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ARTICLES

Self-adaptive quadrature and numerical path integration

Dubravko Sabo and J. D. Doll®
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

(Received 28 December 1999; accepted 15 May 2000

In the present paper we explore the use of generalized Gaussian quadrature methods in the context
of equilibrium path integral applications. Using moment techniques, we devise a compact,
self-adaptive approach for use in conjunction with selected classes of interaction potentials. We
demonstrate that, when applicable, the resulting approach reduces appreciably the number of
potential energy evaluations required in equilibrium path integral simulations20@ American

Institute of Physics.S0021-960600)00131-9

I. INTRODUCTION guantities. Statistical methods are then invoked to transform

As evidenced by both the breadth and depth of recen&hese f?rmal representatiqns into pra_\ctical., numericql “esti-
applications:? numerical path integral methods are effective MatOrs of the corre_spondmg properties. Q|ﬁerenc§s In con-
tools for the study of finite-temperature, many-body,Ve_rgence and/or gfflClency mqkes t-he design and implemen-
quantum-mechanical systems. In their most complete forni@tion of the various steps in this overall procedure an
these methods make it possible to obtain refinable estimatédPortant practical issue in actual applications.
of the equilibrium properties of complex physical systems A general strategy to improve the performance of statis-
directly from specified microscopic force laws without the tically based approaches is to incorporate auxiliary informa-
need to introduce untestable numerical approximations. Altion into the numerical procedure. Such information can be
though not the principal focus of the present discussion, limfrom “external” sources or it can be obtained “internally”
ited dynamical information can also be extracted from thesén a “boot-strap” fashion from the simulation itself. Ex-
nominally equilibrium path integral methods amples of external information would be a prior knowledge

Numerical path integral approaches, as well as their clasof the asymptotic behavior of the solution or perhaps of rig-
sical Monte Carlo analogsproduce estimates for desired orous sum rules that the solution must obey. Examples of
properties via surprisingly simple stochastic procedureSiyierng| information could be correlation statistics or ex-

These procedures unify the treatment of quantum and Class[5'e<:ted values obtained as the simulation is perforfnéths

cal problems within a common framework. Well suited to liscussed elsewhefé? such information is typically the
implementation on current and anticipated computationa

machines, they also benefit from a “replica” character thatStarting poiqt for the dgvelopment of an assortment of vari-
renders them inherently scalaBle. ance reduction strategies. .

A key feature of path integral formulations is their use of In th_e present work, we explore _the use of a special c!qss
dimensionality as a tool. In addition to the “physical” vari- O,f adaptlvg quadrz:;\ture techmqyes in the conte>.(t of eqwllb-
ables that label the relevant “particles” in a molecular ap-fiUm path integration. By building path-related information
plication, one introduces “auxiliary” degrees of freedom to iNto the quadrature method, we show that it is possible to
describe the quantum-mechanical dispersion of imaginarjormulate the path integral problem in such a way that, for
time “paths” along which the physical particles move. The restricted classes of problems, the number of evaluations of
number and details of the physical variables vary with thethe system’s potential energy is significantly reduced relative
application. In contrast, the number of auxiliary variables isto conventionala priori quadrature approaches.
formally infinite even for a single quantum particle in one The organization of the remainder of the present paper is
dimension. as follows: In Sec. Il we present the basic formal develop-

Path integral simulatiofigypically consist of two sepa- ments and discuss the resulting computational procedures.
rate steps, one formal and one numerical. The first step cotwe apply the resulting methods to two prototypical con-
sists of using path integral quantum-mechanical expressiongensed phase applications in Sec. Ill to explore and illustrate
to create integral representations of specified thermodynamigejr computational merits. Finally, we summarize our find-
ings and offer speculation concerning their possible future
aE|ectronic mail: doll@ken.chem.brown.edu developments in Sec. IV.
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Il. FORMAL DEVELOPMENTS for a particular pathx(u,a), is given in terms of the path

A. Fourier path integral methods variablesx’, x, and the path’s Fourier coefficienfs,}, by
Feynman'’s “sum over histories” approach provides ) m(x’ —x)? 2 2

a convenient formal starting point for deriving integral rep- S(x".x,a)= 2h°B +k:1 af2oi+ BV, 24

resentations of equilibrium thermodynamic properties. In the

present context, we implement this strategy using FourieWhere

techniques. Such a formulation has the feature that it explic- 2812

itly separates the algorithmic task of path enumeration from Uﬁzm: (2.9
that of path averaging. Given that the details of the Fourier

method are described elsewhété®we limit the present dis- and where

cussion to those topics necessary to introduce the new devel-

— 1
opments. For simplicity, we utilize one-dimensional notation V=f du V(x(u,a)). (2.6)
throughout, indicating multidimensional details only where 0
necessary. Using Eqs(2.4)—(2.6), it is easy to show that the ratio of the
The canonical ensemble density matrix{x’| density matrix to its free-particle counterpartx’|

X exp(—BH)|x), provides the information necessary to com- X exp(—8H)|X)ep, can be written as
pute various equilibrium properties. This object, or a suitable , ,
o . ; (X |exp(— BH)|x)
average of it, is thus a representative computational objective -
“typical” of general thermodynamic simulations. In the (X'[exp(=BH)[X)ep
Feynman approach'*the density matrix is written formally [ daex — 7. ,a2202)expl — AV)
_ k=1%K/£0k

as B 2 2
f dan[f( - Ekzlak/ZO'k)

(x'|exp(— BH)|x)= 2 g~ Sipathl, (2.2 Equation(2.7) is an infinite-dimensional integral repre-
paths sentation of our original computational goal, the quantum-
mechanical density matrix. This expression, either directly or
: TR R with slight embellishment, is the typical starting point for the
that begin at an "initial” pointx, at a *time” 7=0 and end Monte Carlo construction of general thermodynamic aver-

at the “final” point, x’, at a timer=g#%. The statistical sig- . - - .
nificance of each path is governed by the Boltzmann-typeages' Depending upon the application, explicit construction

. ) . o . of the underlying density matrix elements is unnecessary. It
foafcttr?é’ p?;taeb?/), in which the functionals, is given in terms should be noted from Eq$2.5) and(2.7) that Fourier meth-

ods introduce a natural internal length scale into the path

2.7)

where the summation denotes a “sum over paths(%),

1 (e (m/dx(7))2 integral problem. This length scale provides a systematic
Sx(7)]= %f dT{E(d— +V(x(7))]. (2.2 foundation for the development of path truncation and sam-
0 T pling strategied®-2°

In order to implement these expressions in practice, one mu%t
devise procedures for enumerating the relevant paths and for
constructing the formal sums over them. In path integral applications, a principal task is the
To label the paths, it is convenient to rewrite E2,2) by  evaluation of the path average of the potential energy, Eq.
switching to a scaled time variabley, defined asu (2.6). In most problems this path average is not available
=17/(B%), and to express the paths‘as analytically and instead must be evaluated with numerical
guadrature. It is critical to note that even when the system
itself has many degrees of freedom, the path average in Eqg.
(2.6) remains one dimensional. Consequently, &g6) can,
in general, be evaluated using conventional quadrature. A
In Eqg. (2.3) we are using a “reference path,” here taken to key practical issue, and a principal concern of the present
be a simple, linear expression, to build in the proper0 study, is the efficiency of the associated quadrature method.
and u=1 boundary conditions. By construction, therefore,To address this concern we examine the magnitude of the
the “fluctuations” of the path about this reference must van-errors incurred by various approximate quadrature formulas.
ish atu=0 andu=1 and can be written as dormally  As shown in the following we find that the dependence of the
infinite) Fourier sine series. As emphasized by Hamntihg, error on the number of time-domain quadrature points de-
the use of such a “reference path” approach is a general andends on the nature of the frequency spectrunvf(u)).
convenient device for accelerating the convergence rates i8pecifically, if V(x(u)) has significant strength at all fre-
Fourier-based applications. Generalizations of the aboveguencies, then the convergence of the quadrature error is
mentioned results for multidimensional applications and/omgoverned by aliasing effecfsassociated with the high fre-
for more elaborate reference paths are straightforward. quency components &f(x(u)). This is significant because
With the underlying paths labeled, the remaining task isthe errors introduced by these aliasing errors turn out to be
to evaluate the path summation that appears in (Bd). largely independent of the details of the quadrature method
Substituting Eq(2.3) into Eg.(2.2) shows that the “action” employed. In contrast, i¥/(x(u)) is band limited, then the

Quadrature convergence characteristics

[

x(u,a)=x+(x’—x)u+k21 ay sin(kmu). (2.3
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guadrature error reflects explicitly the details of the particularcontribute to the underlying quantum-mechanical paths is fi-
numerical method involvedi.e., is governed by standard nite, then the potential energy’s time-domain signal, Eq.
convergence criterja (2.9), is “band limited.” That is, it contains no significant
We begin by evaluating the-space integration for a strength at frequencies beyond some maximum value. The
specified path in Eq2.6) with an ordinaryN-point quadra- asymptotic convergence of the numerical estimate for the

ture approximatior* Vy, defined by path average in such applications is governed by the details
N of the underlying quadrature method. On the other hand, if

Vo= W.V a). 2 one is dealing with appreciably nonlinear potentials and/or if

N nzl nV(X(Un.a)) 28 arbitrarily high-order Fourier terms contribute significantly

The points and weights for this otherwise unSpeCifiedto the underlying quantum-mechanical paths, then the poten-

quadrature are denoted in E@.8 by {W.} and{u,}, re- tial energy generally contains signal strength at all frequen-

spectively. It is important to emphasize that in E2.8) the cies. For any finite, -domain q.uadrat‘yr(.a, .SU(,:,h high-

) . , T : frequency components lead to inevitable “aliasing” effétts
points and weights are fixed,priori, and are independent of )
the Fourier variables that define the patifu,a). As with and.to quadrature errors that are largely independent of_the
the quantum-mechanical path itself, the potential energy as particulars of the specific method employed. To quantify

function of time can be written as the sum of “reference” flgj?o?ggﬁrzlnrderph?rf_bf d';,tfsgrlﬂ tgnp::ttlst'gn \%ﬁl? Into
and “fluctuation” terms. Specifically, for paths defined by 9 P y 9

Eq. (2.3), the corresponding potential energy along the path N .
can be written as V= gl VidS Nt k:%ﬂ VS - (2.14
/ oo If we are dealing with a band-limited situation, then we can
Y =V(X)+(V(x" )=V + Y karu). '
(X(U)=VEO+ (V) =V kzl sin(kru) always select a value dfl that is sufficiently large that for

(29 k>N the Fourier coefficients{\A/k}, are effectively zero.
The leading terms in Eq2.9) build in the proper boundary Hence, only the first summation on the right-hand side of Eq.
conditions atu=0 andu=1 while the remaining term de- (2.14 is important. The quadrature errofS v, in the low-

scribes deviations about this reference. These deviations vaRrder terms in this summation thus reflect the details of the
ish, by construction, ai=0 andu=1 and are thus naturally numerical method involved. For example, evaluating the

described by a Fourier sine series. The Fourier coefficient§Ummation in Eq.(2.13 analytically for the trapezoidal
for the potential energy fluctuations along the p4th,}, are ~ Method yields

generally nonlinear functions of the underlying path coeffi- 0, k even,
cients,{a,}. From Egs.(2.6) and (2.9, the path average of Ko
the potential energyy, becomes cos( —>
- Sn=4 1 2N/ odd (2.15
ve L ovie : N ka0
V=2 (VX)) +V00) + 2 VS, (2.10 sin| 5
2 k=1 2N
where the time averages of the sine teri§g, are given From Eqgs(2.11), (2.14), and(2.15 we see that the trapezoi-
analytically as dal quadrature error for band-limited applicatidne., the
(1-(—1)% low-order portion of Eq(2.14)] scales for larglN as 1N?,
Sk:k—' (2.11) as expected! Improving this asymptotic convergence rate
aa

for band-limited applications is a simple task: One needs

Combining Eqs(2.8)—(2.10, we see that the erros,VN, in merely to replace the trapezoidal quadrature with a higher-
a generalN-point quadrature approximation to the time- order method. For non-band-limited applications, however,
domain path average is givéassuming the quadrature er- the situation is more complex. By definition, the time depen-
rors for the reference terms vanjsby dence of the potential energy in such situations contains fre-
quency components of arbitrarily high order. A nontrivial
portion of the signal strength in E(.9) thus lies beyond the
frequency threshold imposed by the constraints of finite

- i ling. lik -limit licati
Here 5Sy \ is the difference betwee®, and the correspond- u-domain sampling. Uniike band-limited applications, we

. . o : . can not, therefore, improve the convergence rate qualita-
ing N-point approximation to the time-domain average of thetively by simply switching to a “better’ quadrature. The
kth Fourier sine term$, v, defined by

best we can generally hope to accomplish instead is to re-
N move the low-order components of E@.14). Even if one
Scn= 2, W, sin(kau,). (2.13  succeeds in eliminating all such low-order terms, however,
=t “aliasing” errors in the high-frequencyk>N) 8S, y terms
In discussing the quadrature error in the path average aff Eq. (2.14) will remain.
the potential it is useful to identify two limiting situations. If We can obtain a rough estimate of the magnitude of
one dealing with a relatively “smooth” potential energy high-order aliasing errors if we assume that the correspond-
function and if the number of Fourier path variables thating quadrature errors are uncorrelated Gaussian random vari-

NNzgl Vi8S - (2.12
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ables of order unity. This, and the assumption that the errorgre can construd generalized Gauss quadrature points and
in the low-order terms in Eq(2.14 have been reduced to weights{x, ,} and{w,}, in terms of which the path average
negligible levels, implies that the root mean square quadracan be written

ture error in the path average of the potential energy is given N
b _
y = z WnV(Xu,n)- (2-19
% 1/2 n=1
/2
rms erro&{k_zN‘,H Vk} ' (218 The power moments required to implement this procedure

. L . can be expressed as
As discussed by Lancz@8the Fourier sine coefficients of a

“smooth” function defined on a finite interval decay asymp- _ fldu X(U,a)" (2.20
totically as the reciprocal of the cube of the Fourier index. "o B ’
Equation (2.16 thus suggests(heuristically that time- ) ) )
domain quadrature error for non-band-limited path average@nd hence can be obtained waomain quadrature methods.
should converge asymptotically as roughiWNi?. Quadra- The key practical point to be made. is that this formulation of
ture errors in the high-order sine averages, while typically ofh€ path average of the moments involves numerous evalua-
order unity, are not, as assumed in E2.16, completely ~tions of the path,x(u,a), not the potential energy,
uncorrelated. Nonetheless, the present argument is sufficied{X(U,8)). Fast Fourier transform-sine methods can be used
to suggest that in non-band-limited applications thet© evaluate the sums in E®.3 gnd thus prowde an efﬁqent
asymptotic convergence rates for time averages of the potef?€ans for obtalnl'n'g the required path |nformat|on.' Finally,
tial do not trivially mirror the details of the quadrature in- We note that modified moment approaches are available and
volved but instead are controlled by universal aliasing errorsaPPear to be of practical significance in stabilizing the nu-
merics of the moment probleff.
C. Self-adaptive quadrature methods The advantage of the coordinate-space formulation, Eq.
] ] ] ) (2.19, over the time-domain expression, Kg.8), is that the

A large portion of the computational effort in path inte- ¢oordinate dependence of the potential energy in many mo-
gral simulations often involves the calculation of the sys-jecylar applications is often a relatively “simple” function
tem’s potential energy. In such situations it is thus useful i position whereas its time variation is typically appreciably
minimize the number of such evaluations. For a restrictedmore complex. Consequently, the number of coordinate-
but important class of interactions, switching to an adaptivegpace quadrature points required for an accurate evaluation
coordinate-space quadrature as opposed to the fixed, timg generally be far fewer than the corresponding number
domain approach used in E.8) permits such a reduction. yequired for the time-domain evaluation. If, for example, the
As an added bonus, such adaptive quadrature will permit Ugqtential energy is a polynomial of ordeN2-1 or less, then
to break free of the convergence limits imposed by the use o coordinate-domain quadrature points are sufficient to
time-domain methods. _ evaluate the required path average exactly whereas with

If we wish to evaluate the path average of the potentiatine-domain quadrature an infinite number of points would
energy along a pattx(u,a), arising from fixed end point, e required.
andx’, and a given set of Fourier coefficien{s,}, then it Before considering explicit numerical applications, it is
is useful to do so in the coordinate domain as opposed 10 gseful to examine the simplest nontrivial form of the present
time domain. That is, rather than averaging the potential enegyts, If we include only a single Gauss poitwo power
ergy in time along the specific pat(u,a) in the manner moments in our adaptive quadrature, then the resuilting
indicated in Eq(2.8), we imagine first using(u,a) to con-  scheme approximates the path average of the potential by the
structP(x,,a), the probability distribution function of posi- yajye of the potential energy at the corresponding path aver-
tions, x,,, associated with the path. In terms of this distribu- 346 position. As discussed by Feynntithe path average

tion of positions, we then write the path average of theof the potential, Eq(2.6), in this approximation becomes
potential energy as the coordinate-space average _
V=V(({x)), (2.21

V:f P(xy,a)V(xy)dx,. (2.17 where, from Eq(2.20), {x) is the path centroid. The present

If we actually had to construct the entire probability distri- developments pr_owde a_systemanc way t(.) gene_rahze EqQ.
bution, P(x,.,a), Eq. (2.17 would offer little practical ad- (2.2) to m_clude mformatlon_about successively hlgh-ord_er
vantage over the corresponding time-domain formulation.moments mtq the construct_lon of the p_ath average. Using
such expressions, we can, in fact, rewrite the original path

Ijgtegral in terms of integrals over the moments or cumulants
of the associated paths. Evaluating the resulting expressions
via molecular-dynamical methods leads to an effective dy-
namics reminiscent of centroid-based path integral
developmentS~2’in which the natural variables of the prob-
lem are the path momen{sr cumulants

We close this section by noting that adaptive quadrature
approaches can be utilized for the calculation of more gen-

knowing only moments of the distribution rather than the
distribution itself. As discussed by Gorddnand Press
et al,?! given 2N power momentsju,,}, defined in terms of
the probability distribution function of positions by

Mn:J dxy, P(Xu:a)(xu)nv (2.18
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FIG. 1. Quadrature errors in the approximatiorfﬁcsin(kwu)du. Results are

shown as a function of the number of quadrature paiNigor a fixed value ~ FIG. 2. Quadrature errors in the approximatiory fpsin(kmu)du. Results as

of k (taken here as 257or both Gauss—Legendrelosed circles/dashed ~shown as a function of the Fourier indéxfor a fixed number of quadrature
line) and trapezoidal quadratuksolid line). For reference, the horizontal points N=128) for Gauss—Legendre quadrature. Only results for odd val-
line indicates an error of zero. ues ofk are plotted.

eral thermodynamic properties. To illustrate this point, we  As discussed in Sec. Il, quadrature errors in path aver-
consider a representative property, the total engfigy, Us-  ages of the potential energy for band-limited applications
ing the quantum-mechanical virial estimafothe total en-  (N>k) reflect the details of the numerical procedure in-
ergy is expressed as volved. Figure 1 shows quadrature errors for Fourier sine
1 . averagespS, \ [cf. Egs.(2.13 and(2.11)], obtained using
(B)=2x(u)V" (x(u)) +{V(x(u))). (222 Gauss—Legéndre and trapezoidal quadrature for a fixed Fou-
The “barred” terms in Eq(2.22 are the time-domain aver- rier index,k. These results are displayed as a function of the
ages of the various quantities along specified quantum pathsumber of quadrature pointdl. We see that the errors for
while the brackets represent ensemble averages over a theine trapezoidal quadrature converge to zero as the reciprocal
mal distribution of paths and particle position. It is straight- of the square of the number of quadrature pointsl|?1for
forward to express the time-domain averages in the inteN>k. This asymptotic rate, anticipated from standard
grands on the right-hand side of E(.22) as analogous discussion$! would become M* if the trapezoidal method
coordinate-domain averages. The second term on the rightvere replaced by Simpson’s ruleNf/if replaced by Bode’s
hand side of Eq(2.22) is, in fact, the potential energy term rule, and so on. Figure 1 documents the exceptionally rapid
considered previouslycf. Eqg. (2.10]. The first term, the asymptotic convergence rates achieved with Gaussian
kinetic energy portion of the total energy, can be rewritten inquadrature.
coordinate-domain form by simply replacing the time- Unlike the band-limited case, however, aliasing effects
domain product of the coordinate and gradient of the potenare inevitable with fixed,u-domain quadrature for high-
tial by the corresponding coordinate-domain expression. frequency signal components. Figure 2 shows the quadrature
From the preceding discussion it is apparent that theerrors for Gauss—Legendre Fourier sine averag8gy , for
present developments can be used to construct adaptifixed N as a function of the Fourier indek, These errors,
quadrature approaches for the path integral treatment of foeffectively zero for low-order terms, become an erratic func-
mally one-dimensional problems. The approach is alsdion of order unity for the high-order Fourier components. As
clearly viable for those portions of the interaction potentialdiscussed in Sec. II, such a behavior of the quadrature error
that can be written as the sum of pair-type interactions. Irproduces an overall convergence rate for the path average of
Sec Ill, for example, we demonstrate that such methods cate potential energy that is roughlyNY?. The trapezoidal
be applied to pair-potential models of many-body systemsapproach, as can be seen from E@11) and(2.15), has a
While not all inclusive, such models constitute an importantpoor low-order performance that, by itself, produces an over-
class of practical applications. all 1/N? convergence rate in calculated path averages of the
potential energy. High-order aliasing errors in the trapezoidal
method, although more systematic than those of Gaussian
quadrature, are also of order unity. While it is straightfor-
We now consider a number of numerical examples tawvard to improve upon the low-order quadrature performance
illustrate the developments of Sec Il. These include a docuef the basic trapezoidal approach by combining results on
mentation of the nature of aliasing errors described in Sec. lidifferent mesh size%. the high-order errors in such methods
and the application of adaptive quadrature methods to prolremain of order unity, thus limiting the asymptotic conver-
lems representative of those that arise in “typical” quantumgence rate of the calculated path average of the potential
fluid simulations. energy regardless of the type of quadrature method used.

IIl. NUMERICAL EXAMPLES
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TABLE I. The average number of potential energy evaluations required to achieve a mean absolute error of less
than 0.0 in the path average of the potential energy for two Lennard-Jones helium atomsuecsémgain
trapezoidalU) vs self-adaptive Gauss quadrat(8 Results are shown as a function of the classical separation
between particles/o. The results are calculated from averages over of up to 1000 paths chosen randomly from
a quantum-mechanical distribution B=51.1 K for varying numbers of Fourier path variabléds, ().

Kmax=1 Kmax=4 Kmax=8

rlo ] S U S U S

0.70 277 4.8 327 4.7 370 4.6
0.80 100 3.4 100 3.7 108 3.7
0.90 32 25 33 3.0 36 3.2
1.00 12 2.0 12 2.7 13 3.0
1.25 3.7 1.2 4.2 1.6 51 1.6
1.50 2.8 1.0 3.2 1.3 3.5 1.4
1.75 2.0 1.0 21 1.1 2.3 11
2.00 14 1.0 1.4 1.0 1.6 1.0
2.25 11 1.0 1.1 1.0 1.0 1.0
2.50 1.0 1.0 1.0 1.0 1.0 1.0

We now consider a simple example to illustrate the ef-where the paths visit portions of the potential energy that
fectiveness of adaptive quadrature methods for the simulasary less rapidly with distance, the reduction, although mea-
tion of the equilibrium behavior of a simple pair-potential surable, is less dramatic.
model of a quantum fluid. As our example we select a A more detailed analysis of the results in Table | offers
Lennard-Jones dimer whose parameters chosen to be thoseigights into the nature of the potential energy and the con-
helium (e=10.22 K,c=2.556 A). With the atoms locked in trasting natures of fixed and adaptive quadrature. From the
place at a specifiedclassical separation distance, we  properties of Gaussian quadrature, we know thalNgoint
sample the three-dimensional quantum mechanical paths fecheme is exact for the integration of polynomials of order
the interacting particles from an appropriate quantum-2N-—1 or less. Reversing this argument, the average order of
mechanical distribution at a given temperatufefor each the coordinate-domain quadrature required to obtain accept-
path in the resulting statistical ensemble, we evaluate thable levels of accuracy for the path average of the potential
average of the potential energy, Hg.6), using both con- energy serves as a “signature” of the local polynomial order
ventional, time-domain trapezoidal quadratyeq. (2.8)]]  of those portions of the potential energy visited by the asso-
and coordinate-domain, adaptive Gauss quadrafiig  ciated quantum-mechanical paths. From Table |, we see that
(2.10]. We then compare those results with the “exact” the local polynomial order of the potential decreases with
value, itself obtained using high-accuracy Romberg methodsncreasing classical separations. At small separation, between
In the present work we taKE=51.1 K, a temperature corre- four and five adaptive Gauss points are required to obtain an
sponding to one of the thermodynamic states examined prexccurate evaluation of path averages of the potential, an in-
viously by Ceperley and Polloc The required moments of dication that the potential energy varies rapidly in these
the path are computed using high-ordeslomain quadra- harshly repulsive regions. Near the classical equilibrium, on
ture. Adaptive Gauss points are then obtained from thesthe other hand, the number of adaptive Gauss points required
path moments using Gordon’s methddBoth Gauss— drops to less than two, implying that over the length scale of
Legendre and trapezoidal quadrature are used for the réhermal fluctuations the potential is weakly anharmonic. Fi-
quired power moments. Although power moment methodsally, at large separation distances, where the potential is
are sufficient for the present study, it should be noted thagffectively linear on the length scale of path fluctuations, a
more stable, modified moment approacfiéé may prove single adaptive quadrature point is sufficient.
useful in more general applications. Local polynomial order provides an explanation of the

Table | lists the average number of potential energyinterestingk,., dependence of the results of Table I. We see
evaluations required to achieve a preselected level of accurn Table | that increasing the number of path variables in the
racy in the path average of the potential energy using timepresent study frork,,,=1 to k,ox=8 leads to an increase in
domain trapezoidal and coordinate-domain, adaptive Gaugbhe number of time-domain quadrature points required to ob-
guadrature. Results are shown as a function of the classictdin an accurate path average. On the other hand, we see that
dimer separation distance and as a function of the number @fs we add quantum-mechanical character to the paths, the
Fourier terms in the associated paths. The numbers listed imumber of adaptive coordinate-domain quadrature points re-
Table | are obtained using ensembles that contain up to 100§uired decreases at small classical separation distances and
randomly selected paths. We see that adaptive quadratuiecreases(slightly) for larger separations. For the present
reduces significantly the number of potential energy evaluaproblem, increasing the number of path variables figm,
tions required compared with trapezoidal approaches. At1l to k=8 produces paths that are spatially more ex-
smaller separation distances, where the paths are exploringnded. From a time-dependent point of view, as the path
the harshly repulsive, nonlinear portions of the potential, thdbecomes more extended, the potential enekifx(u,a)),
reduction is roughly 100-fold. At larger separation distanceshbecomes a more complex function of time and more time-
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TABLE Il. The mean absolute errors in the path averages of the LennardTABLE IV. Listed is the ratio of the density at=0, p(0), to the free-
Jones potential enerdyn units of €) for two helium atoms separatédias- particle valuep,, for the Lennard-Jones cage potential of Sec. Ill. The
sically) by a distance /0. Results, shown as a function of the number of interaction potential parameters are representative of thenélecular in-
u-domain trapezoidal pointdy,, are obtained by comparing approximate teraction(e=34.2 K, 0=2.96 A) while the cage parametea, is taken as
and numerically exact path averages for up to 1000 paths chosen at randok®o. As discussed in the text, the density for a given number of adaptive
from a quantum-mechanical distribution at 51.1 K. The number of pathquadrature pointd\s, is obtained by extrapolating values obtained from a
variables is constant for all casek,{,,=8). The numbers indicated in pa- Sequence of calculations with varying numbers of Fourier path coefficients.
rentheses are the exponents of the corresponding entries. By constructio®n the order of 5 10° Monte Carlo points are used in each path integral
N,=1 values are the classical results. The minus $ighindicates that the ~ simulation. Errors in the calculated density ratios are single standard devia-
associated errors are less than 14 tion values. The exact density ratio for this systéomputed by NMM
methods$ is 134.17.

NU

Ns p(0)/psp
to 1 8 16 32 64

1 93078
0.70 2.32) 1.7(2) 51 1.4 3.4-1) 2 452.9+1.2
0.80 3.41) 1.7 4.8-1) 1.2-1) 3.1(—2) 3 155.5-0.8
0.90 4.4 2.7 6.2—-2) 1.6—2) 4.00-3) 4 135.2¢0.6
1.00 1.0 6.4-2) 9.0(—3) 2.3—3) 5.8—4) 5 133.6-0.6
1.25 11-1)  6.2-3) 96-4) 244  59-5)
1.50 6.6-2) 2.0-3  46-4) 11-4 2.8-5
175 25-2)  7.6-4) 18-4) 44-5  11-5
2.00 11-2) 31-4) 7.A-5  18-5 =)
2.25 52-3  l4-4  33-H =) =) Tables Il and Ill present the average absolute errors in
2.50 24-3)  72-5 175 -) -)

the calculated path averages of the Lennard-Jones dimer po-
tential energy. Results for time-domain, trapezoidal quadra-
ture are listed in Table Il while the corresponding results for
domain quadrature points are required to obtain an accuragordinate-domain adaptive quadrature are shown in Table
path average. In contrast, as paths become more extended tile Errors for both types of quadrature are presented as a
particles involved are free to move further from their classi-function of the classical separation. As with Table I, the re-
cal positions. Depending on the classical separation distancrilts summarized in Tables Il and IIl are generated from an
involved, this can result in either an increase or a decrease insemble of up to 1000 paths chosen randomly from the
the number of coordinate-domain quadrature points requirecappropriate quantum-mechanical distribution. As expected,
For small classical separation distances, extending the path Table Il we see that the average error in the trapezoidal
permits it to distort toward the potential minimum away from results for a given separation distance decrease asymptoti-
the harsher, higher-order repulsive portions of the interaceally as the square of the number of quadrature points. On
tion, thus reducing the number of adaptive, coordinatethe other hand, we see from Table Il that the convergence of
domain points required. For classical separation distancethe adaptive quadrature is significantly more rapid than ob-
near the potential minimum, on the other hand, adding quarserved for the trapezoidal results.

tum mechanical dispersion permits the paths greater access As a final study of their utility, we consider the applica-
to repulsive, locally higher-order portions of the potential,tion of adaptive quadrature methods to a many-particle
thereby increasingslightly) the number of adaptive quadra- quantum-mechanical system, the Lennard-Jones model of the
ture points required. (H,),, cluster. This system has been characterized
extensively®>3°and is thus a convenient benchmark applica-

tion.
TABLE lll. The mean absolute errors in the path averages of the Lennard- We beain by considerind the quantum-mechanical den-
Jones potential enerdyn units of ) for two helium atoms separatédlas- 9 y g a

sically) by a distance /. The format is that of Table Il except that self- SItY Of_a:!lelated_ problem, the ;imple Lennard"lone_s “cage”
adaptive Gauss moment quadrature methods are used to calculate the pgdtential™ In this model a particle of masg), moves in the

averages. Entries designated by a minus sighindicate that the associated one-dimensional pOtentiaVcage(X), given by
errors are less than 1Be. Note the large difference in scale of the number
of self-adaptive pointsNg, used in the present results and the number of VeagdX) =V(x+a)+V(x—a), (3.1

trapezoidal pointsN,, used in Table II. . e . . .
pezoidal pointsh,, used ! whereV(x) is a specified pair potential. In the present appli-

Ns cation, we takeV(x) to be the Lennard-Jones potential ap-
propriate for H—H, interactions(e=34.2 K, 0=2.96 A)?°

o 1 2 3 4 5 ; .

As discussed elsewhet®®! we have found this cage model
0.70 1.61) 39 42-1  31-2  19-9 to be useful in assessing the performance and/or convergence
g'gg ‘11'2 E;t_ig gj((:g ;g((j; 102((:3 of various path integral algorithms. In Table IV we list the
1.00 77-1  82-2  41-3  16-4) o) quantum-mechanical density at a particular locatirer Q)
1.25 4.8-2) 8.2—3) 4.9-4) 2.0(—5) (-) as a function of the number of adaptive Gauss points used to
1.50 1.0-2) 1.9-4) 1.4-5) (-) (-) evaluate the path average of the potential for varying num-
175 48-3 349 ) =) ) bers of Fourier path variablek,,,,. The cage parametea,
g'gg é;:i; igﬁ:g; E:; 8 E:; in these simulations is taken to be &,2 value that produces
250 2.9-4) =) ) (=) (-) interparticle separation distances of roughly those observed

in the molecular cluster. The necessary path moments are
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TABLE V. Listed are the calculated average potential energies for ashown that, for restricted classes of interaction potentials,
Lennard-Jones model of the {H, cluster. The interaction potential param- Gauss moment methods are feasible. These self—adaptive

eters are those of Ref. 28=34.2 K, 0=2.96 A). Results for various num- . . ..
bers of Fourier path variable& {,,) are shown as a function of the number coordinate-domain methods break free of the limits on the

of adaptive quadrature pointN, used in the simulation. Convergence to the convergence rates of quadrature error otherwise imposed by
proper limit(FPI) for eachk., value is rapid and is similar to that achieved fixed, time-domain quadrature. When applicable, these meth-
for the model cage results of Table V. One million Monte Carlo points aregds appear to reduce dramatically the number evaluations of
used in each path integral simulation. Errors in the calculated values ath ial ired for typical ical path int
single standard deviation values. e potential energy required for typical numerical path inte-

gral applications.
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