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A heat capacity estimator for Fourier path integral simulations
J. P. Neirotti and David L. Freemana)

Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston,
Rhode Island 02881-0809

J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

~Received 18 October 1999; accepted 8 December 1999!

Previous heat capacity estimators useful in path integral simulations have variances that grow with
the number of path variables included. In the present work a new specific heat estimator for Fourier
path integral Monte Carlo simulations is derived using methods similar to those used in developing
virial energy estimators. The resulting heat capacity estimator has a variance that is roughly
independent of the number of Fourier coefficients (kmax) included, and the asymptotic convergence
rate is shown to be proportional to 1/kmax

2 when partial averaging is included. Quantum Monte Carlo
simulations are presented to test the estimator using two one-dimensional models and for
Lennard-Jones representations of Ne13. For finite kmax, using numerical methods, the calculated
heat capacity is found to diverge at low temperatures for the potential functions studied in this work.
Extrapolation methods enable useful results to be determined over a wide temperature range.
© 2000 American Institute of Physics.@S0021-9606~00!50809-5#

I. INTRODUCTION

Monte Carlo~MC!1 and molecular dynamics techniques2

have been essential in the understanding of many particle
systems at nonzero temperature. These methods allow the
implementation of microscopic statistical mechanics models
without introducing uncontrolled approximations. Although
the MC method was originally used to simulate classical
systems, several algorithms have been developed to apply it
to quantum systems.3–6 A large number of these algorithms
uses the path integral method, inspired by Feynman’s formu-
lation of statistical mechanics.7

In the present work we use the Fourier path integral
~FPI! method,3,4 in which paths are expressed as a Fourier
series. In this method, the extremes of the path are two points
in configuration space, and the Fourier coefficients are extra
degrees of freedom associated with the quantum character of
the problem. Because the number of Fourier coefficients re-
quired is infinite, for practical calculations the Fourier series
is truncated by includingkmax terms.

Several estimators of the energy have been developed in
the FPI method.3,8 Each of these estimators gives the same
average energy in the limit of an infinite number of Fourier
coefficients, but with differing levels of statistical noise in a
simulation. One approach, often called the T-method,3 is ob-
tained by differentiating the canonical partition function with
respect to the temperature. Another technique, called the
H-method,3 is obtained by direct application of the quantum
Hamiltonian operator on the density matrix. A third method
based on the virial theorem is discussed below. The
T-method estimator is easy to compute, consisting primarily
of terms needed during the quantum random walk. However,
the variance of the energy in a T-method calculation can be

shown to increase withkmax. The H-method gives an energy
with a variance that is, at most, weakly dependent onkmax,
but the terms in the estimator include derivatives of the po-
tential and integrations with respect to the time variable that
can be difficult and expensive to evaluate.

Estimators for the heat capacity of quantum systems are
obtained by differentiating the expression for the average
energy using either the T-method or the H-method with re-
spect to temperature. The resulting estimators have been
called the TT-method or the TH-method,9 depending on the
estimator for the energy used. The differentiation with re-
spect to temperature results in an estimator with a variance
that increases with another factor ofkmax. Consequently, the
variance in the heat capacity of the TT-method grows as
kmax

2 , and the variance in the heat capacity in the TH-method
grows askmax.

9

As with discretized path integral methods,6,10 it is pos-
sible to develop an energy estimator, based on the T-method
result, where the terms leading to an ill-behaved variance are
explicitly eliminated.8 This estimator has been called the
virial energy estimator10 ~hereafter referred to as the
V-method estimator!, because it is based on the virial theo-
rem. The convergence rate of the virial energy estimator is
identical to the convergence rate when the T-method is used
to evaluate the energy, but the variance of the virial result is
only weakly dependent onkmax. As with the T-method and
the H-method, the heat capacity in the V-method can be
evaluated by direct temperature differentiation. As a result of
this additional temperature differentiation, the resulting esti-
mator for the heat capacity has a variance that grows linearly
in kmax. In this paper we use methods analogous to those
used in deriving the V-method estimator for the energy to
derive an estimator for the heat capacity whose variance is,
at most, weakly dependent onkmax. We illustrate the estima-a!Electronic mail: freeman@chm.uri.edu

JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 9 1 MARCH 2000

39900021-9606/2000/112(9)/3990/7/$17.00 © 2000 American Institute of Physics



tor with applications to some one-dimensional model prob-
lems, and to quantum Ne13. In addition to its intrinsic inter-
est, the Ne13 calculation uses the first application of the
extrapolation methods outlined in Ref. 8.

The remainder of this paper is organized as follows: in
Sec. II we briefly review the basic expressions used in the
FPI method and derive an estimator for the specific heat. We
also demonstrate how to remove the terms that cause the
variance of the heat capacity to increase with increasing
kmax. In Sec. III we present some sample results for two
one-dimensional model systems and a detailed calculation of
the heat capacity for quantum Ne13 modeled by Lennard-
Jones forces. We summarize our results in Sec. IV.

II. THE VIRIAL HEAT CAPACITY ESTIMATOR

A. The FPI method

Although the FPI method has been explained in detail
elsewhere,3 it is useful to begin the present discussion with
an outline of the key ideas and formulas. In that way the
derivation of the heat capacity estimator can be made clear.
In what follows, we letd be the total dimensionality of the
system. For example, for anN particle system in three di-
mensions,d53N. In the following, we assume all particles
have massm, the extension of the formulas to many particles
of differing masses being straightforward.

In path integral approaches to quantum statistical me-
chanics, the quantum density matrix at temperatureT is ex-
pressed as a path integral in imaginary timet

r~x,x8;b!

5^x8ue2bĤux& ~1!

5E Dx~t!expS 2
1

\E0

b\

dtH 1

2
mẋ2~t!1V@x~t!#J D ,

~2!

wherex andx8 represent the particle coordinates ind dimen-
sions,V(x) is the potential energy, andb51/kBT with kB

the Boltzmann constant. In the FPI method the paths are
expanded in a Fourier sine series about a straight line path
connectingx to x8

x~u!5x1~x82x!u1 (
k51

`

ak sin kpu, ~3!

whereu is the reduced time variableu5t/(b\) that ranges
between 0 and 1, andak is a vector containing thed compo-
nents of thekth Fourier coefficient associated with the
d-dimensional coordinate. The result of this sine expansion is
to replace the integration over all paths by an ordinary Rie-
mann integral over all the Fourier coefficients. In practical
applications it is usual to truncate the infinite summation in
Eq. ~3! after the firstkmax coefficients. The resulting approxi-
mate path is written

xkmax
~u!5x1~x82x!u1 (

k51

kmax

ak sin kpu. ~4!

Using Eq.~4!, it is possible to show3 the resulting expression
for the density matrix, given by

rkmax
~x,x8;b!

rkmax

( f p) ~x,x8;b!
5

*da exp$2Skmax
%

*da exp$2S kmax

( f p) %
, ~5!

whereSkmax
is the action

Skmax
~x,x8,a;b!5 (

k51

kmax ak
2

2sk
2

1bV̄kmax
, ~6!

with

sk
25

2b\2

m~kp!2
, ~7!

and the line aboveV in Eq. ~6! represents a path average

ḡkmax
5E

0

1

du g@xkmax
~u!#. ~8!

The notationak
2 implies the sum of the squares of all com-

ponents ofak , and superscripts (f p) like those appearing in
Eq. ~5! imply the free particle result where the potential en-
ergy is set to 0. Additionally,a denotes the truncated set of
kmax Fourier coefficients.

In this paper, where we focus on the energy and the heat
capacity, only the diagonal elements of the density matrix
are required. In such cases, it is possible to express the ex-
pectation value of any coordinate-dependent quantityA(x)
by the expression

^A&kmax
5

*dx daA~x!exp$2Skmax
~x,x,a;b!%

*dx daexp$2Skmax
~x,x,a;b!%

. ~9!

To find the exact expectation value ofA in Eq. ~9!, it is
necessary to determine the limit askmax→`. It has recently
been shown8 that expectation values, like those appearing in
Eq. ~9!, converge asymptotically to the exact expression as
1/kmax. To improve the convergence rate, it is possible to use
partial averaging3,8 which approximately includes contribu-
tions from the ignored terms in the Fourier series. In partial
averaging, the potential energy appearing in Eq.~6! is re-
placed by an effective potential of the form~using the gra-
dient approximation, see Ref. 8!

V(pa)~x,u!5V~x!1 1
2 s2~u!¹x

2V~x!, ~10!

where

s2~u!5
b\2

m
u~u21!2 (

k51

kmax

sk
2 sin2 kpu. ~11!

Using the partial averaged action

Skmax

(pa)~x,x,a;b!5 (
k51

kmax ak
2

2sk
2

1bV̄kmax

(pa) , ~12!

to replace the action in Eq.~9!, coordinate dependent expec-
tation values converge asymptotically to the exact result as
1/kmax

2 .8 In the derivations that follow, partial averaging is
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assumed. The corresponding primitive FPI results can be ob-
tained by replacingV(pa) by V wherever it appears.

B. The heat capacity estimator

As mentioned in the Introduction, different energy esti-
mators have different properties, even though their values in
the limit kmax→` are the same. In this work we restrict
attention to the V-estimator,8 because the V-estimator ex-
pression is not costly to evaluate and has a variance that does
not grow with increasingkmax. In deriving the expression for
the V-estimator for the energy,8 the terms whose variance do
grow with kmax can be shown to cancel and are explicitly
removed. In what follows, we apply the same technique to
develop a heat capacity estimator that is also well-behaved.
The resulting expression is valid only for systems with po-
tential energies having well-defined derivatives through
fourth order.

To begin, we define

â5x•¹x1 (
k51

kmax

ak•¹k , ~13!

which we call the virial operator. In terms of the virial op-
erator, we express the total energy in the V-method by8

^E&kmax
5 1

2 ^âV̄kmax

(pa)&kmax
1^2V̄kmax

(pa)2V̄kmax
&kmax

. ~14!

It has been proved8 that the V-estimator of the energy con-
verges asymptotically to the exact result askmax

22 ; i.e.,

^E&`5^E&kmax
1O~kmax

22 !;T, ~15!

askmax→`.
The expression for the specific heatCV can be obtained

by temperature differentiation of the total energy V-estimator

^CV&kmax
52kBb2

]^E&kmax

]b
. ~16!

Rewriting Eq.~16!, we obtain

^CV&kmax

kB
5b2H 2 K ]E

]b L
kmax

1K E
]S kmax

(pa)

]b
L

kmax

2^E&kmax
K ]S kmax

(pa)

]b
L

kmax

J , ~17!

where

]E

]b
5

1

2b
â~V̄kmax

(pa)2V̄kmax
!1

2

b
~V̄kmax

(pa)2V̄kmax
!, ~18!

and

]S kmax

(pa)

]b
52

1

b (
k51

kmax ak
2

2sk
2

12V̄kmax

(pa)2V̄kmax
. ~19!

In deriving Eq.~19!, we have used the relation

]V̄kmax

(pa)

]b
5

V̄kmax

(pa)2V̄kmax

b
. ~20!

Using

(
k51

kmax ak
2

2sk
2

5
1

2
â(

k51

kmax ak
2

2sk
2

~21!

5
1

2
âS kmax

(pa)2
b

2
âV̄kmax

(pa), ~22!

and

1

b K (
k51

kmax ak
2

2sk
2L

kmax

52
1

2
^âV̄kmax

(pa)&kmax
1d

kmax11

2b
, ~23!

we find

^CV&kmax

kB
5b2$^E2&kmax

2^E&kmax

2 %2b^E2Ekmax
&kmax

2bH K E
1

2
âS kmax

(pa)L
kmax

2d
kmax11

2
^E&kmaxJ ,

~24!

where

^Ekmax
&kmax

5 1
2 ^âV̄kmax

&kmax
1^V̄kmax

&kmax
. ~25!

The estimator for the heat capacity given in Eq.~24! has
a variance that increases linearly withkmax. The variance
behavior is a consequence of the last two terms on the right-
hand side of Eq.~24!. Using the same strategy as in the
derivation of the V-method for the energy, we reformulate
Eq. ~24! in such a way that the terms that otherwise produce
the linearkmax growth of the variance are canceled analyti-
cally, not numerically. To make the cancellations explicit,
we integrate by parts and find that

^EâS kmax

(pa)&kmax
2d~kmax11!^E&kmax

5^âE&kmax. ~26!

Substituting Eq.~26! into Eq. ~24!, we obtain the final ex-
pression for the heat capacity

^CV&kmax

kB
5b2$^E2&kmax

2^E&kmax

2 %2b
1

2
^âE&kmax

2b^E2Ekmax
&kmax

. ~27!

Equation~27! is the principal result of this paper. The con-
vergence rate as a function ofkmax of the heat capacity ob-
tained from Eq.~27! is the same as the convergence rate
given in Eq.~24!, but the variance of the estimator expressed
in Eq. ~27! is only weakly dependent onkmax. To determine
this convergence rate, we rewrite Eq.~16! in the form

^CV&kmax
52kBb2 lim

D→0

^E&kmax
~b1D!2^E&kmax

~b!

D
.

~28!

Because each term on the right-hand side of Eq.~28! con-
verges asymptotically askmax

22 , we can then write for the heat
capacity

^CV&`5^CV&kmax
1O~kmax

22 ! ;b, ~29!
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askmax→`. The asymptotic convergence characteristics ex-
pressed in Eq.~29! can also be verified directly using the
methods described in Ref. 8.

The derivation of the heat capacity estimator presented
above needs modification for systems having a potential en-
ergy that is independent of the coordinate of the center of
mass. An example of such a system is the 13-particle neon
cluster examined in Sec. III. For such systems, just like the
case for the virial energy estimator,8 the free motion contri-
bution of the center of mass is excluded by application of Eq.
~27!. For such systems the correction of 3kB/2 must be added
explicitly.

III. APPLICATIONS

A. One-dimensional systems

Simulations of single-basin one-dimensional systems
can be performed in sufficient detail to provide useful results
for initial investigations. In this subsection we investigate
two model one-dimensional systems; the harmonic oscillator
and a Lennard-Jones cage11 often used to model the features
of liquids. The thermodynamic properties of the harmonic
oscillator can be evaluated analytically, and the analytic ex-
pressions provide a useful way of understanding the basic
structure of the method.

For the oscillator we define the parameterg5\vb,
wherev is the oscillator frequency. Using either Eq.~24! or
Eq. ~27! the specific heat can be shown to take the form

^CV&kmax

kB
52(

k51

kmax g4

@g21~kp!2#2

132
g2

128S1
(
k51

kmax

8
~kp!2

@g21~kp!2#3

12S 128S2

128S1
D 2

22b^V̄kmax

(pa)&kmax
, ~30!

where

2b^V̄kmax

(pa)&kmax
5 (

k51

kmax g2

g21~kp!2
1

128S2

128S1

1g2S 1

6
2 (

k51

kmax 1

~kp!2D , ~31!

S15 (
k51

kmax

8
g2/~kp!2

g21~kp!2
, ~32!

S25 (
k51

kmax

8
g2

~kp!2

g212~kp!2

@g21~kp!2#2
, ~33!

and the primes on the summations in Eqs.~30!–~33! imply
that only odd values ofk are to be included. We have used
this expression together with Metropolis MC12 and Eq.~27!
to test the virial estimator. Figure 1 shows results of simula-
tions of 106 passes atkmax51, 2, 5, and 30. The number of
quadrature points used in theu integrals has been set to
max$32,43kmax% Gauss–Legendre points. The MC data are

in excellent agreement with the analytical results@Eq. ~30!#,
and the statistical errors in the simulations are smaller than
the plotted points on the graph.

From Fig. 1 and an analysis of Eq.~30!, divergent be-
havior of the heat capacity at low temperatures~largeg) is
evident, and for a given temperature it is necessary to include
sufficient Fourier coefficients to obtain meaningful results. A
useful approach to the problem of determining the size of
kmax needed is the use of extrapolation methods,8 which we
now illustrate with the second one-dimensional model prob-
lem, the Lennard-Jones cage11

V~x!54«F S s

x1a D 12

2S s

x1a D 6

1S s

x2a D 12

2S s

x2a D 6G .
~34!

This potential has been used to model simple quantum liq-
uids in previous work.11 The potential curve has one single
minimum between two strongly repulsive walls located at
6a. The parameters«, s, anda have been chosen to model
liquid argon with («5119.4 K,s53.405 Å,a51.2 s, and
m539.948 amu!.

Metropolis MC simulations have been performed using
kmax51, 5, 7, 10, 15, 20, 30, and 50, with data accumulation
over 106 passes after a warmup period of 105 passes. The
number of quadrature points in theu integrations has been
chosen to be max$32,43kmax% using Gauss–Legendre
quadrature. As found in our study of the harmonic oscillator,
the heat capacity is found to be divergent numerically for
fixed kmax in the limit of low temperatures. In the case of the
Lennard-Jones cage potential, as well as the Lennard-Jones
cluster discussed in the next section, the limiting form of this

FIG. 1. Specific heat virial estimator vsg5\bv for several values ofkmax

in the one-dimensional harmonic oscillator. The lines are the analytical ex-
pressions for the V-estimator at~from left to right! kmax51, 2, and 5. The
thick line at the right is the exact expression forCV at the infinitekmax limit.
The data points are taken from Monte Carlo simulations. The error bars are
smaller than the resolution of the graph.
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divergence takes the form of a power law,bn. The exponent
n of the power law is not universal and depends on the form
of the potential energy function. For the three potentials ex-
amined in this work, numerical studies suggest thatn is an
integer that depends on the potential.

The heat capacity data as a function ofkmax
22 for several

temperature values are shown in Fig. 2. As predicted by Eq.
~29!, the estimator is linear inkmax

22 , and the linear behavior
can be used to extrapolate the heat capacity at a particular
temperature. We use this extrapolation method to determine
the heat capacity of Ne13 as discussed in the next section.

B. Ne13

Much has been learned about the behavior of clusters
from classical simulations of their thermodynamic
properties.13–16 For example, much can be learned about
nucleation rates from the study of the free energy of forma-
tion of the clusters.17 The heat capacity, the principal quan-
tity of interest in this paper, can provide valuable informa-
tion about cluster melting phenomena.15 In contrast to bulk
systems, when a cluster ‘‘melts’’ there is a range of tempera-
tures over which the cluster can be considered simulta-
neously to occupy liquid-like and solid-like structures.14 As-
sociated with such cluster melting regions are maxima in the
heat capacity as a function of temperature.15 Previous heat
capacity estimators9 have been so costly to evaluate, espe-
cially at low temperatures where many Fourier coefficients
are needed, that prior quantum simulations have been limited
to Lennard-Jones clusters of size 7 or less. We now illustrate
the utility of the heat capacity estimator derived in this work

with a simulation of the quantum properties of Ne13, and
contrast the calculated heat capacity with that obtained from
a classical simulation. Classical 13-particle Lennard-Jones
clusters have well-defined heat capacity maxima,15 and neon
clusters are known to have significant quantum
contributions.9,18,19

The potential energy used in this work is the pairwise
additive Lennard-Jones potential modified with a constrain-
ing potential

V~x!54«(
i 51

12

(
j 5 i 11

13 H S s

r i j
D 12

2S s

r i j
D 6J 1Vc~x!, ~35!

where«535.6 K ands52.749 Å , and r i j is the distance
between particlesi and j in the cluster. The constraining
potentialVc(x) is introduced because at finite temperatures
the cluster has a finite vapor pressure, and the constraining
potential insures the cluster contains 13 atoms over the
course of the entire simulation. The form of the constraining
potential used in this work is identical to that employed
elsewhere,20

Vc~x!5«(
i 51

13 S uxi2xc.m.u
Rc

D 20

, ~36!

wherexi is the coordinate of particlei andxc.m. is the posi-
tion of the center of mass. In some previous simulations of
Lennard-Jones clusters of this size,15 the constraining radius
Rc has been set to 4s. In the current studies, we have
encountered difficulties insuring an ergodic simulation with
the constraining radius set to 4s owing to transitions to
gas-like structures at higher temperatures. These ergodicity
problems have been solved by setting the constraining radius
to Rc52 s. For the classical system, the heat capacity melt-
ing peak location and height have been found to be indistin-
guishable in simulations using these two values for the con-
straining radius. Differences in the heat capacity have been
seen only at temperatures higher than the melting peak maxi-
mum owing to differences in the analog of boiling behavior.

The simulations have been performed using the parallel
version21 of the J-walking Monte Carlo algorithm.22 The de-
tails of the parallel J-walking algorithm and the application
of J-walking to quantum systems are presented elsewhere,9,21

and we make no effort to review the approach here. In the
parallel J-walking application to Ne13, the initial high tem-
perature set of generating processors has been fixed at 13.1
K. The simulations have consisted of 106 warmup passes
followed by 43106 passes with data accumulation. The
maximum number of generating processors has been set to
eight and the size of the configuration array has been set to
5000 ~see Ref. 21!. Generating processor temperatures have
been included whenever the jump acceptance probabilities
have dropped below 10%. The generating processors pass
the configurations of both the coordinates and the Fourier
coefficients to the running processors. For the Fourier repre-
sentation of the paths,kmax has been set to 1, 2, 4, 8, and 16.

A graph ofCV as a function ofT is found in Fig. 3 for
each value ofkmax studied. From the highest calculated tem-
perature to temperatures just below the melting peak, the
behavior of the heat capacity is only weakly dependent on

FIG. 2. Specific heat virial estimator as a function ofkmax
22 at fixed values of

T for the one-dimensional Lennard-Jones cage potential. The circles are the
results from simulations and the lines are the best linear fit for the data
points.

3994 J. Chem. Phys., Vol. 112, No. 9, 1 March 2000 Neirotti, Freeman, and Doll



kmax. An exception is the height of the heat capacity maxi-
mum, which shows a small dependence on the number of
Fourier coefficients included. At temperatures below 8 K the
dependence of the calculated heat capacity onkmax is strong.
To determine the heat capacity at these lower temperatures, it
is convenient to extrapolate to infinitekmax by using the
asymptotic convergence rate ofkmax

22 . As an example, the
heat capacity calculated as a function ofkmax

22 is presented in
Fig. 4 for T56 K. Using such extrapolated data, the full
quantum heat capacity curve is presented in Fig. 5 along with
the classical heat capacity for the same system, included for
comparison. The classical heat capacity data have been gen-
erated using the standard serial J-walking algorithm.22 The
quantum heat capacity approaches 0 with decreasing tem-
peratures as it must, while the classical heat capacity ap-
proaches the equipartition limit at low temperatures. As ex-
pected, quantum effects shift the melting peak to a lower
temperature than the corresponding classical maximum. The
calculation of the quantum heat capacity at temperatures
lower than those reported in Fig. 5 requires increased com-
putational effort, because the relative error for the diminish-
ing heat capacity becomes large and increasing numbers of
Fourier coefficients are required asT→0.

IV. SUMMARY

We have developed a new heat capacity estimator based
on the virial energy estimator used in Fourier path integral
Monte Carlo simulations. The estimator of the heat capacity
is constructed so that the variance ofCV is, at most, weakly
dependent on the number of Fourier coefficients included. In
calculations using partial averaging, the heat capacity calcu-
lated with the estimator converges asymptotically to the ex-
act result askmax

22 . For finitekmax the heat capacity calculated

with the estimator is found numerically to be divergent as
T→0, but extrapolation techniques based on the asymptotic
convergence rate enable the determination of useful results
over a wide temperature range. The method has been applied
successfully to some model systems as well as to Lennard-
Jones representations of Ne13.

FIG. 3. Specific heat virial estimator as a function ofT for several values of
kmax for the Lennard-Jones representation of Ne13 . The errors bars represent
one standard deviation.

FIG. 4. The heat capacity of Ne13 computed with the virial estimator as a
function ofkmax

22 at T56 K. The line is the best linear fit for the data points,
and the reported error bars represent one standard deviation.

FIG. 5. Comparison between classical and quantum specific heat for the
Lennard-Jones representation of Ne13 . The quantum curve is obtained by
extrapolation from data like those presented in Fig. 4. The error bars on the
quantum curve represent the errors obtained from the least-squares fit. The
classical error bars are smaller than the plotted points.
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