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ARTICLES

Self-adaptive quadrature and numerical path integration
Dubravko Sabo and J. D. Dolla)

Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

~Received 28 December 1999; accepted 15 May 2000!

In the present paper we explore the use of generalized Gaussian quadrature methods in the context
of equilibrium path integral applications. Using moment techniques, we devise a compact,
self-adaptive approach for use in conjunction with selected classes of interaction potentials. We
demonstrate that, when applicable, the resulting approach reduces appreciably the number of
potential energy evaluations required in equilibrium path integral simulations. ©2000 American
Institute of Physics.@S0021-9606~00!00131-8#

I. INTRODUCTION

As evidenced by both the breadth and depth of recent
applications,1,2 numerical path integral methods are effective
tools for the study of finite-temperature, many-body,
quantum-mechanical systems. In their most complete form
these methods make it possible to obtain refinable estimates
of the equilibrium properties of complex physical systems
directly from specified microscopic force laws without the
need to introduce untestable numerical approximations. Al-
though not the principal focus of the present discussion, lim-
ited dynamical information can also be extracted from these
nominally equilibrium path integral methods.2–5

Numerical path integral approaches, as well as their clas-
sical Monte Carlo analogs,6 produce estimates for desired
properties via surprisingly simple stochastic procedures.
These procedures unify the treatment of quantum and classi-
cal problems within a common framework. Well suited to
implementation on current and anticipated computational
machines, they also benefit from a ‘‘replica’’ character that
renders them inherently scalable.7

A key feature of path integral formulations is their use of
dimensionality as a tool. In addition to the ‘‘physical’’ vari-
ables that label the relevant ‘‘particles’’ in a molecular ap-
plication, one introduces ‘‘auxiliary’’ degrees of freedom to
describe the quantum-mechanical dispersion of imaginary
time ‘‘paths’’ along which the physical particles move. The
number and details of the physical variables vary with the
application. In contrast, the number of auxiliary variables is
formally infinite even for a single quantum particle in one
dimension.

Path integral simulations8 typically consist of two sepa-
rate steps, one formal and one numerical. The first step con-
sists of using path integral quantum-mechanical expressions
to create integral representations of specified thermodynamic

quantities. Statistical methods are then invoked to transform
these formal representations into practical, numerical ‘‘esti-
mators’’ of the corresponding properties. Differences in con-
vergence and/or efficiency makes the design and implemen-
tation of the various steps in this overall procedure an
important practical issue in actual applications.

A general strategy to improve the performance of statis-
tically based approaches is to incorporate auxiliary informa-
tion into the numerical procedure. Such information can be
from ‘‘external’’ sources or it can be obtained ‘‘internally’’
in a ‘‘boot-strap’’ fashion from the simulation itself. Ex-
amples of external information would be a prior knowledge
of the asymptotic behavior of the solution or perhaps of rig-
orous sum rules that the solution must obey. Examples of
internal information could be correlation statistics or ex-
pected values obtained as the simulation is performed.9–11As
discussed elsewhere,6,12 such information is typically the
starting point for the development of an assortment of vari-
ance reduction strategies.

In the present work, we explore the use of a special class
of adaptive quadrature techniques in the context of equilib-
rium path integration. By building path-related information
into the quadrature method, we show that it is possible to
formulate the path integral problem in such a way that, for
restricted classes of problems, the number of evaluations of
the system’s potential energy is significantly reduced relative
to conventional,a priori quadrature approaches.

The organization of the remainder of the present paper is
as follows: In Sec. II we present the basic formal develop-
ments and discuss the resulting computational procedures.
We apply the resulting methods to two prototypical con-
densed phase applications in Sec. III to explore and illustrate
their computational merits. Finally, we summarize our find-
ings and offer speculation concerning their possible future
developments in Sec. IV.a!Electronic mail: doll@ken.chem.brown.edu
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II. FORMAL DEVELOPMENTS

A. Fourier path integral methods

Feynman’s ‘‘sum over histories’’ approach13,14 provides
a convenient formal starting point for deriving integral rep-
resentations of equilibrium thermodynamic properties. In the
present context, we implement this strategy using Fourier
techniques. Such a formulation has the feature that it explic-
itly separates the algorithmic task of path enumeration from
that of path averaging. Given that the details of the Fourier
method are described elsewhere,15,16we limit the present dis-
cussion to those topics necessary to introduce the new devel-
opments. For simplicity, we utilize one-dimensional notation
throughout, indicating multidimensional details only where
necessary.

The canonical ensemble density matrix,̂ x8u
3exp(2bH)ux&, provides the information necessary to com-
pute various equilibrium properties. This object, or a suitable
average of it, is thus a representative computational objective
‘‘typical’’ of general thermodynamic simulations. In the
Feynman approach13,14 the density matrix is written formally
as

^x8uexp~2bH !ux&5 (
paths

e2S@path#, ~2.1!

where the summation denotes a ‘‘sum over paths,’’x(t),
that begin at an ‘‘initial’’ point,x, at a ‘‘time’’ t50 and end
at the ‘‘final’’ point, x8, at a timet5b\. The statistical sig-
nificance of each path is governed by the Boltzmann-type
factor, exp(2S), in which the functional,S, is given in terms
of the path by

S@x~t!#5
1

\ E
0

b\

dtH m

2 S dx~t!

dt D 2

1V~x~t!!J . ~2.2!

In order to implement these expressions in practice, one must
devise procedures for enumerating the relevant paths and for
constructing the formal sums over them.

To label the paths, it is convenient to rewrite Eq.~2.2! by
switching to a scaled time variable,u, defined as u
5t/(b\), and to express the paths as15

x~u,a!5x1~x82x!u1 (
k51

`

ak sin~kpu!. ~2.3!

In Eq. ~2.3! we are using a ‘‘reference path,’’ here taken to
be a simple, linear expression, to build in the properu50
and u51 boundary conditions. By construction, therefore,
the ‘‘fluctuations’’ of the path about this reference must van-
ish at u50 and u51 and can be written as a~formally
infinite! Fourier sine series. As emphasized by Hamming,17

the use of such a ‘‘reference path’’ approach is a general and
convenient device for accelerating the convergence rates in
Fourier-based applications. Generalizations of the above-
mentioned results for multidimensional applications and/or
for more elaborate reference paths are straightforward.

With the underlying paths labeled, the remaining task is
to evaluate the path summation that appears in Eq.~2.1!.
Substituting Eq.~2.3! into Eq.~2.2! shows that the ‘‘action’’

for a particular path,x(u,a), is given in terms of the path
variablesx8, x, and the path’s Fourier coefficients,$ak%, by

S~x8,x,a!5
m~x82x!2

2\2b
1 (

k51

`

ak
2/2sk

21bV̄, ~2.4!

where

sk
25

2b\2

mp2k2 , ~2.5!

and where

V̄5E
0

1

du V~x~u,a!!. ~2.6!

Using Eqs.~2.4!–~2.6!, it is easy to show that the ratio of the
density matrix to its free-particle counterpart,̂x8u
3exp(2bH)ux&FP, can be written as

^x8uexp~2bH !ux&

^x8uexp~2bH !ux&FP

5
* daexp~2(k51

` ak
2/2sk

2!exp~2bV̄!

* daexp~2(k51
` ak

2/2sk
2!

. ~2.7!

Equation~2.7! is an infinite-dimensional integral repre-
sentation of our original computational goal, the quantum-
mechanical density matrix. This expression, either directly or
with slight embellishment, is the typical starting point for the
Monte Carlo construction of general thermodynamic aver-
ages. Depending upon the application, explicit construction
of the underlying density matrix elements is unnecessary. It
should be noted from Eqs.~2.5! and~2.7! that Fourier meth-
ods introduce a natural internal length scale into the path
integral problem. This length scale provides a systematic
foundation for the development of path truncation and sam-
pling strategies.18–20

B. Quadrature convergence characteristics

In path integral applications, a principal task is the
evaluation of the path average of the potential energy, Eq.
~2.6!. In most problems this path average is not available
analytically and instead must be evaluated with numerical
quadrature. It is critical to note that even when the system
itself has many degrees of freedom, the path average in Eq.
~2.6! remains one dimensional. Consequently, Eq.~2.6! can,
in general, be evaluated using conventional quadrature. A
key practical issue, and a principal concern of the present
study, is the efficiency of the associated quadrature method.
To address this concern we examine the magnitude of the
errors incurred by various approximate quadrature formulas.
As shown in the following we find that the dependence of the
error on the number of time-domain quadrature points de-
pends on the nature of the frequency spectrum ofV(x(u)).
Specifically, if V(x(u)) has significant strength at all fre-
quencies, then the convergence of the quadrature error is
governed by aliasing effects21 associated with the high fre-
quency components ofV(x(u)). This is significant because
the errors introduced by these aliasing errors turn out to be
largely independent of the details of the quadrature method
employed. In contrast, ifV(x(u)) is band limited, then the
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quadrature error reflects explicitly the details of the particular
numerical method involved~i.e., is governed by standard
convergence criteria!.

We begin by evaluating theu-space integration for a
specified path in Eq.~2.6! with an ordinaryN-point quadra-
ture approximation,21 V̄N , defined by

V̄N5 (
n51

N

WnV~x~un ,a!!. ~2.8!

The points and weights for this otherwise unspecified
quadrature are denoted in Eq.~2.8! by $Wn% and $un%, re-
spectively. It is important to emphasize that in Eq.~2.8! the
points and weights are fixed,a priori, and are independent of
the Fourier variables that define the path,x(u,a). As with
the quantum-mechanical path itself, the potential energy as a
function of time can be written as the sum of ‘‘reference’’
and ‘‘fluctuation’’ terms. Specifically, for paths defined by
Eq. ~2.3!, the corresponding potential energy along the path
can be written as

V~x~u!!5V~x!1~V~x8!2V~x!!u1 (
k51

`

V̂k sin~kpu!.

~2.9!

The leading terms in Eq.~2.9! build in the proper boundary
conditions atu50 andu51 while the remaining term de-
scribes deviations about this reference. These deviations van-
ish, by construction, atu50 andu51 and are thus naturally
described by a Fourier sine series. The Fourier coefficients
for the potential energy fluctuations along the path,$V̂k%, are
generally nonlinear functions of the underlying path coeffi-
cients,$ak%. From Eqs.~2.6! and ~2.9!, the path average of
the potential energy,V̄, becomes

V̄5
1

2
~V~x8!1V~x!!1 (

k51

`

V̂kSk , ~2.10!

where the time averages of the sine terms,Sk , are given
analytically as

Sk5
~12~21!k!

kp
. ~2.11!

Combining Eqs.~2.8!–~2.10!, we see that the error,dV̄N , in
a generalN-point quadrature approximation to the time-
domain path average is given~assuming the quadrature er-
rors for the reference terms vanish! by

dV̄N5 (
k51

`

V̂kdSk,N . ~2.12!

HeredSk,N is the difference betweenSk and the correspond-
ing N-point approximation to the time-domain average of the
kth Fourier sine term,Sk,N , defined by

Sk,N5 (
n51

N

Wn sin~kpun!. ~2.13!

In discussing the quadrature error in the path average of
the potential it is useful to identify two limiting situations. If
one dealing with a relatively ‘‘smooth’’ potential energy
function and if the number of Fourier path variables that

contribute to the underlying quantum-mechanical paths is fi-
nite, then the potential energy’s time-domain signal, Eq.
~2.9!, is ‘‘band limited.’’ That is, it contains no significant
strength at frequencies beyond some maximum value. The
asymptotic convergence of the numerical estimate for the
path average in such applications is governed by the details
of the underlying quadrature method. On the other hand, if
one is dealing with appreciably nonlinear potentials and/or if
arbitrarily high-order Fourier terms contribute significantly
to the underlying quantum-mechanical paths, then the poten-
tial energy generally contains signal strength at all frequen-
cies. For any finite, u-domain quadrature, such high-
frequency components lead to inevitable ‘‘aliasing’’ effects21

and to quadrature errors that are largely independent of the
particulars of the specific method employed. To quantify
these general remarks, it is useful to partition Eq.~2.12! into
‘‘low-order’’ and ‘‘high-order’’ components by writing

dV̄N5 (
k51

N

V̂kdSk,N1 (
k5N11

`

V̂kdSk,N . ~2.14!

If we are dealing with a band-limited situation, then we can
always select a value ofN that is sufficiently large that for
k.N the Fourier coefficients,$V̂k%, are effectively zero.
Hence, only the first summation on the right-hand side of Eq.
~2.14! is important. The quadrature errors,dSk,N , in the low-
order terms in this summation thus reflect the details of the
numerical method involved. For example, evaluating the
summation in Eq.~2.13! analytically for the trapezoidal
method yields

Sk,N55
0, k even,

1

N

cosS kp

2ND
sinS kp

2ND , k odd.
~2.15!

From Eqs.~2.11!, ~2.14!, and~2.15! we see that the trapezoi-
dal quadrature error for band-limited applications@i.e., the
low-order portion of Eq.~2.14!# scales for largeN as 1/N2,
as expected.21 Improving this asymptotic convergence rate
for band-limited applications is a simple task: One needs
merely to replace the trapezoidal quadrature with a higher-
order method. For non-band-limited applications, however,
the situation is more complex. By definition, the time depen-
dence of the potential energy in such situations contains fre-
quency components of arbitrarily high order. A nontrivial
portion of the signal strength in Eq.~2.9! thus lies beyond the
frequency threshold imposed by the constraints of finite
u-domain sampling. Unlike band-limited applications, we
can not, therefore, improve the convergence rate qualita-
tively by simply switching to a ‘‘better’’ quadrature. The
best we can generally hope to accomplish instead is to re-
move the low-order components of Eq.~2.14!. Even if one
succeeds in eliminating all such low-order terms, however,
‘‘aliasing’’ errors in the high-frequency (k.N)dSk,N terms
of Eq. ~2.14! will remain.

We can obtain a rough estimate of the magnitude of
high-order aliasing errors if we assume that the correspond-
ing quadrature errors are uncorrelated Gaussian random vari-
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ables of order unity. This, and the assumption that the errors
in the low-order terms in Eq.~2.14! have been reduced to
negligible levels, implies that the root mean square quadra-
ture error in the path average of the potential energy is given
by

rms error'H (
k5N11

`

V̂k
2J 1/2

. ~2.16!

As discussed by Lanczos,22 the Fourier sine coefficients of a
‘‘smooth’’ function defined on a finite interval decay asymp-
totically as the reciprocal of the cube of the Fourier index.
Equation ~2.16! thus suggests~heuristically! that time-
domain quadrature error for non-band-limited path averages
should converge asymptotically as roughly 1/N5/2. Quadra-
ture errors in the high-order sine averages, while typically of
order unity, are not, as assumed in Eq.~2.16!, completely
uncorrelated. Nonetheless, the present argument is sufficient
to suggest that in non-band-limited applications the
asymptotic convergence rates for time averages of the poten-
tial do not trivially mirror the details of the quadrature in-
volved but instead are controlled by universal aliasing errors.

C. Self-adaptive quadrature methods

A large portion of the computational effort in path inte-
gral simulations often involves the calculation of the sys-
tem’s potential energy. In such situations it is thus useful to
minimize the number of such evaluations. For a restricted,
but important class of interactions, switching to an adaptive,
coordinate-space quadrature as opposed to the fixed, time-
domain approach used in Eq.~2.8! permits such a reduction.
As an added bonus, such adaptive quadrature will permit us
to break free of the convergence limits imposed by the use of
time-domain methods.

If we wish to evaluate the path average of the potential
energy along a path,x(u,a), arising from fixed end points,x
andx8, and a given set of Fourier coefficients,$ak%, then it
is useful to do so in the coordinate domain as opposed to a
time domain. That is, rather than averaging the potential en-
ergy in time along the specific pathx(u,a) in the manner
indicated in Eq.~2.8!, we imagine first usingx(u,a) to con-
structP(xu ,a), the probability distribution function of posi-
tions,xu , associated with the path. In terms of this distribu-
tion of positions, we then write the path average of the
potential energy as the coordinate-space average

V̄5E P~xu ,a!V~xu!dxu . ~2.17!

If we actually had to construct the entire probability distri-
bution, P(xu ,a), Eq. ~2.17! would offer little practical ad-
vantage over the corresponding time-domain formulation.
However, averages of the type defined by Eq.~2.17! can be
evaluated efficiently using generalized Gaussian quadrature
knowing only moments of the distribution rather than the
distribution itself. As discussed by Gordon23 and Press
et al.,21 given 2N power moments,$mn%, defined in terms of
the probability distribution function of positions by

mn5E dxu P~xu ,a!~xu!n, ~2.18!

we can constructN generalized Gauss quadrature points and
weights,$xu,n% and$wn%, in terms of which the path average
can be written

V̄5 (
n51

N

wnV~xu,n!. ~2.19!

The power moments required to implement this procedure
can be expressed as

mn5E
0

1

du x~u,a!n, ~2.20!

and hence can be obtained viau-domain quadrature methods.
The key practical point to be made is that this formulation of
the path average of the moments involves numerous evalua-
tions of the path, x(u,a), not the potential energy,
V(x(u,a)). Fast Fourier transform-sine methods can be used
to evaluate the sums in Eq.~2.3! and thus provide an efficient
means for obtaining the required path information. Finally,
we note that modified moment approaches are available and
appear to be of practical significance in stabilizing the nu-
merics of the moment problem.24

The advantage of the coordinate-space formulation, Eq.
~2.19!, over the time-domain expression, Eq.~2.8!, is that the
coordinate dependence of the potential energy in many mo-
lecular applications is often a relatively ‘‘simple’’ function
of position whereas its time variation is typically appreciably
more complex. Consequently, the number of coordinate-
space quadrature points required for an accurate evaluation
will generally be far fewer than the corresponding number
required for the time-domain evaluation. If, for example, the
potential energy is a polynomial of order 2N21 or less, then
N coordinate-domain quadrature points are sufficient to
evaluate the required path average exactly whereas with
time-domain quadrature an infinite number of points would
be required.

Before considering explicit numerical applications, it is
useful to examine the simplest nontrivial form of the present
results. If we include only a single Gauss point~two power
moments! in our adaptive quadrature, then the resulting
scheme approximates the path average of the potential by the
value of the potential energy at the corresponding path aver-
age position. As discussed by Feynman,13 the path average
of the potential, Eq.~2.6!, in this approximation becomes

V̄5V~^x&!, ~2.21!

where, from Eq.~2.20!, ^x& is the path centroid. The present
developments provide a systematic way to generalize Eq.
~2.21! to include information about successively high-order
moments into the construction of the path average. Using
such expressions, we can, in fact, rewrite the original path
integral in terms of integrals over the moments or cumulants
of the associated paths. Evaluating the resulting expressions
via molecular-dynamical methods leads to an effective dy-
namics reminiscent of centroid-based path integral
developments25–27in which the natural variables of the prob-
lem are the path moments~or cumulants!.

We close this section by noting that adaptive quadrature
approaches can be utilized for the calculation of more gen-
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eral thermodynamic properties. To illustrate this point, we
consider a representative property, the total energy,^E&. Us-
ing the quantum-mechanical virial estimator,8 the total en-
ergy is expressed as

^E&5 1
2^x~u!V8~x~u!!&1^V~x~u!!&. ~2.22!

The ‘‘barred’’ terms in Eq.~2.22! are the time-domain aver-
ages of the various quantities along specified quantum paths
while the brackets represent ensemble averages over a ther-
mal distribution of paths and particle position. It is straight-
forward to express the time-domain averages in the inte-
grands on the right-hand side of Eq.~2.22! as analogous
coordinate-domain averages. The second term on the right-
hand side of Eq.~2.22! is, in fact, the potential energy term
considered previously@cf. Eq. ~2.10!#. The first term, the
kinetic energy portion of the total energy, can be rewritten in
coordinate-domain form by simply replacing the time-
domain product of the coordinate and gradient of the poten-
tial by the corresponding coordinate-domain expression.

From the preceding discussion it is apparent that the
present developments can be used to construct adaptive
quadrature approaches for the path integral treatment of for-
mally one-dimensional problems. The approach is also
clearly viable for those portions of the interaction potential
that can be written as the sum of pair-type interactions. In
Sec III, for example, we demonstrate that such methods can
be applied to pair-potential models of many-body systems.
While not all inclusive, such models constitute an important
class of practical applications.

III. NUMERICAL EXAMPLES

We now consider a number of numerical examples to
illustrate the developments of Sec II. These include a docu-
mentation of the nature of aliasing errors described in Sec. II,
and the application of adaptive quadrature methods to prob-
lems representative of those that arise in ‘‘typical’’ quantum
fluid simulations.

As discussed in Sec. II, quadrature errors in path aver-
ages of the potential energy for band-limited applications
(N.k) reflect the details of the numerical procedure in-
volved. Figure 1 shows quadrature errors for Fourier sine
averages,dSk,N @cf. Eqs.~2.13! and ~2.11!#, obtained using
Gauss–Legendre and trapezoidal quadrature for a fixed Fou-
rier index,k. These results are displayed as a function of the
number of quadrature points,N. We see that the errors for
the trapezoidal quadrature converge to zero as the reciprocal
of the square of the number of quadrature points, 1/N2, for
N.k. This asymptotic rate, anticipated from standard
discussions,21 would become 1/N4 if the trapezoidal method
were replaced by Simpson’s rule, 1/N6 if replaced by Bode’s
rule, and so on. Figure 1 documents the exceptionally rapid
asymptotic convergence rates achieved with Gaussian
quadrature.

Unlike the band-limited case, however, aliasing effects
are inevitable with fixed,u-domain quadrature for high-
frequency signal components. Figure 2 shows the quadrature
errors for Gauss–Legendre Fourier sine averages,dSk,N , for
fixed N as a function of the Fourier index,k. These errors,
effectively zero for low-order terms, become an erratic func-
tion of order unity for the high-order Fourier components. As
discussed in Sec. II, such a behavior of the quadrature error
produces an overall convergence rate for the path average of
the potential energy that is roughly 1/N5/2. The trapezoidal
approach, as can be seen from Eqs.~2.11! and ~2.15!, has a
poor low-order performance that, by itself, produces an over-
all 1/N2 convergence rate in calculated path averages of the
potential energy. High-order aliasing errors in the trapezoidal
method, although more systematic than those of Gaussian
quadrature, are also of order unity. While it is straightfor-
ward to improve upon the low-order quadrature performance
of the basic trapezoidal approach by combining results on
different mesh sizes,21 the high-order errors in such methods
remain of order unity, thus limiting the asymptotic conver-
gence rate of the calculated path average of the potential
energy regardless of the type of quadrature method used.

FIG. 1. Quadrature errors in the approximation to*0
1 sin(kpu)du. Results are

shown as a function of the number of quadrature points~N! for a fixed value
of k ~taken here as 257! for both Gauss–Legendre~closed circles/dashed
line! and trapezoidal quadrature~solid line!. For reference, the horizontal
line indicates an error of zero.

FIG. 2. Quadrature errors in the approximation to*0
1 sin(kpu)du. Results as

shown as a function of the Fourier index,k, for a fixed number of quadrature
points (N5128) for Gauss–Legendre quadrature. Only results for odd val-
ues ofk are plotted.
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We now consider a simple example to illustrate the ef-
fectiveness of adaptive quadrature methods for the simula-
tion of the equilibrium behavior of a simple pair-potential
model of a quantum fluid. As our example we select a
Lennard-Jones dimer whose parameters chosen to be those of
helium ~e510.22 K,s52.556 Å!. With the atoms locked in
place at a specified~classical! separation distance,r, we
sample the three-dimensional quantum mechanical paths for
the interacting particles from an appropriate quantum-
mechanical distribution at a given temperature,T. For each
path in the resulting statistical ensemble, we evaluate the
average of the potential energy, Eq.~2.6!, using both con-
ventional, time-domain trapezoidal quadrature@Eq. ~2.8!#
and coordinate-domain, adaptive Gauss quadrature@Eq.
~2.10!#. We then compare those results with the ‘‘exact’’
value, itself obtained using high-accuracy Romberg methods.
In the present work we takeT551.1 K, a temperature corre-
sponding to one of the thermodynamic states examined pre-
viously by Ceperley and Pollock.28 The required moments of
the path are computed using high-order,u-domain quadra-
ture. Adaptive Gauss points are then obtained from these
path moments using Gordon’s method.23 Both Gauss–
Legendre and trapezoidal quadrature are used for the re-
quired power moments. Although power moment methods
are sufficient for the present study, it should be noted that
more stable, modified moment approaches21,24 may prove
useful in more general applications.

Table I lists the average number of potential energy
evaluations required to achieve a preselected level of accu-
racy in the path average of the potential energy using time-
domain trapezoidal and coordinate-domain, adaptive Gauss
quadrature. Results are shown as a function of the classical
dimer separation distance and as a function of the number of
Fourier terms in the associated paths. The numbers listed in
Table I are obtained using ensembles that contain up to 1000
randomly selected paths. We see that adaptive quadrature
reduces significantly the number of potential energy evalua-
tions required compared with trapezoidal approaches. At
smaller separation distances, where the paths are exploring
the harshly repulsive, nonlinear portions of the potential, the
reduction is roughly 100-fold. At larger separation distances,

where the paths visit portions of the potential energy that
vary less rapidly with distance, the reduction, although mea-
surable, is less dramatic.

A more detailed analysis of the results in Table I offers
insights into the nature of the potential energy and the con-
trasting natures of fixed and adaptive quadrature. From the
properties of Gaussian quadrature, we know that anN-point
scheme is exact for the integration of polynomials of order
2N21 or less. Reversing this argument, the average order of
the coordinate-domain quadrature required to obtain accept-
able levels of accuracy for the path average of the potential
energy serves as a ‘‘signature’’ of the local polynomial order
of those portions of the potential energy visited by the asso-
ciated quantum-mechanical paths. From Table I, we see that
the local polynomial order of the potential decreases with
increasing classical separations. At small separation, between
four and five adaptive Gauss points are required to obtain an
accurate evaluation of path averages of the potential, an in-
dication that the potential energy varies rapidly in these
harshly repulsive regions. Near the classical equilibrium, on
the other hand, the number of adaptive Gauss points required
drops to less than two, implying that over the length scale of
thermal fluctuations the potential is weakly anharmonic. Fi-
nally, at large separation distances, where the potential is
effectively linear on the length scale of path fluctuations, a
single adaptive quadrature point is sufficient.

Local polynomial order provides an explanation of the
interestingkmax dependence of the results of Table I. We see
in Table I that increasing the number of path variables in the
present study fromkmax51 to kmax58 leads to an increase in
the number of time-domain quadrature points required to ob-
tain an accurate path average. On the other hand, we see that
as we add quantum-mechanical character to the paths, the
number of adaptive coordinate-domain quadrature points re-
quired decreases at small classical separation distances and
increases~slightly! for larger separations. For the present
problem, increasing the number of path variables fromkmax

51 to kmax58 produces paths that are spatially more ex-
tended. From a time-dependent point of view, as the path
becomes more extended, the potential energy,V(x(u,a)),
becomes a more complex function of time and more time-

TABLE I. The average number of potential energy evaluations required to achieve a mean absolute error of less
than 0.01e in the path average of the potential energy for two Lennard-Jones helium atoms usingu-domain
trapezoidal~U! vs self-adaptive Gauss quadrature~S!. Results are shown as a function of the classical separation
between particles,r /s. The results are calculated from averages over of up to 1000 paths chosen randomly from
a quantum-mechanical distribution atT551.1 K for varying numbers of Fourier path variables (kmax).

r /s

kmax51 kmax54 kmax58

U S U S U S

0.70 277 4.8 327 4.7 370 4.6
0.80 100 3.4 100 3.7 108 3.7
0.90 32 2.5 33 3.0 36 3.2
1.00 12 2.0 12 2.7 13 3.0
1.25 3.7 1.2 4.2 1.6 5.1 1.6
1.50 2.8 1.0 3.2 1.3 3.5 1.4
1.75 2.0 1.0 2.1 1.1 2.3 1.1
2.00 1.4 1.0 1.4 1.0 1.6 1.0
2.25 1.1 1.0 1.1 1.0 1.0 1.0
2.50 1.0 1.0 1.0 1.0 1.0 1.0
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domain quadrature points are required to obtain an accurate
path average. In contrast, as paths become more extended the
particles involved are free to move further from their classi-
cal positions. Depending on the classical separation distance
involved, this can result in either an increase or a decrease in
the number of coordinate-domain quadrature points required.
For small classical separation distances, extending the path
permits it to distort toward the potential minimum away from
the harsher, higher-order repulsive portions of the interac-
tion, thus reducing the number of adaptive, coordinate-
domain points required. For classical separation distances
near the potential minimum, on the other hand, adding quan-
tum mechanical dispersion permits the paths greater access
to repulsive, locally higher-order portions of the potential,
thereby increasing~slightly! the number of adaptive quadra-
ture points required.

Tables II and III present the average absolute errors in
the calculated path averages of the Lennard-Jones dimer po-
tential energy. Results for time-domain, trapezoidal quadra-
ture are listed in Table II while the corresponding results for
coordinate-domain adaptive quadrature are shown in Table
III. Errors for both types of quadrature are presented as a
function of the classical separation. As with Table I, the re-
sults summarized in Tables II and III are generated from an
ensemble of up to 1000 paths chosen randomly from the
appropriate quantum-mechanical distribution. As expected,
in Table II we see that the average error in the trapezoidal
results for a given separation distance decrease asymptoti-
cally as the square of the number of quadrature points. On
the other hand, we see from Table III that the convergence of
the adaptive quadrature is significantly more rapid than ob-
served for the trapezoidal results.

As a final study of their utility, we consider the applica-
tion of adaptive quadrature methods to a many-particle
quantum-mechanical system, the Lennard-Jones model of the
(H2)22 cluster. This system has been characterized
extensively29,30 and is thus a convenient benchmark applica-
tion.

We begin by considering the quantum-mechanical den-
sity of a related problem, the simple Lennard-Jones ‘‘cage’’
potential.31 In this model a particle of mass,m, moves in the
one-dimensional potential,Vcage(x), given by

Vcage~x!5V~x1a!1V~x2a!, ~3.1!

whereV(x) is a specified pair potential. In the present appli-
cation, we takeV(x) to be the Lennard-Jones potential ap-
propriate for H2–H2 interactions~e534.2 K, s52.96 Å!29

As discussed elsewhere,30,31 we have found this cage model
to be useful in assessing the performance and/or convergence
of various path integral algorithms. In Table IV we list the
quantum-mechanical density at a particular location (x50)
as a function of the number of adaptive Gauss points used to
evaluate the path average of the potential for varying num-
bers of Fourier path variables,kmax. The cage parameter,a,
in these simulations is taken to be 1.2s, a value that produces
interparticle separation distances of roughly those observed
in the molecular cluster. The necessary path moments are

TABLE II. The mean absolute errors in the path averages of the Lennard-
Jones potential energy~in units of e! for two helium atoms separated~clas-
sically! by a distancer /s. Results, shown as a function of the number of
u-domain trapezoidal points,Nu , are obtained by comparing approximate
and numerically exact path averages for up to 1000 paths chosen at random
from a quantum-mechanical distribution at 51.1 K. The number of path
variables is constant for all cases (kmax58). The numbers indicated in pa-
rentheses are the exponents of the corresponding entries. By construction,
Nu51 values are the classical results. The minus sign~2! indicates that the
associated errors are less than 1025e.

Nu

r /s 1 8 16 32 64

0.70 2.3~2! 1.7~1! 5.1 1.4 3.4~21!
0.80 3.4~1! 1.7 4.8~21! 1.2~21! 3.1~22!
0.90 4.4 2.7~21! 6.2~22! 1.6~22! 4.0~23!
1.00 1.0 6.4~22! 9.0~23! 2.3~23! 5.8~24!
1.25 1.1~21! 6.2~23! 9.6~24! 2.4~24! 5.9~25!
1.50 6.6~22! 2.0~23! 4.6~24! 1.1~24! 2.8~25!
1.75 2.5~22! 7.6~24! 1.8~24! 4.4~25! 1.1~25!
2.00 1.1~22! 3.1~24! 7.2~25! 1.8~25! ~2!
2.25 5.2~23! 1.4~24! 3.3~25! ~2! ~2!
2.50 2.4~23! 7.2~25! 1.7~25! ~2! ~2!

TABLE III. The mean absolute errors in the path averages of the Lennard-
Jones potential energy~in units of e! for two helium atoms separated~clas-
sically! by a distancer /s. The format is that of Table II except that self-
adaptive Gauss moment quadrature methods are used to calculate the path
averages. Entries designated by a minus sign~2! indicate that the associated
errors are less than 1025e. Note the large difference in scale of the number
of self-adaptive points,Ns , used in the present results and the number of
trapezoidal points,Nu , used in Table II.

r /s

Ns

1 2 3 4 5

0.70 1.6~1! 3.9 4.2~21! 3.1~22! 1.9~23!
0.80 4.8 6.0~21! 3.6~22! 1.6~23! 7.0~25!
0.90 1.8 1.7~21! 8.4~23! 3.3~24! 1.2~25!
1.00 7.7~21! 8.2~22! 4.1~23! 1.6~24! ~2!
1.25 4.8~22! 8.2~23! 4.9~24! 2.0~25! ~2!
1.50 1.0~22! 1.9~24! 1.4~25! ~2! ~2!
1.75 4.5~23! 3.4~25! ~2! ~2! ~2!
2.00 1.7~23! 1.4~25! ~2! ~2! ~2!
2.25 6.7~24! 4.8~25! ~2! ~2! ~2!
2.50 2.9~24! ~2! ~2! ~2! ~2!

TABLE IV. Listed is the ratio of the density atx50, r~0!, to the free-
particle value,r f p , for the Lennard-Jones cage potential of Sec. III. The
interaction potential parameters are representative of the H2 molecular in-
teraction~e534.2 K, s52.96 Å! while the cage parameter,a, is taken as
1.2s. As discussed in the text, the density for a given number of adaptive
quadrature points,Ns , is obtained by extrapolating values obtained from a
sequence of calculations with varying numbers of Fourier path coefficients.
On the order of 53106 Monte Carlo points are used in each path integral
simulation. Errors in the calculated density ratios are single standard devia-
tion values. The exact density ratio for this system~computed by NMM
methods! is 134.17.

Ns r(0)/r f p

1 930768
2 452.961.2
3 155.560.8
4 135.260.6
5 133.660.6
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computed via Eq.~2.20! using high-accuracy Romberg meth-
ods. These results are computed from Eq.~2.7! via Fourier
path integral Monte Carlo methods. From previous work32

we know that the calculated density for nonpartial averaged
Fourier path integral calculations converges to its exact value
asymptotically as 1/kmax. Results listed in Table IV are ob-
tained from a fit of thekmax dependence of the calculated
density ratio to a second-order polynomial in 1/kmax. Up to
five million Monte Carlo configurations are used in each
individual path integral simulation. The calculated density
ratio converges, within the estimated single standard devia-
tion statistical error of60.6, to the exact value of 134.17,
obtained using NMM methods,33 with only five quadrature
points. This rate of convergence is consistent with that ob-
served in our dimer study~Table III! and, as discussed in
Sec. II, is appreciably more rapid than would be possible
with fixed, time-domain methods.

Finally, to examine the utility of self-adaptive methods
for more physically demanding applications, we consider
their use in the study of many-body molecular clusters. As a
representative simulation, we present in Table V results for
the thermodynamic potential energies of the (H2)22 cluster
obtained for varying numbers of path variables atT56 K. In
Table V the average potential energies are obtained via a
path-average estimator32 using adaptive quadrature methods.
For a given number of path variables, results obtained using
various numbers of quadrature points are compared with the
corresponding results obtained from direct, time-domain
Fourier path integral methods.30 As with the corresponding
cage simulations, the convergence of the self-adaptive results
is extremely rapid. Specifically, for a given number of path
variables only four self-adaptive Gauss quadrature points are
required to produce convergence of the thermodynamic po-
tential energy to its proper limit. As discussed in Sec. II,
conventional Fourier methods typically require that the num-
ber of time-domain quadrature points be at least of the order
of the number of path variables in the problem.

IV. SUMMARY

In the present work we have attempted to clarify the role
of the choice of numerical quadrature on the convergence
properties of numerical path integration algorithms. We have

shown that, for restricted classes of interaction potentials,
Gauss moment methods are feasible. These self-adaptive,
coordinate-domain methods break free of the limits on the
convergence rates of quadrature error otherwise imposed by
fixed, time-domain quadrature. When applicable, these meth-
ods appear to reduce dramatically the number evaluations of
the potential energy required for typical numerical path inte-
gral applications.
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