters’ The heat capacity, the principal quan- followed by 4x10° passes with data accumulation. The
tity of interest in this paper, can provide valuable informa-maximum number of generating processors has been set to
tion about cluster melting phenomehaln contrast to bulk  eight and the size of the configuration array has been set to
systems, when a cluster “melts” there is a range of tempera5000 (see Ref. 2l Generating processor temperatures have
tures over which the cluster can be considered simultabeen included whenever the jump acceptance probabilities
neously to occupy liquid-like and solid-like structufdsAs-  have dropped below 10%. The generating processors pass
sociated with such cluster melting regions are maxima in theéhe configurations of both the coordinates and the Fourier
heat capacity as a function of temperattR@revious heat coefficients to the running processors. For the Fourier repre-
capacity estimatofshave been so costly to evaluate, espe-sentation of the path&,,,, has been set to 1, 2, 4, 8, and 16.
cially at low temperatures where many Fourier coefficients A graph ofC,, as a function ofT is found in Fig. 3 for
are needed, that prior quantum simulations have been limitedach value ok, studied. From the highest calculated tem-
to Lennard-Jones clusters of size 7 or less. We now illustratperature to temperatures just below the melting peak, the
the utility of the heat capacity estimator derived in this work behavior of the heat capacity is only weakly dependent on

5--.nl--n-l-n _1
0.00 0.01 0.02 000 0.01 002 0.03 0.04

(36)

B. Ney3
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100 T T T T T T

80 |

20

0 " " " L
0.00 0.05 010 _» 0.15 0.20 0.25

max

FIG. 3. Specific heat virial estimator as a functioriTdbr several values of ~ FIG. 4. The heat capacity of Ngcomputed with the virial estimator as a

Kkmax for the Lennard-Jones representation of NéThe errors bars represent function ofkn]f\x atT=6 K. The line is the best linear fit for the data points,
one standard deviation. and the reported error bars represent one standard deviation.

kmax- An exception is the height of the heat capacity maxi-with the estimator is found numerically to be divergent as
mum, which shows a small dependence on the number ofF—0, but extrapolation techniques based on the asymptotic
Fourier coefficients included. At temperatures below 8 K theconvergence rate enable the determination of useful results
dependence of the calculated heat capacitkQp is strong.  over a wide temperature range. The method has been applied
To determine the heat capacity at these lower temperatures,dticcessfully to some model systems as well as to Lennard-
is convenient to extrapolate to infinite,,, by using the Jones representations of e

asymptotic convergence rate kf.2. As an example, the
heat capacity calculated as a functiori@ix is presented in
Fig. 4 for T=6 K. Using such extrapolated data, the full
guantum heat capacity curve is presented in Fig. 5 along with
the classical heat capacity for the same system, included for

120 T T T T T T

comparison. The classical heat capacity data have been gen- 100 ¢ 1
erated using the standard serial J-walking algoritArfihe

quantum heat capacity approaches 0 with decreasing tem- o—o Quantum System

peratures as it must, while the classical heat capacity ap- 80 | o——=° Classical System

proaches the equipartition limit at low temperatures. As ex-
pected, quantum effects shift the melting peak to a lower
temperature than the corresponding classical maximum. The NIy
calculation of the quantum heat capacity at temperatures 2
lower than those reported in Fig. 5 requires increased com-
putational effort, because the relative error for the diminish-

ing heat capacity becomes large and increasing numbers of
Fourier coefficients are required &s-0.

40 |

IV. SUMMARY

We have developed a new heat capacity estimator based
on the virial energy estimator used in Fourier path integral
Monte Carlo simulations. The estimator of the heat capacity B 2 # 6 T 8 10
is constructed so that the variance@f is, at most, weakly
dependent on the number of Fourier coefficients included. IiFIG. 5. Comparison between classical and quantum specific heat for the

; ; ; ; ; _ennard-Jones representation of;NleThe quantum curve is obtained by
calculations using part|al averaging, the heat capacity CaICLI(;xtrapolation from data like those presented in Fig. 4. The error bars on the

lated with the:zestlmat_or_ converges asymptotl_cally to the eXEquantum curve represent the errors obtained from the least-squares fit. The
act result a5 For finitek,o, the heat capacity calculated classical error bars are smaller than the plotted points.

12
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