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Dynamics of Particles and Fields

Dynamics of Charged Particle:

• Newton’s equation of motion: ~F = m~a.

• Lorentz force: ~F = q( ~E + ~v × ~B).

Dynamics of Electric and Magnetic Fields:

• Gauss’ law for electric field:
I

~E · d ~A =
q

ǫ0
.

• Gauss’ law for magnetic field:
I

~B · d ~A = 0.

• Faraday’s law:
I

~E · d~ℓ = −dΦB

dt
, where ΦB =

Z

~B · d ~A.

• Ampère’s law:
I

~B · d~ℓ = µ0I + µ0ǫ0
dΦE

dt
, where ΦE =

Z

~E · d ~A.

Maxwell’s equations: 4 relations between fields ( ~E, ~B) and sources (q, I).
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Gauss’s Law for Electric Field

The net electric flux ΦE through any closed surface is equal to the net charge Qin inside divided
by the permittivity constant ǫ0:

I

~E · d ~A = 4πkQin =
Qin

ǫ0
i.e. ΦE =

Qin

ǫ0
with ǫ0 = 8.854 × 10−12C2N−1m−2

The closed surface can be real or fictitious. It is called “Gaussian surface”.
The symbol

H

denotes an integral over a closed surface in this context.

• Gauss’s law is a general relation between
electric charge and electric field.

• In electrostatics: Gauss’s law is equivalent
to Coulomb’s law.

• Gauss’s law is one of four Maxwell’s
equations that govern cause and effect in
electricity and magnetism.
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Gauss’s Law for Magnetic Field

The net magnetic flux ΦB through any closed surface is equal to zero:

I

~B · d ~A = 0.

There are no magnetic charges. Magnetic field lines always close in themselves. No matter how
the (closed) Gaussian surface is chosen, the net magnetic flux through it always vanishes.

The figures below illustrate Gauss’s laws for the electric and magnetic fields in the context of an
electric dipole (left) and a magnetic dipole (right).
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Gauss’ Law for Electric and Magnetic Fields

I

~B · d ~A = 0

I

~E · d ~A =
qin

ǫ0
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Ampère’s Law (Restricted Version)

The circulation integral of the magnetic field ~B around any closed curve (loop) C is equal to the
net electric current IC flowing through the loop:

I

~B · d~ℓ = µ0IC , with µ0 = 4π × 10−7Tm/A

The symbol
H

denotes an integral over a closed curve in this context.

Note: Only the component of ~B tangential to the loop contributes to the integral.

The positive current direction through the loop is determined by the right-hand rule.
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Magnetic flux and Faraday’s law

• Magnetic field ~B (given)

• Surface S with perimeter loop (given)

• Surface area A (given)

• Area vector ~A = An̂ (my choice)

• Positive direction around perimeter: ccw
(consequence of my choice)

• Magnetic flux: ΦB =

Z

~B · d ~A =

Z

~B · n̂dA

• Consider situation with
d ~B

dt
6= 0

• Induced electric field: ~E

• Induced EMF: E =

I

~E · d~ℓ

(integral ccw around perimeter)

• Faraday’s law: E = −dΦB

dt
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Ampère’s law (Full Version)

• Conduction current: I.

• Displacement current: ID = ǫ0
dΦE

dt
.

• Ampère’s law:
I

~B · d~ℓ = µ0(I + ID) = µ0I + µ0ǫ0
dΦE

dt
.
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Faraday’s law and Ampère’s law

I

~E · d~s = −dΦB

dt

I

~B · d~s = µ0I + µ0ǫ0
dΦE

dt
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Traveling Waves

Mechanical waves travel in some medium.
Examples: sound wave, violin string, surface water wave.
While the wave propagates, the medium undergoes periodic motion.

Distinguish:

(1) direction of wave propagation,

(2) direction in which medium moves.

Transverse wave: (1) and (2) are perpendicular to each other.

Longitudinal wave: (1) and (2) are parallel to each other.

Electromagnetic waves are transversely oscillating electric and magnetic fields.
Electromagnetic waves travel in the vacuum. There is no medium.

Waves transport energy and, in some cases, information, but not the medium itself (if there is a
medium).
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Sinusoidal Transverse Traveling Wave

Wave function: y(x, t) = A sin(kx − ωt)

• k =
2π

λ
(wave number)

• λ (wavelength)

• ω =
2π

T
= 2πf (angular frequency)

• f =
ω

2π
=

1

T
(frequency)

• T (period)

• c =
λ

T
= λf =

ω

k
(wave speed)
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Wave Equation

• y(x, t) = A sin(kx − ωt) (displacement)

• v(x, t) =
∂y

∂t
= −ωA cos(kx − ωt) (velocity)

• a(x, t) =
∂2y

∂t2
= −ω2A sin(kx − ωt) (acceleration)

• ∂y

∂x
= kA cos(kx − ωt) (slope of wave form)

• ∂2y

∂x2
= −k2A sin(kx − ωt) (curvature of wave form)

• ∂2y/∂t2

∂2y/∂x2
=

ω2

k2
= c2 (ratio of second derivatives)

• Wave equation:
∂2y

∂t2
= c2

∂2y

∂x2
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Electromagnetic Plane Wave (1)

Maxwell’s equations for electric and magnetic fields in free space (no sources):

• Gauss’ laws:
I

~E · d ~A = 0,

I

~B · d ~A = 0.

• Faraday’s and Ampère’s laws:
I

~E · d~ℓ = −dΦB

dt
,

I

~B · d~ℓ = µ0ǫ0
dΦE

dt
.

Consider fields of particular directions and dependence on space:

~E = Ey(x, t)ĵ, ~B = Bz(x, t)k̂.

Gauss’ laws are then automatically satisfied.

Use the cubic Gaussian surface to show that

• the net electric flux ΦE is zero,

• the net magnetic flux ΦB is zero.

E

z

y

x
B
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Electromagnetic Plane Wave (2)

• Faraday’s law,
I

~E · d~ℓ = −dΦB

dt
,

applied to loop in (x, y)-plane becomes

[Ey(x + dx, t) − Ey(x, t)]dy = − ∂

∂t
Bz(x, t)dxdy

⇒ ∂

∂x
Ey(x, t) = − ∂

∂t
Bz(x, t) (F)

• Ampère’s law,
I

~B · d~ℓ = µ0ǫ0
dΦE

dt
,

applied to loop in (x, z)-plane becomes

[−Bz(x + dx, t) + Bz(x, t)]dz = µ0ǫ0
∂

∂t
Ey(x, t)dxdz

⇒ − ∂

∂x
Bz(x, t) = µ0ǫ0

∂

∂t
Ey(x, t) (A)

z

B

E

y

x

dx
dz

dy

dx
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Electromagnetic Plane Wave (3)

Take partial derivatives
∂

∂x
(F) and

∂

∂t
(A):

∂2Ey

∂x2
= −∂2Bz

∂t∂x
, −∂2Bz

∂t∂x
= µ0ǫ0

∂2Ey

∂t2
.

⇒ ∂2Ey

∂t2
= c2

∂2Ey

∂x2
(E) (wave equation for electric field).

Take partial derivatives
∂

∂t
(F) and

∂

∂x
(A):

∂2Ey

∂t∂x
= −∂2Bz

∂t2
, −∂2Bz

∂x2
= µ0ǫ0

∂2Ey

∂t∂x
.

⇒ ∂2Bz

∂t2
= c2

∂2Bz

∂x2
(B) (wave equation for magnetic field).

c =
1

√
ǫ0µ0

(speed of light).

Sinusoidal solution:

• Ey(x, t) = Emax sin(kx − ωt)

• Bz(x, t) = Bmax sin(kx − ωt)
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Electromagnetic Plane Wave (4)

For given wave number k the angular frequency ω is determined, for example by substitution of
Emax sin(kx − ωt) into (E).

For given amplitude Emax the amplitude Bmax is determined, for example, by substituting
Emax sin(kx − ωt) and Bmax sin(kx − ωt) into (A) or (F).

⇒ ω

k
=

Emax

Bmax

= c.

The direction of wave propagation is determind by the Poynting vector:

~S =
1

µ0

~E × ~B.
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Energy Transport in Electromagnetic Plane Wave

Fields: Ey(x, t) = Emax sin(kx − ωt), Bz(x, t) = Bmax sin(kx − ωt).

Energy density: u(x, t) =
1

2
ǫ0E2

y(x, t) +
1

2µ0

B2

z (x, t). [J/m3]

Use the amplitude relations ǫ0E2

max = ǫ0c2B2

max =
1

µ0

B2

max.

u(x, t) = ǫ0E2

max sin2(kx − ωt) =
1

µ0

B2

max sin2(kx − ωt) =
EmaxBmax

cµ0

sin2(kx − ωt).

Energy transported across area A in time dt: dU(x, t) = u(x, t)Acdt. [J]

Power transported per unit area:
1

A

dU

dt
= u(x, t)c = S(x, t). [W/m2]

Intensity (average power transported per unit area):

I = S̄ =
EmaxBmax

2µ0

=
ǫ0c

2
E2

max =
c

2µ0

B2

max. [W/m2]
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Momentum Transport in Electromagnetic Plane Wave

The momentum transported by an electromagnetic wave is proportional to the energy transported.

Momentum density:
~p

V
=

~S

c2
, where ~S =

1

µ0

~E × ~B is the Poynting vector.

When the wave is absorbed by a material surface it exerts an impulse ~Fdt = ∆~p.

The resulting radiation pressure is the average force per unit area:

Pabs =
F̄

A
=

p

Adt
=

p

Adx

dx

dt
=

p

V
c =

S̄

c
=

I

c
.

The radiation pressure exerted by a reflected wave is twice as large: Pref =
2S̄

c
=

2I

c
.
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