Type 1 pili are not necessary for colonization of the streptomycin-treated mouse large intestine by type 1-piliated \textit{Escherichia coli} F-18 and \textit{E. coli} K-12

Beth A. McCormick

David P. Franklin

\textit{See next page for additional authors}

Follow this and additional works at: https://digitalcommons.uri.edu/cels_past_depts_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution

This Article is brought to you for free and open access by the College of the Environment and Life Sciences at DigitalCommons@URI. It has been accepted for inclusion in Past Departments Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Type 1 Pili Are Not Necessary for Colonization of the
Streptomycin-Treated Mouse Large Intestine by Type 1-Piliated
Escherichia coli F-18 and E. coli K-12

BETH A. McCORMICK, DAVID P. FRANKLIN, DAVID C. LAUX, AND PAUL S. COHEN*

Department of Microbiology, University of Rhode Island, Kingston, Rhode Island 02881-0812

Received 10 April 1989/Accepted 5 July 1989

Escherichia coli F-18, an excellent colonizer of the streptomycin-treated mouse large intestine, produces type
1 pili. E. coli F-18 FimA−, type 1 pilus negative, and E. coli F-18 FimH−, type 1 pilus positive but adhesin
negative, were constructed by bacteriophage P1 transduction of defective fimA and fimH genes from the E. coli
K-12 strains ORN151 and ORN133, respectively, into E. coli F-18. Adhesion of E. coli F-18 to an immobilized
mannose-bovine serum albumin glycoconjugate was about sixfold greater than that of either E. coli F-18 FimA− or E. coli F-18 FimH−, and adhesion of E. coli F-18 to immobilized cecal epithelial cell brush border
membranes was between two- and threefold greater than that of E. coli F-18 FimA− or E. coli F-18 FimH−. When
either E. coli F-18 FimA− or E. coli FimH− was fed to streptomycin-treated mice together with E. coli F-18,
the pilus-negative and adhesin-negative strains colonized as well as their type 1-piliated parent. Essentially
the same result was observed when the type 1-piliated E. coli K-12 strain ORN152 was fed to streptomycin-treated
mice together with a nearly isogenic K-12 FimA− strain, ORN151. Furthermore, when streptomycin-treated
mice were fed E. coli F-18 FimA− or E. coli F-18 FimH− together with E. coli F-18 Col−, which also makes type 1
pili but is a poor colonizer relative to E. coli F-18 because it grows poorly in mucus in the presence of E. coli F-18,
the F-18 FimA− and F-18 FimH− strains colonized well (105 to 106 CFU/g of feces), whereas the number of E. coli F-18 Col− in feces decreased rapidly to 102 CFU/g of feces. These data show that in
streptomycin-treated mice, the inability to produce functional type 1 pili has no effect on the ability of E. coli F-18
and E. coli K-12 to colonize the large intestine.

At least 85% of Escherichia coli strains isolated from the
feces of normal humans contain the fim operon (alternatively
called the pil operon), which encodes the genes for type
1-pilus synthesis, and at least 58% express the pilus in broth
(5). Type 1 pili mediate adhesion of E. coli strains to
mannose-containing receptors present on a variety of epithelial
cell types, including those in mammalian intestines (10,
35). It has been postulated by various workers that the roles
of type 1 pili in the gastrointestinal tract are to bind to
intestinal epithelial cells and thereby protect the bacteria
from being swept away by normal cleansing mechanisms
e.g., peristalsis (11, 48), to offer bacteria adhering to
epithelial cells a growth advantage by being close to the food
supply in the unstirred mucus layer near the epithelial cells
(48), and to allow adhesion to large-intestine mucus (39). If
any or all of these hypotheses are correct, E. coli strains
bearing type 1 pili should be better colonizers of mammalian
large intestines than their non-type 1-piliated counterparts.

E. coli F-18, isolated from the feces of a healthy human, is
an excellent colonizer of the streptomycin-treated mouse
large intestine (7, 33). It is found in both cecal mucus and
cecal contents in vivo but grows only in cecal mucus in vitro
(46), suggesting that it colonizes by growing in cecal mucus in vivo. Moreover, E. coli F-18 binds to specific glycoprotein
receptors present in cecal and colonic mucus and cecal and
colonic brush border membranes isolated from the respective
epithelial cells (6, 47). Adhesion to these mucosal components is inhibitable by D-mannose and α-D-methyl
mannoside (47), suggesting that type 1 pili may mediate
adhesion (43). E. coli F-18 is, in fact, piliated (47). Here, we
show that the E. coli F-18 pili are indeed type 1 but that type
1 pili are not necessary for maximal large-intestine colonizing
ability of either E. coli F-18 or E. coli K-12 in strepto-
mycin-treated mice.

MATERIALS AND METHODS

Bacteria. E. coli K-12 strains were all derived from E. coli
ORN115 (30). ORN152 contains a Tn5 insertion in a silent
region near the fimH (pilE) gene, making it kanamycin
resistant but wild type for type 1 pili. E. coli ORN151
contains the tetracycline resistance gene from Tn10 inserted
in the fimA (pila) gene, making it pilus negative. The strain
will be referred to as ORN151 (FimA−). ORN133 (30)
contains the neomycin phosphotransferase gene from Tn5
inserted in the fimH (pilE) gene, making it adhesin negative
and kanamycin resistant (29). It will be referred to as
ORN133 (FimH−). E. coli F-18 was isolated from the feces
of a healthy human in 1977 and is an excellent colonizer of
the streptomycin-treated mouse large intestine (7, 33).
The strain produces colicin V (Dwayne C. Savage, personal
communication), and its serotype is rough:K1:H5 (Frits
Ørskov and Ida Ørskov, personal communication). E. coli
F-18 FimA− and E. coli F-18 FimH− were made by bacte-
riophage P1 transduction from ORN151 (FimA−) and
ORN133 (FimH−), respectively. E. coli F-18 Col− has the
same serotype as E. coli F-18 but lacks an 86-kilobase plasmid;
does not produce the E. coli F-18 colicin, and is a poor
colonizer of the streptomycin-treated mouse large intestine
(7).

P1 transduction. E. coli F-18 is resistant to streptomycin
(Str+) and rifampin (Rif+) and grows well in minimal broth
Davis. ORN151 (FimA−) and ORN133 (FimH−) are resistant
to streptomycin, as well as to tetracycline (Tet+) and kan-
amycin (Kan+), respectively; however, the ORN strains are

* Corresponding author.
polyauxotrophic and do not grow in minimal broth Davis. ORN151 and ORN133 were lysogenized with P1::Tn5 (41) and P1 cltr 100 Cm (16), respectively. Lysates were induced at 42°C and used to infect E. coli F-18 at a multiplicity of infection of between 1.0 and 5.0. Putative transductants were selected on Luria agar plates containing 50 µg of rifampin per ml and 10 µg of tetracycline hydrochloride per ml (for E. coli F-18 FimA−) or on plates containing rifampin and 40 µg of kanamycin monosulfate per ml (for E. coli F-18 FimH−). All putative transductants were found to be lysogenized. Four putative E. coli F-18 FimA− transductants were cured of P1::Tn5 and four putative E. coli F-18 FimA− transductants were cured of P1::Tn5 and four putative E. coli F-18 FimH− transductants were cured of P1 cltr 100 Cm by growth at 37°C in the presence of sodium citrate (0.5 mM) to chelate calcium and prevent further P1 infection. All cured transductants were both Str− and Rif−, grew well in minimal broth Davis, and behaved as FimA− or FimH− both in binding to a mannose-bovine serum albumin (BSA) glycoconjugate and in pilination (see Results). One E. coli F-18 FimA− strain and one E. coli F-18 FimH− strain were chosen for further study.

Mouse colonization experiments. The method used to distinguish the relative colonizing abilities of E. coli strains in mice has been described in detail previously (7, 46). Briefly, after 1 day of being fed streptomycin sulfate in their drinking water (5 g/liter), three male CD-1 mice were starved from 18 to 24 h for food (Charles River Valley Rat, Mouse, and Hamster Formula) and water and fed 1010 CFU each of the L broth-grown E. coli strains to be tested in 1 ml of sterile 20% (wt/vol) sucrose, as described previously (7). The mice drank the bacterial suspension almost immediately and were then given food and streptomycin-containing drinking water. The following day and at 24- or 48-h intervals, as indicated, fecal samples, no older than 24 h, were collected, homogenized, diluted, and plated on selective media as described below. In all colonization experiments, plates were incubated at 37°C for 18 to 24 h. Colonizing ability was assessed by the level at which a strain persisted in feces. Each experiment was performed at least twice with essentially identical results.

To differentiate E. coli F-18 (Str− Rif+) from E. coli F-18 FimA− (Str− Rif− Tet+), fecal samples were plated on MacConkey agar containing 10 µg of streptomycin sulfate per ml and 50 µg of rifampin per ml and on MacConkey agar containing 100 µg of streptomycin sulfate per ml, 50 µg of rifampin per ml, and 10 µg of tetracycline hydrochloride per ml. The numbers of E. coli F-18 FimA− were determined directly from the plates containing tetracycline hydrochloride. The numbers of E. coli F-18 were determined each day by toothpicking 50 colonies from the plates without tetracycline hydrochloride to MacConkey agar plates containing tetracycline and determining the fraction of the total count that was tetracycline sensitive. The numbers of E. coli F-18 FimA− per gram of feces calculated from the results of toothpicking agreed very well with the numbers determined by direct plating.

To differentiate E. coli F-18 (Str− Rif+) from E. coli F-18 FimH− (Str− Rif− Kan+), fecal samples were plated on MacConkey agar containing 100 µg of streptomycin sulfate per ml and 50 µg of rifampin per ml and on MacConkey agar containing 100 µg of streptomycin sulfate per ml, 50 µg of rifampin per ml, and 40 µg of kanamycin monosulfate per ml. The numbers of E. coli F-18 FimH− were determined directly from the plates containing kanamycin monosulfate. The numbers of E. coli F-18 were determined each day by toothpicking 50 colonies from the plates without kanamycin monosulfate to MacConkey agar containing kanamycin and determining the fraction of the total count that was kanamycin sensitive. The numbers of E. coli F-18 FimH− per gram of feces calculated from the results of toothpicking agreed very well with the numbers determined by direct plating.

To differentiate E. coli F-18 FimA− (Str− Rif− Tet+) from E. coli F-18 Col+ (Str+ Nal−), fecal samples were plated on MacConkey agar containing 100 µg of streptomycin sulfate per ml, 50 µg of rifampin per ml, and 10 µg of tetracycline hydrochloride per ml and on MacConkey agar containing 100 µg of streptomycin sulfate per ml and 50 µg of nalidixic acid per ml.

To differentiate E. coli F-18 FimH− (Str+ Rif− Kan+) from E. coli F-18 Col+ (Str+ Nal−), fecal samples were plated on MacConkey agar containing 100 µg of streptomycin sulfate per ml, 50 µg of rifampin per ml, and 40 µg of kanamycin monosulfate per ml and on MacConkey agar containing 100 µg of streptomycin sulfate per ml and 50 µg of nalidixic acid per ml.

To differentiate E. coli ORN152 (Str+ Kan−) from the FimA− strain E. coli ORN151 (Str− Tet+), fecal samples were plated on MacConkey agar plates containing 100 µg of streptomycin sulfate per ml and 40 µg of kanamycin monosulfate per ml and on MacConkey agar plates containing 100 µg of streptomycin sulfate per ml and 10 µg of tetracycline hydrochloride per ml.

Cecal brush border membrane preparation. Cecal epithelial cells were isolated from 15 mice as described previously (47). The final suspensions contained 4.0 × 108 epithelial cells per ml in 24.5 mM HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid) buffer (pH 7.5) containing 2.5 mM monosodium phosphate and 98 mM sodium chloride. Brush border membranes were prepared from cecal epithelial cells as described previously (47). Final suspensions, containing brush borders from 108 epithelial cells per ml, were in HEPES-Hanks buffer (pH 7.4).

Radioactive labeling of E. coli strains. Cultures of the E. coli F-18 strains were labeled in modified Davis minimal medium as described previously (6, 47). 35S04-labeled cultures were washed twice in HEPES-Hanks buffer (pH 7.4) at 4°C and suspended in the same buffer at 37°C at about 109 cells per ml. The specific activity was routinely between 2 × 103 and 5 × 103 cpm/CFU, depending on the age of the 35SO4. The E. coli ORN strains were labeled in modified Davis minimal medium supplemented with 2 µg of thiamine per ml and 50 µg each of l-arginine, l-leucine, and l-threonine per ml.

Electron microscopy. Bacterial preparations were grown overnight in stationary culture at 37°C in brain heart infusion broth, diluted back 100-fold, grown identically in fresh brain heart infusion broth 4 days in succession for maximal type 1-pilus expression, and stained for 1 min with 1% phosphotungstic acid (pH 7.0) on copper grids coated with Formvar and carbon. The samples were examined in a JEOL 1200 SX microscope.

Adhesion to cecal brush membranes. The assay of adhesion to immobilized brush border membranes isolated from 2.5 × 108 epithelial cells has been described in detail previously (47). All assays were performed in triplicate. Briefly, prewarmed 35SO4-labeled E. coli cells (0.2 ml) were added to wells containing immobilized brush borders. The plates were incubated for 1 h at 37°C, and the wells were then washed twice with HEPES-Hanks buffer (pH 7.4) to remove unbound bacteria. Adherent bacteria were released by adding 0.5 ml of 5% sodium dodecyl sulfate to each well and then
incubating the plates for 3 h at 37°C. The sodium dodecyl sulfate was removed from each well, and the level of radioactivity was determined by scintillation counting.

Radioactive bacteria released less than 0.5% of the total incorporated label during the 1-h incubation period. Furthermore, subsequent incubation of supernatants failed to produce significant levels of radioactivity adhering to epithelial cells or brush borders (<250 cpm).

Adhesion to BSA glycoconjugates. (Mannose-α-O-CETE)₉-BSA, hereafter called Man-BSA, and (CH₃-O-CETE)₉-BSA, hereafter called CETE-BSA, were immobilized in polystyrene tissue culture wells as described previously (47) [CETE is 2-(2-carbomethoxyethylthio)ethyl]. Adhesion assays using ³⁵SO₄-labeled *E. coli* were then performed as described above.

Media and antibiotics. L broth was made as described by Revel (42). L agar is L broth containing 12 g of Bacto-Agar (Difco Laboratories, Detroit, Mich.) per liter. MacConkey agar (Difco) and brain heart infusion broth (Scott Laboratories, Inc., Fiskeville, R.I.) were prepared according to package instructions. Streptomycin sulfate, rifampin, tetracycline hydrochloride, and kanamycin monosulfate were purchased from Sigma Chemical Co., St. Louis, Mo.

Chemicals. All chemicals were reagent grade. Man-BSA and CETE-BSA were purchased from Carbohydrates International, Inc., Arlov, Sweden.

Statistics. When indicated in the text, means derived from triplicate samples were compared by using Student's *t* test (*P* values).

FIG. 1. Electron micrographs of *E. coli* F-18 (A), *E. coli* F-18 FimA⁻ (B), and *E. coli* F-18 FimH⁻ (C).
TABLE 1. Adhesion of *E. coli* F-18 strains

<table>
<thead>
<tr>
<th>Adhesion to:</th>
<th>Adhesion (cpm [mean ± SE])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli F-18</td>
</tr>
<tr>
<td></td>
<td>FimA−</td>
</tr>
<tr>
<td>Man-BSA</td>
<td>32,517 ± 781</td>
</tr>
<tr>
<td>CETE-BSA</td>
<td>6,911 ± 737</td>
</tr>
<tr>
<td>Brush borders</td>
<td>17,131 ± 241</td>
</tr>
<tr>
<td>BSA</td>
<td>6,559 ± 131</td>
</tr>
</tbody>
</table>

* All adhesion assays were performed in triplicate. The specific activities of the three strains were essentially identical at 6.0 × 10^3 cpm/CFU.

RESULTS

Electron microscopy of *E. coli* F-18, *E. coli* F-18 FimA− and *E. coli* F-18 FimH−. *E. coli* F-18 was bacteriophage P1 transduced with *E. coli* ORN151 (P1::Tn5) and *E. coli* ORN133 (P1 cI 100 Cm) lysates. *E. coli* F-18 FimA− and *E. coli* F-18 FimH− transductants were selected (see Materials and Methods) and viewed by transmission electron microscopy (Fig. 1). Similarly, an *E. coli* F-18 Col− FimA− strain selected by P1 transduction was viewed by transmission electron microscopy (not shown). *E. coli* F-18 FimA− had no pili (Fig. 1B), as reported previously for fimA mutants (22, 37), showing clearly that the pili observed on *E. coli* F-18 (Fig. 1A) were, in fact, type 1. Similarly, *E. coli* F-18 Col− FimA− had no pili, showing that its pili (47) are also type 1. Furthermore, pili were observed on *E. coli* F-18 FimH− (Fig. 1C), as reported previously for *E. coli* K-12 fimH (i.e., adhesin-negative) mutants (24, 29).

Adhesion of the *E. coli* F-18 strains and the *E. coli* ORN strains to Man-BSA and CETE-BSA. *E. coli* strains bearing type 1 pili bind specifically to receptors containing mannoside (22, 37, 43), whereas type 1 pilus-negative (FimA−) and pilus-positive but adhesin-negative (FimH−) mutants do not (22, 37). To determine whether *E. coli* F-18, *E. coli* F-18 FimA−, and *E. coli* F-18 FimH− behaved as expected for type 1-containing, type 1-negative, and adhesin-negative strains, respectively, the *E. coli* F-18 strains and their *E. coli* ORN counterparts were tested for their abilities to bind to immobilized Man-BSA and CETE-BSA. As expected for type 1 pilus-bearing strains, adhesion of *E. coli* F-18 (Table 1) to Man-BSA was about fourfold greater than to CETE-BSA (P < 0.001) and adhesion of *E. coli* ORN152 (Table 2) to Man-BSA was about threefold greater than to CETE-BSA (P < 0.001). Similarly, as expected for type 1 pilus-negative and adhesin-negative strains, adhesion of *E. coli* F-18 FimA− and FimH− (Table 1) and *E. coli* ORN151 (FimA−) and ORN133 (FimH−) (Table 2) to Man-BSA and CETE-BSA was about equal (P > 0.10 in each case); i.e., no mannoside specificity was observed.

Since the colonization model used in this study requires treating mice with streptomycin, *E. coli* F-18 and *E. coli* F-18 FimA− were grown in the presence of streptomycin sulfate (100 μg per ml), examined microscopically, and tested for their abilities to bind to Man-BSA and CETE-BSA in both the presence and absence of streptomycin sulfate (100 μg/ml). The data-obtained were no different from those presented in Fig. 1 and Table 1; i.e., growing *E. coli* F-18 in streptomycin did not affect type 1 pilus expression nor did the presence of streptomycin alter type 1 pilus adhesive function (data not shown).

Adhesion of the *E. coli* F-18 strains and the *E. coli* ORN strains to cecal brush borders. Adhesion of *E. coli* F-18 to immobilized cecal brush border membranes (Table 1) was about two- and threefold greater than that of *E. coli* F-18 FimA− and *E. coli* F-18 FimH−, respectively, to immobilized brush border membranes (P < 0.001 in each case). These data suggest that *E. coli* F-18 type 1 pili bind specifically to cecal brush border receptors and in doing so give *E. coli* F-18 an advantage in binding relative to *E. coli* F-18 FimA− and *E. coli* F-18 FimH−. In addition, similar adhesion experiments using the *E. coli* K-12 strains (Table 2) showed that the type 1-piliated *E. coli* ORN152 bound approximately three- and sixfold better to cecal brush border membranes than did ORN151 (FimA−) and ORN133 (FimH−), respectively (P < 0.001 in each case). Also, the presence of streptomycin sulfate (100 μg/ml) did not alter the ability of *E. coli* F-18 to bind to cecal brush borders (data not shown).

Relative colonizing abilities of *E. coli* F-18, *E. coli* F-18 FimA−, and *E. coli* F-18 FimH−. The system used to assess the relative colonizing abilities of the *E. coli* strains tested is a competitive streptomycin-treated mouse model. In this model the normal mouse facultative gram-negative flora is reduced and the relative numbers of the different anaerobic flora are altered by streptomycin treatment (18, 32). Without such treatment, exogenously introduced *E. coli* strains do not colonize, but with streptomycin treatment, most *E. coli* strains colonize indefinitely at about 10^7 CFU/g of feces when fed to mice individually (33, 45). Therefore, we normally seed streptomycin-treated mice two nearly isogenic streptomycin-resistant strains and continue streptomycin treatment. If the two strains are equally fit in the intestine, then both will colonize the large intestine equally well (i.e., both will persist in feces at between 10^6 and 10^7 CFU/g (33). However, if one strain has an advantage over the other, then it will become the dominant organism and persist in feces while the other strain will decrease in feces with time (6, 7, 33). With this in mind, streptomycin-treated mice were fed either *E. coli* F-18 and *E. coli* F-18 FimA− (Fig. 2) or *E. coli* F-18 and *E. coli* F-18 FimH− (Fig. 3). Under these conditions both *E. coli* F-18 FimA− and *E. coli* F-18 FimH− were as good colonizers as their parent, *E. coli* F-18. That is, each strain colonized at between 10^5 and 10^6 CFU/g of feces indefinitely (Fig. 2 and 3). Furthermore, when mice were fed 10^5 CFU each of *E. coli* F-18 and *E. coli* F-18 FimA− or 10^4 CFU each of *E. coli* F-18 and *E. coli* F-18 FimH− (instead of 10^6 CFU), each strain grew equally well in vivo from 10^4 CFU/g of feces to between 10^5 and 10^6 CFU/g of feces within 48 h and colonized at that level indefinitely (data not shown). These data suggest that at any dose *E. coli* F-18 FimA− and *E. coli* F-18 FimH− colonize the streptomycin-treated mouse large intestine as well as *E. coli* F-18.

**Adhesion of *E. coli* F-18 and *E. coli* F-18 FimA− were also fed to streptomycin-treated mice at 10^10 CFU each and allowed to colonize for 17 days. At that time, streptomycin treatment was discontinued and the numbers of each strain in feces were determined at 24-h intervals for the next 11 days.

TABLE 2. Adhesion of *E. coli* ORN strains

<table>
<thead>
<tr>
<th>Adhesion to:</th>
<th>Adhesion (cpm [mean ± SE])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli ORN152</td>
</tr>
<tr>
<td></td>
<td>FimA−</td>
</tr>
<tr>
<td>Man-BSA</td>
<td>22,752 ± 953</td>
</tr>
<tr>
<td>CETE-BSA</td>
<td>7,967 ± 152</td>
</tr>
<tr>
<td>Brush borders</td>
<td>12,084 ± 116</td>
</tr>
<tr>
<td>BSA</td>
<td>7,019 ± 158</td>
</tr>
</tbody>
</table>

* All adhesion assays were performed in triplicate. The specific activities of the three strains were essentially identical at 3.6 × 10^3 cpm/CFU.

E. COLI COLONIZATION
During that time, the numbers of both strains dropped from 10^7 CFU/g of feces to 10^6 CFU/g of feces at identical rates (data not shown), suggesting that streptomycin treatment did not prevent *E. coli* F-18 interactions in vivo which would give it an advantage over *E. coli* F-18 FimA" in untreated mice.

Relative colonizing abilities of *E. coli* F-18 FimA", *E. coli* F-18 FimH", and *E. coli* F-18 Col". *E. coli* F-18 Col" is a far worse colonizer of the streptomycin-treated mouse large intestine than its parent, *E. coli* F-18, because it grows poorly in cecal mucus in the presence of *E. coli* F-18 (46). However, *E. coli* F-18 Col" does make type 1 pili and binds specifically to Man-BSA (47). Therefore, to determine whether type 1 pili confer an advantage to *E. coli* F-18 Col",

making it a better colonizer relative to the pilus-negative and adhesin-negative strains than it is relative to *E. coli* F-18, streptomycin-treated mice were fed either *E. coli* F-18 FimA" and *E. coli* F-18 Col" (Fig. 4) or *E. coli* F-18 FimH" and *E. coli* F-18 Col" (Fig. 5). Both *E. coli* F-18 FimA" and *E. coli* F-18 FimH", like *E. coli* F-18 (7, 46), were found to be far better colonizers than *E. coli* F-18 Col" (Fig. 4 and 5).

Relative colonizing abilities of the K-12 strains, *E. coli* ORN152 and *E. coli* ORN151 (FimA"). Streptomycin-treated mice were fed both the type 1-piliated *E. coli* ORN152 and the nonpiliated *E. coli* ORN151 (FimA`). The nonpiliated strain colonized at about 10^6 CFU/g of feces, whereas the
type 1-piliated strain colonized at between 10^4 and 10^5 CFU/g of feces (Fig. 6).

DISCUSSION

The data presented here show that functional type 1 pili are not necessary for *E. coli* F-18 to colonize the streptomyccin-treated mouse large intestine. That is, transduction of a defective *fimA* gene into *E. coli* F-18 resulted in bald F-18 cells (Fig. 1B), proving that *E. coli* F-18 pili are indeed type 1; but colonizing ability was retained by *E. coli* F-18 FimA− (Fig. 2) despite a twofold drop in its ability to bind to cecal brush border membranes in vitro (Table 1). Furthermore, *E. coli* F-18 FimH−, i.e., lacking the type 1 adhesin protein in its pili (2, 3, 25), also retained the colonizing ability of its parent (Fig. 3), despite a threefold drop in ability to bind to cecal brush border membranes in vitro (Table 1). In addition, the FimA− *E. coli* K-12 strain ORN151 colonized the streptomyccin-treated mouse large intestine at about an order of magnitude better than its type 1-piliated counterpart, ORN152 (Fig. 6), despite a threefold drop in ability to bind to cecal brush border membranes in vitro (Table 2). We cannot rule out the possibility that this difference reflects an effect of the expression of the tetracycline resistance gene present in ORN151 (FimA−) or the kanamycin resistance gene present in ORN152 rather than a slight adverse effect of type 1 pilus expression on the colonizing ability of *E. coli* ORN152. In any case, these data again suggest that type 1 pili do not increase large-intestine colonizing ability. These results are in sharp contrast to the role type 1 pili appear to play in ascending urinary tract infection of mouse and rat bladders (4, 14, 17, 20, 21).

The data reported here do not rule out the possibility that adhesion to cecal brush border membranes is important in the ability of *E. coli* F-18 to colonize the streptomyccin-treated mouse large intestine. Human fecal *E. coli* strains often make more than one adhesin (5, 11). Some *E. coli* adhesins are on plasmids (11, 13, 15, 38, 40, 44), and others, including those for type 1 pili, are on the chromosome (5, 15, 19, 26–28). Therefore, *E. coli* F-18, which contains seven plasmids (7), may make one or more adhesins other than type 1 pili in vivo that are not made in vitro. If so, adhesion to cecal epithelial cells might still be important for colonization in vivo; i.e., *E. coli* F-18 FimA− and *E. coli* F-18 FimH− might both make epithelial cell-specific adhesins in vivo which allow them to compete effectively with *E. coli* F-18. However, while this may be a strong possibility for *E. coli* F-18, it is a less likely, although still possible, explanation as to why *E. coli* ORN152 and *E. coli* ORN151 (FimA−) colonize about equally well (Fig. 6). That is, K-12 strains are less likely to contain operons for additional adhesins since they are plasmidless and their chromosomes do not contain nucleotide sequences related to the *pap*, *prs*, and *afal* operons, which encode chromosomal genes for adhesins commonly found in uropathogenic *E. coli* strains (34; Richard Goldstein, personal communication).

If *E. coli* F-18 and *E. coli* ORN152 make no other adhesin in vivo, there are still other possibilities to explain why type 1 pili play no role in their ability to colonize the streptomyccin-treated mouse large intestine. For example, it is known that transcription of the *fimA* gene is regulated by the orientation of an invertible 300-base-pair DNA segment which contains the *fimA* promoter (1, 12, 23, 36). If the transcription-off orientation is favored in vivo, *E. coli* F-18 would have not type 1 pili in vivo and therefore no advantage over *E. coli* F-18 FimA− and *E. coli* FimH−. Alternatively, it is possible that *E. coli* F-18 expresses type 1 pili in vivo but does not bind to mannose-containing receptors present in epithelial cell border membranes because it binds first to type 1-specific receptors present in cecal mucus (47). If so, *E. coli* F-18, *E. coli* F-18 FimA−, and *E. coli* F-18 FimH− might be identical in their abilities to grow in mucus, resist washout, and colonize the large intestine. Specific receptors for various *E. coli* and *Salmonella typhimurium* strains in mucus have, in fact, been implicated in inhibiting adhesion to epithelial cells (8, 9, 31). Experiments designed to test whether *E. coli* F-18 expresses type 1 pili in vivo and, if so, whether type 1-specific receptors present in cecal mucus prevent *E. coli* F-18 from binding to cecal epithelial cells are in progress.

ACKNOWLEDGMENTS

This work was supported by Public Health Service grant AI16370 to P.S.C. and D.C.L. from the National Institute of Allergy and Infectious Diseases.

We thank P. E. Ornorduff for sending strains ORN151 and ORN152 prior to publication. These strains were constructed in his laboratory and funded in part by Public Health Service grant AI22223 from the National Institutes of Health.

LITERATURE CITED

