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ABSTRACT
Proportional survival (S) is a crucial life-history parameter in population dynamics,
natural selection, and management of harvested stocks; variations in survival due to
age, sex, or geographic region may have large effects on the success of managing fish
stocks. The blacktip shark, Carcharhinus limbatus, is the most abundantly harvested
shark species in American fisheries. Direct estimates of survival are preferred, but all
current survival estimates for this species are either focused on young-of-the-year
(YOY) or based on indirect methods. The objectives of this study were to determine
whether age, sex, or geographic grouping affects survival and to generate direct
survival estimates based on tag-recovery data. As a byproduct of this analysis,
distribution maps and descriptive data summarizing captures were included. The U.S.
National Marine Fisheries Service has been collecting tag-recovery data since 1962
through the Cooperative Shark Tagging Program (CSTP). Models were generated
from this database with program MARK, ranked in order of parsimony according to
Akaike’s Information Criterion, and tested for significance of effects with likelihood
ratio tests. No movement has been observed to date between the west Gulf of Mexico,
east Gulf of Mexico, and U.S. Atlantic, but 2 sharks tagged in the U.S. Virgin Islands
were recaptured off Florida and Georgia (displacement= 1049 and 1183 n. mi.,
respectively). Survival did not differ significantly for males vs. females (P=0.761),
east vs. west Gulf of Mexico (P=0.654), or U.S. Atlantic vs. Gulf of Mexico
(P=0.243). However, significant differences were found for survival of YOY (0.580)
and post-YOY (0.725) within the Gulf of Mexico (P=0.0003). These results

demonstrate that survival can be modeled effectively for species in the CSTP with



relatively small sample sizes. Future analyses may benefit from a length-based model,

due to the difficulty in assigning life stages based on size.
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ABSTRACT
Proportional survival (S) is a crucial life-history parameter in population dynamics,
natural selection, and management of harvested stocks; variations in survival due to
age, sex, or geographic region may have large effects on the success of managing fish
stocks. The blacktip shark, Carcharhinus limbatus, is the most abundantly harvested
shark species in American fisheries. Direct estimates of survival are preferred, but all
current survival estimates for this species are either focused on young-of-the-year
(YOY) or based on indirect methods. The objectives of this study were to determine
whether age, sex, and geographic grouping affect survival and to generate direct
survival estimates based on tag-recovery data. As a byproduct of this analysis,
distribution maps and descriptive data summarizing captures were included. No
movement has been observed to date between the west Gulf of Mexico, east Gulf of
Mexico, and U.S. Atlantic, but 2 sharks tagged in the U.S. Virgin Islands were
recaptured off Florida and Georgia (displacement= 1049 and 1183 n. mi.,
respectively). Survival did not differ significantly for males vs. females (P=0.761),
east vs. west Gulf of Mexico (P=0.654), or U.S. Atlantic vs. Gulf of Mexico
(P=0.243). However, significant differences were found for survival of YOY (0.580)
and post-YOY (0.725) within the Gulf of Mexico (P=0.0003). Future analyses may
benefit from a length-based model, due to the difficulty in assigning life stages based
on size.

INTRODUCTION

Proportional survival (S) is a crucial life-history parameter in population

dynamics, natural selection, and management of harvested stocks (Lebreton et al.,



1992). Variation in survival, fecundity, and growth rate can interact to influence
adaptive fitness (Endler, 1986; Hutchings, 1993). Accurate estimates of survival are
a key component of demographic analysis and stock assessment of marine
species (Cortés, 1998; Mollet & Cailliet, 2002), and they determine which levels of
exploitation are sustainable (Simpfendorfer et al., 2005a).

Vetter (1988) suggested that survival in fish stocks can vary due to a
number of factors, including changing levels of fishing effort (Quinn and Deriso,
1999). Gear selectivity, predation pressure, or other factors may result in survival
probabilities that vary with age (Deriso et al., 1985; Quinn and Deriso, 1999). These
variations in survival could also have large effects on the success of fisheries
management (Deriso et al., 1985; Cortés, 1998; Quinn and Deriso, 1999). In either of
the cases above, stock assessments that assume constant survival may greatly
overestimate or underestimate a stock’s capacity to handle intensive fishing pressure.
This lack of information may lead to fishing limits that are too high for sustainable
harvest. In a broader sense, determining whether survival varies with time or age is
the first step in understanding how anthropogenic causes may be affecting the life-
history of a species.

Proportional survival over a finite interval is related to total instantaneous
mortality rate (Z) by

S=eZ
where Z is the sum of instantaneous natural mortality (M) and instantaneous
fishing mortality (F) (Quinn and Deriso, 1999). Converting between

instantaneous mortality and finite survival assumes that the instantaneous



mortality rate is constant during the finite time interval. Many methods of
estimating survival were described by Ricker (1975) and Seber (2002). Direct
methods of calculating survival (i.e., mark-recapture) are preferable over indirect
methods that involve the use of life-history parameters (Brownie et al., 1985; Lebreton
et al., 1992; Quinn & Deriso, 1999; Simpfendorfer et al., 2005b). Recent advances in
computer modeling technology allow powerful hypothesis testing related to variations
in survival (Lebreton et al., 1992). New models allow the user to separate the effects
of recovery probability from the probability of death using mark-recapture histories
(White & Burnham, 1999; Cooch & White?).

Elasmobranchs are slow-growing fish with late maturity and small litter size
(Hoenig and Gruber, 1990). This K-type strategy (sensu MacArthur & Wilson, 1967)
represents a significant challenge for managing these populations (Hoenig & Gruber,
1990; Pratt and Casey, 1990; Walker, 1998). In addition, large predatory fishes like
sharks may be much more sensitive to overexploitation (and ultimately, extinction)
than previously anticipated (Myers and Worm, 2005). In order to assist stock
assessment and management, more information about shark populations and biological
variables is needed (Walker, 1998; ICCAT?). In particular, proportional survival is a
critical factor in stock assessment and demographic analysis (Mollet & Calliet, 2002).

The blacktip shark, Carcharhinus limbatus (Mdller and Henle, 1839), is the

ICooch, E. and G. White. 2004. Program MARK. “A Gentle Introduction”, 5" edn.
[http://www.phidot.org/software/mark/docs/book/, accessed November 2011.]
2|CCAT. 2005. Report of the 2004 inter-sessional meeting of the ICCAT subcommittee on bycatches: shark stock

assessment. Collect. Vol. Sci. Pap. ICCAT 54:799-890.



most abundantly harvested shark species in American fisheries; investigations of
survival are appropriate for such an ecologically and economically important species
(Castro, 1996; Grace and Henwood, 1997; Cortés*; NOAA/NMFS*; NOAA/NMFS®).
Blacktip sharks inhabit tropical, subtropical, and temperate waters throughout the
world (Garrick, 1982; Castro, 1996). This species has an annual migration cycle that
corresponds with a biennial ovulation cycle (Branstetter, 1981; Castro, 1996).
Females either breed or give birth in May to June; post-parturition females are not able
to mate again until the following spring. It is believed that the entire population
migrates to more southern waters in the fall; in the following spring, the sharks return
to their northern breeding and pupping grounds (Branstetter, 1981 Killam®; Castro,
1993; Castro, 1996).

Indirect methods have provided survival probabilities for blacktip sharks
that range from 0.66-0.88 (Cortés, 1998) and 0.70-0.82 (Cortés and Brooks?).
However, all of these methods are based on life history parameters like longevity and

age at maturity; no one has estimated adult blacktip shark survival based on

3Cortés, E. 2000. 2000 shark evaluation annual report. Document SFD-00/01-119. NOAA/NMFS Southeast
Fisheries Science Center, Panama City, Fla. 24 p.

*NOAA/NMFS. 2006. SEDAR 11 Stock Assessment Report. Large Coastal Shark Complex, Blacktip, and Sandbar
Shark. 387 p.

*NOAA/NMFS. 2012. SEDAR 29 Stock Assessment Report. HMS Gulf of Mexico Blacktip Shark. 197 p.
®Killam, K. 1987. The reproductive biology, age, and growth of the blacktip shark, Carcharhinus limbatus
(Valenciennes) near Tampa Bay, Florida. M.S. Thesis, University of South Florida, Tampa, FL.

"Cortés, E and E. Brooks. 2005. Indirect estimates of natural mortality for sandbar (Carcharhinus plumbeus) and

blacktip (Carcharhinus limbatus) sharks in the western North Atlantic. SEDAR 11 LCS05/06-DW-15 14 p.



empirical tag-recovery data from the population itself. As a result, survival
estimates based on direct methods were unavailable for the 2005 SouthEast Data
Assessment and Review (SEDAR) on large coastal sharks (Cortés and Brooks?).
Similarly, no one has tested for significant differences in survival based on time,
age, sex, and location in blacktip sharks. Therefore, the primary objectives of this
research were to estimate survival in blacktip sharks based on tag-recovery data and
determine if significant differences in survival exist based on time, age, sex, and
location.

Information on size, distribution, and movement were provided as a byproduct
of this survival analysis. Blacktip sharks in the Gulf of Mexico (GOM) are currently
managed by the National Marine Fisheries Service (NMFS) as a single stock, but the
degree of exchange between the east GOM, west GOM, and U.S. Atlantic is unknown
(Kohler et al., 1998; Keeney et al., 2003; Kohler et al.2; NOAA/NMFS*). According
to recent SEDAR stock assessment reports, there is a great need for conventional
mark-recapture studies that describe the exchange (or lack thereof) of this stock
between the East and West GOM (NOAA/NMFS*: NOAA/NMFS®). No exchange
has been observed between these regions to date. Therefore, it is desirable to
determine whether survival differs significantly among sharks from these 3 regions.

The NMFS Cooperative Shark Tagging Program (CSTP) is one of the largest

mark-recapture databases for sharks in the world. It currently includes over 227,000

®Kohler N. E., P. A. Turner, and R. Briggs. 2005. Preliminary Tag and Recapture Data for the Sandbar Shark,
Carcharhinus plumbeus, and the Blacktip Shark, Carcharhinus limbatus, in the Western North Atlantic. SEDAR

11 LCS05-06-DW-29. 40p.



tagged sharks of over 50 species and 13,000 recaptures. NMFS has been collecting
mark-recapture data since 1962 through the CSTP. Recreational and commercial
fishermen tag sharks, providing information on size, sex, condition, location, and date
of capture. If a tagged shark is recaptured, corresponding information is sent to
NMFS, allowing for the calculation of time at large and displacement (calculated as
the shortest distance between mark and recapture locations). Displacement values are
presented in nautical miles, n. mi, where 1 n. mi=1.852 km.

Blacktip sharks were predominantly caught by rod and reel, longline, and gill
net. The body length of some sharks was measured by biologists, but some were
recorded as “estimates.” The effect of this uncertainty was minimized by collapsing
length data into life stage categories. This database was fishery-dependent, but the
large sample size (n>9000 blacktip shark captures) presented a unique opportunity to
map distribution and analyze survival in the geographic areas that are most important
to fisheries. The CSTP database represented extensive spatial coverage of U.S.
waters, so spatial bias in distribution was minimized (Kohler et al., 1998). For the
purposes of this analysis, all shark landings were defined as “captures”, including both
tags and recaptures. Shark recaptures were “dead” recoveries; the sharks were not re-
released and recaptured after initial recapture.

MATERIALS AND METHODS

In the CSTP, length and weight were reported with varying units of measure.
Fork length was used whenever provided and converted to cm when applicable. Total
length was converted to fork length using the formula:

TL(cm)=(1.1955)FL(cm)+1.13 (NMFS SEFSC unpublished data).



When neither fork length nor total length was provided, weight in kilograms was
converted to FL according to the formula:
Weight (kg)=(1*10°)FL(cm)*%* (NMFS SEFSC unpublished data).

Sharks were categorized into life stages according to length. The boundary
between young-of-the-year (YOY) and juveniles was set to 56.6 cm FL, the maximum
embryo size plus 10% TL (cm) according to Garrick (1982). Sharks measuring less
than 56.6 cm FL were classified as YOY. Males and females in the Gulf of Mexico
were considered mature when FL was greater than the median length at maturity,
103.4 cm and 117.3 cm, respectively (Carlson et al., 2006). Males and females
between 56.6 cm FL and the median length at maturity were considered to be juveniles
for the purposes of this study. Sharks of unknown sex that were between 56.6 cm FL
and 103.4 cm FL were categorized as juveniles. Sharks without a size estimate or
sharks of unknown sex that were between 103.4 cm FL and 117.3 cm FL were
categorized as “unknown maturity.” Sharks of unknown sex that were larger than
117.3 cm FL were categorized as mature. Sharks were classified as embryos when
they were taken from pregnant females. A similar methodology was used for Atlantic
sharks, substituting 116.7 and 126.6 cm FL as the median length at maturity for males
and females, respectively (Carlson et al., 2006). Data were plotted as points for
distribution maps with Maplinfo Professional 7.0 (MapInfo Professional, vers. 7.0,
Pitney Bowes Software, Inc., Troy, NY).

In the CSTP database, blacktip sharks have been reported along the east coast
of the United States from Texas to Delaware; a limited amount of data were also

available from Mexico and the Caribbean, as far south as French Guiana. NMFS



manages 2 stocks of blacktip sharks, 1 in the U.S. Atlantic Ocean and 1 in the GOM.
The U.S. Atlantic region was defined as the geographic area within the U.S. Exclusive
Economic Zone (EEZ) from Delaware to the Straits of Florida (NOAA/NMFS®). The
Gulf of Mexico was defined as the geographic region from the Florida Keys
throughout the Gulf of Mexico (NOAA/NMFS®).  For the purposes of these analyses,
the boundary between the Gulf of Mexico and the U.S. Atlantic region was a line
beginning on the east coast of Florida at 25°10.4°N latitude, proceeding due east to the
U.S. EEZ. The “International Atlantic” was defined as the region of the northwest
Atlantic not included in the aforementioned regions. For certain analyses, the Gulf of
Mexico was further divided into 3 sub-regions: the east U.S. GOM, west U.S. GOM,
and the Mexican GOM. The U.S. EEZ and the meridian at 89°W longitude were the
boundaries to separate these sub-regions (Figure 1).

Direct estimates of survival were calculated with the freely available
program MARK (Program MARK, vers. 6.2, Gary C. White, Fort Collins, CO),
loosely following the procedure of Wood et al. (2007). The 4 survival analyses
conducted were: 1) YOY vs. post-YQOY, 2) male vs. female, 3) west vs. east GOM,
and 4) GOM vs. Atlantic. Survival was modeled with the reduced (Seber)
parameterization (Seber, 1970; Anderson et al., 1985). In this parameterization, S was
the probability that the fish survives the year, and r was the probability that the fish
was recovered and reported (Fig. A-1). Model names describe the parameters
included in the model. For example, S(g*t) r(g+t) indicates that survival was
modeled with an interaction between group and time, and recovery probability

was modeled with group and time effects, but no interaction. A period (.)



indicates that either group or time effects were not included in the model. Data
were entered in the classic recovery (triangular) matrix format (Fig. A-2). S and r were
solved numerically for the maximum likelihood estimate, and the profile likelihood
method generated confidence intervals. A parametric bootstrap procedure (Cooch and
White') for the most general model (group- and time-dependent survival and recovery
probabilities) assessed goodness of fit. The quasi-likelihood parameter, ¢ was
estimated as the average of the mean ¢ and mean deviance estimates. Models were
ranked according to the quasi-likelihood adjusted AIC (White and Burnham, 1999).
Likelihood ratio tests (LRT) determined whether survival and recovery
probabilities were time-dependent, age-dependent, sex-dependent, region-
dependent or constant.

In addition to the predictive variables of group and time, models were fit
with an external index to account for changing levels of yearly fishing effort. It is
known that

F=qf
where F=fishing mortality rate, g=catchability coefficient, and f=fishing effort (Quinn
and Deriso, 1999). The catchability coefficient was assumed to be constant over time,
so that F could be used as proxy for effort. Values of F were available specifically for
Gulf of Mexico and U.S. Atlantic blacktip sharks from 1986-2004 from the SEDAR
11 Stock Assessment Report (Fig. A-3). Therefore, the analysis was constrained to
this time period. A more detailed explanation of survival analysis procedures is

provided in Appendix II.
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RESULTS

The first blacktip sharks in the CSTP were tagged in 1964, but the tagging
rates remained below 100 sharks per year until 1988 in the GOM and 1999 in the U.S.
Atlantic (Figs. A-4-A-5). Tagging rate in the International Atlantic reached a
maximum of 69 sharks per year in 2005 (Fig. A-6). A total of 8871 blacktip sharks
were tagged within the CSTP. From 1964 through 2011, 230 of these sharks were
recaptured, leading to 9101 captures, total (Table 1). The fate of these tagged sharks
is displayed by region in Table 2. Notably, 1 shark tagged in U.S. waters of the
Atlantic Ocean was recaptured in the International Atlantic, 3 sharks tagged in the
International Atlantic were recaptured in the U.S. Atlantic, and 35 sharks tagged in the
U.S. waters of the western GOM were recaptured in Mexican waters of the GOM.

Information on these captures by sex and life stage is provided in Tables 3-5.
Females were caught more often than males, resulting in a male to female sex ratio of
1:1.2 in the U.S. Atlantic, 1:1.8 in the GOM and 1:1.6 in the International Atlantic.
Juveniles were the most commonly caught life stage for both males and females.

Mean time at liberty ranged from 242.3 days in the eastern U.S. GOM to 506.9
days in the International Atlantic (Table 6). During the period of study, 35 blacktip
sharks were recaptured in Mexican waters, but no blacktip sharks were tagged there.
For this reason, the final destination of sharks in the southern GOM was unknown.

Recapture statistics by sex are provided in Tables A-1-3 (excluding the 4
sharks that crossed between the U.S. Atlantic and the International Atlantic, as
described in Table 7). In the U.S. Atlantic, 3959 sharks were tagged, and 81 of these

tagged sharks were recaptured in the same region (2.0%), yielding a total of 4040
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captures. The highest values for maximum displacement (616 n. mi.), maximum
speed (15.3 n. mi./day), and maximum time at liberty (5.9 years) were from a male,
female, and a shark of unknown sex, respectively. In the GOM, 4415 sharks were
tagged, and 130 of these tagged sharks were recaptured (2.9%), yielding a total of
4545 blacktip shark captures. The highest values for maximum displacement (632 n.
mi.), maximum speed (16.4 n. mi./day), and maximum time at liberty (7.8 years) were
from female sharks. In the International Atlantic, 493 sharks were tagged, and 15 of
these tagged sharks were recaptured in the same region (3.0%), yielding a total of 508
captures. The highest values for maximum displacement (215 n. mi.) and maximum
speed (0.5 n. mi./day) were from females, but the maximum time at liberty (2.6 years)
was from a male.

Distribution of recaptures by time at liberty, displacement, and speed is
displayed in Figure 3. The shark with the longest time at liberty (7.8 years) was a
juvenile female tagged near Galveston, Texas that was recaptured 632 nautical miles
away in the waters off Veracruz, Mexico. The fastest moving shark was a YOY
female that was tagged off Padre Island, Texas and recaptured near Veracruz, Mexico,
traveling 459 nautical miles in 28 days (16.4 n. mi./day). The 2 sharks with the largest
displacement were YOY males tagged by a NMFS biologist at the British Virgin
Islands and recaptured 1043 and 1089 n. mi. away off Cape Canaveral, FL and Jekyll
Sound, GA, respectively. Mean displacement of blacktip sharks at liberty for less than
1 year are displayed by region in Figure A-7. Sharks tagged as juveniles had the

largest mean displacement in all 3 regions.
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Blacktip sharks measuring approximately 50-60 cm FL were the most
frequently caught size group, corresponding to the boundary between YOY and
juvenile categories (Figs. 2-4 and Figs. A-8-10). The smallest shark categorized as a
YOY was caught in the GOM, and was measured as 32 cm FL. The largest measured
male and female were 160 and 166 cm FL in the GOM, 179.6 and 176.5 cm FL in the
U.S. Atlantic, and 134 and 166cm FL in the International Atlantic, respectively. The
largest 2 sharks with “estimated” lengths were females estimated at 190 cm FL (1
from the GOM and 1 from the U.S. Atlantic).

The CSTP database included a combination of effort from recreational
fishermen, biologists, and commercial fishermen. Recreational landings were more
common than those specifically identified as “commercial”. Biologists also tagged
many sharks in the GOM, but most of the tagging was done by recreational fishermen
(Table A-4). The number of sharks tagged by biologists increased dramatically in the
2000s (Figs. A-11-12).

The temporal trends in the fishing industry (Figs. A-11-12) were mirrored by
temporal trends in gear (Figs. A-13-14). Inthe U.S. Atlantic, the 3 most common sets
of gear for captures were rod and reel (n=2144), longline (n=1659), and gill net
(n=216) (Table A-5). Rod and reel captures increased moderately through the 1990s
and 2000s, whereas longline captures increased dramatically in the 2000s (Fig. A-13).
Blacktip sharks in the GOM were also predominantly caught by rod and reel
(n=3278), longline (n=1110), and gill net (n=134). The 1980s and 1990s were

dominated by rod and reel captures, whereas longline captures increased in the 2000s.
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Sharks were also caught in smaller numbers (n<20) with handline, otter trawl, beach
seine, set line, and hand landing net.

Male blacktip sharks have not yet been tagged in certain areas off Florida,
Tamaulipas and Veracruz (Figs. 5-7 and Figs. A-15-20). Blacktip sharks seemed to
remain strictly within the 200m depth contour. Larger sharks have been tagged in
both nearshore and continental shelf waters within this range, but YOY were almost
exclusively found close to shore (Figs. 8-10 and Figs. A-21-26).

YQOY were present along most of the U. S. Gulf of Mexico coastline, with
exceptions in parts of Florida and Louisiana (Figs. A-27-35). This trend may have
simply reflected reduced effort in these areas. Almost all of these sharks were caught
near the shore.

No movement was observed between the west GOM, east GOM, and U.S.
Atlantic (Figs. 11-13 and Figs. A-36-41). However, sharks of all 3 life stages
migrated from U. S. to Mexican waters in the Gulf of Mexico (Fig. A-39). Of the 130
sharks that were tagged and recaptured in the GOM, only 32 were recaptured in an
older life stage than tagged (25%); the majority of sharks were recaptured within the
same life stage. Similarly, of the 81 sharks tagged and recaptured in the U.S. Atlantic,
19 were recaptured in an older life stage (23%). In the International Atlantic, 3 of the
15 recaptured sharks were recaptured in an older life stage (20%).

Survival

In analysis 1, survival models were constructed with an age effect,

differentiating between YOY and post-YOY groups (designated by a “g” in the model

structure). The most parsimonious model S(..) r(g+effort) had 2.38 times more weight
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than the next best model S(g.) r(g+effort) and 29.73 times more weight than S(g.)
r(.effort) (Table A-6). Likelihood ratio tests determined the significance of various
effects in the GOM YOY vs. post-YOY analysis (Tables A-7-8). No tests were
significant for the interaction of age group and time for recovery probability, r(g*t), or
survival, S(g*t). However, 7 out of 14 possible tests were significant for S(g), 5 out of
14 for S(t), 8 out of 10 for r(effort), and 5 out of 10 for r(t). All LRT’s were
significant for r(g). The first comparison in each section of Tables A-7-8 displays the
simplest model that contains the parameter of interest. These comparisons are
particularly useful in hypothesis testing. By only considering the simplest LRT’s,
r(effort), r(g), and S(g) were significant effects. Therefore, survival and recovery
probabilities were significantly different for YOY and post-YQOY, and effort is a
significant factor in recovery probability in this analysis.

In analysis 2, post-YOY data were modeled with male and female groups. The
most parsimonious model S(..) r(.effort) had 2.64 times more weight than the next best
model, S(g.) r(.effort) and 2.67 times more weight than S(..) r(g+effort) (Table A-9).
The relevant likelihood ratio tests are given in Tables A-10-11. No tests were
significant for S(g), S(g*t), r(t) and r(g*t). However, 1 out of 14 tests was significant
for S(t), 7 out of 10 for r(effort), and 4 out of 15 for r(g). By only considering the
simplest LRT’s, only r(effort) was a significant effect. Therefore, survival was not
significantly different for male vs. female sharks, and effort is a significant factor in
recovery probability in this analysis.

In analysis 3, post-YOY data were modeled with groups representing the west

GOM and east GOM. The most parsimonious model S(..) r(.effort) had 2.64 times

15



more weight than the next best model S(g.) r(.effort) and 2.67 times more weight than
S(..) r(g+effort) (Table A-12). The relevant likelihood ratio tests are shown in Tables
A-13-14. No tests were significant for S(g), S(g*t), r(t), or r(g*t). However, 3 out of
14 tests were significant for S(t), 8 out of 10 tests were significant for r(effort), 6 out
of 15 tests were significant for r(g). By only considering the simplest LRT’s, only
r(effort) was a significant effect. Therefore, survival was not significantly different
for post-YOY sharks from the west GOM vs. those from the west GOM. Effort was a
significant factor in recovery probability in this analysis.

In analysis 4, post-YOY data were then modeled with groups in the Atlantic
and GOM. The most parsimonious model S(..) r(g+effort) had 1.53 times more
weight than the next best model, S(g.) r(g+effort), and 149.90 times more weight than
S(..) r(..) (Table A-15). The relevant likelihood ratio tests are displayed in Tables A-
16-17. No tests were significant for S(g). However, 7 out of 12 tests were significant
for S(t), 1 out of 6 for S(g*t), 4 out of 5 for r(effort), 3 out of 10 for r(g), 4 out of 10
for r(t), and 1 out of 5 for r(g*t). By only considering the simplest LRT’s, S(g*t),
r(effort), and r(t) were significant effects. Therefore, there was no evidence that
survival was significantly different for post-YOY sharks from the GOM vs. those from
the U.S. Atlantic. However, effort and time significantly affected recovery probability
in this analysis. The interaction between group and time on survival is significant, but
it cannot be easily interpreted.

The average ¢ values generated from the deviance ¢ and mean ¢ are provided

in Table 8. All average ¢ values were less than 3, indicating that the models fit the
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data adequately. Recovery probability ranges for the most parsimonious models are
also given in Table 8.
DISCUSSION

The extensive spatial and temporal span of data in the CSTP provides a unique
opportunity to describe the biology and ecology of the species within the program.
Specifically, the data gathered provide unique insights into size, spatial distribution,
movement, and changes in fishing industry and gear over time. Of course, one of the
most substantial contributions of this database is its ability to provide direct estimates
of survival.
Size

With the large sample size of the CSTP, it was possible to observe a wide
range of size estimates. In the GOM, 2.4% of males and 1.2% of females in the CSTP
were larger than the largest sharks observed by Clark and Von Schmidt (1965).
Similarly, in the U.S. Atlantic, 4.2% of males and 3.8% of females in the CSTP were
larger than the largest sharks observed by Castro (1996). Excluding the 7 sharks
specifically listed as embryos, 40 of the YOY tagged in the CSTP were smaller than
the smallest neonate size observed by Branstetter (1981) and Castillo-Géniz et al.
(1998) (range: 32-37.5 cm FL). These 40 YOY were evenly distributed throughout
the east and west Gulf coasts, and 22 of these 40 (including the smallest) were
“measured,” not “estimated” lengths. These authors sampled sharks with the same
types of gear (gillnet, longline, and rod and reel) as the CSTP. We are therefore

encouraged to expand the perceived size range of this species.
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Spatial Distribution

Some have reported the presence of blacktip sharks in water over 800 m deep
(Garrick, 1982; Russell, 1993). However, the Gulf of Mexico blacktip sharks in the
CSTP seemed to remain strictly within the 200 m depth contour (Figs. 5-6). There
was extensive fishing effort from the CSTP in deeper waters; other species were
commonly reported in mid-Gulf waters in the CSTP (Kohler et al., 1998). It is
therefore likely that blacktip sharks rarely venture into water deeper than 200m.
Accounts of blacktip shark in water deeper than 800m seem to be the exception, not
the rule, to their behavior.

The location of YOY and pregnant females can be useful for the identification
of nurseries. Inthe CSTP, YOY were almost exclusively found close to shore (Figs.
A-27-35). These data further support the idea that blacktip shark juveniles spend the
first few months of their lives in nurseries close to shore (Castro, 1993; Heupel and
Simpfendorfer, 2002; Heupel et al., 2007). While pregnant and embryo blacktip
sharks were generally found close to shore, there were also exceptions to this
behavior. A mother of 3 embryos (each measuring 41 cm FL) off Louisiana was
caught very close to the 200 m depth contour (Fig. A-32). The date of capture for this
event was January 3", several months before the expected time of parturition.
Similarly, 2 YOY were found very close to the 200 m depth contour off the Florida
Keys (Fig. A-31). However, these YOY were still relatively close (<15 nautical miles)

to land.
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Movement

For the purposes of effective population management, it is desirable to
determine the extent of exchange within and among water bodies in the northwest
Atlantic. Genetic work by Keeney et al. (2003) implied that the U.S. Atlantic waters
and the Gulf of Mexico represented 2 distinct populations, while Ryburn® suggested
that sharks from the 2 areas interbreed. None of the Gulf of Mexico blacktip sharks
migrated out of the Gulf to the Caribbean or Atlantic (Figs. 11-12). By comparison,
CSTP data indicated that other sharks have well-established exchange patterns
between Gulf and Atlantic waters (Kohler et al., 1998). However, the CSTP data
currently suggest that the Gulf blacktip sharks do not mix with those from the Atlantic.
This data set continues to support the decision to manage the Gulf of Mexico and
Atlantic blacktip sharks as 2 separate stocks (NOAA/NMFS?).

Exchange was also not observed between the west and east Gulf of Mexico in
the CSTP. Limited genetic data suggest that the east and west Gulf of Mexico are 2
separate populations of blacktip sharks, although they are currently managed as 1
population (Keeney et al., 2005; NOAA/NMFS®). If the Gulf truly contains 2 stocks,
the CSTP data suggest that eastern Louisiana (approximately 89°W longitude) may be
the location of this natural boundary; no recaptures have been observed across this
line.

An exchange of blacktip sharks was observed between Mexican and U.S.

waters within the Gulf of Mexico (Fig. 12). Blacktip sharks of all ages (n=35)

®Ryburn J.A. 2003. Inter-oceanic divergence and speciation in Carcharhinus plumbeus, Carcharhinus limbatus and

Carcharhinus falciformis inferred from mitochondrial DNA sequence. Master’s thesis. Iowa State University.
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migrated south from the waters of Texas and Louisiana to Tamaulipas, Veracruz,
Tabasco, and Campeche. Most (n=33) of these recaptures occurred within a time at
liberty of less than 1 year, and the shortest such migration was 103 nautical miles in 11
days. Interestingly, 3 sharks that were born off Texas arrived in southern Veracruz as
YOY (i.e., less than 56.6cm FL). One male also made a remarkable journey from
Louisiana to Campeche. If this shark remained within the 200m depth contour for the
entire journey, he would have traveled 1,090 nautical miles (over a maximum time
period of 4.4 years).

While exchange between the GOM and Atlantic was not observed, 4 sharks
crossed the U.S. EEZ between U.S. and International waters of the Atlantic Ocean
(Table 7). Two of these sharks were recaptured over 1000 nautical miles away from
their tagging location (Fig. 13). These recaptures are the first documented evidence
that blacktip sharks can travel this far, and that exchange exists for blacktip sharks
between the U.S. coastal waters and those of the Caribbean. A NMFS biologist
identified the 2 males as blacktip sharks, ensuring positive identification.

Migration Research Integration and Synthesis

On the eastern U.S. coast, blacktip sharks spend the winter in the waters of
southern Florida, migrate to the Carolinas and Georgia in the spring to breed and give
birth, and return to their wintering grounds in the fall (Castro, 1996). The seasonal
movement of blacktip sharks within the GOM, however, is not fully understood.
Sharks in the western and eastern GOM may have separate yearly north-south
migration cycles, similar to those in the U.S. Atlantic waters (Branstetter, 1981;

Killam®; Castillo-Géniz et al., 1998; Heupel and Simpfendorfer, 2002). Genetic work
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suggests that females are philopatric for their natal nurseries, but it is possible that
males contribute to genetic exchange between regions (Hueter et al., 2005; Keeney et
al., 2005).

The migration cycle in the western GOM is especially interesting because the
CSTP provides strong evidence of exchange with Mexican waters. It is believed that
blacktip sharks in the western GOM spend the spring and summer months in the
northern coastal waters for mating and breeding (Branstetter'®). Nursery habitat can
be found from Sabine Lake to Lower Laguna Madre, Texas (McCandless et al., 2002;
Keeney et al., 2005). Gravid females have also been caught from April to September
in the waters of Matamoros, near the Texas-Mexico border (Castillo-Géniz et al.,
1998). Therefore, the entire coast of Texas represents the starting point for these newly
born blacktip sharks.

In the fall, blacktip sharks of all ages are believed to move south to warmer
water (Branstetter'®). Castillo-Géniz et al. (1998) note increased catches in Mexican
waters late in the year, due to annual southward migration. Blacktip sharks are most
common in Tamaulipas in October-December, and Veracruz in November-May
(Castillo-Géniz et al., 1998). It may be inferred that the sharks pass through
Tamaulipas and spend winter in the warmer waters of VVeracruz, Tabasco, and
Campeche. This hypothesis is consistent with the observation that blacktip sharks are
generally rare in Tamaulipas, but very common in Veracruz (Bonfil, 1997).

Despite the observation that US-born YOY migrate to Mexican waters, not all

OBranstetter, S. G. 1986. Biological parameters of the sharks of the northwestern Gulf of Mexico in relation to

their potential as a commercial fishery resource. PhD Dissertation. Texas A&M University, Corpus Christi, TX.
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blacktip sharks in Mexican waters are originally born U.S. waters. Nurseries have
been documented in Campeche and Quintana Roo, Mexico (Bonfil, 1997; Castillo-
Géniz et al., 1998). One can infer that blacktip sharks caught in Mexican waters
during the winter represent a mixture of Mexican-born and US-born sharks.

Tagging data are lacking in southern Gulf waters. Very few sharks have been
tagged in Mexican waters in the CSTP, so the sharks’ movements after arriving in
Mexico are unknown. Researchers at Mote Marine Laboratory reported westward
movement of blacktip sharks from the northeast Yucatan Peninsula (Tyminski et al.™).
This may further suggest that western Gulf blacktip sharks stay in the western Gulf,
instead of crossing into eastern waters.

This analysis of Gulf of Mexico blacktip sharks is not without limitations.
Movement data are only based on 2 points of reference (i.e., mark and recapture).

GPS tags would provide a more continuous record of animal movement. In addition,
the life stages assigned in the CSTP are approximated bins based on the shark’s fork
length. Biological indicators of life stage (e.g., healing of the umbilical scar, condition
of the clasper, etc...) are not recorded by CSTP volunteers. These life stages are not
intended to serve as absolute descriptions of life stage.

Change in Effort Over Time

Blacktip shark landings in the U.S. Atlantic were dominated by recreational
fishing from 1981 through 1990 (Fig. A-42). Commercial landings increased

dramatically in 1991, and dominated the catch until 1998. Both sources have

Y Tyminski, J., C. Simpfendorfer and R. Hueter. 2006. Results of Mote Marine Laboratory Shark Tagging Program

for blacktip (Carcharhinus limbatus) and sandbar (C. plumbeus) sharks. SEDAR 11 LCS05/06-DW-44. 7 p.
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contributed more or less evenly since 1999 (NOAA/NMFS?). In the GOM, fishing
effort has been a combination of Mexican, recreational, and commercial sources, with
the highest contributor varying from year to year (Fig. A-42). Mexico was the greatest
contributor of blacktip shark landings in the GOM in 1984. Recreational landings
exceeded commercial landings from 1981 through 1987, with a maximum in 1986.
Commercial landings reached a maximum in 1988 to 1989. Landings in all categories
have shown an overall decline from 1990 through the present (NOAA/NMFS®). By
2010, recreational fishing had become the greatest source of fishing mortality in the
GOM (NOAA/NMFS®). The temporal trend of fishing industry in the CSTP (Fig. A-
11) roughly matches that listed in the SEDAR SAR (Fig. A-42). Comparing the east
and west GOM, similar trends in capture history were observed. Recreational captures
were more common in the 1990s, whereas biologist captures were the most substantial
contributor in the early 2000s (Fig. A-12).

During the period of study, fishing mortality rate was much lower in the
Atlantic (average F=0.003) compared with that in the GOM (average F=0.047). In the
GOM, F was highest in the 1990s, but never reached Fysy of 0.084 (Fig. A-3). Effort
and catches decreased through the early 2000s, so that Feyren: is 0.03-0.04
(NOAA/NMFS®). As of 2006, only about 8-23% of the virgin stock size was depleted
in the GOM (NOAA/NMFS*). The SEDAR SAR concluded on the basis of these data
that neither the Atlantic nor GOM stock was overfished (NOAA/NMFSY).

Survival
The 4 assumptions of the Seber parameterization are: (1) all marked animals

present at time (i) have the same probability of surviving to time (i+1) and the same
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recapture probability, (2) sampling is an instantaneous processes, relative to the time
interval between occasions (i) and (i+1), (3) tagged cohorts are thoroughly mixed, and
(4) tags are not lost or missed. If there were a difference in survival probability or
recapture probability due to age (assumption 1), this difference needed to be addressed
(Simpfendorfer et al., 2005b). Therefore, the data were first modeled with YOY vs.
post-YOY groups, to determine if such a difference existed.

Assumption 3 (mixing of cohorts) was investigated because genetic work has
suggested that the east GOM, west GOM, and U.S. Atlantic may represent distinct
populations of blacktip sharks (Keeney et al., 2003; Keeney et al., 2005). No
exchange of blacktip sharks has been observed to date between these 3 areas.
Recaptures in these 3 regions were analyzed for nonmixing with a y° contingency table
(Latour et al., 2001). This test did not require evidence of exchange between
geographic areas; it simply determined if the number of recaptures in each region
differed significantly from what would be expected if cohorts were thoroughly mixed.
Due to the sparseness of the data, recapture cohorts were binned into 5-year groups
(1980-1984, 1985-1989, etc..). With 2 degrees of freedom, 5 out of 6 tests did not
indicated significant evidence of nonmixing (P=0.36, 0.52, 0.58, 0.54, and 0.31).
However, the final test (2005-2009) was marginally significant (P=0.05), indicating
some evidence for a lack of mixing in those years. The number of recaptures was
small (n<20) for every combination of region and cohort, so these results may be
affected by the sparseness of the data.

Regardless of y° test results, it is possible to determine post-facto whether

survival in these geographic areas is significantly different. According to the simplest
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likelihood ratio tests, geographic grouping had no effect on either survival or recovery
probability (Table 9). Satellite tags would be necessary to definitively determine if
tagged cohorts are thoroughly mixed. Nevertheless, the CSTP data demonstrate that
the survival is not significantly different among the east GOM, west Gulf of Mexico,
and U.S. Atlantic.

In order to correct for assumption (4), the final true survival estimate is given
by the equation

Sr=S(1-A)*t

where St is the true survival estimate, S is the apparent survival probability, and A is
the instantaneous tag-shedding rate. A double-tagging experiment is ongoing in the
NMFES CSTP, but the results of this experiment are not yet available. There are
several different types of tags used in mark-recapture research; tag-shedding rates
should be based on the type of tag under consideration (Xiao et al., 1999). Wood et al.
(2007) developed a proxy tag-shedding rate (an instantaneous rate of 0.259 yr™)
specifically designed for the type of tag used in the CSTP. This proxy was calculated
as weighted mean tag-shedding rate based on tuna-tagging experiments. Due to the
slower cruising speed and thicker skin of blacktip sharks (compared to tuna), the
proxy tag-shedding rate likely represents a maximum value for blacktip sharks.
Therefore, corrected survival estimates are likely maximum estimates as well. Aires-
da-Silva et al. (2009) investigated alternative values of A to be used with data from the
CSTP; the St estimates generated from varying A are given in Table 10.

This survival analysis provided two useful types of information: tests of

significance for various effects on survival and recovery, and direct estimates of
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survival. Likelihood ratio tests supported the conclusion that YOY and post-YOY
have different survival probabilities (Table 9). There was no evidence for significant
differences in survival based on sex or geographic region within the GOM. These
findings were encouraging, because they were consistent with current NMFS policy to
manage the entire GOM as 1 stock (NOAA/NMFS*: NOAA/NMFS®). However,
genetic work suggested that the Atlantic and GOM are 2 distinct populations (Keeney
et al., 2003; Keeney et al., 2005). Therefore, it was interesting that there was no
significant difference in survival between the Atlantic and GOM. It is possible that
the small sample size of recaptures only permits the detection of large differences in
survival.

Likelihood ratio tests were also used to investigate the significance of different
effects on recovery probability (Table 9). Recovery probability was different for YOY
vs. post-YOY, but not significantly affected by other grouping schemes. In every
analysis, recovery probability was significantly affected by fishing effort. These
results underscore the need to account for changes in fishing effort in any future
studies in the CSTP.

True survival estimates were generated after correcting for tag-shedding rate
(Table 8). Inanalysis 1 (YOY vs. post-YOY)), the model S(..) r(g+effort) was the
most parsimonious model with a corrected age-constant survival of 0.711. Likelihood
ratio tests determined that there was a significant age effect on survival and recovery
probability in this analysis, and that fishing effort had a significant effect on recovery
probability (Table 9). Therefore, the second most parsimonious model S(g.)

r(g+effort) was also found to be valuable for management purposes. In this model,
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corrected post-YOY survival was 0.725, whereas YOY survival was 0.580. Time did
not have an effect on survival or recovery probability, on the basis of LRT. Similarly,
there was no significant interaction between group and time for either survival or
recovery probability.

The estimate of survival for GOM post-YOY in analysis 1 (0.725) did not
exactly match the corresponding estimates from analyses 2, 3, and 4 (0.814, 0.781, and
0.781, respectively) (Table 8). Differences between these estimates were caused by
differences in data input. Analysis 2 did not include any sharks of unknown sex,
resulting in a slightly different estimate of survival. Analyses 3 and 4 only included
sharks that were tagged as post-YOY, and they both yielded the same estimate.
Analysis 1 included YOY that were assumed to mature into post-YOY after 1 year;
this additional source of data resulted in the narrowest of the 4 confidence intervals.
For this reason, 0.725 is the preferred estimate of post-YOY survival.

Several authors have suggested that survival is lowest in the first year of life
for fish in general, and elasmobranchs specifically (Caley, 2006; Hoenig and Gruber,
1990; Manire and Gruber, 1993; Simpfendorfer 1999). Manire and Gruber (1993)
provided an empirical estimate of YOY survival as low as 0.36 to 0.55 for lemon
sharks in Bimini, Bahamas. Why does survival appear to be so low for YOY? It is
possible that inexperienced young sharks are more vulnerable to predation or less
effective at foraging (Branstetter, 1990; Simpfendorfer et al., 2005b). Alternatively,
survival of YOY may appear to be low due to emigration from the studied area. If
juvenile sharks are dispersing from the Gulf of Mexico, it would be impossible to

determine whether those sharks died or emigrated.
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Survival estimates can only take values from 0 to 1. Confidence intervals for
all original survival estimates fell within these limits. However, when confidence
intervals were corrected for tag-shedding rate, some values were inflated to impossibly
high values (>1). It is possible that the true tag-shedding rate in blacktip sharks is
lower than the proxy value of 0.259 (Table 10). A larger sample size would also
ensure that confidence interval boundaries were between 0 and 1.

The effects of sex and geographic location were intentionally tested for post-
YOY only. Combining YOY and post-YOY in these analyses would have
confounded the effects that were being investigated. Because direct estimates of YOY
survival have already been conducted with robust methods (Heupel and
Simpfendorfer, 2002), it was more appropriate to test these group differences in post-
YOQY sharks. This experimental design allowed a more definitive investigation of the
significance of group effects through LRT.

The corrected survival estimates provided were consistent with those already
published. The survival for age 0 blacktip sharks used in management is 0.52, based
on the direct estimate by Heupel and Simpfendorfer (2002) (NOAA/NMFS?). The
YOY survival estimate from analysis 1 (0.580) was slightly higher than this value.
Whereas the CSTP included a full size range of YOY, Heupel and Simpfendorfer
(2002) studied a narrower subset of smaller “neonate” sharks (i.e., those with an open
umbilical scar and a mean TL of 62 cm). This difference in data source likely caused
the small apparent discrepancy between these 2 estimates.

Prior to this paper, the only estimates of adult survival for blacktip sharks have

been from indirect methods based on life history parameters. Cortés (1998) reported a
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survival of 0.66-0.88. Cortés and Brooks’ calculated average survival for blacktip
sharks based on 11 indirect methods. The average survival ranged from 0.70 to 0.78
for the GOM and 0.75 to 0.82 for the Atlantic (Cortés and Brooks’). A more realistic
average S (based on age-specific methods only) ranged from 0.71 to 0.81 for the GOM
and 0.75 to 0.85 for the Atlantic. The CSTP estimate of post-YOY survival in the
GOM (0.725) fits within these all of these ranges, but the Atlantic estimate (0.933)
was slightly higher than that given by Cortés and Brooks’.

In 2006, NMFS tentatively accepted the average mortalities from Chen and
Watanabe (1989) and Lorenzen (1996) weight-based indirect methods as developed by
Cortés and Brooks’ for post-YOY sharks. These mortalities were 0.198-0.358
(5=0.699-0.820) for the GOM and 0.157-0.654 (S=0.520-0.855) for the Atlantic
(NOAA/NMFSY). These mortalities were judged to be unrealistic by the SEDAR 11
review panel, because they were too high to maintain a self-sustaining population. As
a result, the age 0 survival was increased from 0.52 to 0.75 and the post-YOY natural
mortalities were decreased to a range of 0.102-0.263 (5=0.769-0.903) for the GOM
and 0.089-0.219 (5=0.803-0.915) for the Atlantic (NOAA/NMFS®).

In 2012, life history and natural mortality values were updated for the GOM
using a combined dataset from Carlson et al. (2006) and Passerotti and Baremore™?
(NOAA/NMFS®). Age-specific values of instantaneous natural mortality were

calculated from the methods of Hoenig (1983), Chen and Watanabe (1989), Peterson

2passerotti, M. S. and |. E. Baremore. 2012. Updates to age and growth parameters for blacktip shark,

Carcharhinus limbatus, in the Gulf of Mexico. SEDAR29-WP-18. SEDAR, North Charleston, SC. 12 p.
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and Wroblewski (1984) and Lorenzen (1996). To ensure that calculated M values
allowed for positive population growth, the minimum of these 4 estimates was used.
Values of instantaneous M for ages 1 through 18 ranged from 0.226 to 0.134,
respectively (S=0.798-0.875).

Total instantaneous mortality (Z) is the sum of natural mortality (M) and
fishing mortality (F). Proportional survival is related to Z by S=e™ (Quinn and Deriso
1999). If post-YOY survival was 0.725 in the GOM, Z was 0.322. Given a fishing
mortality ranging from 0.023 to 0.073, natural mortality was relatively high (0.249-
0.299). Similarly, in the Atlantic, a survival of 0.933 yielded a total mortality of
0.069. If fishing mortality rate ranged from 0.001 to 0.006 in the Atlantic, natural
mortality would be 0.063-0.068. It appears that fishing mortality made up a very
small proportion of overall mortality in these stocks. Given the relatively high rate of
natural mortality, future studies may be able to determine the relative contribution of
cannibalism, predation from other sharks, disease, old age, and other factors in this
natural mortality. It is known that adult blacktip sharks (up to 180 cm TL) have been
attacked by even larger sharks (Dodrill"®). It is likely, therefore, that predation
continues to contribute to natural mortality into older age.

Recent studies have investigated the evolutionary impact of size-selective

fisheries (Conover and Munch, 2002; Olsen et al., 2004; Heino and Dieckmann™*).

BDodrill, J. W. 1977. A hook and line survey of the sharks of Melbourne Beach, Brevard County, FL. M.S.
Thesis, Florida Institute of Technology, Melbourne, FL. 304 pp.
YHeino, M., and U. Dieckmann. Fisheries-induced selection as a driver of biodiversity change in exploited

populations. ICES. CM 2007/E:17. 5 p.
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These changes often resulted in decreasing length at maturity; evidence has suggested
that this phenomenon has also occurred in elasmobranchs (Sminkey and Musick,
1995; Carlson and Baremore, 2003; Cassoff et al. 2007). Carlson et al. (2006)
suggested that size at maturity has decreased for blacktip sharks in the Gulf of Mexico
in a span of 11-14 years (Carlson et al., 2006). If there was a real decrease in size-at-
maturity in blacktip sharks, some juvenile sharks from the early years of the program
were categorized as “mature” according to the modern size at maturity. If future
survival analyses differentiate between juvenile and mature sharks, this potential life
history change may negatively affect the results. Because specific data on the
magnitude of these changes is limited, it would be beneficial to analyze survival based
on length, instead of life stage.

The usefulness of this survival analysis is limited by the broad categorization
of sharks into groups such as “YOY” and “post-YOY.” Unfortunately, it is not
possible to further refine post-YOY estimates into juvenile vs. mature groups, due to
ambiguity in the coding of juvenile shark parameters. It was assumed that YOY
became post-YOY after 1 year’s time, but juvenile sharks may take 1-4 years to
become mature (Carlson et al., 2006). Because of the inherent variation in size and
maturity at age (and because estimates of age in the CSTP are originally based on
length measurements), a length-based model may be more appropriate for future work.

Program MARK has already been used to calculate survival directly in some
elasmobranchs (Rodriguez-Cabello and Sanchez, 2005; Wood et al., 2007). Despite
the relatively low sample size for blacktip sharks, it was possible to effectively model

survival. As a result, survival estimates for YOY and post-YOY blacktip sharks were
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calculated from direct methods, and likelihood ratio tests determined that there is a
significant effect of age group on survival and recovery probability.

CONCLUSIONS
No movement has been observed to date between the west Gulf of Mexico,

east Gulf of Mexico, and U.S. Atlantic in the CSTP. However, 2 sharks tagged in the
U.S. Virgin Islands were recaptured off Florida and Georgia, traveling over 1000
nautical miles. This paper provides evidence that finite survival differs between YOY
and post-YOY blacktip sharks. There is no evidence that survival varies between
males and females, or among the west GOM, east GOM, or U.S. Atlantic. However, it
is possible that only relatively large differences in survival would be detectable with
the sample size in the CSTP. Corrected direct estimates of survival were consistent
with indirect estimates for YOY (5=0.580) and post-YOY (S=0.725). This positive
result demonstrates that direct estimates of survival (and related analysis) can be
successfully performed for species with smaller sample size in the CSTP.
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Table 10.

Sensitivity analysis for St as a function of varying A.

A
Analysis Model Group 0 011 022 259 0.36
1 S(..) r(g+effort) - 0.527 0.592 0.676 0.711 0.820
S(g.) r(g+effort) YOY  0.430 0.483 0.551 0.580 0.669
Post-YOY 0.537 0.604 0.689 0.725 0.836

2 S(..) r(.effort) - 0.603 0.678 0.773 0.814 0.938
S(g.) r(.effort) Male 0.572 0.643 0.734 0.772 0.890

Female 0.620 0.697 0.795 0.837 0.965

3 S(..) r(.effort) - 0.579 0.651 0.742 0.781 0.901
S(g.) r(.effort)  West GOM 0.586 0.658 0.751 0.791 0.911

East GOM 0.571 0.642 0.732 0.771 0.888

4 S(..) r(g+effort) - 0.627 0.704 0.803 0.846 0.975
S(g.) r(g+effort)  Atlantic  0.691 0.777 0.886 0.933 1.075

GOM 0579 0.650 0.742 0.781 0.900
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Figure 1. Geographic regions used in analysis.
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Figure 2. Distribution of recaptures according to time at liberty, displacement, and
speed.
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APPENDICES

APPENDIX I: Definition of Terms

AIC: Akaike’s information criterion, used for determining relative parsimony of a
model, balancing overall fit with the number of parameters involved. AIC=-2In(L)
+2K, where K is the number of parameters

C: the variance inflation factor, which indicates the degree of overdispersion (lack of
fit) in the most general model

Capture: any landing event, including both tags and recaptures

CSTP: Cooperative Shark Tagging Program

F: instantaneous fishing mortality rate

Likelihood ratio test: a statistical significance test for estimates made under the
maximum likelihood approach. Determined by comparing [deviance of reduced
model-deviance of general model] with a % distribution with n degrees of freedom,
where n is the difference in number of parameters

M: instantaneous natural mortality rate

Nested models: a reduced model is considered nested if it can be created by
constricting a more general model (e.g., fixing a time-dependent parameter to become
time-independent)

NMFS: National Marine Fisheries Service

Parametric bootstrap: a resampling technique used to determine Goodness of Fit
(GOF). A model is created from the original data, and is used to simulate data.
Proportional Survival (S): the probability of surviving from year (i) to year (i+1).
S=Nu1/N¢= e'z

QAIC,: quasi-likelihood adjusted AIC. The AIC value that has been adjusted by ¢
Recovery probability (r): probability that a dead animal is both recovered and
reported

Recapture rate: the percent of tagged sharks that are recaptured

Sq: true survival estimate, corrected for tag-shedding rate. St=S(1-A)™

Tagging rate: the number of sharks that are tagged per year

Tag-shedding rate (A): the instantaneous rate of tag shedding from year (i) to year
(i+1)

YOY: young of the year

Z: instantaneous total mortality rate (Z=M+F)

62



APPENDIX Il: Additional Background for Survival

Reduced (Seber) Parameterization

Survival was modeled with the reduced (Seber) parameterization (Seber, 1970;
Anderson et al., 1985). Animals are tagged once, released, and recovered once; they
are not re-released alive after recovery. In this model, S is the probability that the fish
survives a time interval, and r is the probability that a dead fish is recovered and
reported (Fig. A-1). If the number of animals released and recovered during each
occasion is known, one can calculate estimates of these parameters based on the
probability associated with each specific fate (Fig. A-1).

The simplicity of the reduced parameterization is advantageous for the
calculation of parameters. The disadvantage of the reduced parameterization is that S
does not consider the source of mortality (natural vs. hunting/fishing). As a result, a
fish that avoids natural mortality — but is caught and reported — has the probability (1-
S)r. Therefore, survival from the Seber parameterization represents survival from all
sources of mortality, including natural and fishing mortality.

The probabilities S and r can be used to calculate expressions for the expected
number of fish recovered in a given occasion. In the sample diagram in Figure A-43,
three rows represent three years of marking, and three columns represent three years
of recovery. In this diagram, N; is the number of individuals tagged in year i (i=1,2,...,
), ri is the recovery probability in year i, and S; is the survival probability in year i.

Estimates of S and r can also be modeled separately for young-of-the-year
(YOY) and post-YOY. When investigating models with an age effect, Sand r

represent the post-YOY survival and recovery probability, respectively, while S” and
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I’ represent YOY survival and recovery probability, respectively. An animal that is
marked and released as YOY is assumed to acquire the post-YOY parameters by the
second year of its life. Therefore, probability expressions for sharks tagged as YOY
include both YOY and post-YOY parameters (Fig. A-44).

The triangular matrix of probability expressions corresponds to a triangular
matrix of fish recovered in each element of that matrix. Recovery data are entered
into program MARK using this classic recovery matrix format (Fig. A-2). In this
format, n represents the number of fish recaptured, rows represent years of tagging (up
to | years), and columns represent years of recovery (up to J years). A sample input
file that was used in the analysis is shown in Figure A-45.

Models were also fit with an external index of effort. It is known that F=qf,
where F=fishing mortality rate, g=catchability coefficient, and f=fishing effort. If the
catchability coefficient is assumed to be constant over time, fishing mortality rate (F)
can be used as proxy for effort. Values of F are available specifically for Gulf of
Mexico and U.S. Atlantic blacktip sharks from 1986-2004 from the SEDAR 11 Stock
Assessment Report (Fig. A-3). Therefore, the analysis was constrained to this time
period. From 1986 to 2004, 3240 blacktip sharks were tagged in the CSTP in the
GOM, and 96 of these were recaptured (2.96%). During the same time period, 1589
sharks were tagged in the U.S. Atlantic, and 38 were recaptured (2.39%).
Calculation of Parameters

To calculate parameter estimates, the observed recovery matrix is compared to
matrix of probability expressions. Program MARK solves for the maximum

likelihood estimates of S and r numerically (not algebraically). In maximum
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likelihood methods, the true value of the parameter is unknown. However, there is a
likelihood (probability) distribution for the value of the true parameter, given the
observed data (Fig. A-46). Program MARK solves for the maximum likelihood, and
its corresponding parameter value. The maximum likelihood estimate (MLE) of the
parameter is the point where the likelihood distribution’s first derivative is 0.

The variance associated with a given parameter depends on the shape of the
likelihood distribution. For example, two likelihood distributions may have the same
MLE of survival, but different variances (Fig. A-46). A greater spread in the
likelihood function implies greater variance. The profile likelihood method generates
confidence intervals that are 0,1 bounded. In this method, possible parameter values

are plotted on the x axis, and log-likelihood is plotted on the y axis. When o = 5%,

the ? value with 1 degree of freedom is 3.84. With the profile likelihood approach, a 'y
value is calculated by adding 1.92 (half of 3.84) to the log-likelihood at the maximum
of the log-likelihood distribution (Fig. A-47). This y value intersects with the log-
likelihood function at two points, and the x values at these intersections represent the
95% CI. The confidence interval in this method is not symmetrical around the MLE
for the parameter, but it is always 0,1 bounded.

Goodness of Fit (GOF)

Models can only be successfully analyzed if they adequately fit the data.
Deviance (difference in fit) is defined by the equation: deviance= -2(log-likelihood of
model) — [-2(log-likelihood of saturated model)], where the saturated model is the
model with all possible parameters included. Considering the saturated model itself,

the ratio of model deviance over the model’s degrees of freedom is a measure of
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overdispersion (lack of fit) in the model. This ratio is known as the variance inflation
factor or quasi-likelihood parameter, ¢ (Cooch and White, 2004). Perfect fit is
achieved when ¢=1, whereas overdispersion or lack of fit occurs when ¢>1. A
parametric bootstrap approach can be used to estimate ¢. In this method, the most
general model is used to simulate data (capture histories) that fit all the assumptions of
model. The model is then fit to each set of simulated data, and the model deviance
and ¢ are calculated for each simulation.

There are two ways to use bootstrap simulations to estimate ¢. One method of
calculating ¢ is based on deviance. The mean of all the simulated deviances represents
the expected deviance when no assumptions are violated (and fit is perfect).

Therefore, the estimate of ¢ is the ratio of the observed model deviance over the mean
of all the simulated deviances. A ratio higher than 1.0 suggests a certain amount of
overdispersion. Figure A-48 shows a visual representation of how this method was
applied to the general model S(g*t) r(g*t) in the analysis of YOY vs. post-YOY. The
second method of calculating ¢ is based on the simulated values of ¢ in the bootstrap.
The mean of all the simulated € represents the expected value of ¢ when fit is perfect.
Therefore, the ratio of the observed model ¢ over the mean of all the simulated ¢
provides a similar measurement of overdispersion. Estimates from both methods were
averaged to calculate the final value of ¢ in the analysis. The model fits the data

adequately if ¢<3 (Lebreton et al., 1992).

Ranking
Various models can be ranked using Akaike’s Information Criterion, AIC. This

metric is used for determining relative parsimony of a model, balancing overall fit
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with the number of parameters involved (Akaike, 1973). AIC is defined by: AIC= -
2In(L) +2K, where K is the number of parameters and L is the likelihood of the model,
given the data. High likelihood results in a lower AIC; more parameters results in a
higher AIC. As a result, a more parsimonious model has a lower AIC.

AIC, is a variation of AIC that corrects for sample size (Sugiura, 1978;
Hurvich & Tsai, 1989). AIC; is defined by: AIC = -2In(L) +2K + [2K(K+1)]/[n-K-1],
where n is sample size The extra term in this definition creates a higher penalty for
small sample size. QAIC. is another variation, known as the quasi-likelihood adjusted
AIC (White and Burnham, 1999). QAIC, is defined by: QAIC.= [-2In(L)]/ ¢ +2K +
[2K(K+1)]/[n-K-1]. If ¢ >1, the contribution of the model likelihood term decreases,
and the K penalty is relatively more powerful. Therefore, when ¢ >1, simpler models
with fewer parameters become more favored. All models in the candidate set are
ranked by QAIC, to identify the most parsimonious model.

Any two models can be directly compared through AQAIC, the difference in
QAIC, between two models. If AQAIC.>7, there is strong support for a difference in
the two models. If 2<AQAIC, <7, there is moderate support for a difference in the two
models. If AQAIC, <2, there is very little support for a difference in the two models
(Anderson and Burnham, 1999). The normalized Akaike weights are used to quantify
and standardize the difference in support between two models. By definition, wi=(¢’
AMIC Dy 3o AAICD™YL \Where w; is the normalized Akaike weight (Buckland et al.
1997). The ratio of two normalized Akaike weights shows the relative support of one
model over another. For example, if model A has a weight of 0.6 and model B has a

weight of 0.2, model A is 3 times more supported than model B. Program MARK also
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provides an index called “model likelihood,” which is simply the weight of a model
divided by weight of most parsimonious model.
Likelihood Ratio Tests

QAIC is one useful method of comparing two models, but it also possible to
use classic statistical hypothesis testing between nested models using the likelihood
ratio test (LRT). Two models are nested if one (known as the general model) can be
transformed into the other (known as the reduced model) by a linear restriction (Cooch
and White, 2004). In other words, the two models differ only by the presence or
absence of a term. In most cases, the general model contains a certain parameter (e.g.,
S(t)), whereas the reduced model does not (e.g., S(.)) (Fig. A-49). The difference in
deviance between nested models is approximately Chi-square distributed, and the
difference in the number of parameters is the degrees of freedom. The Chi-square
statistic is calculated as: )("Z:Devr-Devg where y 2is the Chi-square statistic, Dev, is the
reduced model deviance, and Devy is the general model deviance. Equivalently, LRT
is determined by comparing -2 In(L,/Ls) with a y distribution, where Ly is the
likelihood of the full model, and L, is the likelihood of the reduced model.

In a LRT, a significant difference (probability<0.05) means that there is a
significant increase in deviance with the reduction in the number of parameters. In
other words, there is a significant increase in deviance when you remove the
parameter of interest; the model that includes the added parameter fits the data
significantly better. A non-significant difference (probability>0.05) means that the
two models both fit the data equally well, but the reduced model is preferred, since it

has fewer parameters. The deviance is not statistically different between the two
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models, but the reduced model is more parsimonious. If probability>0.05, there is not
a significant difference between the models; adding the parameter (e.g., time-

dependency in survival) does not significantly improve the model fit.
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Table A-4. Captures by industry (including all tags and recaptures).

Row Percent
Column Percent
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Industry u.S. Western | Eastern | Mexican | International | Total
Atlantic US. U.S. GOM Atlantic
GOM GOM
Recreational 2121 1555 1708 3 92| 5479
23.31 17.09 18.77 0.03 1.01| 60.20
38.71 28.38 31.17 0.05 1.68
52.45 70.46 74.16 8.57 17.97
Biologist 1758 614 496 0 414 | 3282
19.32 6.75 5.45 0.00 455 [ 36.06
53.56 18.71 15.11 0.00 12.61
43.47 27.82 21.54 0.00 80.86
Commercial 122 34 38 32 0 226
1.34 0.37 0.42 0.35 0.00| 2.48
53.98 15.04 16.81 14.16 0.00
3.02 1.54 1.65 91.43 0.00
Fishery 13 1 45 0 0 59
Observer 0.14 0.01 0.49 0.00 0.00| 0.65
22.03 1.69 76.27 0.00 0.00
0.32 0.05 1.95 0.00 0.00
Other 30 3 16 0 6 55
0.33 0.03 0.18 0.00 0.07| 0.60
54.55 5.45 29.09 0.00 10.91
0.74 0.14 0.69 0.00 1.17
Total 4044 2207 2303 35 512 9101
44.43 24.25 25.30 0.38 5.63 100
Key
Frequency
Percent




Table A-5. Captures by gear (including all tags and recaptures).

Row Percent
Column Percent

Gear U.S. Western | Eastern | Mexican | International | Total
Atlantic US. U.S. GOM Atlantic
GOM GOM
Rod and 2144 1546 1719 3 98 | 5510
Reel 23.56 16.99 18.89 0.03 1.08 | 60.54
38.91 28.06 31.20 0.05 1.78
53.02 70.05 74.64 8.57 19.14
Longline 1659 633 463 14 363 | 3132
18.23 6.96 5.09 0.15 3.99 | 34.41
52.97 20.21 14.78 0.45 11.59
41.02 28.68 20.10 40.00 70.90
Gill Net 216 13 106 15 2 352
2.37 0.14 1.16 0.16 0.02 3.87
61.36 3.69 30.11 4.26 0.57
5.34 0.59 4.60 42.86 0.39
Other 25 15 15 3 49 107
0.27 0.16 0.16 0.03 0.54 1.18
23.36 14.02 14.02 2.80 45.79
0.62 0.68 0.65 8.57 9.57
Total 4044 2207 2303 35 512 9101
44.43 24.25 25.30 0.38 5.63 100
Kev
Frequency
Percent

Table A-6. The 7 most parsimonious models (those with model likelihood >0.0001)
tested with YOY and post-YQOY groups.

Delta AlCc Model Num.
Model QAICc  QAICc Weights Likelihood Par Deviance
S(..) r(g+effort)  796.8661 0 0.68734 1 4 101.411
S(g.) r(g+effort) 798.604 1.7379 0.28826  0.4194 5 101.142
S(g.) r(.effort)  803.6501 6.784 0.02312  0.0336 4 108.195
S(..) r(g.) 810.6105 13.7444 0.00071 0.001 3 117.16
S(g.) r(g.) 812.6154 15.7493 0.00026  0.0004 4 117.16
S(..) r(.effort) 813.3228 16.4567 0.00018  0.0003 3 119.872
S(g+t) r(g.) 816.1102 19.2441 0.00005  0.0001 22  84.3519
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Table A-7. Survival likelihood ratio tests for YOY vs. post-YOY sharks in the GOM.
** indicates that models are nested, but sparseness in data does not allow for

calculation of probability.

Effect Reduced Model  General Model Chi-sq. Df Prob. Significant
S(@)  S(.)r(.) S(g.) r(..) 13.127 1 0.0003 T
S(..) r(.effort) S(g.) r(.effort) 11.678 1 0.0006 T
S(..) r(.t) S(g.) r(.t) 8.418 1 0.0037 T
S(..) r(g*t) S(g.) r(g*t) -22.333 1 **
S(..) r(g.) S(g.) r(g.) 0 1 0.9911
S(..) r(g+effort)  S(g.) r(g+effort) 0268 1 0.6045
S(..) r(g+t) S(g.) r(g+t) 1837 1 0.1753
S r(..) S(g+t) r(..) 9.212 1 0.0024 T
S(.t) r(.effort) S(g+t) r(.effort) 11.304 1 0.0008 il
S(.t) r(.t) S(g+t) r(.t) 19.013 1 <.0001 T
S(.t) r(g*t) S(g+t) r(g*t) 171 1 **
S(.t) r(g.) S(g+t) r(g.) 3.754 1 0.0527
S(.t) r(g+effort)  S(g+t) r(gteffort) 3.063 1 0.0801
S(.t) r(g+t) S(g+t) r(g+t) 3901 1 0.0483 T
S(t) S(.)r(.) S(.t)r(..) 0.811 18 1
S(..) r(.effort) S(.t) r(.effort) 8.654 18 0.9672
S(..) r(.t) S(.t) r(.t) 40.898 17 0.001 T
S(..) r(g*t) S(.t) r(g*t) 9.992 17 0.9039
S(..) r(g.) S(.t) r(g.) 29.054 18 0.0477 T
S(..) r(g+effort)  S(.t) r(g+effort) 14.345 18 0.7064
S(..) r(g+t) S(.t) r(g+t) 15.879 17 0.5325
S(g.) r(..) S(g+t) r(..) -3.104 18  **
S(g.) r(.effort) S(g+t) r(.effort) 8.28 18 0.9742
S(g.) r(.t) S(g+t) r(.t) 51.493 17 <.0001 T
S(g.) r(g*t) S(g+t) r(g*t) 30.616 17 0.0222 T
S(g.) r(g.) S(g+t) r(g.) 32.808 18 0.0176 T
S(g.) r(g+effort)  S(g+t) r(g+effort) 17.139 18 0.5136
S(g.) r(g+t) S(g+t) r(g+t) 17.943 17 0.3925
S(g*t) S(g+t) r(..) S(g*t) r(..) 14973 18 0.6638
S(g+t) r(.effort)  S(g*t) r(.effort) 15951 18 0.5959
S(g+t) r(.t) S(g*t) r(.t) 16.265 18 0.574
S(g+t) r(g*t) S(g*t) r(g*t) 11.289 18 0.8817
S(g+t) r(g.) S(g*t) r(g.) -14.014 18 e
S(g+t) r(g+effort) S(g*t) r(g+effort) 8.443 18 0.9713
S(g+t) r(g+t) S(g*t) r(g+t) 16.395 18 0.565
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Table A-8. Recovery probability likelihood ratio tests for YOY vs. post-YOY sharks
in the GOM. ** indicates that models are nested, but sparseness in data does not allow
for calculation of probability.

Effect = Reduced Model General Model Chi-sq. Df Prob. Significant

r(effort) S(..) r(..) S(..) r(.effort) 27.091 1 <.0001 T
S(..) r(g.) S(..) r(g+effort) 15749 1 0.0001 T
S(t)r(..) S(.t) r(.effort) 34933 1 <.0001 T
S(.t) r(g.) S(.t) r(g+effort) 1.04 1 0.3079
S(g*t) r(..) S(g*t) r(.effort) 38.004 1 <.0001 T
S(g*t) r(g.) S(g*t) r(g+effort) 22.806 1 <.0001 T
S(g.) r(..) S(g.) r(.effort) 25.642 1 <.0001 T
S(g.) r(g.) S(g.) r(g+effort) 16.018 1 0.0001 T
S(g+t) r(..) S(g+t) r(effort)  37.026 1 <.0001 T
S(g+t) r(g.) S(g+t) r(g+effort) 0.349 1 0.5549

r(g) S(.)r(.) S(..) r(g.) 29.803 1 <.0001 T
S(..) r(.effort) S(..) r(g+effort) 18462 1 <.0001 T
S(..) r(.t) S(..) r(g+t) 44498 1 <.0001 T
Sy r(..) S(.t) r(g.) 58.046 1 <.0001 T
S(.t) r(.effort)  S(.t) r(g+effort) 24152 1 <.0001 T
S(.t) r(.t) S(.t) r(g+t) 19478 1 <.0001 T
S(g*t) r(..) S(g*t) r(g.) 23.601 1 <.0001 T
S(g*t) r(.effort) S(g*t) r(g+effort) 8.403 1 0.0037 T
S(g*t) r(.t) S(g*t) r(g+t) 4495 1 0.034 T
S(g.) r(..) S(g.) r(g.) 16.676 1 <.0001 T
S(g.) r(.effort)  S(g.) r(g+effort) 7.052 1 0.0079 T
S(g.) r(.t) S(g.) r(g+t) 37916 1 <.0001 T
S(g+t) r(..) S(g+t) r(g.) 52588 1 <.0001 T
S(g+t) r(.effort) S(g+t) r(g+effort) 15911 1 0.0001 T
S(g+t) r(.t) S(g+t) r(g+t) 4366 1 0.0367 T

r(t) S(.)r(..) S(..) r(.t) 13.026 18 0.79
S(..) r(g.) S(..) r(g+t) 27.721 18 0.0664
S r(.) S(.t) r(.t) 53.113 17 <.0001 T
S(.t) r(g.) S(.t) r(g+t) 14545 17 0.6282
S(g*t) r(..) S(g*t) r(.t) 64.207 17 <.0001 T
S(g*t) r(g.) S(g*t) r(g+t) 45.101 17 0.0002 T
S(g.) r(..) S(g.) r(.t) 8.318 18 0.9735
S(g.) r(g.) S(g.) r(g+t) 29.557 18 0.042 T
S(g+t) r(..) S(g+t) r(.t) 62.914 17 <.0001 T
S(g+t) r(g.) S(g+t) r(g+t) 14,692 17 0.6177

r(g*t) S(..) r(g+t) S(..) r(g*t) 18.283 18 0.4372
S(.t) r(g+t) S(.t) r(g*t) 12.396 18 0.8261
S(g*t) r(g+t) S(g*t) r(g*t) 1.68 18 1
S(g.) r(g+t) S(g.) r(g*t) -5.887 18  **
S(g+t) r(g+t) S(g+t) r(g*t) 6.786 18 0.9918

75



Table A-9. The 8 most parsimonious models (those with model likelihood >0.0001)
tested with male and female groups.
Delta  AlCc Model Num.

Model QAICc QAICc Weights Likelihood Par Deviance
S(..) r(.effort) 240.284 0 0.49438 1 3 55.824

S(g.) r(.effort) 242227 19431 0.18712  0.3785 4 55.7599
S(..) r(g+effort) 242.252 1.9677 0.18483  0.3739 4 55.7844
S(g.) r(g+effort) 244.221 3.9368 0.06905  0.1397 5 55.7446
S(.)r(..) 245.644 5.3598 0.0339 0.0686 2 63.1892
S(g.) r(..) 247556 7.2724 0.01303  0.0264 3 63.0964
S(..) r(g.) 247.589 7.3047 0.01282  0.0259 3 63.1287
S(g.) r(g.) 249.535 9.2509 0.00484  0.0098 4 63.0677
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Table A-10. Survival likelihood ratio tests for male vs. female post-YOY sharks in the
GOM. ** indicates that models are nested, but sparseness in data does not allow for
calculation of probability.

Effect Reduced Model  General Model Chi-sq. Df Prob. Significant

S(@)  S(.)r(.) S(g.) r(..) 0.093 1 0.7607
S(..) r(.effort) S(g.) r(.effort) 0064 1 0.8
S(..) r(.t) S(g.) r(.t) -11.661 1 *k
S(..) r(g*t) S(g.) r(g*t) -14.877 1 kel
S(..) r(g.) S(g.) r(g.) 0.061 1 0.8049
S(..) r(g+effort)  S(g.) r(g+effort) 0.04 1 0.8417
S(..) r(g+t) S(g.) r(g+t) -18.222 1 **
S(.t)r(..) S(g+t) r(..) -13.671 1 *k
S(.t) r(.effort) S(g+t) r(.effort) 0.014 1 0.9044
S(.t) r(.t) S(g+t) r(.t) 0112 1 0.7377
S(.t) r(g*t) S(g+t) r(g*t) 1.24 1 0.2655
S(.t) r(g.) S(g+t) r(g.) 0.12 1 0.7292
S(.t) r(gt+effort)  S(g+t) r(gt+effort) 0.163 1 0.6861
S(.t) r(g+t) S(g+t) r(g+t) 0891 1 0.3452

S(t) S(..) r(..) S(.t)r(..) 20.555 18 0.3024
S(..) r(.effort) S(.t) r(.effort) 8.081 18 0.9774
S(..) r(.t) S(.t) r(.t) 14.839 17 0.6071
S(..) r(g*t) S(.t) r(g*t) 8.067 17 0.9651
S(..) r(g.) S(.t) r(g.) 20.523 18 0.3042
S(..) r(g+effort)  S(.t) r(gteffort) 13.185 18 0.7805
S(..) r(g+t) S(.t) r(g+t) 9.273 17 0.9313
S(g.) r(..) S(g+t) r(..) 6.791 18 0.9918
S(g.) r(.effort) S(g+t) r(.effort) 8.031 18 0.9782
S(g.) r(.t) S(g+t) r(.t) 26.612 17 0.064
S(g.) r(g*t) S(g+t) r(g*t) 24.184 17 0.1145
S(g.) r(g.) S(g+t) r(g.) 20.582 18 0.301
S(g.) r(gteffort)  S(g+t) r(g+effort) 13.309 18 0.7729
S(g.) r(g+t) S(g+t) r(g+t) 28.387 17 0.0406 T

S(g*t) S(g+t) r(..) S(g*t) r(..) 9.592 18 0.9444
S(g+t) r(.effort)  S(g*t) r(.effort) 1139 18 0.8771
S(g+t) r(.t) S(g*t) r(.t) 9.508 18 0.9468
S(g+t) r(g*t) S(g*t) r(g*t) 2418 18 1
S(g+t) r(g.) S(g*t) r(g.) -8.322 18  **
S(g+t) r(g+effort) S(g*t) r(g+effort) 6.236 18 0.9951
S(g+t) r(g+t) S(g*t) r(g+t) 8.28 18 0.9742
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Table A-11. Recovery probability likelihood ratio tests for male vs. female post-YOY
sharks in the GOM. ** indicates that models are nested, but sparseness in data does
not allow for calculation of probability.

Effect  Reduced Model General Model Chi-sq. Df Prob. Significant

r(effort) S(..) r(..) S(..) r(.effort) 7.365 1 0.0067 T
S(..) r(g.) S(..) r(g+effort) 7.344 1 0.0067 T
S(.t)r(..) S(.t) r(.effort) 511 1 ol
S(.t) r(g.) S(.t) r(g+effort) 0.006 1 0.9366
S(g*t) r(..) S(g*t) r(.effort) 10.373 1 0.0013 T
S(g*t) r(g.) S(g*t) r(g+effort) 14.608 1 0.0001 1
S(g.) r(..) S(g.) r(.effort) 7.337 1 0.0068 T
S(g.) r(g.) S(g.) r(g+effort) 7.323 1 0.0068 T
S(g+t) r(..) S(g+t) r(.effort) 8576 1 0.0034 T
S(g+t) r(g.) S(g+t) r(g+effort)  0.05 1 0.8233

r(g) S(.)r(..) S(..) r(g.) 0.061 1 0.8057
S(..) r(.effort) S(..) r(g+effort) 004 1 0.8423
S(..) r(.t) S(..) r(g+t) 6.062 1 0.0138 T
Sy r(.) S(.t) r(g.) 0.028 1 0.867
S(.t) r(.effort)  S(.t) r(g+effort) 5144 1 0.0233 T
S(.t) r(.t) S(.t) r(g+t) 0497 1 0.4809
S(g*t) r(..) S(g*t) r(g.) 4095 1 el
S(g*t) r(.effort) S(g*t) r(g+effort) 0.14 1 0.7087
S(g*t) r(.t) S(g*t) r(g+t) 0.048 1 0.8263
S(g.) r(..) S(g.) r(g.) 0.029 1 0.8654
S(g.) r(.effort)  S(g.) r(g+effort) 0.015 1 0.9016
S(g.) r(.t) S(g.) r(g+t) -0499 1 *x
S(g+t) r(..) S(g+t) r(g.) 13.819 1 0.0002 T
S(g+t) r(.effort) S(g+t) r(g+effort) 5.293 1 0.0214 T
S(g+t) r(.t) S(g+t) r(g+t) 1276 1 0.2587

r(t) S(.)r(..) S(..) r(.t) 9.838 18 0.9371
S(..) r(g.) S(..) r(g+t) 15.84 18 0.6037
S r(.) S(.t) r(.t) 4122 17 0.9994
S(.t) r(g.) S(.t) r(g+t) 459 17 0.9987
S(g*t) r(..) S(g*t) r(.t) 17.821 17 0.4002
S(g*t) r(g.) S(g*t) r(g+t) 21.964 17 0.1861
S(g.) r(..) S(g.) r(.t) -1.916 18  **
S(9.) r(9.) S(g.) r(g+t) -2.443 18 **
S(g+t) r(..) S(g+t) r(.t) 17.905 17 0.3949
S(g+t) r(g.) S(g+t) r(g+t) 5362 17 0.9965

r(g*t) S(..) r(g+t) S(..) r(g*t) 10.844 18 0.9008
S(.t) r(g+t) S(.t) r(g*t) 9.638 18 0.9431
S(g*t) r(g+t) S(g*t) r(g*t) 4124 18 0.9997
S(g.) r(g+t) S(g.) r(g*t) 1419 18 0.7166
S(g+t) r(g+t) S(g+t) r(g*t) 9.987 18 0.9323
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Table A-12. The 9 most parsimonious models (those with model likelihood >0.0001)
tested with west and east GOM groups.
Delta AlCc Model Num.

Model QAICc QAICc Weights Likelihood Par Deviance
S(..) r(.effort) 305.504 0 0.51722 1 3 69.0311
S(g.) r(.effort)  307.502 1.9983 0.19044  0.3682 4 69.023

S(..) r(g+effort) 307.505 2.0015 0.19013 0.3676 4 69.0262
S(g.) r(g+effort) 309.5 3.9965 0.07012  0.1356 5 69.0133
S(.)r(..) 312.438 6.9338 0.01614  0.0312 2 77.9696
S(..) r(g.) 314.194 8.6899 0.00671 0.013 3 77.721

S(g.) r(..) 314.241 8.7377 0.00655  0.0127 3 77.7688
S(g.) r(g.) 316.087 10.5832 0.0026 0.005 4 77.6079
S(.t) r(g.) 324.394 18.8901 0.00004  0.0001 21 515613
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Table A-13. Survival likelihood ratio tests for post-YOY sharks in the west GOM vs.
those in the east GOM. ** indicates that models are nested, but sparseness in data does
not allow for calculation of probability.

Effect Reduced Model  General Model Chi-sq. Df Prob. Significant

S(@)  S(.)r(.) S(g.) r(..) 0201 1 0.654
S(..) r(.effort) S(g.) r(.effort) 0.008 1 0.9284
S(..) r(.t) S(g.) r(.t) 5329 1 *x
S(..) r(g*t) S(g.) r(g*t) -1764 1 ol
S(..) r(g.) S(g.) r(g.) 0.113 1 0.7366
S(..) r(g+effort)  S(g.) r(g+effort) 0.013 1 0.9095
S(..) r(g+t) S(g.) r(g+t) 0.066 1 0.798
S(.t)r(.) S(g+t) r(..) 0642 1 04231
S(.t) r(.effort) S(g+t) r(.effort) 0.062 1 0.803
S(.t) r(.t) S(g+t) r(.t) 1.092 1 0.296
S(.t) r(g*t) S(g+t) r(g*t) -0.154 1 *k
S(.t) r(g.) S(g+t) r(g.) 0198 1 0.6564
S(.t) r(g+effort)  S(g+t) r(g+effort) 0.382 1 0.5366
S(.t) r(g+t) S(g+t) r(g+t) 3.622 1 0.057

S(t) S(..)r(..) S(or(..) 10.194 18 0.9254
S(..) r(.effort) S(.t) r(.effort) 11.134 18 0.8886
S(..) r(.t) S() r(.t) 29.564 17 0.0297 T
S(..) r(g*t) S(.t) r(g*t) 11.397 17 0.8352
S(..) r(g.) S(.t) r(g.) 26.16 18 0.0962
S(..) r(g+effort)  S(.t) r(gteffort) 17.478 18 0.4905
S(..) r(g+t) S(.t) r(g+t) 11.608 17 0.8233
S(g.) r(..) S(g+t) r(..) 10.634 18 0.9092
S(g.) r(.effort) S(g+t) r(.effort) 11.188 18 0.8862
S(g.) r(.t) S(g+t) r(.t) 35.985 17 0.0046 T
S(g.) r(g*t) S(g+t) r(g*t) 28.883 17 0.0356 T
S(g.) r(g.) S(g+t) r(g.) 26.245 18 0.0943
S(g.) r(gteffort)  S(g+t) r(g+effort) 17.847 18 0.4657
S(g.) r(g+t) S(g+t) r(g+t) 15.165 17 0.5836

S(g*t) S(g+t) r(..) S(g*t) r(..) 8.04 18 0.978
S(g+t) r(.effort)  S(g*t) r(.effort) 8.838 18 0.9634
S(g+t) r(.t) S(g*t) r(.t) 8.871 18 0.9627
S(g+t) r(g*t) S(g*t) r(g*t) 4968 18 0.9989
S(g+t) r(g.) S(g*t) r(g.) -4874 18  **
S(g+t) r(g+effort) S(g*t) r(g+effort) 2.04 18 1
S(g+t) r(g+t) S(g*t) r(g+t) 7.051 18 0.9897
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Table A-14. Recovery probability likelihood ratio tests for post-YOY sharks in the
west GOM vs. those in the east GOM. ** indicates that models are nested, but

sparseness in data does not allow for calculation of probability.

Effect  Reduced Model General Model Chi-sq. Df Prob. Significant
r(effort) S(..) r(..) S(..) r(.effort) 8939 1 0.0028 T
S(.) r(g.) S(..) r(g+effort) 8.695 1 0.0032 T
S(.t)r(.) S(.t) r(.effort) 9.878 1 0.0017 T
S(.t) r(g.) S(.t) r(g+effort) 0.013 1 0.9077
S(g*t) r(..) S(g*t) r(.effort) 10.097 1 0.0015 T
S(g*t) r(g.) S(g*t) r(gt+effort) 7.112 1 0.0077 T
S(g.) r(..) S(g.) r(.effort) 8.746 1 0.0031 T
S(g.) r(g.) S(g.) r(g+effort) 859 1 0.0034 T
S(g+t) r(..) S(g+t) r(.effort) 9299 1 0.0023 T
S(g+t) r(g.) S(g+t) r(g+effort) 0.197 1 0.6568
r(g) S(..) r(..) S(..) r(g.) 0249 1 0.618
S(..) r(.effort) S(..) r(g+effort) 0.005 1 0.9445
S(..) r(.t) S(..) r(g+t) 18.337 1 <.0001 T
Sy r(.) S(.t) r(g.) 16.215 1 0.0001 T
S(.t) r(.effort)  S(.t) r(g+effort) 6.3 1 0.0117 T
S(.t) r(.t) S(.t) r(g+t) 0382 1 0.5366
S(g*t) r(..) S(g*t) r(g.) 2857 1 0.091
S(g*t) r(.effort) S(g*t) r(g+effort) -0.129 1 *x
S(g*t) r(.t) S(g*t) r(g+t) 1.092 1 0.2959
S(g.) r(..) S(g.) r(g.) 0.161 1 0.6883
S(g.) r(.effort)  S(g.) r(g+effort) 001 1 0.9215
S(g.) r(.t) S(g.) r(g+t) 23.732 1 <.0001 T
S(g+t) r(..) S(g+t) r(g.) 15771 1 0.0001 T
S(g+t) r(.effort) S(g+t) r(gteffort) 6.669 1 0.0098 T
S(g+t) r(.t) S(g+t) r(g+t) 2912 1 0.0879
r(t) S(.)r(..) S(..) r(.t) 1.652 18 1
S(..) r(g.) S(..) r(g+t) 19.74 18 0.3476
S r(.) S(.t) r(.t) 21.022 17 0.2253
S(.t) r(g.) S(.t) r(g+t) 5189 17 0.9972
S(g*t) r(..) S(g*t) r(.t) 22.303 17 0.1734
S(g*t) r(g.) S(g*t) r(g+t) 20.538 17 0.2476
S(g.) r(..) S(g.) r(.t) -3.878 18 **
S(g.) r(g.) S(g.) r(g+t) 19.693 18 0.3504
S(g+t) r(..) S(g+t) r(.t) 21.472 17 0.2059
S(g+t) r(g.) S(g+t) r(g+t) 8.613 17 0.9516
r(g*t) S(..) r(g+t) S(..) r(g*t) 12.766 18 0.8053
S(.t) r(g+t) S(.t) r(g*t) 12,555 18 0.8173
S(g*t) r(g+t) S(g*t) r(g*t) 6.695 18 0.9925
S(g.) r(g+t) S(g.) r(g*t) -494 18  **
S(g+t) r(g+t) S(g+t) r(g*t) 8.779 18 0.9646
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Table A-15. The 11 most parsimonious models (those with model likelihood >0.0001)
tested with Atlantic and GOM groups.
Delta AlCc Model Num.

Model QAICc QAICc Weights Likelihood Par Deviance
S(..) r(g+effort)  735.205 0 0.59659 1 4 132.894
S(g.) r(g+effort)  736.061 0.8556 0.38894  0.6519 5 131.744
S(.)r(.) 745.224 10.0192 0.00398  0.0067 2 146.921
S(g.) r(..) 745.866 10.6608 0.00289  0.0048 3 145,559

S(.t) r(g+efforty  746.84 11.6348 0.00178  0.003 22 108.271
S(g+t) r(g+effort) 747.196 11.9911 0.00149  0.0025 23  106.602

S(.) r(g.) 747221 12.0163 0.00147  0.0025 3 146.915
S(g.) r(g.) 747.808 12.6029 0.00109  0.0018 4 145.497
S(.t) r(g.) 747.986 127807 0001 00017 21  111.44
S(g+) r(g.) 749.745 145396 0.00042  0.0007 22  111.175
S(..) r(g+t) 750.071 14.8654 0.00035 0.0006 21  113.525
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Table A-16. Survival likelihood ratio tests for post-YOY sharks in the Atlantic vs.
those in the GOM. ** indicates that models are nested, but sparseness in data does not
allow for calculation of probability.

Effect Reduced Model  General Model Chi-sg. Df Prob. Significant

S(@)  S(.)r(.) S(g.) r(..) 1361 1 0.2433
S(..) r(.t) S(g.) r(.t) 1384 1 0.2395
S(..) r(g*t) S(g.) r(g*t) -2946 1 **
S(..) r(g.) S(g.) r(g.) 1418 1 0.2338
S(..) r(g+effort)  S(g.) r(g+effort) 1.15 1 0.2836
S(..) r(g+t) S(g.) r(g+t) -51.305 1 **
S(.t)r(.) S(g+t) r(..) 2813 1 0.0935
S(.t) r(.t) S(g+t) r(.t) 1.008 1 0.3155
S(.t) r(g*t) S(g+t) r(g*t) 1771 1 0.1833
S(.t) r(g.) S(g+t) r(g.) 0.265 1 0.607
S(.t) r(g+effort)  S(g+t) r(g+effort) 1.668 1 0.1965
S(.t) r(g+t) S(g+t) r(g+t) 2602 1 0.1068
S(t) S(..) r(..) S r(..) 4061 18 0.9997
S(..) r(.t) S(.t) r(.t) 51.14 17 <.0001 T
S(..) r(g*t) S(.t) r(g*t) 42,795 17 0.0005 T
S(..) r(g.) S(.t) r(g.) 35.475 18 0.0082 T
S(..) r(g+effort)  S(.t) r(g+effort) 24.624 18 0.1356
S(..) r(g+t) S(.t) r(g+t) 10.654 17 0.874
S(g.) r(..) S(g+t) r(..) 5513 18 0.9978
S(g.) r(.t) S(g+t) r(.t) 50.764 17 <.0001 T
S(g.) r(g*t) S(g+t) r(g*t) 47512 17 0.0001 T
S(g.) r(g.) S(g+t) r(g.) 34322 18 0.0115 T
S(g.) r(g+effort)  S(g+t) r(g+effort) 25.142 18 0.1211
S(g.) r(g+t) S(g+t) r(g+t) 64.561 17 <.0001 T
S(g*t) S(g+t) r(..) S(g*t) r(..) 4488 18 0.0004 T
S(g+t) r(.t) S(g*t) r(.t) 23.498 18 0.1722
S(g+t) r(g*t) S(g*t) r(g*t) 14511 18 0.6952
S(g+t) r(g.) S(g*t) r(g.) -9.751 18 **
S(g+t) r(g+effort) S(g*t) r(g+effort) 16.71 18 0.5432
S(g+t) r(g+t) S(g*t) r(g+t) 23483 18 0.1727
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Table A-17. Recovery probability likelihood ratio tests for post-YOY sharks in the
Atlantic vs. those in the GOM. ** indicates that models are nested, but sparseness in
data does not allow for calculation of probability.

Effect = Reduced Model General Model Chi-sq. Df Prob. Significant
r(effort) S(..) r(g.) S(..) r(g+effort) 14.02 1 0.0002 T
S(.t) r(g.) S(.t) r(g+effort) 3169 1 0.075

S(g*t) r(g.) S(g*t) r(g+effort) 31.034 1 <.0001 T
S(g.) r(g.) S(g.) r(gteffort)  13.753 1 0.0002 T
S(g+t) r(g.) S(g+t) r(g+effort) 4573 1 0.0325 T
r(g) S(.)r(..) S(..) r(g.) 0.006 1 0.9379
S(..) r(.t) S(..) r(g+t) 39.88 1 <.0001 T
Sy r(..) S(.t) r(g.) 31.419 1 <.0001 T
S(.t) r(.t) S(.t) r(g+t) -0.606 1 *k
S(g*t) r(..) S(g*t) r(g.) -25.761 1 **
S(g*t) r(.t) S(g*t) r(g+t) 0974 1 0.3238
S(g.) r(..) S(g.) r(g.) 0.062 1 0.8031
S(g.) r(.t) S(g.) r(g+t) -12.809 1 **
S(g+t) r(..) S(g+t) r(g.) 28.871 1 <.0001 T
S(g+t) r(.t) S(g+t) r(g+t) 0988 1 0.3202
r(t) S(.)r(.) S(..) r(.t) -6.484 18  **
S(..) r(g.) S(..) r(g+t) 33.39 18 0.015 T
S r(.) S(.t) r(.t) 40.595 17 0.0011 T
S(.t) r(g.) S(.t) r(g+t) 8.569 17 0.9528
S(g*t) r(..) S(g*t) r(.t) 17.407 17 0.4272
S(g*t) r(g.) S(g*t) r(g+t) 44,141 17 0.0003 T
S(g.) r(..) S(g.) r(.t) -6.462 18 **
S(g.) r(g.) S(g.) r(g+t) -19.333 18 **
S(g+t) r(..) S(g+t) r(.t) 38.789 17 0.0019 T
S(g+t) r(g.) S(g+t) r(g+t) 10.906 17 0.8614
r(g*t) S(..) r(g+t) S(..) r(g*t) -14.438 18 **
S(.t) r(g+t) S(.t) r(g*t) 17.702 18 0.4754
S(g*t) r(g+t) S(g*t) r(g*t) 7.9 18 0.9801
S(g.) r(g+t) S(g.) r(g*t) 33.92 18 0.0129 T
S(g+t) r(g+t) S(g+t) r(g*t) 16.872 18 0.5319
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Figure A-1. Possible encounter histories and associated probabilities for the reduced

(Seber) parameterization (adapted from Cooch and White 2004).
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Figure A-2. Recovery matrix format.
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Figure A-3. Fishing mortality rate of blacktip sharks in the Gulf of Mexico and
Atlantic from 1986 through 2004 (NOAA/NMFS 2006).
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Figure A-4. Distribution of blacktip sharks tagged (a) and recaptured (b) in the Gulf of
Mexico from 1964 through 2011.
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Figure A-5. Distribution of blacktip sharks tagged (a) and recaptured (b) in the U.S.
Atlantic waters from 1964 through 2011.
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Figure A-6. Distribution of blacktip sharks tagged (a) and recaptured (b) in
International Atlantic waters from 1964 through 2011.
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Figure A-7. Mean displacement of blacktip sharks at large for less than 1 year. N=53,
43, and 12, for YOY, juveniles, and mature sharks, respectively, in the GOM. N= 16,
18, and 16 for YQY, juveniles, and mature sharks in the U.S. Atlantic. N=5,4, and 1
for YOY, juveniles, and mature sharks, respectively, in the International Atlantic.
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Figure A-11. Blacktip shark captures in the CSTP by industry.
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Figure A-12. Blacktip shark captures in the CSTP by industry in the west and east
U.S. GOM.
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Figure A-13. Blacktip shark captures in the CSTP by gear.
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Figure A-14. Blacktip shark captures in the CSTP by gear in the west and east U.S.
GOM.
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Figure A-42. Blacktip shark landings in the Gulf of Mexico by fleet (NOAA/NMFS

2012).
Year of Recovery
Year Marked Number Marked 1 2 3
N1 N1(1-Sl)r1 N]_S]_(].-Sz)rz N18182(1-83)r3
N, Nz(l-Sz)rz NQSQ(l-Sg)rg

N3 N3(1-83) I3

Figure A-43. Probability expressions for number of sharks marked and recovered in a
given year, with no age grouping. (Cooch and White 2004).
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Year of Recovery
Year Marked Number Marked 1 2 3
Marked as Post-YOY
1 N1 Nl(l-Sl)rl N181(1-82)r2 N18182(1-83)r3
2 N, Nz(l-Sz)rz N282(1-83)r3
3 N3 N3(1-S3)rs
o Marlfed as YOY i
1 N; N1(1-Sp)ri NiSy (1-Sp)rz NSy Sp(1-Ss)rs
2 N, Nz(l-Sz )rz N,S, (l-§3)r§
3 Ns N3(1-S3)rs

Figure A-44. Probability expressions for number of sharks marked and recovered in a
given year, including an age effect. (Cooch and White 2004). An asterisk (') indicates
parameters that are specific to young-of-the-year.
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Figure A-45. Data input file for analysis with an age grouping.
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Figure A-46. Sample likelihood distributions with different variances.
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Figure A-47. Sample calculation of variance with profile likelihood method.
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Figure A-48. Calculation of observed model deviance over mean deviance.
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Figure A-49. Visual representation of nesting. Arrows point from general model to
reduced model.
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