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Modeling and classification of gait 
patterns between anterior cruciate ligament 
deficient and intact knees based on phase space 
reconstruction, Euclidean distance and neural 
networks
Wenbao Wu1†, Wei Zeng2*† , Limin Ma3, Chengzhi Yuan4 and Yu Zhang5†

Abstract 

Background: The anterior cruciate ligament (ACL) plays an important role in stabiliz-
ing translation and rotation of the tibia relative to the femur. ACL injury alters knee kin-
ematics and usually links to the alternation of gait patterns. The aim of this study is to 
develop a new method to distinguish between gait patterns of patients with anterior 
cruciate ligament deficient (ACL-D) knees and healthy controls with ACL-intact (ACL-I) 
knees based on nonlinear features and neural networks. Therefore ACL injury will be 
automatically and objectively detected.

Methods: First knee rotation and translation parameters are extracted and phase 
space reconstruction (PSR) is employed. The properties associated with the gait system 
dynamics are preserved in the reconstructed phase space. For the purpose of classifica-
tion of ACL-D and ACL-I knee gait patterns, three-dimensional (3D) PSR together with 
Euclidean distance computation has been used. These measured parameters show sig-
nificant difference in gait dynamics between the two groups and have been utilized to 
form a feature set. Neural networks are then constructed to identify gait dynamics and 
are utilized as the classifier to distinguish between ACL-D and ACL-I knee gait patterns 
based on the difference of gait dynamics between the two groups.

Results: Experiments are carried out on a database containing 18 patients with ACL 
injury and 28 healthy controls to assess the effectiveness of the proposed method. 
By using the twofold and leave-one-subject-out cross-validation styles, the correct 
classification rates for ACL-D and ACL-I knees are reported to be 91.3% and 95.65% , 
respectively.

Conclusion: Compared with other state-of-the-art methods, the results demonstrate 
that gait alterations in the presence of ACL deficiency can be detected with superior 
performance. The proposed method is a potential candidate for the automatic and 
non-invasive classification between patients with ACL deficiency and healthy subjects.

Keywords: Gait analysis, Anterior cruciate ligament, Movement disorders, Phase space 
reconstruction (PSR), Euclidean distance (ED), Neural networks
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Background
Knowledge of spatiotemporal knee motion is important for understanding normal func-
tions as well as addressing clinical problems, including instability after anterior cruciate 
ligament (ACL) injury. ACL plays an important role in controlling knee joint stability, 
not only by limiting tibia anterior translation, but also by controlling knee axial rotation 
and varus movement [1]. Numerous studies have been carried to provide information 
on biomechanical changes in the ACL-deficient (ACL-D) knees [2–7], which revealed 
that ACL-D knees would exhibit altered joint kinematics. Currently, the most widely 
accepted method for assessing joint movement patterns is gait analysis, which offers a 
unique means of providing insight into mechanisms of ACL-D progression by meas-
uring the kinematic and kinetic parameters [8]. Gait analysis also provides important 
information concerning motion variability in ACL-D and ACL-intact (ACL-I) knees [9].

Many studies have addressed gait pattern classification and there are several reviews 
on this subject [10–14]. However, the research work dealing specifically with ACL-D 
knees is not sufficient [15–18]. Biomechanics plays an important role in the progression 
of ACL-D knees and many studies have been carried out in gait laboratories to ascer-
tain which parameters are affected by ACL-D knees compared to healthy controls with 
bilateral ACL-I knees [19–31]. These gait parameters may be adopted as gait features 
for the classification of gait patterns between ACL-D and ACL-I knees. In the study by 
Gao et al. [1], spatiotemporal gait and knee joint kinematic variables were calculated and 
further analyzed. The ACL-D knees exhibited a significant extension deficit compared 
to the ACL-I knees. A more varus and internally rotated tibial position was also identi-
fied in the ACL-D knees during both stair ascent and descent. Knoll et al. [19] revealed 
a quadriceps-avoidance gait pattern in acute ACL-D patients. Chronic ACL-D indi-
viduals demonstrated a significantly different gait pattern. Robinson et al. [32] investi-
gated whether using a direct kinematic or inverse kinematic modeling approach could 
influence the estimation of knee joint kinematics and kinetics. The similarity between 
kinematic and kinetic waveforms was evaluated using the root mean square difference 
and the one-dimensional statistical parametric mapping. Atarod et al. [33] investigated 
the interactions between different kinematic degree of freedom during normal gait and 
determined how these interactions would change over time following ACL transection 
in  vivo. They claimed that ACL deficiency would significantly alter the kinematic and 
kinetic interactions during in vivo gait. Clinical imaging studies of ACL-D individuals 
versus healthy controls have found greater medial–lateral posterior tibial slope in injured 
population, with stronger evidence on the lateral plateau slope. To quantify these effects, 
Marouane et  al. [34] used a lower extremity musculoskeletal model which included a 
detailed finite element model of the knee joint. It was used to compute the role of 
changes in medial and/or lateral posterior tibial slope on knee joint biomechanics.

The current study has two aims. First, to provide further evidence to support the 
claim that ACL-D knees demonstrate altered gait patterns compared to ACL-I knees. 
Second, to provide an automatic and objective method to distinguish between ACL-D 
and ACL-I knees. Based on the nonlinear and non-stationary nature of knee kinematic 
signals [35], a popular nonlinear method named phase space reconstruction (PSR), is 
a valuable tool for the studies of this kind of signals [36–41]. The principle of PSR is 
to transform the properties of a time series into topological properties of a geometrical 
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object which is embedded in a space, wherein all possible states of the system are repre-
sented, each state corresponds to a unique point, and this reconstructed space sharing 
the same topological properties as the original space. The dynamics in the reconstructed 
state space is equivalent to the original dynamics. Hence reconstructed phase space is a 
very useful tool to extract nonlinear dynamics of the signal [36–41]. It is hypothesized 
that gait dynamics between ACL-D and ACL-I knee gait patterns is significantly differ-
ent, which implies that PSR offers the potential to compute the difference and classify 
the two groups.

In this paper, we present a new method using gait analysis to distinguish between 
ACL-D and ACL-I knees. First knee rotation and translation parameters are extracted 
and phase space is reconstructed. The properties associated with the gait system dynam-
ics are preserved in the reconstructed phase space. For the purpose of classification of 
ACL-D and ACL-I knee gait patterns, three-dimensional (3D) PSR together with Euclid-
ean distance (ED) computation has been used. These measured parameters show sig-
nificant difference in gait dynamics between the two groups and have been utilized to 
form a feature set. Neural networks are then constructed to identify gait dynamics and 
are utilized as the classifier, in which the feature set is embedded, to distinguish between 
ACL-D and ACL-I knee gait patterns based on the difference of gait dynamics between 
the two groups.

Methods
In this section, we propose a method for the classification of ACL-D knees using the 
information obtained from gait dynamics. Two groups of subjects (patients with ACL-D 
knees and healthy controls with ACL-I knees) are recruited and tested in this study. The 
method is divided into the training stage and the classification stage and follows the fol-
lowing steps. In the first step, knee kinematic signals are extracted by using a motion 
capture system. In the second step, PSR is applied to extract nonlinear dynamics of 
lower extremities signals. Euclidean distances are computed to extract gait features. 
Finally, feature vectors are fed into the neural networks for the modeling and identifica-
tion of gait dynamics. The difference of gait dynamics will be derived from a set of esti-
mators constructed by neural networks and be applied to distinguish between ACL-D 
and ACL-I knees. The outline of the proposed method is illustrated in Fig. 1.

Data measurement

Our database consists of 46 participants: 28 healthy controls with ACL-I knees and 18 
patients with ACL-D knees. The mean value and the standard deviation (SD) of the age, 
height, weight and sex for the participants are depicted in Table 1. As the control group, 
healthy subjects who had bilateral ACL-I knees and no history of musculoskeletal dis-
eases on the lower extremities were included. The ACL-D subjects documented via MRI 
and a clinical examination had no accompanying damage to the posterior cruciate and 
collateral ligaments, no more than 30% the meniscus removed, no injuries on the con-
tralateral limb, and no difficulty or pain in performing activities of daily living including 
walking. A single experienced orthopaedic surgeon performed the physical examination 
and made the MRI diagnosis.



Page 4 of 19Wu et al. BioMed Eng OnLine          (2018) 17:165 

The kinematic data of the knees in six-degree-of-freedom (6DOF) were captured 
using a portable marker-based motion analysis system (Opti_  Knee®, Innomotion Inc., 
Shanghai, China), which has been utilized and validated before [42–45], as illustrated in 
Fig. 2. These tibiofemoral kinematics include varus–valgus (VV), internal–external (IE) 
rotation and flexion–extension (FE); anterior–posterior (AP), proximal–distal (PD) and 
medial–lateral (ML) translations.

Each subject was required to undergo a 3-min treadmill gait training. Then data were 
collected with the sampling frequency of 60   Hz for 15 s and all the participants were 
guided to walk at the speed of 3 km/h. The detailed procedure about data extraction can 
be seen in the study by Zhang et al. [42]. The study was approved by the ethical review 
board and a written informed consent was obtained from each participant before data 
collection began.

Data description

Here in Table 2 we give the measures of the range of motion (ROM) of knee rotations 
and translations in patients with ACL-D knees and healthy controls with ACL-I knees.

Fig. 1 Block diagram of the proposed method for the classification of gait patterns between ACL-D and ACL-I 
knees

Table 1 Descriptive characteristics of the ACL-D and ACL-I subjects

Healthy controls with ACL-I 
knees

Patients with ACL-D knees p value

Age (years), mean (SD) 38.6 (5.9) 40.3 (6.1) 0.352

Height (cm), mean (SD) 165.4 (9.6) 164.1 (7.6) 0.630

Weight (kg), mean (SD) 65.7 (10.5) 63.5 (9.4) 0.474

Male/female 14/14 11/7 −
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Kinematic variations during walking were observed in 3-D rotations and translations 
between ACL-D and ACL-I knees, as shown in Fig. 3. For each of the rotational or trans-
lational kinematic component, 101 discrete points corresponding to 0–100% gait cycle 
at 1% interval were extracted using one-dimensional interpolation for statistical analy-
sis. Measures of each spatiotemporal variable as well as each discrete kinematic point 
were compared between ACL-D and ACL-I knees using an independent t-test analysis 
of variance (SPSS Inc., IL, USA). A p value of < 0.05 was considered to indicate statisti-
cal significance.

It is observed from Table 2 that: (1) In the sagittal plane patients with ACL-D knees 
showed less range of flexion–extension than healthy controls with ACL-I knees (59.18 
(8.49) and 71.76 (6.93), respectively, p < 0.001 ). (2) In the frontal plane, patients with 
ACL-D knees showed less range of internal–external rotation than healthy controls with 
ACL-I knees (18.87 (5.77) and 22.45 (4.69), respectively, p = 0.03 ). (3) The range of PD 
translation was lower in the ACL-D knees group compared to ACL-I knees group while 
the range of AP translation was higher in the ACL-D knees group compared to ACL-I 
knees group (Table 2). (4) Whereas statistical tests of significance tell us the likelihood 
that experimental results differ from chance expectations, effect-size measurements 

Fig. 2 A portable marker-based motion analysis system [42]: A The instrument for knee kinematics analysis; 
B Identifying the femoral and tibial anatomical landmarks using a hand-held probe prior to kinematic data 
capture

Table 2 Mean, SD, significant statistical difference p and effect sizes of the range 
of motion (ROM) of tibiofemoral rotations and translations for 28 healthy controls 
with ACL-I knees and 18 patients with ACL-D knees

Parameters Groups Difference 
between groups

Effect size

ACL-D knees ACL-I knees p-value Cohen’s d

ROM of VV (degree) 13.01 (5.45) 15.40 (4.17) 0.1 0.51

ROM of IE rotation (degree) 18.87 (5.77) 22.45 (4.69) 0.03 0.70

ROM of FE (degree) 59.18 (8.49) 71.76 (6.93) < 0.001 1.66

ROM of AP translation (cm) 2.41 (0.81) 1.95 (0.52) 0.02 − 0.71

ROM of PD translation (cm) 1.94 (0.74) 2.38 (0.44) 0.01 0.77

ROM of ML translation (cm) 1.84 (0.49) 1.86 (0.37) 0.88 0.05
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Fig. 3 The 3-D joint rotations and translations during walking of ACL-D and ACL-I knees. Ensemble curves 
of each subject group were normalized from heel strike to heel strike in a gait cycle. a IE rotation; b FE; c AP 
translation; d PD translation
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tell us the relative magnitude of the experimental treatment. In essence, an effect size is 
the difference between two means divided by the standard deviation of the two condi-
tions [46]. Cohen’s d from t-test [47] was used to describe the effect sizes of the ROM 
of knee kinematic data, which have been shown in Table 2. The effect sizes were tradi-
tionally considered small ( d = 0.2 ), medium ( d = 0.5 ), and large ( d = 0.8 ) [48, 49]. It is 
seen from Table 2 that IE, FE, AP and PD are with nearly large effect sizes compared to 
VV and ML, which also means there exist significant differences in IE, FE, AP and PD 
between ACL-deficient patients and healthy controls. The results are in accordance with 
the p-value analysis.

It is seen from the statistical analysis in Table 2 that IE rotation, FE, AP and PD trans-
lations between ACL-D and ACL-I knees are significantly different, which means gait 
dynamics of the two groups represented by the knee motion are significantly different. 
Hence these four signals are utilized as reference variables to carry out the following 
phase space reconstruction.

Phase space reconstruction (PSR)

It is sometimes necessary to search for patterns in a time series and in a higher dimen-
sional transformation of the time series [50]. Phase space reconstruction (PSR) is a 
method used to reconstruct the so-called phase space. The concept of phase space is 
a useful tool for characterizing any low-dimensional or high-dimensional dynamic sys-
tem. A dynamic system can be described using a phase space diagram, which essentially 
provides a coordinate system where the coordinates are all the variables comprising 
mathematical formulation of the system. Mathematically, the states of an d-dimensional 
dynamic system can only be characterized by d independent quantities. Such a set of d 
independent quantities represents the coordinates of the phase space. One of the most 
used methods of PSR is the time-delay embedding. Since this method does not require 
that the treated system could be mathematically defined, explicitly, it fits well with 
1-dimensional time series. A point in the phase space represents the state of the system 
at any given time [50, 51]. Knee kinematic signals can be written as the time series vec-
tor V = {v1, v2, v3, ..., vK } , where K is the total number of data points. A new sequence of 
phase space vectors based on delay-coordinate embedding method is expressed as fol-
lows [50]:

where j = 1, 2, ...,K − (d − 1)τ , d is the embedding dimension of the phase space and τ 
is a time lag. Yj means the jth reconstructed vector with embedding dimension d. Finally, 
we obtain a reconstructed phase space Y containing totally K − (d − 1)τ vector points 
as the following trajectory matrix:

where M = K − (d − 1)τ . It is worthwhile to mention that the properties associated 
with the gait system’s dynamics are preserved in the reconstructed phase space. The 

(1)Yj = (Vj ,Vj+τ ,Vj+2τ , ...,Vj+(d−1)τ )

(2)Y =







Y1
Y2
· · ·
YM






=







V1 V1+τ · · · V1+(d−1)τ

V2 V2+τ · · · V2+(d−1)τ

· · · · · · · · · · · ·
VM VM+τ · · · VM+(d−1)τ
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d-dimensional space of delay coordinates serves as a pseudo state-space which provides 
a natural setting to approximate the quantitative aspects of the dynamics.

The behavior of the signal over time can be visualized using PSR (especially when 
d = 2 or 3). In this work, we have confined our discussion to the value of embedding 
dimension d = 3 , because of their visualization simplicity. For τ setting, we either 
utilized the first-zero crossing of the autocorrelation function for each time series or 
the average τ value obtained from all the time series in the training dataset by using 
the method depicted in [52]. In the present study we set the values of time lag τ = 1 
to test the classification performance. PSR for d = 3 has been referred as 3D PSR.

3D PSR is the plot of three delayed vectors Vj ,Vj+1 and Vj+2 to visualize the dynam-
ics of human gait system. Euclidian distance (ED) of a point (Vj ,Vj+1,Vj+2) , which is 
the distance of the point from origin in 3D PSR and can be defined as [50]

ED measures can be used in features extraction and have been studied and applied in 
many fields, such as clustering algorithms and induced aggregation operators [53].

Feature extraction and selection

Reconstructed phase spaces have been proven to be topologically equivalent to the 
original system and therefore are capable of recovering the nonlinear dynamics of 
the generating system [36, 37]. This implies that the full dynamics of the gait system 
are accessible in this space, and for this reason, the features extracted from it can 
potentially contain more and/or different information than the common features 
extraction method [8]. In order to get a more efficient features set, this paper pro-
poses the following features extraction scheme using ED computation.

(1) Reconstruct the phase space for the above mentioned reference variables includ-
ing knee IE rotation, FE, AP and PD translations with selected values of d and τ for 
each gait trial;

(2) Compute ED of 3D PSR of knee IE rotation, FE, AP and PD transla-
tions as gait features. Concatenate these features to form a feature vector 
[EDIE

j ,EDFE
j ,EDAP

j ,EDPD
j ]T and the dimension of feature space would be four.

For our dataset, IE rotation, FE, AP and PD translations of two groups (ACL-D 
and ACLI knees) are analyzed and signal dynamics are extracted by using 3D PSR. 
Samples of the 3D PSR of knee IE rotation, FE, AP and PD translations are exhib-
ited in Fig.  4. After 3D PSR, features of [EDIE

j ,EDFE
j ,EDAP

j ,EDPD
j ]T  for ACL-D and 

ACL-I knee gait patterns are derived through ED computation, as shown in Fig. 5. 
As we have analyzed before, significant difference in knee gait dynamics have been 

(3)EDj =

√

V 2
j + V 2

j+1 + V 2
j+2

Fig. 4 Samples of 3D PSR of the knee kinematic signals from ACL-D and ACL-I gait patterns: a 3D PSR of the 
IE rotation; b 3D PSR of the FE; c 3D PSR of the AP translation; d 3D PSR of the PD translation

(See figure on next page.)
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reported between ACL-D and ACL-I knees, which can also be seen obviously from 
Fig. 4.

Training and modeling mechanism based on selected features

In this section, we present a scheme for modeling and identification of gait dynamics of 
ACL-I and ACL-D knees based on the above mentioned features.

Consider a general nonlinear human gait system dynamics in the following form:

where x = [x1, . . . , xn]
T ∈ Rn are the system states which represent the fea-

tures [EDIE
j ,EDFE

j ,EDAP
j ,EDPD

j ]T , p is a constant vector of system parameters. 
F(x; p) = [f1(x; p), . . . , fn(x; p)]

T is a smooth but unknown nonlinear vector repre-
senting the gait system dynamics, v(x; p) is the modeling uncertainty. Since the mod-
eling uncertainty v(x;  p) and the gait system dynamics F(x;  p) cannot be decoupled 
from each other, we consider the two terms together as an undivided term, and define 
φ(x; p) := F(x; p)+ v(x; p) as the general gait system dynamics. Then, the following 
steps are taken to model and derive the gait system dynamics via deterministic learning 
theory [54–56].

In the first step, standard RBF neural networks are constructed in the following form

where Z is the input vector, W = [w1, ...,wN ]
T ∈ RN is the weight vector, N is the node 

number of the neural networks, and S(Z) = [s1(� Z − µ1 �), ..., sN (� Z − µN �)]T , with 
si(� Z − µi �) = exp[−(Z−µi)

T (Z−µi)

η2i
] being a Gaussian function, µi(i = 1, ...,N ) being 

distinct points in state space, and ηi being the width of the receptive field.
In the second step, the following dynamical RBF neural networks are employed to 

model and derive the gait system dynamics φ(x; p):

where x̂ = [x̂1, . . . , x̂n] is the state vector of the dynamical RBF neural networks, 
A = diag[a1, . . . , an] is a diagonal matrix, with ai > 0 being design constants, localized 
RBF neural networks Ŵ TS(x) = [Ŵ T

1 S1(x), . . . , Ŵ
T
n Sn(x)]

T are used to approximate the 
unknown φ(x; p).

The following law is used to update the neural weights

(4)ẋ = F(x; p)+ v(x; p)

(5)fnn(Z) =

N
∑

i=1

wisi(Z) = WTS(Z),

(6)˙̂x = −A(x̂ − x)+ Ŵ TS(x)

(7)˙̂
Wi =

˙̃Wi = −ŴiS(x)x̃i − σiŴiŴi

(See figure on next page.)
Fig. 5 Samples of Euclidian distance of 3D PSR of the knee kinematic signals from ACL-D and ACL-I gait 
patterns: a Euclidian distance of 3D PSR of the IE rotation; b Euclidian distance of 3D PSR of the FE; c Euclidian 
distance of 3D PSR of the AP translation; d Euclidian distance of 3D PSR of the PD translation
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where x̃i = x̂i − xi, W̃i = Ŵi −W ∗
i  , W ∗

i  is the ideal constant weight vector such that 
φi(x; p) = W ∗

i
T S(x)+ ǫi(x) , ǫi(x) < ǫ∗ represents the neural network modeling error, 

Ŵi = ŴT
i > 0 , and σi > 0 is a small value.

With Eqs. (4−6), the derivative of the state estimation error x̃i satisfies

In the third step, by using the local approximation property of RBF neural networks, the 
overall system consisting of dynamical model (8) and the neural weight updating law (7) 
can be summarized into the following form in the region �ζ

and

where ǫζ i = ǫi − W̃ T
ζ̄ i
Sζ̄ (x) . The subscripts (·)ζ and (·)ζ̄ are used to stand for terms related 

to the regions close to and far away from the trajectory ϕζ (x0) . The region close to the 
trajectory is defined as �ζ := Z|dist(Z,ϕζ ) ≤ dι , where Z = x, dι > 0 is a constant satis-
fying s(dι) > ι , s(·) is the RBF used in the network, ι is a small positive constant. The 
related subvectors are given as: Sζ (x) = [sj1(x), . . . , sjζ (x)]

T ∈ RNζ , with the neurons 
centered in the local region �ζ , and W ∗

ζ = [w∗
j1, . . . ,w

∗
jζ ]

T ∈ RNζ is the corresponding 
weight subvector, with Nζ < N  . For localized RBF neural networks, |W̃ T

ζ̄ i
Sζ̄ (x)| is small, 

so ǫζ i = O(ǫi).
Finally, according to Theorem  1 in [57], the regression subvector Sζ i(x) satisfies the 

persistent excitation condition almost always. This will lead to exponential stability of 
(x̃i, W̃ζ i) = 0 of the nominal part of system (9) [58]. Based on the analysis results given in 
[57], the neural network weight estimate error W̃ζ i converges to small neighborhoods of 
zero, with the sizes of the neighborhoods being determined by ǫζ i and �σiŴζ iW

∗
ζ i� , both 

of which are small values. This means that the entire RBF network Ŵ T
i S(x) can approxi-

mate the unknown φi(x; p) along the trajectory ϕζ , and

where ǫi1 = O(ǫζ i).
By the convergence result, we can obtain a constant vector of neural weights according 

to

where tb > ta > 0 represent a time segment after the transient process. Therefore, we 
conclude that accurate identification of the function φi(x; p) is obtained along the trajec-
tory ϕζ (x0) by using W̄ T

i Si(x) , i.e.,

(8)˙̃xi = −aix̃i + Ŵ T
i S(x)− φi(x; p) = −aix̃i + W̃ T

i S(x)− ǫi

(9)

[

˙̃xi
˙̃Wζ i

]

=

[

−ai Sζ i(x)
T

−Ŵζ iSζ i(x) 0

][

x̃i
W̃ζ i

]

+

[

−ǫζ i

−σiŴζ iŴζ i

]

(10)˙̂
Wζ̄ i =

˙̃Wζ̄ i = −Ŵζ̄ iSζ̄ i(x)x̃i − σiŴζ̄ iŴζ̄ i

(11)φi(x; p) = Ŵ T
i S(x)+ ǫi1

(12)W̄i = meant∈[ta,tb]Ŵi(t)
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where ǫi2 = O(ǫi1) and subsequently ǫi2 = O(ǫ∗).

Classification mechanism

In this section, we present a scheme to distinguish between ACL-I and ACL-D knees.
Consider a training dataset consisting of gait patterns ϕk

ζ  , k = 1, . . . ,M , with the kth 
training pattern ϕk

ζ  generated from

where Fk(x; pk) denotes the gait system dynamics, vk(x; pk) denotes the modeling 
uncertainty, pk is the system parameter vector.

As shown in the above subsection, the general gait system dynamics 
φk(x; pk) := Fk(x; pk)+ vk(x; pk) can be accurately derived and preserved in constant 
RBF neural networks W̄ kT S(x) . By utilizing the learned knowledge obtained in the train-
ing stage, a bank of M estimators is constructed for the training gait patterns as follows:

where k = 1, . . . ,M is used to stand for the kth estimator, χ̄k = [χ̄k
1 , . . . , χ̄

k
n ]

T is the state 
of the estimator, B = diag[b1, . . . , bn] is a diagonal matrix which is kept the same for all 
estimators, x is the state of an input test gait pattern generated from Eq. (4).

In the classification phase, by comparing the test gait pattern (standing for an ACL-D 
or an ACL-I gait pattern) generated from gait system (4) with the set of M estimators 
(15), we obtain the following test error systems:

where χ̃k
i = χ̄k

i − xi is the state estimation (or synchronization) error. We compute the 
average L1 norm of the error χ̃k

i (t)

where Tc is the cycle of human gait.
The fundamental idea of the classification between ACL-D and ACL-I knees is that 

if a test gait pattern generated from a certain ACL-D or ACL-I knee is similar to the 
trained gait pattern s (s ∈ {1, . . . , k}) , the constant RBF network W̄ sT

i Si(x) embedded in 
the matched estimator s will quickly recall the learned knowledge by providing accu-
rate approximation to gait system dynamics. Thus, the corresponding error �χ̃ s

i (t)�1 will 
become the smallest among all the errors �χ̃k

i (t)�1 . Based on the smallest error princi-
ple, the appearing test gait pattern can be classified. We have the following classification 
scheme.

(13)φi(x; p) = W̄ T
i S(x)+ ǫi2

(14)ẋ = Fk(x; pk)+ vk(x; pk), x(t0) = xζ0

(15)˙̄χk = −B(χ̄k − x)+ W̄ kT S(x)

(16)
˙̃χk
i = −biχ̃

k
i + W̄ kT

i Si(x)− φi(x; p),

i = 1, . . . , n, k = 1, . . . ,M

(17)�χ̃k
i (t)�1 =

1

Tc

∫ t

t−Tc

|χ̃k
i (τ )|dτ , t ≥ Tc
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Classification scheme: If there exists some finite time ts, s ∈ {1, . . . , k} and some 
i ∈ {1, . . . , n} such that �χ̃ s

i (t)�1 < �χ̃k
i (t)�1 for all t > ts , then the appearing gait pattern 

can be classified.

Experimental results
The classification performance of ACL-D knees against ACL-I knees is evaluated on 
several experiments. Three measurements, including the Sensitivity, the Specificity 
and the Accuracy, are employed for the evaluation, which are defined as follows:

where TP is the number of true positives, FN is the number of false negatives, TN is the 
number of true negatives and FP is the number of false positives.

The classification results of ACL-D knees will be evaluated in the twofold cross-
validation and leave-one-subject-out cross-validation styles, respectively. In the 
experiment of twofold cross-validation style, we randomly select half of the group of 
patients with ACL-D knees and half of the group of the healthy controls with ACL-I 
knees to constitute the training dataset, the rest of the subjects in the two groups are 
selected as the test dataset. That means there are 9 patients with ACL-D knees and 
14 healthy controls with ACL-I knees in the training dataset. In the experiment of 
leave-one-subject-out cross-validation, each time we select one subject for classifica-
tion, the rest of the 45 subjects for training. This process is repeated 46 times and the 
leave-one-subject-out classification accuracy is calculated as the average of the clas-
sification accuracy of all of the individually left-out subjects.

In the training phase, the RBF network Ŵ T
i Si(x) is constructed in a reg-

ular lattice, with nodes N = 83521 , the centers µi evenly spaced on 
[−1.2, 1.2] × [−1.2, 1.2] × [−1.2, 1.2] × [−1.2, 1.2] so as to cover all the trajectories of 
the input vectors, and the widths η = 0.15 . The weights of the RBF neural networks 
are updated according to Eq. (7). The initial weights Ŵi(0) = 0 . The design parameters 
for (6) and (7) are ai = 0.5,Ŵ = diag{1.5, 1.5, 1.5, 1.5}, σi = 10, (i = 1, . . . , 4).

In the classification phase, by using the constant networks W̄ kT

i Si(x) , RBF network 
estimators are constructed based on Eq. (15). The parameters in Eqs. (15) and (17) are 
bi = −30 (i = 1, . . . , 4),Tc = 1.08s . Experimental results are illustrated in Tables 3 and 
4, and Fig. 6. Tables 3 and 4 shows the confusion matrix of gait pattern classification 
between ACL-D and ACL-I knees by using twofold and leave-one-subject-out cross-
validation styles. Figure 6 shows the classification results. By using the twofold cross-
validation and leave-one-subject-out cross-validation styles, the correct classification 
rates for ACL-D knees are reported to be 91.3% and 95.65% , respectively.

(18)Sensitivity =
TP

TP+ FN

(19)Specificity =
TN

TN + FP

(20)Accuracy =
TP+ TN

TP+ TN + FN + FP
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Discussion
The methodology described in this study is expected to provide the clinicians with an 
efficient tool for assisted diagnosis of ACL-D knees. In comparison to other methods 
reported in [15, 16, 20, 24, 59–61], the proposed method focuses not only on provid-
ing evidence to support the claim that ACL-D knees demonstrate altered gait patterns 
compared to ACL-I knees, but also on providing an automatic and objective method 
to distinguish between patients with ACL-D knees and healthy controls with ACL-I 
knees. Almosnino et al. [15] aimed to identify, using Principal Component Analysis, 
strength curve features that explain the majority of variation between the injured and 
uninjured knee, and to assess the capabilities of these features to detect the presence 
of injury. 43 unilateral ACL deficient patients were included in the experiments to 
discern between the ACL-D and contra lateral, healthy knees. The specificity, sensi-
tivity and accuracy are reported to be 60.5% , 60.5% and 62% , respectively. Christian 
et al. [16] showed the potential of a pattern recognition system for the diagnoses of 
kinematic gait patterns in patients due to a recently ruptured ACL. Principal com-
ponent analysis and recursive feature elimination were used to extract features from 
3D marker trajectories. Seven patients with acute ACL rupture were included in the 

Table 3 Confusion matrix of gait pattern classification between ACL-D and ACL-I knees 
by using twofold cross-validation method

ACL-D knees ACL-I knees

ACL-D knees 8 1

ACL-I knees 1 13

Table 4 Confusion matrix of gait pattern classification between ACL-D and ACL-I knees 
by using leave-one-subject-out cross-validation method

ACL-D knees ACL-I knees

ACL-D knees 17 1

ACL-I knees 1 27

Fig. 6 Performance of the proposed classification approach evaluated by the twofold cross-validation and 
leave-one-subject-out cross-validation methods
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experiment and cross validation yielded 100% accuracy. However, the database used 
is too small which may weaken the persuasion of the classification performance. Ber-
ruto et al. [17] used tibial accelerometers to quantify pivot-shift differences between 
knees for subjects with unilateral ACL injuries. They considered only acceleration-
based metrics, and discrimination of the side of ACL deficiency was accomplished by 
comparing the magnitudes of accelerations measured for the two legs. Accuracy of 
correctly identifying the injured knee was roughly 90% . Kopf et al. [18] performed a 
study similar to [17], in which 20 subjects with unilateral ACL deficiency were graded 
with inertial sensor modules strapped to the tibia and femur. All 3 metrics based on 
accelerometer measurements were found to be significantly different between injured 
and uninjured knees of subjects with unilateral ACL deficiency. They did not explic-
itly state accuracies in determining the side of ACL injury, but examination of their 
results suggested an accuracy of 95% (19 of 20) based on acceleration difference. Com-
parison of the classification performance to other state-of-the-art methods between 
ACL-I and ACL-D groups is shown in Fig. 7.

Different from the methods in the above-mentioned literature, our method focused on 
modeling the human gait and extracting the disparity of gait system dynamics between 
ACL-D and ACL-I knees for the discrimination task. It abandoned the traditional and 
direct comparison of lower extremity motion parameters between ACL-D and ACL-I 
knees and adopted instead the modeling, identification and classification of gait dynam-
ics based on motion parameters. This may better explain and reveal the motion principle 
of pathological and healthy gaits hidden underneath the parameters extracted through 
PSR and ED. The proposed method serves not only as a measure of kinematic variabil-
ity and discrimination between two groups of patients with ACL deficiency and healthy 
controls, but also as a non-invasive, objective and assistant technical means to other 
diagnostic approaches such as X-rays, MRI, arthroscopy, etc.

However, there are some limitations in the present study which need further improve-
ment. Experiments were carried out on a small database and more participants need to 

Fig. 7 Comparing the results of accuracy in classifying gait patterns between ACL-I and ACL-D groups using 
different methods
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be recruited to verify the effectiveness. At current stage, the proposed method is more 
suitable to be a tool applicable for gait reeducation on previously diagnosed patients. 
It is not easy for the clinicians to distinguish a deficiency of the ACL from a possible 
injury of another structure of the knee, such as posterior cruciate ligament or collat-
eral ligaments, since these injuries may also lead to the same gait patterns. Only when 
the patients were highly suspected to have the ACL injury, can the proposed method 
be used to diagnose it as an assistant tool. In future work, injury of other structures of 
the knee, including posterior cruciate ligament or collateral ligaments injury and their 
related gait patterns, may also be included in our study to assist in diagnosing the knee 
injury more accurately. In addition, other parameters regarding different knee lessons 
can be adopted to improve the classification accuracy.

Conclusions
The results of this study indicate that the pattern classification of knee kinematic data 
can offer an objective and invasive method to assess the gait disparity between ACL-D 
and ACL-I knees. These results demonstrate the potential of the proposed technique 
for detecting pathological gait patterns caused by ACL deficiency by analysing and 
measuring the disparity of gait system dynamics using PSR, ED and neural networks. 
PSR is one of the most used methods which is the time-delay embedding and fits well 
with 1-dimensional time series. The d-dimensional space of delay coordinates serves 
as a pseudo state-space which provides a natural setting to approximate the quantita-
tive aspects of the gait system dynamics. PSR plots gait system dynamics along the gait 
signal trajectory in a 3D phase space diagram and visualizes the gait system dynamics. 
ED measures and derives gait features, which are fed into RBF neural networks for the 
modeling, identification and classification of gait system dynamics between ACL-D and 
ACL-I knees. However, some limitations such as the small size of the database, the regu-
lation principle of the embedding dimension and time lag, still need to be improved and 
overcome. Future work will include a clinical validation of the proposed technique with 
a larger number of patients with ACL deficiency and age-matched healthy controls. In 
the present study, PSR parameters such as the time lag and embedding dimension are 
with fixed values. Assessments of the relationship between the embedding dimension, 
time lag and the classification accuracy can also be considered in future investigations.
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