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ABSTRACT

A uniform hypergraph is properly k-colorable if each vertex is colored by

one of k colors and no edge is completely colored by one color. In 2008 Hillar

and Windfeldt gave a complete characterization of the k-colorability of graphs

through algebraic methods. We generalize their work and give a complete algebraic

characterization of the k-colorability of r−uniform hypergraphs. In addition to

general k colorability, we provide an alternate characterization for 2-colorability

and apply this to some constructions of hypergraphs that are minimally non-2-

colorable.

We also provide examples and verification of minimality for non-2-colorable

5- and 6-uniform hypergraphs. As a further application, we give a characterization

for a uniform hypergraph to be conflict-free colorable.

Finally, we provide an improvement on the construction introduced by Abbott

and Hanson in 1969, and improved upon by Seymour in 1974.
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CHAPTER 1

Introduction

1.1 Introduction

Many problems in combinatorics have elegant algebraic characterizations and

many useful tools in combinatorics are based on algebraic methods. Such tools

include the graph polynomial, the Combinatorial Nullstellensatz, and the Stanley-

Reisner ideal. These tools allow alternative methods for analyzing combinatorial

properties of graphs and hypergraphs by encoding them into polynomial ideals and

algebraic varieties. The focus of this thesis is the use of tools from commutative

algebra, namely Gröbner bases and radical ideals, to provide a complete algebraic

characterization for general colorability of uniform hypergraphs. We also provide

computationally supported bounds on specific types of hypergraph colorings. This

thesis uses results from commutative algebra, algebraic geometry, enumerative

combinatorics, and graph theory. We utilize ideas and tools including: polynomial

ideals over algebraically closed fields, zero-dimensional algebraic varieties, Gröbner

bases, integer partitions, and Hilbert’s Nullstellensatz.

Definition 1.1. Let r ≥ 2 be a positive integer. An r-uniform hypergraph, H =

(V (H), E(H)), is a set of vertices V (H), along with a collection of non-empty

subsets of vertices each with cardinality r, called edges, E(H).

Traditional Graph Theory is the study of 2-uniform hypergraphs. Although

some techniques and applications developed in graph theory have been generalized

to hypergraphs many of the techniques and theorems do not directly generalize.

Hypergraph Theory is an active area in combinatorics, both in direct research, and

in application to other areas of mathematics. One of the most thoroughly studied

area of graph theory is that of graph colorings. Thus it is natural to generalize the
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idea of a graph coloring to that of a hypergraph coloring.

Definition 1.2. Let k be a positive integer and let H be a uniform hypergraph. A

proper k−coloring of a hypergraph H is a map, c, from the vertex set of H to a

set of k colors, C:

c : V (H)→ C, |C| = k,

where each vertex is assigned exactly one color, and no edge is colored completely

by a single color.

There are many applications of hypergraph colorings in diverse areas such as

Computer Science, Statistical Physics, and Mathematical Chemistry. It is known

that deciding whether an r-uniform hypergraph is k-colorable is NP-hard unless

r = 2 and k = 2 [1] [2].

We show that the k-colorability of an r-uniform hypergraph can be stud-

ied via an ideal of a polynomial ring which will be called the colorability ideal.

The encoding of the colorability of a hypergraph is done through several differ-

ent sets of polynomials which will be defined below. Using well known theorems

and properties from commutative algebra and algebraic geometry, we show that

the colorability ideal of a hypergraph can be decomposed into individual coloring

ideals which allow one to test if any given hypergraph is colorable by any desired

color scheme.

Colorability of graphs has a rich and extensive history and includes many

different techniques. Studying colorability through algebraic methods has been

addressed by several authors, including: Bayer, Alon, Tarsi, Lovász, de Loera,

Hillar, and Windfeldt (cf. [3] [4] [5] [6] [7] [8] [9] [10]).

An interesting question concerning uniform hypergraph colorings is: “What

is the smallest number of edges allowed by a non-k-colorable hypergraph?” In the

case of k = 2 this is known as Property B, and was introduced by F. Bernstein
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in [11] and studied by E. W. Miller in [12]. P. Erdős and A. Hajnal later defined

m(r) to be the minimum number of edges allowed in an r-uniform hypergraph

that is not 2-colorable [13]. Following Erdős and Hajnal, H. L. Abbott and D.

Hanson modified this notation to include the number of vertices in the hypergraph,

n, so mn(r) is the least number of edges allowed by a non-2-colorable r-uniform

hypergraph on n vertices. As it turns out, determining these values is not an easy

task and so far only m(3) = m7(3) = 7 and m(4) are known to be tight. In 1969

Abbott and Hanson gave bounds for mn(r) with recursive type inequalities in r

and n. In 1974 P.D. Seymour improved upon one of these bounds and designed

a hypergraph that shows m(4) = m11(4) ≤ 23 [14]. Recently it has been shown

by P. Östergard that m(4) = m11(4) = 23 proving that Seymour’s construction is

optimal [15].

We will show that a generalization of Abbott and Hanson’s construction yields

minimally non-2-colorable hypergraphs. In addition, we will provide some compu-

tational examples for upper bounds for mn(r), when r = 5, 6.

1.2 Algebraic Tools in Graph Theory

Using algebraic techniques to characterize graph theoretic properties dates

back to the late 1800’s when Hilbert began studying certain classes of homogeneous

polynomials which turned out to be what is known as the graph polynomial.

Definition 1.3. Let G = (V,E) be a graph on V = {1, . . . , n} and define the

graph polynomial, PG to be:

PG =
∏

(xi − xj) : i and j are adjacent and i < j.

The Handbook of Combinatorics contains some excellent surveys on the uses

and consequences of the graph polynomial [16].

The techniques we use to address coloring problems are part of a relatively
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new approach to graph theory and combinatorics. With the development of more

powerful computers and more efficient algorithms, it has become possible to ad-

dress combinatorial problems through these algebraic means. In 1982 D. Bayer

introduced a method of determining the 3-colorability of a graph by examining

systems of polynomials and applying the division algorithm [3]. Ten years later,

the work of N. Alon and M. Tarsi used polynomials to prove several conjectures

about the chromatic number of a graph [5]. Also, they gave equivalent conditions

for a graph to be not k-colorable; we will generalize this notion to uniform hyper-

graphs. In 1994 L. Lovász used polynomial ideals to characterize stable sets in

graphs [6].

Later, J. de Loera and C. Hillar et al. produced results concerning the alge-

braic characterization of a graph’s colorability [7] [10]. The main tools de Loera

and Hillar use in their algebraic characterizations for the colorability of a graph

are polynomial ideals and Gröbner bases. Gröbner bases were introduced by B.

Buchberger in 1965 and have since become widely used in the study of polynomial

ideals [17]. This thesis will generalize the above results to uniform hypergraphs,

and will also utilize Gröbner bases.

The algebraic techniques developed by de Loera and Hillar et al. extended here

give not only theoretical results, but also provide algorithms for solving specific

problems. The process for determining the k-colorability of a hypergraph can be

adjusted to detect specified color patterns required by an application. In particular,

a coloring pattern known as a conflict-free coloring is addressed for k-colorings.

Conflict-free colorings were introduced in connection to work on applications to

cellular networks [18] [19].

It is worth noting another line of research utilizing polynomial ideals. Many

authors have utilized the rich interplay between hypergraphs and certain monomial
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ideals to gain insight on the structure of these ideals.

Definition 1.4. The edge ideal, IE, of a hypergraph H = (V (H), E(H)) is defined

to be:

IE =

〈∏
xi∈e

xi : e = (e1, . . . , er) ∈ E(H)

〉
.

This ideal was first introduced by Villarreal [20]. By studying the associ-

ated hypergraph, many interesting results about the structure of the ideal can be

achieved. This ideal has other names including the face ideal, or the facet ideal,

and is also the Stanley-Reisner ideal of the appropriate simplicial complex. These

ideals are not exclusive to hypergraphs; in [21] S. Jacques used tools from graph

theory to study these monomial ideals.

1.3 Results

In this thesis we introduce algebraic characterizations of several different types

of colorings for a uniform hypergraph H. The main result of this thesis is a

generalization of a result by Hillar and Windfeldt [10].

Let the ideals Jn,k, In,k, and IG,k be defined as in [10], where Kn denotes the

complete graph on n vertices, that is:

Jn,k = 〈PG : G = Kk+1 ∪ {a set of isolated vertices in [n]}〉.

In,k = 〈xki − 1 : i ∈ [n]〉.

IG,k = In,k +
〈
xk−1i + xk−2i xj + · · ·+ xix

k−2
j + xk−1j : {i, j} ∈ E(G)

〉
.

Theorem 1.1 (Theorem 1.1, [10]). The following statements are equivalent:

(1) The graph G is not k-colorable.

(2) dimCR/IG,k = 0 as a vector space.

(3) The constant polynomial 1 belongs to the ideal IG,k.
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(4) The graph polynomial PG belongs to the ideal In,k.

(5) The graph polynomial PG belongs to the ideal Jn,k.

We give a theorem that generalizes parts 1 through 4 of the above theorem to

r-uniform hypergraphs. For 2-colorings we prove the following.

Theorem 1.2. Let H be a uniform hypergraph. Let R = C[x1, . . . , xn]. Let I2(H)

be the 2-colorability ideal of H and let PH,2 be the 2-color hypergraph polynomial

for H. Then following are equivalent:

(1) The hypergraph H is not 2-colorable.

(2) The constant 1 is an element of the ideal I2(H).

(3) dimCR/I2(H) = 0 as a vector space.

(4) The hypergraph polynomial PH,2 belongs to the ideal

〈
x2i − 1 : i ∈ V (H)

〉
.

These equivalent statements rely on an ideal which completely captures the

2-colorability of the hypergraph H

Theorem 1.3. The polynomials in the ideal I2(H) have a common solution if and

only if H is properly 2-colorable. We call this ideal the 2-colorability ideal of H.

Both the 2-colorability ideal and the 2-color hypergraph polynomial will be

examined further in Chapter 3. Moreover, in Chapter 4 we completely generalize

Theorem 1.1 for uniform hypergraphs with the following theorem.

Theorem 1.4. Let r, k ≥ 2 be positive integers. LetH be an r-uniform hypergraph.

Let R = C[x1, . . . , xn]. Let I(H, k) be the k-colorability ideal for H and let PH,k be

the k-color hypergraph polynomial for H. Then following are equivalent:
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(1) The hypergraph H is not k-colorable.

(2) The constant 1 is an element of the ideal I(H, k).

(3) dimCR/I(H, k) = 0 as a vector space.

(4) The hypergraph polynomial PH,k belongs to the ideal Ck.

As with the 2-colorable case, Theorem 1.4 depends on the following ideal

which we explore in Chapter 4 along with the k-color hypergraph polynomial.

Theorem 1.5. The polynomials in the ideal I(H, k) have a common solution if

and only if H is properly k-colorable. We call this ideal the k-colorability ideal of

H.

We note that Theorems 1.4 and 1.5 generalize Theorems 1.2 and 1.3. The

polynomials that define I2(H) and I(H, k) are quite different and deserve indepen-

dent study.

In Chapter 5 we collect several computational results for uniform hypergraphs

that follow from the theorems above. We show that the construction introduced

by Abbott and Hanson and improved upon by Seymour for 4-uniform hypergraph

can be generalized [22], [14]. We then use Theorem 1.3 to provide upper bounds

for mn(5) and mn(6). Finally we apply our results to Stable Kneser hypergraphs

and extend a conjecture by Alon, Drewnowski and  Luczak [23].
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CHAPTER 2

Background

In this chapter we provide some additional basic definitions and develop the

algebraic machinery required for the proofs in Chapters 3 and 4. Many of the

definitions given here are common in combinatorics, commutative algebra, and

algebraic geometry. In particular, the results given in Section 2.2 are a collection

of well known facts from commutative algebra and algebraic geometry that are

vital to the results in later chapters.

2.1 Graph theory and combinatorics

First we introduce some tools and important definitions from combinatorics.

The main tool we will need will be integer partitions. We will work with r-uniform

hypergraphs on finite vertex sets. We start with an important example.

Example 2.1. The Fano plane is the 3-uniform hypergraph, FP = (V,E), where,

V = {1, 2, 3, 4, 5, 6, 7}

and

E = {{1, 2, 5}, {1, 3, 7}, {1, 4, 6}, {2, 3, 6}, {3, 4, 5}, {2, 4, 7}, {5, 6, 7}}.

Here, each edge is comprised of exactly three distinct vertices from the vertex set.

So, FP is a 3-uniform hypergraph on 7 vertices with 7 edges.

Recall that a coloring of a hypergraph is considered proper if no edge in

the hypergraph is completely colored by a single color. This definition is the

natural extension from proper colorings of graphs. The smallest number of colors

required in a proper coloring of H is called the chromatic number, χ(H). We

call a hypergraph, H, critical if deleting any edge from H decreases its chromatic

number.
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Example 2.2. Let c1 : V (H)→ {1,−1} be a 2-coloring of the hypergraph:

V (H) = {1, 2, 3, 4, 5, 6, 7, 8, 9}

E(H) =
{
{1, 3, 5, 9}, {2, 4, 7, 8}

{1, 2, 6, 7}, {2, 3, 8, 9}

{1, 4, 5, 8}
}

given by:

i 1 2 3 4 5 6 7 8 9
c1(i) 1 1 1 1 -1 -1 -1 -1 -1

Since no edge is completely colored by a single color, c1 is a proper 2-coloring

of H. However, if we impose further restrictions on a coloring we have a coloring

which has some useful applications.

Definition 2.1. A proper coloring of H is called a conflict-free coloring if each

edge in H contains a vertex whose color is not repeated on any other vertex in the

edge.

Example 2.3. Let c2 : V (H) → {1,−1} be a 2-coloring of the hypergraph given

in Example 2, H given by:

i 1 2 3 4 5 6 7 8 9
c2(i) 1 1 -1 -1 -1 1 -1 -1 -1

c2 is a conflict-free 2-coloring of H.

The smallest number of colors required in a conflict-free coloring is called the

conflict-free chromatic number of H, χCF(H). The conflict-free chromatic number

was introduced by G. Even et al. [1] in 2003. In Chapter 3 we will give an

algorithm for finding conflict free 2-colorings of r-uniform hypergraphs. We will

examine conflict free colorings of the Fano plane explicitly in Chapter 5.

To introduce the generators of the colorability ideals I2(H) and I(H, k) we

use partitions of integers.
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Definition 2.2. A k-partition of a positive integer, n, is a k-length sequence of

not necessarily distinct positive integers, called parts, that sum to n;

(x1, x2, . . . , xk), such that,
k∑
j=1

xj = n.

For our needs, the order of the parts of any particular partition is not im-

portant. Furthermore, we wish to add some additional criteria to our partitions.

This definition is borrowed from integer compositions, which are similar to integer

partitions.

Definition 2.3. A weak k-partition of a positive integer, n, is a k-length sequence

of not necessarily distinct non-negative integers, again called parts, that sum to n;

(y1, y2, . . . , yk), such that,
k∑
j=1

yj = n.

For example, (1, 1, 2, 3, 5) is a 5-partition of 12 and (0, 0, 1, 2, 2, 4, 10) is a weak

7-partition of 19. Furthermore, we define a proper k-partition of n to be a weak

k-partition of n which only involves integers less than n.

2.2 Polynomial Algebra

We will be associating each hypergraph to an ideal in a polynomial ring,

since we only consider hypergraphs with finite vertex sets, we need only consider

polynomial rings with a finite number of indeterminates.

For any field K and any associated polynomial ring K[x1, ..., xn], Hilbert’s

Basis Theorem states that any ideal of K or K[x1, ..., xn] will be finitely generated

since K and K[x1, ..., xn] are finitely generated. Throughout this thesis we will be

working over the field of complex numbers since it is algebraically closed and we

let R = C[x1, . . . , xn].
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2.2.1 Gröbner bases

The generalizations that we prove in this thesis require the use of a powerful

tool from commutative algebra provided by B. Buchberger in [2]. The theory

of Gröbner bases has become a critical part of algebraic geometry, commutative

algebra, and computational and algorithmic algebra, among others. In short, a

Gröbner basis is unique set of generators for an ideal.

We begin by setting an ordering on the monomials in the ring R.

Definition 2.4. A monomial ordering is a well ordering, <, on the set of mono-

mials that satisfies mm1 < mm2 whenever m1 < m2 for monomials m,m1,m2.

Equivalently, a monomial ordering may be specified by defining a well ordering on

the n-tuples α = (a1, ..., an) ∈ Zn of multidegrees of monomials Axa11 · · ·xann that

satisfies α + γ < β + γ if α < β.

With an ordering established of the ring R the leading term for any polynomial

f ∈ R can be distinguished.

Definition 2.5. The leading term of f , LT (f), is the monomial that is largest with

respect to the monomial ordering <. Similarly, the leading monomial of f ∈ R,

LM(f) is the leading term of f with monic coefficient.

Definition 2.6. The multidegree of f , denoted ∂(f), to be the multidegree of the

leading term of f .

Leading terms and monomials are crucial to understanding many properties

of an ideal I, its relationship with R and with any polynomial in R. The ideal

generated by the leading terms of I play a major role in the structure of I.

Definition 2.7. If I is an ideal in C[x1, ..., xn], the ideal of leading terms, denoted

LT (I), is the ideal generated by the leading terms of all the elements in the ideal,
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i.e.,

LT (I) = 〈LT (f) | f ∈ I〉 .

It is also important to examine those monomials that are not the leading term

of any polynomial in an ideal I.

Definition 2.8. Any monomial which is not a leading term of any polynomial

in an ideal I is called a standard monomial and the set of all such monomials is

denoted B<(I).

In order to utilize these important ideals, we must have a way to generate

them. Thus we have the following important definition.

Definition 2.9. A Gröbner basis for I is a finite set of generators,

{g1, ..., gm}

for I whose leading terms generate the ideal of all leading terms in I, i.e.,

I = 〈g1, ..., gm〉 and LT (I) = 〈LT (g1), ..., LT (gm)〉.

Once a monomial ordering has been established on a polynomial ring, we can

preform general polynomial division of a polynomial f by a set of polynomials

{g1, ..., gm}. If there is a remainder r after division we write

f ≡ r mod {g1, ..., gm}.

We introduce some notation from [3]. Let f1, f2 be polynomials in C[x1, ..., xn] and

let M be the monic least common multiple of the monomial terms LT (f1) and

LT (f2). Then define the difference polynomial, S(f1, f2) to be:

S(f1, f2) =
M

LT (f1)
f1 −

M

LT (f2)
f2.

This notation allows us to introduce a condition for a set of generators of a poly-

nomial ideal to be a Gröbner basis for that ideal.
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Proposition 2.1 (Buchburger’s Criterion, p 324, [3]). Let R = C[x1, . . . , xn] and

fix a monomial ordering on R. If I = (g1, ..., gm) is a non-zero ideal in R, then

G = {g1, ..., gm} is a Gröbner basis for I if and only if S(gi, gj) ≡ 0 mod G for

1 ≤ i < j ≤ m.

This criterion is the primary component in an algorithm used to create a

Gröbner basis for any ideal. Buchberger’s Algorithm (pp 324-325 [3]) uses the

criterion in the following way. Given a set of generators {g1, ..., gm} of an ideal I,

if Buchburger’s Criterion is satisfied, then {g1, ..., gm} is a Gröbner basis. If not,

then at least one S(gi, gj) has a remainder r 6= 0. Set gm+1 = r and add gm+1

to {g1, ..., gm} creating {g1, ..., gm, gm+1}. Repeat the process of checking Buch-

burger’s Criterion on this new set of generators of I. After a finite number itera-

tions, this process will terminate and the set of generators G = {g1, ..., gm, ..., gm+n}

will satisfy Buchburger’s Criterion and thus be a Gröbner basis for I.

Although Gröbner bases in general are not unique for an ideal, if a stronger

condition is placed on the Gröbner basis, uniqueness is attained.

Definition 2.10. Fix a monomial ordering on R = C[x1, ...xn]. A Gröbner basis

{g1, ..., gm} for the non-zero ideal I in R is called a reduced Gröbner basis if

(a) each gi has a monic leading term, i.e., LT (gi) is monic for i = 1, ...,m, and

(b) no term in gj is divisible by LT (gi) for j 6= i.

As stated above, reduced Gröbner bases are unique.

Theorem 2.2 (Theorem 27, p326, [3]). Fix a monomial ordering on R =

C[x1, . . . , xn]. Then there is a unique reduced Gröbner basis for every non-zero

ideal I in R.

Among many other uses, this gives us a tool for comparing ideals in a poly-

nomial ring, and determining ideal membership.
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Corollary 2.3 (Corollary 28, p326, [3]). Let I and J be two ideals in C[x1, ...xn].

Then I = J if and only if I and J have the same reduced Gröbner basis with respect

to any fixed monomial ordering on C[x1, ...xn].

Gröbner bases and leading term ideals give a method for examining the vector

space properties of quotient rings that are also C-algebras. This allows us to give

bounds on the number of generators of a C-algebra, which in turn can give us infor-

mation on the number of common solutions to a polynomial ideal. The following

two theorems give the connection between the quotient ring of a polynomial ideal

and its corresponding C-algebra.

Theorem 2.4 (Proposition 1, p227, [4]). Fix a monomial ordering, <, on R =

C[x1, . . . , xn] and let I be an ideal of R. Let 〈LT (I)〉 denote the ideal generated by

the leading terms of I.

(i) Every f ∈ R is congruent modulo I to a unique polynomial r which is a

C-linear combination of the monomials in the complement of 〈LT (I)〉.

(ii) The elements of {xα : xα 6∈ 〈LT (I)〉} are “linearly independent modulo I.”

That is, if ∑
α

cαx
α ≡ 0 mod I,

where the xα appearing are all in the complement of 〈LT (I)〉, then cα = 0

for all α.

Theorem 2.5 (Proposition 4, p229, [4]). Let I ⊂ C[x1, . . . xn] be an ideal. Then

C[x1, . . . xn]/I is isomorphic as a C-vector space to S = span{xα 6∈ 〈LT (I)〉}.

2.2.2 Square-free, radical ideals

In what follows we collect several results from algebraic geometry and com-

mutative algebra. To this point these results have not been assembled in a single
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work. The use of radical, square-free generated ideals greatly simplifies the com-

putations involved with determining the variety of the ideal in question. Since our

main goal is to determine which ideals give rise to desired varieties, i.e. the variety

that contains all possible proper colorings of a hypergraph, we feel this section is

crucial to the results of this thesis. The majority of the results in this section come

from [4] and [5], we reproduce serveral proofs for completeness only.

Let I be an ideal of the polynomial ring R = C[x1, . . . , xn].

Definition 2.11. The radical of I, denoted
√
I, is the set:

√
I = {f ∈ R : fm ∈ I, for some m ∈ Z+, }

moreover, the ideal I is radical if I =
√
I.

Working with the radical of an ideal, or a radical ideal greatly simplifies com-

putation and gives a more complete description of the structure of the ideal. It

also simplifies the geometric structure associated with the ideal.

Definition 2.12. The subset of Cn consisting of all of the solutions common to

each polynomial in I is the variety of I, denoted V(I). Conversely, given a subset

V ⊆ Cn, the vanishing ideal is the set of all polynomials that vanish at every point

in V , and is denoted: I(V ). The two maps V and I are related by:

V(I(V )) = V, and I(V(I)) =
√
I,

and are also inclusion-reversing.

The second equality above is known as The Strong Nullstellensatz, a proof is

given below. Algebraic varieties are a main focus in algebraic geometry and can

be quite complicated, fortunately the varieties that are associated with the ideals

used to encode the colorability of a hypergraph are rather simple.
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Definition 2.13. The ideal I is called zero-dimensional (as an ideal) if its variety

V(I) contains only a finite number of points.

Conditions given for an ideal to be zero-dimensional are given in The Finite-

ness Theorem below. Working with zero-dimensional ideals of polynomial rings

with coefficients coming from algebraically closed fields allows us to compare two

ideals through their varieties.

The following theorem is the primary tool used to decide if the polynomials

in an ideal have a common solution. It has been used extensively by De Loera,

Hillar, Windfeldt and others [6], [7], [8], [9].

Theorem 2.6 (Weak Nullstellensatz). If k is an algebraically closed field and I is

an ideal in k[x1, . . . xn] satisfying V(I) = ∅. Then I = k[x1, . . . xn].

The contrapositive of this theorem states that if I is a proper ideal of R =

C[x1, . . . , xn], then V(I) 6= ∅. Moreover since a Gröbner basis is a set of generators

for an ideal, to see if there are common solutions to the polynomials in an ideal

we need only check to see if a Gröbner basis is equal to 1 or not.

Theorem 2.7 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. If

f, f1, . . . , fs ∈ k[x1, . . . , xn]

are such that

f ∈ I(V(f1, . . . , fs)),

then there exists and integer m ≥ 1 such that

fm ∈ 〈f1, . . . , fs〉 .

Theorem 2.8 (Strong Nullstellensatz). If k is an algebraically closed field and I

is an ideal in k[x1, . . . xn], then

I(V(I)) =
√
I.
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Theorem 2.9 (Finiteness Theorem). Let I be an ideal of R = C[x1, . . . , xn].

The following are equivalent:

1. The algebra A = C[x1, . . . , xn]/I is finite dimensional over C.

2. The variety V(I) ⊂ Cn is a finite set.

3. If G is a Gröbner basis for I, then for each i, 1 ≤ i ≤ n, there is an mi ≥ 0

such that xmi = LT (g) for some g ∈ G.

Recall that such an ideal is called a zero-dimensional ideal.

Corollary 2.10. I is zero-dimensional if and only if there is a non-zero polynomial

in I ∩ C[xi] for each i = 1, . . . , n.

Proof: Suppose I is zero-dimensional. Let G be a reduced Gröbner basis for any

lexicographic ordering with xi as the smallest variable. By part 3. of the Finiteness

Theorem, there is some g ∈ G with LT (g) = xmi
i . This implies that g ∈ C[xi]

since the ordering on I is lexicographic. So g is the non-zero polynomial required,

moreover g generates the ideal I ∩ C[xi]. Note that G being a reduced Gröbner

basis and the chosen ordering being lexicographic give us that 〈g〉 = I ∩ C[xi].

This is known as The Elimination Theorem, (theorem 3, pp 115 [4]).

Conversely, suppose I ∩ C[xi] is non-zero for each i, and let mi be the degree

of the unique monic generator of I ∩ C[xi]. Then xi ∈ 〈LT (I)〉 for any monomial

order, so that all monomials not in 〈LT (I)〉 will contain xi to a power strictly

less than mi. Hence the set of monomials xα 6∈ 〈LT (I)〉 is finite, and thus A is

finite.

Definition 2.14. The square-free part of a polynomial p ∈ C[x1, . . . , xn], is de-

noted pred and has exactly the same roots as p, but all with multiplicity 1.

Claim 2.11. If pred is the square-free part of p ∈ C[x], then
√
〈p〉 = 〈pred〉.
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Proof: Note that by the Strong Nullstellensatz and the definition of the square-

free part of p, pred, we have:

V(〈p〉) = V(〈pred〉)⇒ I(V(〈p〉)) = I(V(〈pred〉))⇒
√
pred =

√
p.

So, if
√
〈pred〉 = 〈pred〉, we are done.

The inclusion
√
〈pred〉 ⊇ 〈pred〉 follows from the definition of the radical of an ideal.

Let

pred =
k∏
i=1

(x− ai)

and suppose f ∈
√
〈pred〉. Then f must be of the form

f = h

k∏
i=1

(x− ai)βi

where βi ≥ 1 and h ∈ C[x]. Then there exists some h′ ∈ C[x] such that

f = h
k∏
i=1

(x− ai)βi = h′
k∏
i=1

(x− ai), namely, h′ = h
k′∏
j=1

(x− aj)βj−1,

where the set {j = 1, . . . , k′} ⊆ {i = 1, . . . , k} is such that βj > 1.

Thus f ∈ 〈pred〉.

For any ideal I ⊂ C[x1, . . . , xn] and any i, I∩C[xi] is a principle ideal domain,

and thus contains a unique monic generator. Combining this with Claim 7 we have

that if pi is the unique monic generator of I ∩ C[xi], and pi,red is the square-free

part of pi then √
I ∩ C[xi] = 〈pi,red〉.

The following technical lemmas illustrate the relationship between square-free

polynomial generators their ideals.

Lemma 2.12. Let I be an ideal of R = C[x1], and let p = (x1−a1)(x1−a2) · · · (x1−

ad), where the aj are distinct. Then

I + 〈p〉 =
⋂
j

(I + 〈x1 − aj〉).
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Proof: First we show

I + 〈p〉 ⊂
⋂
j

(I + 〈x1 − aj〉).

Let f ∈ I + 〈p〉, then

f = g + hp

for some g ∈ I and h ∈ C[x1]. Since p vanishes at each aj we have that

f = g + hp ∈ I + 〈x1 − aj〉 ∀ j,

thus f ∈
⋂
j(I + 〈x1 − aj〉).

For the opposite inclusion, consider the following polynomials:

pj =
∏
i 6=j

(x1 − aj).

Note that the collection of polynomials {p1, . . . , pn} do not have any common zeros,

hence by the Weak Nullstellensatz, there exist polynomials hj such that

n∑
j=1

hjpj = 1.

Also, we show that

pj(I + 〈x1 − aj〉) ⊂ I + 〈p〉 .

Let f ∈ pj(I + 〈x1 − aj〉), then

f = f ′pj(g + h(x1 − aj)), for g ∈ I, and f ′, h ∈ C[x1].

Since pj(x1 − aj) = p we have:

f = f ′pj(g + h(x1 − aj)) = f ′pjg + hp ∈ I + 〈p〉 .

To show the inclusion ⋂
j

(I + 〈x1 − aj〉) ⊂ I + 〈p〉 ,
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let f ∈ ∩j(I + 〈x1 − aj〉), then

f = gj + fj(x1 − aj),

where gj ∈ I and fj ∈ C[x1] for all j. Recall that there exist hj ∈ C such that

n∑
j=1

hjpj = 1⇒
n∑
j=1

hjpjf = f.

Thus,

f =
n∑
j=1

hjpjf

=
n∑
j=1

hjpj(gj + fj(x1 − aj)

=
n∑
j=1

hjpjgj + hjpjfj(x1 − aj)

=
n∑
j=1

hjpjgj + hjfjp.

Since gj ∈ I, and hjfjp ∈ 〈p〉 for all j, we have that f ∈ I + 〈p〉, hence

I + 〈p〉 =
⋂
j

(I + 〈x1 − aj〉).

Lemma 2.13. Let I be a zero-dimensional ideal of R = C[x1, . . . , xn]. For each

i = 1, . . . , n, let pi be the unique monic generator of I ∩ C[xi], and let pi,red be the

square-free part of pi. Then

√
I = I + 〈p1,red, . . . , pn,red〉.

Proof: Let J = I + 〈p1,red, . . . , pn,red〉. For each i, since C is closed, we can factor

pi,red into distinct factors:

pi,red = (xi − ai1)(xi − ai2) · · · (xi − aidi).
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Thus,

J = J + 〈p1,red〉 =
⋂
j

(J + 〈x1 − a1j〉) ,

where the first holds since p1,red ∈ J and the second holds by Lemma 2.12 since

p1,red has distinct roots. Repeating this argument for i = 2, . . . , n we have

J =
⋂

j1,...,jn

(J + 〈x1 − a1j1 , . . . , xn − anjn〉) .

Since M = 〈x1 − a1j1 , . . . , xn − anjn〉 is a maximal ideal, J +M is either M or the

entire ring R. It follows that J is a finite intersection of maximal ideals. Since a

maximal ideal is radical and an intersection of radical ideals is radical, J is radical.

It remains to see that J =
√
I. The inclusion I ⊂ J is by definition of J , and

the inclusion J ⊂
√
I follows from the Strong Nullstellensatz, since the square-free

parts of the pi vanish at all the points of V(I). Hence

I ⊂ J ⊂
√
I,

and taking radicals gives

√
I ⊂
√
J ⊂

√√
I =
√
I.

so
√
I =
√
J and since J is radical,

J =
√
I.

Lemma 2.14. Let I be a zero-dimensional ideal in R = C[x1, . . . , xn], and let

A = R/I. Then dimC(A) is greater than or equal to the number of points in V(I).

Moreover, equality occurs if and only if I is a radical ideal.

Proof: Let I be a zero-dimensional ideal. By the Finiteness Theorem, V(I) is a

finite set in Cn, say V(I) = {p1, . . . , pm}. Consider the mapping

φ : A→ Cm, [f ]→ (f(p1), . . . , f(pm)),
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which is well defined and linear. We show that φ is onto, and thus conclude that

dimC(A) ≥ m = |V(I)|.

For i = 1, . . . ,m, let gi be polynomials in R such that

gi(pj) =

{
0 if i 6= j
1 if i = j

.

Given an arbitrary (λ1, . . . , λm) ∈ Cm, let

f =
m∑
i=1

λigi

so that

φ([f ]) = (λ1, . . . , λm).

So φ is onto and hence dimC(A) ≥ m = |V(I)|.

Next, suppose that I is radical. If [f ] ∈ ker(φ), then f(pi) = 0 for all i, so

that by the Strong Nullstellensatz, f ∈ I(V(I)) =
√
I = I. Thus [f ] = [0], which

shows that φ is injective as well as onto. So φ is an isomorphism, which shows that

dimC(A) = m if I is radical.

Conversely, if dimC(A) = m, then φ is an isomorphism since it is an onto

linear map between vector spaces of the same dimension. Hence φ is injective.

Since I ⊂
√
I always, it suffices to show

f ∈
√
I = I(V(I))⇒ f ∈ I.

If f ∈
√
I, then

f(pi) = 0 ∀ i, ⇒ φ([f ]) = (0, . . . , 0).

Since φ is injective, we have that [f ] = [0], so f ∈ I.

The following is a statement of a lemma of Hillar and Windfeldt. We include

it here and give a proof as it is crucial for many theorems in following sections.
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Lemma 2.15 (Lemma 2.1, [9]). Let I be a zero-dimensional ideal and fix a mono-

mial ordering <. Then,

dimCR/I = |B<(I)| ≥ |V(I)| (as a vector space).

Moreover, the following are equivalent:

1. I is a radical.

2. I contains a univariate square-free polynomial in each indeterminate.

3. |B<(I)| = |V(I)|.

Proof: The dimension condition follows from Theorem 2.14 and the fact that the

standard monomials B<(I) form a basis for the algebra R/I.

Furthermore, for each i = 1, . . . , n, let pi be the unique monic generator of

I ∩ C[xi], and let pi,red be the square-free part of pi.

1. ⇒ 2. If I is radical then I =
√
I = I + 〈p1,red, . . . , pn,red〉 by Proposition 2.13,

so I contains a univariate square-free polynomial in the each indeterminate.

2. ⇒ 1. By Proposition 2.13 and the fact that the univariate square-free

polynomials in each indeterminate can be taken to be the square-free part of

the unique monic generators of I ∩ C[xi]. That is pi,red ∈ I for all i, so
√
I = I + 〈p1,red, . . . , pn,red〉 = I.

1. ⇔ 3. by Theorem 2.14.

Once we can switch between a zero-dimensional radical square-free ideal and

its corresponding variety, we use the ideal quotient to compute the difference of

two varieties. We conclude this section with some useful results from commutative

algebra and algebraic geometry. Radical ideals and their varieties behave nicely

under certain operations.

25



Theorem 2.16 (Section 8, Chapter 4 and Proposition 16 p 188, [4]). Let I and J

be ideals of R. If I and J are radical, then there is a one-to-one correspondence

given by I and V such that:

IJ ←→ V(I) ∪ V(J)

I ∩ J ←→ V(I) ∪ V(J)

I + J ←→ V(I) ∩ V(J).

Moreover,
√
I ∩ J =

√
I ∩
√
J.

Definition 2.15. The ideal quotient (or colon ideal) of the ideals I and J of R is

the ideal:

I : J = {f ∈ R : fg ∈ I, ∀ g ∈ J}.

Ideal quotients have a nice property when restricted to ideals of polynomial

rings over algebraically closed fields.

Proposition 2.17. Given two varieties V,W ⊂ Cn, then

I(V ) : I(W ) = I(V \W ).

We include one final theorem concerning the structure of the variety of a

radical ideal.

Theorem 2.18 (Corollary 2.6, p 143 [5]). Let I be a zero dimensional ideal of the

ring R = C[x1, . . . , xn]. Then I is radical if and only if each point in V(I) has

multiplicity 1.
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CHAPTER 3

2-Colorability

3.1 2-Colorability Results

The approach to the colorability problems we use involves translating proper-

ties of a combinatorial object, i.e. a hypergraph, into the language of commutative

algebra, namely into ideals and varieties of polynomial rings. To address the en-

coding in the 2-colorability case, we will define a system of polynomials that will

capture the colorability of the hypergraph H. In addition we will provide polyno-

mials that capture individual coloring schemes, and show how they relate to the

overall colorability of the hypergraph. Here we collect all of the results concerning

2-coloring in this chapter, we provide proofs in Section 3.2.

For 2-colorings, we partially extend Theorem 1.1 to r-uniform hypergraphs.

We define a 2-coloring as a map c : V (H)→ {−1, 1}, and note that this formulation

is equivalent to the definition above. We introduce some notation that will allow

us to define our polynomials and ideals.

Let H be an r-uniform hypergraph on the vertex set V (H) = [n], with m =

|E(H)| edges. For each edge, e let:

e = (xe,1, xe,2, . . . , xe,r),

where (e, j) represents a vertex that belongs to e. Let par(r, 2) be the set of all

proper 2-integer partitions of r and let p(r, 2) = |par(r, 2)|. Let d(r, 2) be the set

of all differences of proper 2-integer partitions of r, that is:

if {r1, r2} ∈ par(r, 2), r1 ≥ r2, then r1 − r2 ∈ d(r, 2).

We can then define the fe polynomials:
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fe = (c1xe,1 + xe,2, · · ·+ xe,r) · · · (xe,1 + xe,2, · · ·+ c1xe,r)·

(c2xe,1 + xe,2, · · ·+ xe,r) · · · (xe,1 + xe,2, · · ·+ c2xe,r) · · ·

(cp(r,2)xe,1 + xe,2, · · ·+ xe,r) · · · (xe,1 + xe,2, · · ·+ cp(r,2)xe,r)

where cj − 1 ∈ d(r, 2), 1 ≤ j ≤ p(r, 2).

These polynomials are crucial in the definition of the 2-colorability ideal for

H, I2(H):

I2(H) = 〈x2i − 1 : i ∈ V (H)〉+ 〈fe : e ∈ E(H)〉.

As the name implies, the ideal I2(H) is closely tied with the proper colorings of

H. The following theorem introduces the 2-colorability ideal for H

Theorem 3.1. The polynomials in the ideal I2(H) have a common solution if and

only if H is properly 2-colorable.

As an analogue to the commonly used graph polynomial, define the hypergraph

polynomial for 2-colorability, P2(H), by:

P2(H) =
m∏
j=1

∑
i∈ej

xi − r

∑
i∈ej

xi + r

 ,
where ej ⊂ [n], |ej| = r, is an edge inH. A similar generalization of the graph poly-

nomial was introduced in [1]. We state a theorem that captures the generalization

for 2-colorability here and postpone the proof to the next section.

Theorem 3.2. H is not properly 2-colorable if and only if P2(H) has a solution.

We can now state our main result for 2-coloring r-uniform hypergraphs. It is

a generalization of Hillar and Windfeldt’s Theorem 2.1 in [2].

Theorem 3.3. Let H be an r-uniform hypergraph on n vertices and let R =

C[x1, . . . , xn]. Let I2(H) be the 2-coloring ideal of H and let P2(H) be the 2-color

hypergraph polynomial for H. Then following are equivalent:
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(1) The hypergraph H is not 2-colorable.

(2) The constant 1 is an element of the ideal I2(H).

(3) dimCR/I2(H) = 0 as a vector space.

(4) The hypergraph polynomial P2(H) belongs to the ideal

〈
x2i − 1 : i ∈ V (H)

〉
.

Next, we give a decomposition of the possible proper 2-colorings into coloring

schemes, represented by coloring ideals. First we define a useful tool for distin-

guishing 2-colorings of a hypergraph. The edge signature of an edge e ∈ E(H),

a(e), is defined to be the sum of the values of the vertices in e:

a(e) =
r∑
i=1

xe,i.

A proper edge signature is an edge signature that appears in a proper coloring of

H. Note that because we are only concerned with 2-colorings and thus restrict

our colors to be represented by the second roots of unity, ±1, we have that our

(proper) edge signatures are uniquely determined. For an r-uniform hypergraph

there are r − 1 proper edge signatures and are found by examining the proper

2-integer partitions of r. These edge signatures allow us to characterize 2-colorings

of H.

Let A = {a1, a2, . . . , ar−1} be the set of proper edge signatures for the r-

uniform hypergraph H. Let U be a non-empty subset of A.

Definition 3.1. The 2-coloring scheme for the r-uniform hypergraph H given by

U is the set of all colorings of H with the edge signatures in U .

The 2-coloring scheme ideal, J2(U), is the ideal that encodes the colorability

30



of H by the edge signatures in U :

J2(U) = 〈x2i − 1 : i ∈ V (H)〉+

〈∏
a∈U

(
r∑
i=1

xe,i − a

)
: e ∈ E(H)

〉
.

These ideals play an important role in distinguishing one proper coloring pattern

from another.

Theorem 3.4. The polynomials in the ideal J2(U) have a common solution if and

only if the hypergraph H can be colored by the edge signatures in U .

These ideals also provide us with a complete characterization of the proper

2-colorings of H, as stated here in our main result.

Theorem 3.5. Let A = {a1, a2, . . . ar−1} represent the possible proper edge sig-

natures of H. Then the colorability ideal I2(H) is the intersection of all of the

coloring ideals J2(U):

I2(H) =
⋂
U⊆A
U 6=∅

J2(U).

3.2 2-Colorability Proofs

In this section we let A be the set of all proper edge signatures for a 2-coloring

of H. We first establish the ideal characterization of a proper 2-coloring of H by

proving that our fe polynomials encode proper edge coloring.

Lemma 3.6. The polynomial fe vanishes if and only if the edge e is properly

2-colored.

Proof: Let e ∈ E(H). Let c be a 2-coloring of H.

(⇐) Assume c is a proper 2-coloring of H. Then e has a proper edge signature, a,

where by definition:

r∑
i=1

xe,i = a, and a ∈ [−(r − 2), r − 2].
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Then we have that:

∃ j, 1 ≤ j ≤ p(r, 2) such that, cj − 1 = a.

Thus at least one of the factors,

(cjxe,1 + xe,2 + · · ·+ xe,r)(xe,1 + cjxe,2 + · · ·+ xe,r) · · · (xe,1 + xe,2 + · · ·+ cjxe,r)

of fe will be zero. Hence fe(c) = 0.

(⇒) Assume fe(c) = 0. Assume e is not properly colored. Then each factor in:

(cjxe,1 + xe,2 + · · ·+ xe,r)(xe,1 + cjxe,2 + · · ·+ xe,r) · · · (xe,1 + xe,2 + · · ·+ cjxe,r)

has sum either,

cj + r − 1 or − (cj + r − 1).

Since cj − 1 6= −r, no factor in fe can be zero, thus fe 6= 0, a contradiction. So H

is properly 2-colored by c.

With this fact we can characterize the 2-colorability of H in the ideal I2(H)

with Theorem 1.3.

Proof: (Theorem 1.3)

(⇒) Let c ∈ V (I2(H)), c = (c1, . . . , cn). Clearly the first n polynomials in I2(H)

give us that ci = ±1 for all i ∈ [n]. Hence, c is a 2-coloring of H. Also, since

fe(c) = 0 for every e ∈ E(H), we have that c must zero one or more factors of each

fe. Hence by Lemma 3.6, c must not color any edge with all 1’s or all -1’s.

(⇐) Let c = (c1, . . . , cn) be a proper 2-coloring of H. Then c does not color the

vertices of any edge e with either all 1’s or all -1’s. Thus, by Lemma 3.6, c will

zero every polynomial in I2(H).

Remark 1. A note on Theorem 1.3: in the r-even case, we need not cycle the cj

coefficient through r factors of fe when cj = r1 − r2 + 1 = 1 since all coefficients

32



will be 1. Thus, in the even case, fe will contain one factor of the form (xe,1 +

xe,2, · · · + xe,r) and the remaining (r − 1) factors where cj = 1 are omitted. This

does not change the variety V(I2(H)), however it does simplify some computations

within I2(H).

We now note how the hypergraph polynomial encodes a generalization of the

graph polynomial.

Proof: (Theorem 3.2)

We note that H is not properly 2-colored if and only if there exists an edge with

all vertices assigned the same color. This happens if and only if that edge has a

vertex sum equal to r times the value of a single color. Since our colors have been

restricted to ±1, the following are equivalent:

• H is not properly 2-colored.

• ∃ an edge in E(H) with vertices colored by all 1’s or all -1’s.

• ∃ an edge whose vertices sum to ±r.

So, given a 2-coloring of H with the colors ±1:

P2(H) = 0 iff ∃ j ∈ [m] such that

∑
i∈ej

xi − r

∑
i∈ej

xi + r

 = 0, (1)

iff either

∑
i∈ej

xi − r

 = 0 or

∑
i∈ej

xi + r

 = 0. (2)

Since xi = ±1, (2) happens iff ∃ ej ∈ E(H) that has vertices colored by either all

1’s or all -1’s, that is,

P2(H) = 0 iff H is not properly 2-colored.

The following lemmas and their proofs are analogues of Lemmas 3.1 and 3.4

in [2].
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Lemma 3.7. The varieties V (〈x2i − 1 : i ∈ V (H)〉), V (I2(H)), and V (〈x2i − 1 :

i ∈ V (H)〉 + 〈P2(H)〉) correspond to the sets of all 2 colorings of H, the proper

2-colorings of H, and the improper 2-colorings of H, respectfully.

Proof: Clearly, the set V (〈x2i − 1 : i ∈ V (H)〉) is the set of all possible n-tuples of

±1 which represent all possible 2-colorings of an n-vertex (hyper)graph.

By the construction of the fe polynomials and the ideal I2(H) in Theorem 1.3,

V (I2(H)) is the set of all proper 2-colorings of H.

Finally, Theorem 3.2 states that the hypergraph polynomial P2(H) has a solu-

tion if and only if H is not properly 2-colored, thus V (〈x2i − 1 : i ∈ [n]〉+ 〈P2(H)〉)

is the set of all improper 2-colorings of H.

From this and the fact that I2(H) is radical we have the following lemma

concerning the hypergraph chromatic polynomial, χH(k), which is the univariate

polynomial that counts the number of proper k-colorings for H.

Lemma 3.8.

χH(2) = |V (I2(H))| = dimCR/I2(H),

and

2n − χH(2) = dimCR/
(
〈x2i − 1 : i ∈ V (H)〉+ 〈P2(H)〉

)
.

Proof: These statements follow from the fact that the ideals I2(H), and 〈x2i − 1 :

i ∈ V (H)〉+ 〈P2(H)〉 are radical and from Lemma 3.7.

We may now prove our analogue of Hillar and Windfeldt’s Theorem 1.1, [2].

Proof: (Theorem 1.2)

The equivalence of 1, 2, and 3 is given by Theorem 1.3.

(2⇒ 4) Assume 1 ∈ I2(H).

Then since V (I2(H)) = ∅, and both I2(H) and 〈x2i − 1 : i ∈ V (H)〉 are radical, the

ideal quotient: 〈
x2i − 1 : i ∈ V (H)

〉
: I2(H) =

〈
x2i − 1 : i ∈ V (H)

〉
.
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Also, we have that

〈
x2i − 1 : i ∈ V (H)

〉
: I2(H) =

〈
x2i − 1 : i ∈ V (H)〉+ 〈P2(H)

〉
=
〈
x2i − 1 : i ∈ V (H)

〉
,

so P2(H) ∈ 〈x2i − 1 : i ∈ V (H)〉 .

(4⇒ 1), if P2(H) ∈ 〈x2i − 1 : i ∈ V (H)〉 , then Lemma 3.8 gives us that

2n − χH(2) = dimCR/
(
〈x2i − 1 : i ∈ V (H)〉+ 〈P2(H)〉

)
= dimCR/〈x2i − 1 : i ∈ V (H)〉

= 2n.

So χH(2) = 0, and thus H is not 2-colorable.

Proof: (Theorem 3.4) Let U ⊆ A, U non-empty. Consider the ideal:

J2(U) =
〈
x2i − 1 : i ∈ V (H)

〉
+

〈∏
a∈U

(
r∑
j=1

xe,j − a

)
: e ∈ E(H)

〉
.

From the first set of polynomials we see that any common solution will be an

n-tuple of 1’s and -1’s. Also, it is clear that for every edge, e ∈ E(H):

∏
a∈U

(
r∑
j=1

xe,j − a

)
= 0

if and only if one of the factors,

r∑
j=1

xe,j = a, for some a ∈ U.

Since each factor is the sum of the values of the vertices in the edge e, this can

happen if and only if the edge is colored by a signature in U .

Theorem 3.4 also gives us the following as a corollary. This is one of the key

components to the proof of the decomposition Theorem 3.5.
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Corollary 3.9.

V(I2(H)) =
⋃
U⊆A
U 6=∅

V(J2(U)).

Proof: This follows from Theorems 1.3 and 3.4.

We can now prove our main decomposition theorem for 2-colorability.

Proof: (Theorem 3.5) Since the ideals I2(H) and J2(U) contain square-free

univariate polynomials in each indeterminate, they are radical. Also, since

V(I2(H)) =
⋃
U⊆A
U 6=∅

V(J2(U)),

by Theorem 2.8, we have that:

I2(H) = I(V(I2(H)))

= I

⋃
U⊆A
U 6=∅

V(J2(U))


=
⋂
U⊆A
U 6=∅

I(V(J2(U)))

=
⋂
U⊆A
U 6=∅

J2(U).

As a first corollary to Theorem 3.5, we have that given some U ⊆ A, we can

test to see if I2(H) can be colored by the edge colors/signatures in U .

Corollary 3.10. Given U ⊆ A, H can be colored by the edge signatures in U if

and only if I2(H) ⊆ J2(U).

Proof: Let U ⊆ A. By Theorems 3.4 and 3.5, H can be colored by the edge

signatures in U if and only if V(JU) ⊆ V(I2(H)). Since both I2(H) and J2(U) are

radical:

V(J2(U)) ⊆ V(I2(H)) if and only if I2(H) ⊆ J2(U).
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A second result following Theorem 3.5 concerns the uniqueness of the vertex

coloring of H. A unique vertex 2-coloring is a proper 2-coloring of the vertex set

that is unique up to permutation of the colors. For 2-colorings of the hypergraph

H, a unique vertex coloring corresponds to two distinct points in V(I2(H)). These

two points are the permutations of the colors on the vertices.

Corollary 3.11. Let H be an r-uniform hypergraph and I2(H) be its associated

coloring ideal. Then H is uniquely 2-colorable if and only if:

I2(H) = J{a1} ∩ J{a2},

where a1, a2 ∈ A are proper edge signatures and a1 = −a2.

Proof: (⇒) Let H be uniquely 2-colorable.

Let a1 and a2 represent the two permutations of the colors on the vertex set. Then

by Theorem 3.5,

I2(H) = J{a1} ∩ J{a2}.

Moreover, since the two edge signatures a1 and a2 are permutations of each other,

we have that a1 = −a2.

(⇐) Assume that,

I2(H) = J{a1} ∩ J{a2},

where a1, a2 ∈ A are proper edge signatures and a1 = −a2.

Since a1 = −a2, we have that the signatures a1 and a2 are permutations of the

colors assigned to the vertices. We also have that |V(I2(H))| = 2 by Theorem 3.5.

So H is 2-colorable.

3.3 Conflict-free coloring

Our goal is to show how we can recognize hypergraphs with χCF(H) = 2 and

χCF(H) 6= 2. First we note that clearly, χ(H) ≤ χCF(H), and we establish an
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equivalent condition for conflict free coloring.

For an r-uniform hypergraph, H, with χ(H) = 2, the only edge signatures

allowed in a conflict free coloring are the signatures

(1, 1, . . . , 1,−1) and (−1,−1, . . . ,−1, 1),

as these are the only signatures in which one of the colors is not repeated. Thus,

if χCF(H) = 2, then V(J2({a1, a2})) 6= ∅. Also, if V(J2({a1, a2})) 6= ∅, then H is

properly 2-colored by the edge signatures a1 and a2, and since this is a conflict free

coloring we have that χCF(H) ≤ 2. Since χ(H) = 2, in this second case we have

that, χCF(H) = 2. So,

χCF(H) = 2 if and only if V(J2({a1, a2})) 6= ∅.

Now we may express this condition in terms of the ideals I2(H) and

J2({a1, a2}).

Theorem 3.12. Let a1 and a2 be the edge signature of the edge colorings

(1, 1, . . . , 1,−1) and (−1,−1, . . . ,−1, 1) respectively, that is a1 = r − 2 and

a2 = −(r − 2). Let the ideals I2(H) and J2({a1, a2}) be as in Theorem 3.5. Then

χCF(H) = 2 if and only if I2(H) ⊆ J2({a1, a2}).

Proof: Assume χ(H) = 2 and let the ideals I2(H) and J2({a1, a2}) be as in

Theorem 3.5. Then we have that V(I2(H)) 6= ∅.

Since χCF(H) = 2 if and only if V(J2({a1, a2})) 6= ∅, we have that:

χCF(H) = 2 if and only if V(J2({a1, a2})) ⊆ V(I2(H)),

and since both I2(H) and J2({a1, a2}) are radical, we have

V(J2({a1, a2})) ⊆ V(I2(H)) if and only if J2({a1, a2}) ⊇ I2(H).

See Chapter 5 for a detailed illustration of Theorem 3.12.
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CHAPTER 4

k-Colorability

In this chapter we introduce our complete generalization of Hillar and Wind-

feldt’s Theorem 1.1, along with the associated k-colorability results. We provide

all statements of the k-colorability results in Section 4.1 and collect their proofs

in Section 4.2. We also state and prove some theoretical results concerning list

colorings of uniform hypergraphs and provide an algebraic characterization of the

t-choosability of a uniform hypergraph. We end the chapter with an algebraic

consequence of the structure of the ideals defined in this thesis.

4.1 k-Colorability Results

To address the k-colorability of an r-uniform hypergraph, we use similar tech-

niques as in the 2-colorable case. Let r ≥ 2 be an integer. Let H be an r-uniform

hypergraph on n vertices with m edges. For an integer k ≥ 1, a k-coloring of the

vertex set of H is defined to be a map, c : V (H) → [k]. Recall that a proper

k-coloring is a k-coloring of H where no edge e ∈ E(H) is monochromatic. For the

2-colorability case, we used the second roots of unity, ±1 as our colors. However

we cannot directly generalize this to the k-colorable case using primitive kth roots

of unity as was done in [1] and [2] for graph colorings. Instead, for the general

k-colorability we will utilize prime numbers as our colors.

Let k ≥ 2 be an integer, and let Pk be the set of the first k primes. Define a

k-coloring of the uniform hypergraph H as a map,

c : V (H)→ Pk

Note that this is an equivalent definition of a k-coloring. For each edge, e ∈ E(H)
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let:

e = (xe1 , xe2 , . . . , xer),

where ej ∈ V (H) = [n]. Whereas the 2-colorability of a uniform hypergraph was

characterized by proper edge sums, k-colorability relies on the product of the

vertices in an edge. Define the edge product of an edge e ∈ E(H) to be:

r∏
i=1

xei .

A proper coloring does not allow a monochromatic edge, thus we encode all of the

non-monochromatic edges and use them to force a proper coloring.

Define the following as the set of proper edge products:

A =

{
a =

k∏
t=1

pαt
t : pt ∈ Pk, αt ∈ [0, 1, . . . , r − 1],

k∑
t=1

αt = r

}
.

Note that for any color p ∈ Pk,

a 6= pr ∀ a ∈ A.

The k-tuples of exponents, (α1, . . . , αk), of the prime products in A are precisely

the set of all proper k-integer partitions of r.

Consider the ideal:

Ck =

〈∏
p∈Pk

(xi − p) : i ∈ V (H)

〉
.

Claim 4.1. Ck is the ideal encoding all k-colorings of H.

Corollary 4.2. V(Ck) is the set of all k-colorings of H.

The ideal Ck captures every k-coloring of H, including the improper color-

ings. We therefore need some additional conditions to ensure the only the proper

colorings are captured. We will utilize the set, A, of all proper edge products for

H. The polynomials below define the k-colorability ideal for H, I(H, k):

fe,k =
∏
a∈A

[(
r∏
i=1

xei

)
− a

]
.
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Define I(H, k) as:

I(H, k) = Ck + 〈fe,k : e ∈ E(H)〉.

We can now restate Theorem 5 from Chapter 1 which defines the k-colorability

ideal for H.

Theorem 4.3. The polynomials in the ideal I(H, k) have a common solution if

and only if H is properly k−colorable.

Define the hypergraph polynomial for k-colorability, PH,k, by:

PH,k =
∏

e∈E(H)

k∏
t=1

[(
r∏
i=1

xei

)
− prt

]
.

Theorem 4.4. H is not properly k−colorable if and only if 〈PH,k〉 + Ck has a

solution.

We can now state our complete generalization of Hillar and Windfeldt’s The-

orem 2.1 in [2]

Theorem 4.5. Let r, k ≥ 2 be positive integers and let H be an r-uniform hyper-

graph. Let R = C[x1, . . . , xn]. Let I(H, k) be the k-colorability ideal for H and let

PH,k be the k-color hypergraph polynomial for H. Then following are equivalent:

(1) The hypergraph H is not k-colorable.

(2) The constant 1 is an element of the ideal I(H, k).

(3) dimCR/I(H, k) = 0 as a vector space.

(4) The hypergraph polynomial PH,k belongs to the ideal Ck.

Moreover, by the structure of the ideal I(H, k), we can classify certain color-

ings of H. Let U be a non-empty subset of A.
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Definition 4.1. The k-coloring scheme for the r-uniform hypergraph H given by

U is the set of all colorings of H with the edge products in U .

We define the k-coloring scheme ideal, J(U, k), as the ideal that encodes the

colorability of H by the edge products in U :

J(U, k) = Ck +

〈∏
a∈U

(
r∏
i=1

xei

)
− a : e ∈ E(H)

〉
.

Theorem 4.6. The polynomials in the ideal J(U, k) have a common solution if

and only if the hypergraph H can be colored by the edge products in U .

Define I(H, k), J(U, k), and A as above. Then the ideals and their associated

varieties, J(U, k), I(H, k) and V(J(U, k)), V(I(H, k)), are related in the following

ways.

Theorem 4.7. Let r, k ≥ 2 be integers and let H be an r-uniform hypergraph.

Then,

V(I(H, k)) =
⋃
U⊆A
U 6=∅

V(J(U, k)),

and

I(H, k) =
⋂
U⊆A
U 6=∅

J(U, k).

Corollary 4.8. Given U ⊆ A, H can be colored by the edge products in U if and

only if I(H, k) ⊆ J(U, k).

As an illustration of Corollary 4.8, let U be the subset of all proper edge prod-

ucts that correspond to the particular k-integer partition of r, α = (α1, . . . , αk).

That is,

U = {a = pα1
1 · pα2

2 · · · p
αk
k : pj ∈ Pk},
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where the p1, . . . , pk are permuted in all possible ways. Then the variety of the

k-coloring scheme ideal J(H, U) contains the proper colorings of H in which αj

vertices share the same color in each edge, for j = 1, 2, . . . , k. Hence each edge

contains the same color pattern associated with the partition α, although the colors

assigned to each part αj may differ on distinct edges.

4.2 k-Colorability Proofs

In this section we let A be the set of all proper edge products for a k-coloring

of H. Also let Pk be the set of the first k prime numbers.

Proof: (Claim 4.1) For any i ∈ V (H) the associated polynomial in Ck.

∏
p∈Pk

(xi − p),

vanishes if and only if xi = p for some p ∈ Pk. That is, if and only if the vertex i

is colored by a prime color in Pk.

Proof: (Corollary 4.2) Since the polynomials in Ck have a common solution c

if and only if c is a k-coloring of H, the variety V(Ck) is the set of all k-colorings

of H.

Proof: (Theorem 1.5) (⇒) Let c ∈ V(I(H, k)). Since c zeros every polynomial

in Ck, each vertex takes on a value in Pk. Also, for each edge e ∈ E(H), fe,k(c) = 0,

so the edge product of e is a value in A. Thus each edge is properly colored.

(⇐) Let c be a proper k−coloring of H. That is, c is an n-tuple of primes in

Pk and c colors no edge monochromatically. Since each vertex is a prime in Pk,

c us a common solution of Ck. Also, since no edge is colored monochromatically,

fe,k(c) = 0 for every edge in E(H). So c is a common solution of I(H, k).

Proof: (Theorem 4.4) (⇒) Assume H is not properly k−colorable. Let c be any

k−coloring of H, c must monochromatically color an edge. Let e be the improperly

colored edge, and without loss of generality let pt be the color of each vertex in e.
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The edge product of e is then prt , thus c is a common solution of 〈PH,k〉+ Ck.

(⇐) Assume 〈PH,k〉 + Ck has a common solution, c. Since Ck vanishes at c,

each vertex is assigned a single power of a prime in Pk. Also, since PH,k(c) = 0

there exists an edge e ∈ E(H) and a prime pt ∈ Pk such that:

r∏
i=1

xei − prt = 0⇒
r∏
i=1

xei = prt .

Thus the edge e has an edge product of prt and is not properly k−colored.

Proof: (Theorem 4.6) Let U be a non-empty subset of A. (⇒) Assume c is

a common solution to J(U, k). By the definition of Ck, c is a k−coloring of H.

Moreover, since the product of the vertices in each edge is a value in U , H is

properly colored by the edge products in U .

(⇐) Assume H is colorable by the edge products in U . Let c be any such

k−coloring. Then c assigns an edge product from U to each edge, thus c is a

solution to J(U, k).

Proof: (Theorem 4.7) Note that since Ck is contained in both I(H, k) and

J(U, k), and Ck contains univariate squarefree polynomials in each indeterminate,

Ck, and thus I(H, k) and J(U, k), are all radical by Theorem 2.15. Since,

A =
⋃
U⊆A
U 6=∅

U,

we have that,

V(I(H, k)) =
⋃
U⊆A
U 6=∅

V(J(U, k)).

Moreover, since I(H, k) and J(U, k) are radical, we have that:

I(H, k) =
⋂
U⊆A
U 6=∅

J(U, k),

by Theorem 2.8.
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Proof: (Corollary 4.8) Let U be a non-empty subset of A.

By Theorems 3.4 and 4.7, H can be colored by the edge products in U if and only

if V(J(U, k)) ⊆ V(I(H, k)). Since both I(H, k) and J(U, k) are radical:

V(J(U, k)) ⊆ V(I(H, k)) if and only if I(H, k) ⊆ J(U, k).

4.3 Conflict-free k-Colorings

In this section we address conflict-free colorings of uniform hypergraphs when

using possibly more than two colors. As with conflict-free 2-colorings, a conflict-

free k-coloring is a proper coloring in which each edge contains a vertex whose

color is not repeated by any other vertex in the edge. We capture this coloring

with the following edge products. Let UCF be the subset of proper edge products,

A, such that:

UCF =

{
a =

k∏
t=1

pαt
t ∈ A : ∃ t ∈ [k] such that αt = 1

}
,

where the k-tuple (α1, . . . , αk) is a proper k-integer partition of r. Define UCF to be

the set of all conflict-free edge products. We can determine if a uniform hypergraph

contains a conflict-free k-coloring via the following theorem.

Theorem 4.9. Let H be an r-uniform hypergraph. Then H admits a conflict-free

k-coloring if and only if

I(H, k) ⊆ J(H, UCF ).

Proof: Let U = UCF , the result follows from Corollary 4.8.

4.4 List Colorings

In this section we introduce list colorings of uniform hypergraphs and provide

an algebraic characterization of the t-choosability of a uniform hypergraph. We
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note that the characterization holds for graphs as well. As before we collect all

results in Section 4.4 and postpone the proofs until Section 4.5.

Let H be an r-uniform hypergraph on the vertex set [n]. Let Pk be the set of

the first k primes. For each vertex v ∈ V (H) let

Sv = {pv1 , pv2 , . . . , pvt}

be a given list of colors where each pvi ∈ Pk.

Definition 4.2. A list coloring of H by the lists S = {Sv}v∈V (H) is a map

c : V (H) → Pk such that c(v) ∈ Sv for every v ∈ V (H). If H admits a list

coloring for any collection of lists S = {Sv}v∈V (H) where each list has length t,

then H is t-list choosable.

As in the k-Colorability section we define the following set as the proper edge

products for an r-uniform hypergraph:

A =

{
a =

k∏
t=1

pαt
t : pt ∈ Pk, αt ∈ [0, 1, . . . , r − 1],

k∑
t=1

αt = r

}
.

We only restrict the possible colors to be the first k primes for computational

considerations; the colors need only be distinct relatively prime elements from

a unique factorization domain contained within an algebraically closed field of

coefficients.

Let S = {Sv}v∈V (H) be a collection of lists of colors and consider the following

ideals:

Cv =

〈 ∏
pv∈Sv

(xv − pv)

〉
,

L(H, S) =
∑

v∈V (H)

Cv.

Proposition 4.10. The polynomials in the ideal Cv have a common solution if

and only if the vertex v is colored by a color in Sv.
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Theorem 4.11. The polynomials in the ideal L(H, S) have a common solution if

and only if the hypergraph H is colored by the lists in S = {Sv}v∈V (H).

The corresponding variety is the collection of the appropriate list colorings.

Corollary 4.12. V(L(H, S)) is the set of all possible list colorings of H by the

colors Pk according to the lists in S = {Sv}v∈V (H).

Theorem 4.13. The ideal I(H, S) = I(H, k) + L(H, S) is an algebraic charac-

terization of the proper list colorings of H by the collection of lists S = {Sv : v ∈

V (H)}. That is, the polynomials in I(H, S) have a common solution if and only

if H is properly list colored by the lists in S = {Sv∈V (H)}.

Theorem 4.14. Let k ≥ 2 be an integer and let H be an r-uniform hypergraph on

n vertices. The product of ideals

∏
S

I(H, S)

where S = {S1, S2, . . . , Sn} ranges over all collections of t-length lists Si each

a subset of Pk, encodes the t-list colorability of the hypergraph H. That is, the

hypergraph H is t-list choosable if and only if

V

(∏
S

I(H, S)

)
6= ∅.

4.5 List Coloring Proofs

Proof: (Proposition 4.10) (⇒) Let v be any vertex in H. Assume the vth

coordinate of c ∈ Cn is a solution to
∏t

i=1(xv − pvi). Then the vth coordinate of c

has a value pv ∈ Sv. Thus the vertex v is colored by the list Sv.

(⇐) Assume c ∈ Cn is a coloring of H in which the vertex v is colored by a

member of the list Sv = {pv1 , . . . , pvt}. Then the vth coordinate of c has a value
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pvi ∈ Sv. Hence exactly one factor of the product

t∏
i=1

(xv − pvi)

is zero, so c is a solution of the ideal Cv.

Proof: (Theorem 4.11) Since the argument in Proposition 4.10 holds for every

v ∈ V (H), i.e. for each indeterminate xi ∈ C[x1, . . . , xn], and

L(H, S) =
∑

v∈V (H)

Cv =

〈 ∏
p1∈S1

(x1 − p1), . . . ,
∏
pn∈Sn

(xn − pn)

〉
,

we have that c ∈ Cn is a common solution of L(H, S) if and only if H is colored

by the lists S = {Sv}v∈V (H).

Proof: (Corollary 4.12) By Theorem 4.11, an n-tuple c = (c1, . . . , cn) ∈ Cn is in

V(L(H, S)) if and only if c is a coloring of H with colors from Pk according to the

lists S = {Sv}v∈V (H). Hence V(L(H, S)) is the collection of all such colorings.

Proof: (Theorem 4.13) As above, c ∈ Cn is a common solution of I(H, S) =

I(H, k) + L(H, S) if and only if c is a common solution of I(H, k) and L(H, S).

So by Theorem 1.5 and Proposition 4.10, c must be a proper coloring of H by the

lists S = {S1, . . . , Sn}.

Proof: (Theorem 4.14) (⇒) Assume the hypergraph H is t-list choosable. Then

there exists a set of lists, each of length t, S = {Sv}v∈V (H) of colors so thatH admits

a proper coloring by the lists in S. Then by Theorem 4.13, the polynomials in the

ideal I(H, S) will have a common solution. Then, since the product of radical

ideals has the same variety as the intersection of radical ideals by Theorem 2.16

V

(∏
S

I(H, S)

)
= V

(⋂
S

I(H, S)

)
6= ∅.

(⇐) Assume,

V

(∏
S

I(H, S)

)
6= ∅,
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then by Theorem 2.16:

V

(⋂
S

I(H, S)

)
6= ∅.

and

V

(⋂
S

I(H, S)

)
=
⋃
S

V(I(H, S)),

by Theorem 2.8, we have that for some list S, V(I(H, S)) 6= ∅. Hence by Corollary

4.13, H is list-colorable by the list S, and since |S| = t, H is t-list choosable.

4.6 Ideal Primary Decompositions

In this section we examine the relationship between the collection of proper

colorings of a uniform hypergraph and the structure of the ideals that encode these

colorings. The encodings for colorability given in Chapters 3 and 4 owe much of

their ease to the structure of their ideals. Each colorability ideal is constructed so

that its variety is the collection of all possible colorings that satisfy some condition.

As a result, each variety is a finite collection of points in Cn. Moreover, we can

make a statement about the multiplicity of these solutions.

Theorem 4.15. Each point in the varieties V(I2(H)), V(I(H, k)) and V(I(H, S))

has multiplicity 1.

Proof: By Theorem 2.15, I2(H), I(H, k) and I(H, S) are all radical. Thus by

Theorem 2.18 each point V(I2(H)), V(I(H, k)) or V(I(H, k)), has multiplicity

1.

For each point c in any of the variety, set Vc = {c}, subsets of this form are also

varieties and are known as irreducible varieties. Furthermore, for c = (c1, . . . , cn)

define

Ic = I(Vc) = 〈x1 − c1, . . . , xn − cn〉 .

Proposition 4.16 (Propositions 9 and 10, pp 198-199, [3]). Ic is maximal and

prime in R = C[x1, . . . , xn].
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Prime ideals are important in determining the structure of an ideal. If an

ideal I can be uniquely written as an intersection of distinct prime ideals Qi then

the intersection is called the minimal primary decomposition of I:

I =
⋂
i

Qi.

Similarly, if a variety V can be written as union of disjoint irreducible varieties Vj

the union is called the minimal decomposition of V :

V =
⋃
j

Vj.

For more information on primary decompositions of ideals and decompositions of

varieties, see [3] or [4].

Theorem 4.17. Let H be an r-uniform hypergraph on n vertices and let I be any

of I2(H), I(H, k) or I(H, S). Then,

V(I) =
⋃

c∈V(I)

Vc,

is the minimal decomposition of V(I), and

I =
⋂

c∈V(I)

Ic

is the minimal primary decomposition of I.

Proof: Note that

V(I) =
⋃

c∈V(I)

{c} =
⋃

c∈V(I)

Vc.
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Then since I is radical,

I = I(V(I))

= I

 ⋃
c∈V(I)

{c}


= I

 ⋃
c∈V(I)

Vc


=
⋂

c∈V(I)

I(Vc)

=
⋂

c∈V(I)

Ic.
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CHAPTER 5

Computation

In this chapter we provide some detailed examples of applications of the the-

orems in Chapters 3 and 4. In the first section we address the coloring scheme

ideals and conflict-free colorings of the Fano plane. In Section 5.2 we provide a

technique for determining if a uniform hypergraph can be properly colored which

we utilize in Section 5.3. In Section 5.3 we give a generalization of the construction

given by Abbott and Hanson in [1], and improved on by Seymour in [2]. We end

the chapter by providing some computations on the chromatic number of Stable

Kneser hypergraphs.

5.1 The Fano plane

We begin with this simplest example of a non-2-colorable 3-uniform hyper-

graph. Recall the Fano plane, FP , is a 3-uniform hypergraph on 7 vertices with 7

edges:

V (FP ) = {1, 2, 3, 4, 5, 6, 7}

and

E(FP ) = {{1, 2, 5}, {1, 3, 7}, {1, 4, 6}, {2, 3, 6}, {3, 4, 5}, {2, 4, 7}, {5, 6, 7}}.

We examine the 2-colorability ideal, and check to see if we can modify the Fano

plane so that it will admit a conflict-free coloring.

5.1.1 2-colorability

The corresponding 2-colorability ideal I2(FP ) given by Theorem 1.3 is:
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〈x2i − 1 : i ∈ [7]〉+

〈(2x1 + x2 + x5)(x1 + 2x2 + x5)(x1 + x2 + 2x5),

(2x1 + x3 + x7)(x1 + 2x3 + x7)(x1 + x3 + 2x7),

(2x1 + x4 + x6)(x1 + 2x4 + x6)(x1 + x4 + 2x6),

(2x2 + x3 + x6)(x2 + 2x3 + x6)(x2 + x3 + 2x6),

(2x3 + x4 + x5)(x3 + 2x4 + x5)(x3 + x4 + 2x5),

(2x2 + x4 + x7)(x2 + 2x4 + x7)(x2 + x4 + 2x7),

(2x5 + x6 + x7)(x5 + 2x6 + x7)(x5 + x6 + 2x7)〉

Since FP is 3-uniform, there are only 2 possible proper edge signatures for a

2-coloring of FP :

the edge colored with two 1′s and one − 1⇒ a1 =
3∑
i=1

xe,i = 1,

and,

the edge colored with one 1 and two − 1′s⇒ a2 =
3∑
i=1

xe,i = −1.

So A = {1,−1}. Thus the possible non-empty subsets, U , of A are:

{1}, {−1} and {1,−1}.

Which gives us the coloring scheme ideals:

54



J2({1}) = 〈x2i − 1 : i ∈ [7]〉+

〈x1 + x2 + x5 − 1, x1 + x3 + x7 − 1, x1 + x4 + x6 − 1,

x2 + x3 + x6 − 1, x3 + x4 + x5 − 1, x2 + x4 + x7 − 1,

x5 + x6 + x7 − 1〉,

J2({−1}) = 〈x2i − 1 : i ∈ [7]〉+

〈x1 + x2 + x5 + 1, x1 + x3 + x7 + 1, x1 + x4 + x6 + 1,

x2 + x3 + x6 + 1, x3 + x4 + x5 + 1, x2 + x4 + x7 + 1,

x5 + x6 + x7 + 1〉,

J2({1,−1}) = 〈x2i − 1 : i ∈ [7]〉+

〈(x1 + x2 + x5 − 1)(x1 + x2 + x5 + 1),

(x1 + x3 + x7 − 1)(x1 + x3 + x7 + 1),

(x1 + x4 + x6 − 1)(x1 + x4 + x6 + 1),

(x2 + x3 + x6 − 1)(x2 + x3 + x6 + 1),

(x3 + x4 + x5 − 1)(x3 + x4 + x5 + 1),

(x2 + x4 + x7 − 1)(x2 + x4 + x7 + 1),

(x5 + x6 + x7 − 1)(x5 + x6 + x7 + 1)〉.

Using a Gröbner basis package in a computer algebra system like Mathematica

or Singular we can show that all of the above ideals contain the constant 1 and

thus by Theorems 1.3 and 3.5, the Fano plane is not 2-colorable.
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5.1.2 Conflict Free Colorings of the Fano Plane

To further demonstrate Theorem 3.5 and give an example of a conflict-free

coloring we consider the Fano plane with an edge removed. Note that,

χ(FP \ {any edge}) = 2.

Let the Modified Fano plane be the hypergraph FP ′ = FP \ {1, 2, 5} where:

V (FP ′) = {1, 2, 3, 4, 5, 6, 7}

and

E(FP ′) = {{1, 3, 7}, {1, 4, 6}, {2, 3, 6}, {3, 4, 5}, {2, 4, 7}, {5, 6, 7}}.

The corresponding 2-colorability ideal is:

I2(FP
′) =〈x2i − 1 : i ∈ [7]〉+

〈(2x1 + x3 + x7)(x1 + 2x3 + x7)(x1 + x3 + 2x7),

(2x1 + x4 + x6)(x1 + 2x4 + x6)(x1 + x4 + 2x6),

(2x2 + x3 + x6)(x2 + 2x3 + x6)(x2 + x3 + 2x6),

(2x3 + x4 + x5)(x3 + 2x4 + x5)(x3 + x4 + 2x5),

(2x2 + x4 + x7)(x2 + 2x4 + x7)(x2 + x4 + 2x7),

(2x5 + x6 + x7)(x5 + 2x6 + x7)(x5 + x6 + 2x7)〉.

The reduced Gröbner basis for I2(FP
′) with respect to the monomial ordering

x1 > x2 > · · · > x7 is:

{x27 − 1, x26 − 1, x5x6 + x5x7 + x6x7 + 1, x25 − 1, x4x6 − x4x7 − 2x5x7 − x6x7 − 1,

x4x5 + x4x7 + x5x7 + 1, x24 − 1, x3x6 − x3x7 − 2x5x7 − x6x7 − 1,

x3x5 + x3x7 + x5x7 + 1, x3x4 − x3x7 − x4x7 − 2x5x7 − 1,

x23 − 1, x2 − x5, x1 − x5}.
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This also tells us that χCR(FP ′) = 2.

Next we examine the coloring scheme ideals for FP ′:

J2({1}) =〈x2i − 1 : i ∈ [7]〉+

〈x1 + x3 + x7 − 1, x1 + x4 + x6 − 1,

x2 + x3 + x6 − 1, x3 + x4 + x5 − 1,

x2 + x4 + x7 − 1, x5 + x6 + x7 − 1〉,

J2({−1}) =〈x2i − 1 : i ∈ [7]〉+

〈x1 + x3 + x7 + 1, x1 + x4 + x6 + 1,

x2 + x3 + x6 + 1, x3 + x4 + x5 + 1,

x2 + x4 + x7 + 1, x5 + x6 + x7 + 1〉,

J2({1,−1}) =〈x2i − 1 : i ∈ [7]〉+

〈(x1 + x3 + x7 − 1)(x1 + x3 + x7 + 1),

(x1 + x4 + x6 − 1)(x1 + x4 + x6 + 1),

(x2 + x3 + x6 − 1)(x2 + x3 + x6 + 1),

(x3 + x4 + x5 − 1)(x3 + x4 + x5 + 1),

(x2 + x4 + x7 − 1)(x2 + x4 + x7 + 1),

(x5 + x6 + x7 − 1)(x5 + x6 + x7 + 1)〉.

The reduced Gröbner bases for J2({1}), J2({−1}), and J2({1,−1}), with respect

to the monomial ordering x1 > x2 > · · · > x7, are:

J2({1}) : {x7 − 1, x6 − 1, x5 + 1, x4 − 1, x3 − 1, x2 + 1, x1 + 1}

J2({−1}) : {x7 + 1, x6 + 1, x5 − 1, x4 + 1, x3 + 1, x2 − 1, x1 − 1}
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J2({1,−1}) :
{
x27 − 1, x26 − 1, x5x6 + x7x6 + x5x7 + 1, x25 − 1,

x4x6 − x7x6 − x4x7 − 2x5x7 − 1, x4x5 + x7x5 + x4x7 + 1,

x24 − 1, x3x6 − x7x6 − x3x7 − 2x5x7 − 1, x3x5 + x7x5 + x3x7 + 1,

x3x4 − x7x4 − x3x7 − 2x5x7 − 1, x23 − 1, x2 − x5, x1 − x5
}

Moreover, we see that the Gröbner bases for I2(FP
′) and J2({1,−1}) with

respect to the monomial ordering x1 > x2 > · · · > x7, are equal. In addition, the

Gröbner basis for J2({1}) ∩ J2({−1}) ∩ J2({−1, 1}) is the same also. Hence the

2-colorability ideal and the intersection of the color scheme ideals are identical and

we conclude that the modified Fano plane FP ′ is 2-colorable, and also admits a

conflict-free 2-coloring. Moreover, it can be similarly shown that the Fano plane

with any single edge removed is properly 2-colorable and also has a conflict-free

coloring.

5.2 Color Extensions

The coloring ideals given in Theorems 1.3 and 1.5 allow us to check if a given

hypergraph, H, is colorable by checking to see if the generating polynomials of

I2(H) or I(H, k) have a common solution. If so, then each solution is a proper

coloring ofH. The most complete method to answer this question is to compute the

reduced Gröbner basis for the coloring ideal and apply the Weak Nullstellensatz.

However, this is not always computationally feasible, as Gröbner basis computation

is time comsuming.

To speed up this process we can partially color a hypergraph and use Gröbner

bases to test if the partial coloring extends to a proper coloring. To do this, we

choose a partial coloring of the given hypergraph H, cp. We then set the corre-

sponding variables equal to the appropriate values in the coloring ideals I(H, k) or
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I2(H). Let,

I(H, k)|cp and I2(H)|cp ,

be the partial coloring ideals associated with partial coloring cp for the hypergraph

H. We can then use the Weak Nullstellensatz as we have for Theorems 1.3 and

1.5.

Theorem 5.1. Let H be an r-uniform hypergraph on n vertices. Let cp be a partial

coloring of H. Let I(H, k)|cp or I2(H)|cp be the partial coloring ideal associated with

H. Then cp extends to a proper coloring of H if and only if I(H, k)|cp or I2(H)|cp

has a common solution.

Proof: Without loss of generality, assume only x1 is colored, we can iteratively

apply the results if more vertices are colored. Also, assume that the color chosen

is appropriate: ±1 for I2(H) or some p ∈ Pk for I(H, k).

Since appropriate colors are used, either the polynomial x21 − 1 in I2(H) or∏
p∈Pk

(x1− p) in I(H, k) will vanish. Moreover the fe or fe,k polynomials in either

ideal will have each incidence of x1 replaced with the chosen color. This will

require any common solution of either ideal to contain the chosen color in the first

coordinate. Computing a Gröbner basis for the remaining polynomials determine

if they have a common solution with the first coordinate fixed. Thus any common

solution will be an extension of the partial coloring.

This technique allows us to quickly determine that a hypergraph is properly

colorable withour knowing the complete Gröbner basis of the colorability ideal. If a

partial coloring does not extend to a proper coloring, we cannot conclude that the

hypergraph is not colorable, as a different partial coloring may extend to a proper

coloring. Extending a partial coloring can be used to test for non-colorability, as

long as all possible initial colorings are tested on the chosen vertices. Depending on
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the number of vertices in H and the uniformity of H, coloring as few as 3 vertices

can improve computing time.

5.3 Constructions

Let H be an r-uniform hypergraph on n vertices. We defined mn(r) be the

least positive integer m such that: |E(H)| = m, and H does not have Property

B. That is, mn(r) is the least number of edges in a non-2-colorable, r-uniform

hypergraph on n vertices. Abbott and Hanson give (among others) the following

inequalities for mn(r) in [1]:

mn+2r(r) ≤
{
r ·mn(r − 2) + 2r−1, if r odd.
r ·mn(r − 2) + 2r−1 + 2r−2, if r even.

When r = 4 and n = 3, Seymour gives a construction which improves on the

bound given by the inequality above, [2]. For the r odd case, a generalized ver-

sion of Seymour’s construction cannot improve on the bounds given by Abbott

and Hanson in [1]. When r is even, however, we show that a generalization of

Seymour’s construction can improve these bounds. We specifically show the r = 6

construction and improve the bounds on m23(6) to 180.

5.3.1 Optimizing Seymour’s Construction.

Let n and r be positive integers. The construction given in [2] generalizes to

the following:

Take S = [2r + n] = {1, 2, . . . , 2r + n}, and let A be a non-2-colorable hyper-

graph on

{2r + 1, 2r + 2, . . . , 2r + n}

with mn(r − 2) edges.
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Define,

B = {{1, 2}, {3, 4}, . . . , {2r − 1, 2r}}

C = {X ∪ Y : X ∈ A, Y ∈ B}

D = {{x1, . . . , xr} : xi ∈ {2i− 1, 2i}, i = 1, . . . , r}.

Let E be a subset of D such that the following two conditions hold:

(i) If X, Y ∈ D and X ∪ Y = [2r + n], then either X or Y is a member of E.

(ii) If |Q| = r − 1, and Q is a subset of any member of D, then Q is a subset of

a member of E.

Claim 5.2. If F = C ∪ E is an r-uniform hypergraph on 2r + n edges, then F is

not 2-colorable.

Proof: Fix n and r in Z+. Let F = C ∪ E.

Suppose that F is 2-colorable, or has property B; that is, suppose Z is a subset

of S that intersects every member of F , but contains no member of F . Then S \Z

is also a set intersecting each member of F that contains none, so we may assume

that, ∣∣∣Z ∩ {2r + 1, 2r + 2, . . . , 2r + n}
∣∣∣ ≤ ⌊r

2

⌋
. (3)

This follows from counting the maximum number of vertices in each edge that can

be in either Z or S \ Z. Since A is not 2-colorable, (1) implies that Z does not

intersect some member of A, else Z and S \Z would be a proper two coloring of A.

Thus Z must intersect each member of B, since by hypothesis Z intersects each

member of C. So for some Y ∈ D, Y ⊆ Z.

Note that Z∩[2r] intersects each member of F and so we may delete any other

elements of Z and assume that Z ⊆ [2r]. Here we are focusing on the elements
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created from D and not the ’embedded’ non-2-colorable hypergraph A. If Y = Z,

then Y 6∈ Z, since F is assumed to have property B, and by (i),

{[2r] \ Y } ∈ E.

If {[2r] \ Y } ∈ E, and Y = Z, then

{[2r] \ Y } = {[2r] \ Z}, and {[2r] \ Z} ∩ Z = ∅,

which contradicts Z intersecting each member of F . Hence Y ⊂ Z, and |Z| ≥

r+ 1. This ensures that Z must contain at least on member of B; Without loss of

generality, assume Z contains {1, 2}. Note that,

|Y \ {1, 2}| = r − 1, and, Y \ {1, 2} ⊂ Y ∈ D;

by (ii),

{Y \ {1, 2} ⊂ X, for some X ∈ E.

Since Y ⊂ Z, and {1, 2} ⊂ Z, X ⊆ Z. This contradicts the hypothesis that Z

contains no member of F , thus F does not have Property B.

Next we introduce the generalized cube graph, GQr as follows. First define

the following set, let J be the set of all r − 1 element subsets of any element of

D. Let GQr be a graph with vertex set V (GQr) = D, so each member of D is

assigned a vertex in GQr. The edge set for GQr is defined as follows:

(v1, v2) ∈ E(GQr) if either v1 ∪ v2 = [2r], or, v1 ∩ v2 ∈ J.

Defined this way, the vertex, vX , for any given element in X ∈ D will be adjacent

to the complement of X in [2r], and all vertices associated with elements in D who

share an r − 1 element subset with D.

The graph GQr is r + 1-regular hypercube on 2r vertices with all antipodal

diagonals as edges. A vertex cover, VC(G), of a graph is a subset of the vertex
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set of G such that every edge in E(G) is incident to at least one vertex in VC(G).

The following claim shows that there is a correspondence between the set E and

VC(GQr).

Claim 5.3. Let VC be a vertex cover of G. The members of D that correspond to

vertices in VC satisfy conditions (i) and (ii).

Proof: Let vX , vXc ∈ VC be the vertices in V (G) corresponding to

X,Xc = [2r] \X ∈ D.

Since for all X ∈ D the edge (vX , vXc) is incident to at least one vertex in VC ,

condition (i) is satisfied.

Since every edge in E(G) is incident to a vertex in VC , every r − 1 element

subset of any member of D is represented by at least one vertex in VC , satisfying

condition (ii).

Claim 5.3 asserts that any vertex cover will work in constructing a non-2-

colorable hypergraph. By adding the members of D that are present in a vertex

cover of G to C we will create a hypergraph that satisfies Claim 5.2. This leads

us to utilize a minimal vertex cover. Adding a minimal vertex cover of GQr to C

will create a non-2-colorable r-uniform hypergraph with the minimal number of

edges allowed by Seymour’s construction. We find minimal vertex covers of GQ5

and GQ6 using linear programming in Sections 5.2.2 and 5.2.3. We note that while

this will improve on Abbott and Hanson’s upper bound, it may not be the best

possible construction. However, m(6) ≤ 180 is the best known upper bound.

5.3.2 5-Uniform Construction

We can show minimality for the 5-uniform case, we begin with the 3-

uniform, non-2-colorable hypergraph on 7 vertices, the Fano plane. Let FP ∗ =

(V (FP ∗), E(FP ∗)) be the following:
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V (FP ∗) = {11, 12, 13, 14, 15, 16, 17}

and

E(FP ∗) =
{
{11, 12, 15}, {11, 13, 17}, {11, 14, 16}, {12, 13, 16},

{13, 14, 15}, {12, 14, 17}, {15, 16, 17}
}
.

Note that this is the same hypergraph as above, with renamed vertices. We

construct a 5-uniform hypergraph, following Abbott and Hanson in [1], as follows:

we let

A = E(FP )

B = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}

C = {X ∪ Y : X ∈ A, Y ∈ B}

D = {{x1, . . . , x5} : xi ∈ {2i− 1, 2i}, i = 1, . . . , 5}.

Let E ⊂ D satisfy conditions (i) and (ii) above and let F5 = C∪E. To choose

E, we utilize the minimal vertex cover technique given in Claim 5.3. The set F5 is

given explicitly in Appendix 1.

Further, it can be shown computationally, by using the color extension tech-

nique described in Section 5.2, that removing any edge from F5 will yield a 2-

colorable hypergraph. That is, F5 is critical.

Further, for any r odd, GQr is a bipartite graph and, hence, the minimal

vertex cover for GQr has size 2r−1. This agrees with the upper bound provided by

Abbott and Hanson in [1].
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5.3.3 6-Uniform Construction

For the 6-uniform case, we begin with a 4-uniform, non-2-colorable hypergraph

on 11 vertices. Let SE = (V (SE), E(SE)) be the following:

V (SE) = {13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}

and

E(SE) =
{
{13, 14, 21, 22}, {13, 14, 21, 23}, {13, 14, 22, 23},

{13, 15, 17, 20}, {13, 15, 18, 19}, {13, 16, 17, 19},

{13, 16, 18, 19}, {13, 16, 18, 20}, {14, 15, 17, 19},

{14, 15, 18, 19}, {14, 15, 18, 20}, {14, 16, 17, 19},

{14, 16, 17, 20}, {14, 16, 18, 20}, {15, 16, 21, 22},

{15, 16, 21, 23}, {15, 16, 22, 23}, {17, 18, 21, 22},

{17, 18, 21, 23}, {17, 18, 22, 23}, {19, 20, 21, 22},

{19, 20, 21, 23}, {19, 20, 22, 23}
}
.

This is the hypergraph created by Seymour in [2]. We construct a 6-uniform

hypergraph as follows: we let

A = E(SE),

B = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}},

C = {X ∪ Y : X ∈ A, Y ∈ B}, and

D = {{x1, . . . , x6} : xi ∈ {2i− 1, 2i}, i = 1, . . . , 6}.

Let E ⊂ D satisfy conditions (i) and (ii) above and let F6 = C∪E. Again, we

use Claim 5.3 to choose the edges in E. The set F6 is given explicitly in Appendix 2.
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It can be shown, again using the computation of color extensions, that re-

moving any edge from F6 will yield a 2-colorable hypergraph, hence F6 is critical.

Moreover, this construction improves on Abbott and Hanson’s upper bound. Using

the inequalities given at the beginning of this chapter, Abbott and Hanson guar-

antee a non-2-colorable 6-uniform hypergraph on 23 vertices with 196 edges. We

have improved this to 180. In addition, Claim 5.3 implies that this is an optimal

construction possible using conditions (i) and (ii).

5.4 The Chromatic Number of Stable Kneser Hypergraphs

As a further application of our method in this section we provide computation

of chromatic numbers for some Stable Kneser hypergraphs. Let r, n ≥ 1 be positive

integers. A subset S ⊆ [n] is stable if

r ≤ |i− j| ≤ n− r for all distinct i, j ∈ S;

that is, any two elements of S are at least a ‘distance of r apart’ modulo n. For

r ≥ 2, k ≥ 2, the r-stable k-uniform Kneser hypergraph,

KGr

(
[n]

k

)
r−stab

is the hypergraph with vertex set consisting of all r-stable k-element subsets of [n].

The edge set is formed by r-tuples S1, . . . , Sr of pairwise disjoint vertices, i.e. of

pairwise disjoint r-stable k-element subsets of [n].

Stable Kneser hypergraphs generalize to Kneser hypergraphs introduced by

M. Kneser in 1955, [3]. In 1978 Lovász proved Kneser’s conjecture on the chromatic

number of Kneser graphs, [4]. Later Alon, Frankl, and Lovász proved a conjecture

of Erdős on the chromatic number of Kneser hypergraphs KGr
(
[n]
k

)
, [5]. In [6], the

authors conjecture that the chromatic numbers of Stable Kneser hypergraphs are

the same as the chromatic numbers of Kneser hypergraphs.
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Conjecture 5.4. Let n, k, r > 0 be integers such that n ≥ rk. Then

χ

(
KGr

(
[n]

k

)
r−stab

)
=

⌈
n− (k − 1)r

r − 1

⌉
.

The conjecture is known to hold only for r being a power of 2, [6]. Recently,

F. Meunier supported the conjecture by computation. We extend Meunier’s com-

putation using the methods developed in this thesis. These computations are done

using partial color extensions described in the previous section. We can conclude

that the conjecture holds for:

r = 3, k = 4, n ≤ 15

k = 5, n ≤ 18

k = 6, n ≤ 21

k = 7, n ≤ 24

r = 5, k = 2, n ≤ 14.

We note that the Stable Kneser hypergraph KGr
(
[n]
k

)
r−stab with r = 3, k = 7,

and n = 24 has 288 vertices and 9568 edges.
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CHAPTER 6

Conclusions

The techniques developed in this thesis extend the algebraic methods devel-

oped and implemented by authors such as Alon, De Loera, Hillar, and Lovász.

Coloring of hypergraphs is the first application of these techniques. The results

in this thesis provide new results on colorings of uniform hypergraph using poly-

nomial ideals. The first possibility for generalization is to remove the uniformity

condition.

Open Problem 1. Extend the results of this thesis to the non-uniform case.

In addition, we believe that these techniques can also extend computation. In

Chapter 1 we mentioned the question posed by Miller, “What is the least number

of edges allowed in a non-2-colorable uniform hypergraph?” Using Theorem 1.5

we can address a generalization of Miller’s question. We set mn(r, k) to be the

minimum number of edges allowed in a non-k-colorable r-uniform hypergraph on

n vertices. Let Mn(r, k) be the set of all positive integers m such that there exists

an r-uniform hypergraph on n vertices, H, that is critically non-k-colorable and

where |E(H)| = m. Note that this set is related to the notation introduced by

Erdős and Hajnal:

m(r) = min
n

Mn(r, 2).

As an application of Theorem 1.5 we wish to examine these sets.

Open Problem 2. Given positive integers r, k, and n, examine the structure of

the set Mn(r, k).

In addition to coloring, using square-free generated radical ideals has potential

for detecting certain subgraphs and subhypergraphs. It would be beneficial to find
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a polynomial ideal associated with a given graph or hypergraph which encodes the

structure of the induced subgraphs present. Does there exist an ideal that satisfies

the following question:

Open Problem 3. Given hypergraphs H, and G. Find an ideal I which contains

polynomials that have a common solution if and only if the hypergraph H contains

G as an induced subhypergraph.

The ideals constructed in theorems like Theorem 1.3 and 1.5 have an ex-

plicit structure that was designed to fit a specific need. Other ideals such as the

Stanley-Reisner ideal for simplicial complices and edge ideals provide a more gen-

eral interpretation of the structure of a graph or hypergraph. We propose further

study to better understand the connection between properties of hypergraphs, the

associated ideals, and their corresponding varieties.
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Appendix 1

A 5-uniform hypergraph on 17 vertices with 51 edges that is not 2-colorable.

Constructed using the generalized Seymour method, also given by Abbott and

Hanson, [1].

F5 =
{
{1, 2, 11, 12, 13}, {1, 2, 11, 14, 17}, {1, 2, 11, 15, 16}, {1, 2, 12, 14, 16},

{1, 2, 12, 15, 17}, {1, 2, 13, 14, 15}, {1, 2, 13, 16, 17}, {1, 3, 5, 7, 10},

{1, 3, 5, 8, 9}, {1, 3, 6, 7, 9}, {1, 3, 6, 8, 10}, {1, 4, 5, 7, 9},

{1, 4, 5, 8, 10}, {1, 4, 6, 7, 10}, {1, 4, 6, 8, 9}, {2, 3, 5, 7, 9},

{2, 3, 5, 8, 10}, {2, 3, 6, 7, 10}, {2, 3, 6, 8, 9}, {2, 4, 5, 7, 10},

{2, 4, 5, 8, 9}, {2, 4, 6, 7, 9}, {2, 4, 6, 8, 10}, {3, 4, 11, 12, 13},

{3, 4, 11, 14, 17}, {3, 4, 11, 15, 16}, {3, 4, 12, 14, 16}, {3, 4, 12, 15, 17},

{3, 4, 13, 14, 15}, {3, 4, 13, 16, 17}, {5, 6, 11, 12, 13}, {5, 6, 11, 14, 17},

{5, 6, 11, 15, 16}, {5, 6, 12, 14, 16}, {5, 6, 12, 15, 17}, {5, 6, 13, 14, 15},

{5, 6, 13, 16, 17}, {7, 8, 11, 12, 13}, {7, 8, 11, 14, 17}, {7, 8, 11, 15, 16},

{7, 8, 12, 14, 16}, {7, 8, 12, 15, 17}, {7, 8, 13, 14, 15}, {7, 8, 13, 16, 17},

{9, 10, 11, 12, 13}, {9, 10, 11, 14, 17}, {9, 10, 11, 15, 16}, {9, 10, 12, 14, 16},

{9, 10, 12, 15, 17}, {9, 10, 13, 14, 15}, {9, 10, 13, 16, 17}
}
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Appendix 2

A 6-uniform hypergraph on 23 vertices with 180 edges that is not 2-colorable.

Constructed using the generalized Seymour method.

F6 =
{
{1, 2, 13, 14, 21, 22}, {1, 2, 13, 14, 21, 23}, {1, 2, 13, 14, 22, 23},

{1, 2, 13, 15, 17, 20}, {1, 2, 13, 15, 18, 19}, {1, 2, 13, 16, 17, 19},

{1, 2, 13, 16, 18, 19}, {1, 2, 13, 16, 18, 20}, {1, 2, 14, 15, 17, 19},

{1, 2, 14, 15, 18, 19}, {1, 2, 14, 15, 18, 20}, {1, 2, 14, 16, 17, 19},

{1, 2, 14, 16, 17, 20}, {1, 2, 14, 16, 18, 20}, {1, 2, 15, 16, 21, 22},

{1, 2, 15, 16, 21, 23}, {1, 2, 15, 16, 22, 23}, {1, 2, 17, 18, 21, 22},

{1, 2, 17, 18, 21, 23}, {1, 2, 17, 18, 22, 23}, {1, 2, 19, 20, 21, 22},

{1, 2, 19, 20, 21, 23}, {1, 2, 19, 20, 22, 23}, {1, 3, 5, 7, 9, 12},

{1, 3, 5, 7, 10, 11}, {1, 3, 5, 8, 9, 11}, {1, 3, 5, 8, 10, 11},

{1, 3, 5, 8, 10, 12}, {1, 3, 6, 7, 9, 11}, {1, 3, 6, 7, 10, 11},

{1, 3, 6, 7, 10, 12}, {1, 3, 6, 8, 9, 11}, {1, 3, 6, 8, 9, 12},

{1, 3, 6, 8, 10, 12}, {1, 4, 5, 7, 9, 11}, {1, 4, 5, 7, 10, 12},

{1, 4, 5, 8, 9, 12}, {1, 4, 5, 8, 10, 11}, {1, 4, 6, 7, 9, 12},

{1, 4, 6, 7, 10, 11}, {1, 4, 6, 8, 9, 11}, {1, 4, 6, 8, 10, 11},

{1, 4, 6, 8, 10, 12}, {2, 3, 5, 7, 9, 11}, {2, 3, 5, 7, 10, 11},

{2, 3, 5, 7, 10, 12}, {2, 3, 5, 8, 9, 11}, {2, 3, 5, 8, 9, 12},

{2, 3, 5, 8, 10, 12}, {2, 3, 6, 7, 9, 11}, {2, 3, 6, 7, 9, 12},

{2, 3, 6, 7, 10, 12}, {2, 3, 6, 8, 9, 12}, {2, 3, 6, 8, 10, 11},
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{2, 4, 5, 7, 9, 12}, {2, 4, 5, 7, 10, 11}, {2, 4, 5, 8, 9, 11},

{2, 4, 5, 8, 10, 11}, {2, 4, 5, 8, 10, 12}, {2, 4, 6, 7, 9, 11},

{2, 4, 6, 7, 10, 11}, {2, 4, 6, 7, 10, 12}, {2, 4, 6, 8, 9, 11},

{2, 4, 6, 8, 9, 12}, {2, 4, 6, 8, 10, 12}, {3, 4, 13, 14, 21, 22},

{3, 4, 13, 14, 21, 23}, {3, 4, 13, 14, 22, 23}, {3, 4, 13, 15, 17, 20},

{3, 4, 13, 15, 18, 19}, {3, 4, 13, 16, 17, 19}, {3, 4, 13, 16, 18, 19},

{3, 4, 13, 16, 18, 20}, {3, 4, 14, 15, 17, 19}, {3, 4, 14, 15, 18, 19},

{3, 4, 14, 15, 18, 20}, {3, 4, 14, 16, 17, 19}, {3, 4, 14, 16, 17, 20},

{3, 4, 14, 16, 18, 20}, {3, 4, 15, 16, 21, 22}, {3, 4, 15, 16, 21, 23},

{3, 4, 15, 16, 22, 23}, {3, 4, 17, 18, 21, 22}, {3, 4, 17, 18, 21, 23},

{3, 4, 17, 18, 22, 23}, {3, 4, 19, 20, 21, 22}, {3, 4, 19, 20, 21, 23},

{3, 4, 19, 20, 22, 23}, {5, 6, 13, 14, 21, 22}, {5, 6, 13, 14, 21, 23},

{5, 6, 13, 14, 22, 23}, {5, 6, 13, 15, 17, 20}, {5, 6, 13, 15, 18, 19},

{5, 6, 13, 16, 17, 19}, {5, 6, 13, 16, 18, 19}, {5, 6, 13, 16, 18, 20},

{5, 6, 14, 15, 17, 19}, {5, 6, 14, 15, 18, 19}, {5, 6, 14, 15, 18, 20},

{5, 6, 14, 16, 17, 19}, {5, 6, 14, 16, 17, 20}, {5, 6, 14, 16, 18, 20},

{5, 6, 15, 16, 21, 22}, {5, 6, 15, 16, 21, 23}, {5, 6, 15, 16, 22, 23},

{5, 6, 17, 18, 21, 22}, {5, 6, 17, 18, 21, 23}, {5, 6, 17, 18, 22, 23},

{5, 6, 19, 20, 21, 22}, {5, 6, 19, 20, 21, 23}, {5, 6, 19, 20, 22, 23},

{7, 8, 13, 14, 21, 22}, {7, 8, 13, 14, 21, 23}, {7, 8, 13, 14, 22, 23},

{7, 8, 13, 15, 17, 20}, {7, 8, 13, 15, 18, 19}, {7, 8, 13, 16, 17, 19},
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{7, 8, 13, 16, 18, 19}, {7, 8, 13, 16, 18, 20}, {7, 8, 14, 15, 17, 19},

{7, 8, 14, 15, 18, 19}, {7, 8, 14, 15, 18, 20}, {7, 8, 14, 16, 17, 19},

{7, 8, 14, 16, 17, 20}, {7, 8, 14, 16, 18, 20}, {7, 8, 15, 16, 21, 22},

{7, 8, 15, 16, 21, 23}, {7, 8, 15, 16, 22, 23}, {7, 8, 17, 18, 21, 22},

{7, 8, 17, 18, 21, 23}, {7, 8, 17, 18, 22, 23}, {7, 8, 19, 20, 21, 22},

{7, 8, 19, 20, 21, 23}, {7, 8, 19, 20, 22, 23}, {9, 10, 13, 14, 21, 22},

{9, 10, 13, 14, 22, 23}, {9, 10, 13, 15, 17, 20}, {9, 10, 13, 15, 18, 19},

{9, 10, 13, 16, 18, 19}, {9, 10, 13, 16, 18, 20}, {9, 10, 14, 15, 17, 19},

{9, 10, 14, 15, 18, 20}, {9, 10, 14, 16, 17, 19}, {9, 10, 14, 16, 17, 20},

{9, 10, 15, 16, 21, 22}, {9, 10, 15, 16, 21, 23}, {9, 10, 15, 16, 22, 23},

{9, 10, 17, 18, 21, 23}, {9, 10, 17, 18, 22, 23}, {9, 10, 19, 20, 21, 22},

{9, 10, 19, 20, 21, 23}, {9, 10, 17, 18, 21, 22}, {9, 10, 14, 16, 18, 20},

{9, 10, 14, 15, 18, 19}, {9, 10, 13, 16, 17, 19}, {9, 10, 13, 14, 21, 23},

{9, 10, 19, 20, 22, 23}, {11, 12, 13, 14, 21, 22}, {11, 12, 13, 14, 21, 23},

{11, 12, 13, 15, 17, 20}, {11, 12, 13, 15, 18, 19}, {11, 12, 13, 16, 17, 19},

{11, 12, 13, 16, 18, 20}, {11, 12, 14, 15, 17, 19}, {11, 12, 14, 15, 18, 19},

{11, 12, 14, 16, 17, 19}, {11, 12, 14, 16, 17, 20}, {11, 12, 14, 16, 18, 20},

{11, 12, 15, 16, 21, 23}, {11, 12, 15, 16, 22, 23}, {11, 12, 17, 18, 21, 22},

{11, 12, 17, 18, 22, 23}, {11, 12, 19, 20, 21, 22}, {11, 12, 19, 20, 21, 23},

{11, 12, 13, 14, 22, 23}, {11, 12, 13, 16, 18, 19}, {11, 12, 14, 15, 18, 20},

{11, 12, 19, 20, 22, 23}, {11, 12, 17, 18, 21, 23}, {11, 12, 15, 16, 21, 22}
}
.
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