University of Rhode Island [DigitalCommons@URI](https://digitalcommons.uri.edu/)

[PHY 204: Elementary Physics II \(2015\)](https://digitalcommons.uri.edu/elementary_physics_2) [Physics Open Educational Resources](https://digitalcommons.uri.edu/phys_course)

11-19-2015

20. Alternating Currents

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Follow this and additional works at: [https://digitalcommons.uri.edu/elementary_physics_2](https://digitalcommons.uri.edu/elementary_physics_2?utm_source=digitalcommons.uri.edu%2Felementary_physics_2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages) Abstract

Lecture slides 20 for Elementary Physics II (PHY 204), taught by Gerhard Müller at the University of Rhode Island.

Some of the slides contain figures from the textbook, Paul A. Tipler and Gene Mosca. Physics

for Scientists and Engineers, $5th/6th$ editions. The copyright to these figures is owned by W.H. Freeman. We acknowledge permission from W.H. Freeman to use them on this course web page. The textbook figures are not to be used or copied for any purpose outside this class without direct permission from W.H. Freeman.

Recommended Citation

Müller, Gerhard, "20. Alternating Currents" (2015). PHY 204: Elementary Physics II (2015). Paper 4. [https://digitalcommons.uri.edu/elementary_physics_2/4](https://digitalcommons.uri.edu/elementary_physics_2/4?utm_source=digitalcommons.uri.edu%2Felementary_physics_2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in PHY 204: Elementary Physics II (2015) by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Alternating Current Generator

Coil of N turns and cross-sectional area A rotating with angular frequency ω in uniform magnetic field $\vec{B}.$

- \bullet • Angle between area vector and magnetic field vector: $\theta = \omega t$.
- Flux through coil: $\Phi_B = NBA \cos(\omega t)$.
- \bullet Induced EMF: $\mathcal E$ $=$ $-\frac{d}{d}$ ΦB $\frac{\tau_{B}}{dt}=\mathcal{E}_{max}\sin(\omega t)$ with amplitude \mathcal{E}_{max} $= NBA\omega$.
- U.S. household outlet values:

$$
\begin{aligned}\n\circ \ \mathcal{E}_{max} &= 120 \text{V} \sqrt{2} \simeq 170 \text{V} \\
\circ \ f &= 60 \text{Hz}, \quad \omega = 2\pi f \simeq 377 \text{rad/s}.\n\end{aligned}
$$

Single Device in AC Circuit: Resistor

Voltage of ac source : $\mathcal{E}=\mathcal{E}_{max}\cos \omega t$ Current through device: $I=I_{max}\cos(\omega t-\delta)$

Resistor

 $V_R = RI = \mathcal{E}_{max} \cos \omega t \Rightarrow I$ $=\frac{\mathcal{E}_{max}}{2}$ \overline{R} amplitude: $I_{max} = \frac{\sum_{max}}{D}$, phase $\cos \omega t$ $=\frac{{\cal E}_{max}}{ }$ \overline{R} $\frac{nax}{R}$, phase angle: $\delta = 0$ impedance: $X_R \equiv$ \mathcal{E}_{max} $\frac{\sigma_{max}}{I_{max}}=R$ (resistance)

Single Device in AC Circuit: Inductor

Voltage of ac source : $\mathcal{E}=\mathcal{E}_{max}\cos \omega t$ Current through device: $I=I_{max}\cos(\omega t-\delta)$

Inductor

 dI \mathcal{E}_{max} $\frac{d\omega}{L}\sin(\omega t)$ V_L L $\mathcal{E}_{max}\cos\omega t \,\Rightarrow\,$ I===P, dt ωL \mathcal{E}_{max} πamplitude: I_{max} $\frac{a\alpha x}{L}$, phase angle: δ == 2 ωL \mathcal{E}_{max} impedance: $X_L \equiv \frac{{\cal L}max}{{\cal L}} = \omega L \;\;\;$ (inductive rea $\frac{\sigma_{max}}{I_{max}}=\omega L \quad \text{(inductive reactance)}$ ≡L

Single Device in AC Circuit: Capacitor

Voltage of ac source : $\mathcal{E}=\mathcal{E}_{max}\cos \omega t$ Current through device: $I=I_{max}\cos(\omega t-\delta)$

Capacitor

$$
V_C = \frac{Q}{C} = \mathcal{E}_{max} \cos \omega t \implies I = \frac{dQ}{dt} = -\omega C \mathcal{E}_{max} \sin(\omega t)
$$

amplitude: $I_{max} = \omega C \mathcal{E}_{max}$, phase angle: $\delta = -\frac{\pi}{2}$

impedance: $X_C \equiv \dfrac{\mathcal{E}_{max}}{I} = \dfrac{1}{\sqrt{C}}$ (capacitive reacta ≡ \mathcal{E}_{max} $\overline{I_{max}}=$ 1 ωC $\frac{1}{C}$ (capacitive reactance)

Single Device in AC Circuit: Application (1)

The ac voltage source $\mathcal{E}=\mathcal{E}_{max}\sin \omega t$ has an amplitude of $\mathcal{E}_{max}=24\mathrm{V}$ and an angular frequency of $\omega=10$ rad/s.

In each of the three circuits, find

- (a) the current amplitude $I_{max},$
- (b) the current I at time $t=1$ s.

Single Device in AC Circuit: Application (2)

Consider an ac generator $\mathcal{E}(t) = \mathcal{E}_{max} \cos(\omega t)$, $\mathcal{E}_{max} = 25$ V, $\omega = 377$ rad/s connected to an inductor with inductance $L = 12.7\mathsf{H}.$

- (a) Find the maximum value of the current.
- (b) Find the current when the emf is zero and decreasing.
- (c) Find the current when the emf is $-12.5\mathsf{V}$ and decreasing.
- (d) Find the power supplied by the generator at the instant described in (c).

Single Device in AC Circuit: Application (3)

Consider an ac generator $\mathcal{E}(t) = \mathcal{E}_{max} \cos(\omega t)$, $\mathcal{E}_{max} = 25$ V, $\omega = 377$ rad/s connected to a capacitor with capacitance $C=4.15\mu$ F.

- (a) Find the maximum value of the current.
- (b) Find the current when the emf is zero and decreasing.
- (c) Find the current when the emf is $-12.5\mathsf{V}$ and increasing.
- (d) Find the power supplied by the generator at the instant described in (c).

RLC Series Circuit (1)

Applied alternating voltage: $\mathcal{E}=\mathcal{E}_{max}\cos \omega t$ Resulting alternating current: $I=I_{max}\cos(\omega t-\delta)$

Goals:

- $\bullet~$ Find I_{max}, δ for given $\mathcal{E}_{max}, \omega.$
- $\bullet\;$ Find voltages V_R,V_L,V_C across devices.

Loop rule:
$$
\mathcal{E} - V_R - V_C - V_L = 0
$$

Note:

- All voltages are time-dependent.
- \bullet In general, all voltages have ^a different phase.
- $\bullet \ \ V_{R}$ has the same phase as $I.$

RLC Series Circuit (2)

Phasor diagram (for $\omega t = \delta$):

Voltage amplitudes:

•
$$
V_{R,max} = I_{max} X_R = I_{max} R
$$

•
$$
V_{L,max} = I_{max} X_L = I_{max} \omega L
$$

•
$$
V_{C,max} = I_{max} X_C = \frac{I_{max}}{\omega C}
$$

Relation between \mathcal{E}_{max} and I_{max} from geometry:

$$
\mathcal{E}_{max}^2 = V_{R,max}^2 + (V_{L,max} - V_{C,max})^2
$$

$$
= I_{max}^2 \left[R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2 \right]
$$

Impedance:
$$
Z \equiv \frac{\mathcal{E}_{max}}{I_{max}} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}
$$

Current amplitude and phase angle:

•
$$
I_{max} = \frac{\mathcal{E}_{max}}{Z} = \frac{\mathcal{E}_{max}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}
$$

\n• $\tan \delta = \frac{V_{L,max} - V_{C,max}}{V_{R,max}} = \frac{\omega L - 1/\omega C}{R}$

Voltages across devices:

\n- \n
$$
V_R = RI = RI_{max} \cos(\omega t - \delta) = V_{R,max} \cos(\omega t - \delta)
$$
\n
\n- \n
$$
V_L = L \frac{dI}{dt} = -\omega L I_{max} \sin(\omega t - \delta) = V_{L,max} \cos\left(\omega t - \delta + \frac{\pi}{2}\right)
$$
\n
\n- \n
$$
V_C = \frac{1}{C} \int I dt = \frac{I_{max}}{\omega C} \sin(\omega t - \delta) = V_{C,max} \cos\left(\omega t - \delta - \frac{\pi}{2}\right)
$$
\n
\n

AC Circuit Application (1)

In this RLC circuit, the voltage amplitude is $\mathcal{E}_{max}=100$ V.

Find the impedance $Z,$ the current amplitude $I_{max},$ and the voltage amplitudes V_R, V_C, V_L, V_{LC}

- (a) for angular frequency is $\omega=1000$ rad/s,
- (b) for angular frequency is $\omega = 500$ rad/s.

AC Circuit Application (2)

In this RLC circuit, we know the voltage amplitudes V_R, V_C, V_L across each device, the current
amplitude I amplitude $I_{max} = 5$ A, and the angular frequency $\omega = 2$ rad/s.

 $\bullet~$ Find the device properties R,C,L and the voltage amplitude \mathcal{E}_{max} of the ac source.

Impedances: RLC in Series (1)

1

 $\begin{array}{c} \hline \end{array}$ ˛ $\begin{array}{c} \hline \end{array}$ $\overline{}$

 ω

Z

 $\omega\rm L$

 $1/\omega\text{C}$

Impedances: RLC in Series (2)

Filters

resonance angular frequency:

$$
\omega_0 = \frac{1}{\sqrt{LC}}
$$

• relaxation times: $\tau_{RC} = RC, \quad \tau_{RL} = L/R$

 \bullet angular frequencies: ω Lω0 $\sqrt{1-(\omega_0 \tau_{RC})^2}$ $^{2}/2$ $, \quad \omega$ $\, C \,$ =ω0 $\sigma\sqrt{ }$ 1 $-\left(\omega_0\right)$ $_0$ τ_{RC})² $\frac{2}{ }$ 2

• voltages: V_0^{max} = V_{max} ω0 $0 \tau_{RL}, \quad V_L^{max}$ $L^{max}(\omega_L) =$ V_C^{max} $C^{max}(\omega_C) =$ V_0^{max} $\sqrt{}$ 0 $1-(\omega_0 \tau_{RC})^2/4$

RLC Parallel Circuit (1)

Applied alternating voltage: $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ Resulting alternating current: $I = I_{max} \cos(\omega t - \delta)$

Goals:

- Find I_{max} , δ for given $\mathcal{E}_{max}, \omega$.
- Find currents I_R, I_L, I_C through devices.

Junction rule: $I = I_R + I_L + I_C$

Note:

- All currents are time-dependent.
- In general, each current has ^a different phase
- I_R has the same phase as $\mathcal{E}.$

RLC Parallel Circuit (2)

Phasor diagram (for $\omega t = \delta$): εI I_R I_C I I_C $I_{\rm C}$ I_L I 1^{Γ} δCurrent amplitudes:
 \mathcal{E}_{max} \mathcal{E}_{max} • $I_{R,max} = \frac{\mathcal{E}_{max}}{X_R} = \frac{\mathcal{E}_{max}}{R}$ • $I_{L,max} = \frac{\mathcal{E}_{max}}{X_L} = \frac{\mathcal{E}_{max}}{\omega L}$ \bullet $I_{C,max} = \frac{\mathcal{E}_{max}}{X_C}$ $\frac{d^2w}{C} = \mathcal{E}_{max}\omega C$

Relation between \mathcal{E}_{max} and I_{max} from geometry:

$$
I_{max}^2 = I_{R,max}^2 + (I_{L,max} - I_{C,max})^2
$$

$$
= \mathcal{E}_{max}^2 \left[\frac{1}{R^2} + \left(\frac{1}{\omega L} - \omega C \right)^2 \right]
$$

Impedance:
$$
\frac{1}{Z} \equiv \frac{I_{max}}{\mathcal{E}_{max}} = \sqrt{\frac{1}{R^2} + \left(\frac{1}{\omega L} - \omega C\right)^2}
$$

Current amplitude and phase angle:

•
$$
I_{max} = \frac{\mathcal{E}_{max}}{Z} = \mathcal{E}_{max} \sqrt{\frac{1}{R^2} + \left(\frac{1}{\omega L} - \omega C\right)^2}
$$

\n• $\tan \delta = \frac{I_{L,max} - I_{C,max}}{I_{R,max}} = \frac{1/\omega L - \omega C}{1/R}$ I_L

Currents through devices:

•
$$
I_R = \frac{\mathcal{E}}{R} = \frac{\mathcal{E}_{max}}{R} \cos(\omega t) = I_{R,max} \cos(\omega t)
$$

\n• $I_L = \frac{1}{L} \int \mathcal{E} dt = \frac{\mathcal{E}_{max}}{\omega L} \sin(\omega t) = I_{L,max} \cos(\omega t - \frac{\pi}{2})$
\n• $I_C = C \frac{d\mathcal{E}}{dt} = -\omega C \mathcal{E}_{max} \sin(\omega t) = I_{C,max} \cos(\omega t + \frac{\pi}{2})$

AC Circuit Application (3)

Find the current amplitudes I_1, I_2, I_3

- (a) for angular frequency $\omega=2$ rad/s,
- (b) for angular frequency $\omega=4$ rad/s.

AC Circuit Application (4)

Given the current amplitudes I_1, I_2, I_3 through the three branches of this RLC circuit, and given
the examplitude S the amplitude $\mathcal{E}_{max} = 100$ V and angular frequency $\omega = 500$ rad/s of the ac source, find the device properties $R,L,C.$

Impedances: RLC in Parallel (1)

$$
\frac{1}{Z} = \left| \omega C - \frac{1}{\omega L} \right|
$$

Impedances: RLC in Parallel (2)

limit $C\rightarrow0$ 1 \overline{z} = $= \sqrt{\frac{1}{R}}$ $\overline{R^2}$ $\, +$ 1 $(\omega L)^2$ ω $1/\mathrm{Z}$ 1 $\frac{1/R}{4}$ $1/\omega L$ limit $L \to \infty$ 1 \overline{z} = $\sqrt{\frac{1}{R}}$ $\frac{1}{R^2} + (\omega C)^2$ $1/\mathbf{Z}$ $1/\mathrm{R}$ ωC

 ω

$$
\omega_0 = \frac{1}{\sqrt{LC}}
$$

RLC Parallel Resonance (2)

4/11/2015 [tsl507 – 26/34]

Power in AC Circuits

Voltage of ac source: $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ Current through circuit: $I = I_{max} \cos(\omega t - \delta)$

Instantaneous power supplied: $P(t) = \mathcal{E}(t)I(t) = [\mathcal{E}_{max}\cos{\omega t}][I_{max}\cos(\omega t - \delta)]$

Use $\cos(\omega t - \delta) = \cos \omega t \cos \delta + \sin \omega t \sin \delta$

$$
\Rightarrow P(t) = \mathcal{E}_{max} I_{max} [\cos^2 \omega t \cos \delta + \cos \omega t \sin \omega t \sin \delta]
$$

Time averages: $[\cos^2 \omega t]_{AV} = \frac{1}{2}$, $[\cos \omega t \sin \omega t]_{AV} = 0$

Average power supplied by source: $\emph{P}_{AV}=\frac{1}{2}\mathcal{E}_{max}I_{max}\cos\delta=\mathcal{E}_{rms}I_{rms}\cos\delta$

Transformer

- Primary winding: N_1 turns $V_1(t) = V_1^{(rms)} \cos(\omega t), \quad I_1(t) = I_1^{(rms)} \cos(\omega t - \delta_1)$
- Secondary winding: N_2 turns $V_2(t) = V_2^{(rms)} \cos(\omega t), \quad I_2(t) = I_2^{(rms)} \cos(\omega t - \delta_2)$
- •• Voltage amplitude ratio: $\frac{V_1^{(rms)}}{V_2(rms)}$ $V_2^{(rms)}$

$$
\frac{N_{1}}{rms} = \frac{N_1}{N_2}
$$

• Power transfer: $V_1^{(rms)}I_1^{(rms)}\cos\delta_1 = V_2^{(rms)}I_2^{(rms)}\cos\delta_2$

AC Circuit Application (5)

Find the current amplitudes I_1, I_2, I_3, I_4 in the four RLC circuits shown.

Consider an RLC series circuit with inductance $L=88m$ H, capacitance $C=0.94\mu$ F, and unknown resistance R_\cdot The ac generator $\mathcal{E}=\mathcal{E}_{max} \sin(\omega t)$ has amplitude $\mathcal{E}_{max} = 24 \text{V}$ and frequency $f = 930$ Hz. The phase angle is $\delta = 75^{\circ}$.

- (a) Find the resistance R_{\cdot}
- (b) Find the current amplitude $I_{max}.$
- (c) Find the maximum energy U_L^{max} \mathbb{Z}_L^{max} stored in the inductor.
- (d) Find the maximum energy U_C^{max} \mathbb{S}^{max}_{C} stored in the capacitor.
- (e) Find the time t_1 at which the current has its maximum value $I_{max}.$
- (f) Find the time t_2 at which the charge on the capacitor has its maximum value $Q_{max}.$

AC Circuit Application (7)

Consider the two ac circuits shown.

- (a) In the circuit on the left, determine the current amplitude $I_{\rm 1}$ and the voltage amplitudes V_1 and $V_2.$
- (b) In the circuit on the right, determine the current amplitudes $I_2,\,I_3,$ and $I_4.$

Consider the two ac circuits shown.

- (a) In the circuit on the left, determine the maximum value of current $I_{\rm 1}$ and the maximum value of voltages V_1 and $V_2.$
- (b) In the circuit on the right, determine the maximum value of currents $I_2, \, I_3,$ and $I_4.$

In the two ac circuits shown the ammeter and voltmeter readings are rms values.

- (a) In the circuit on the left, find the resistance R of the resistor, the capacitance C of the resistor the impedence Z of the two deviase combined and the velters S of the capacitor, the impedance Z of the two devices combined, and the voltage \mathcal{E}_{rms} of the power source.
- (b) In the circuit on the right, find the capacitance C of the capacitor, the inductance L of the ϵ inductor, the impedance Z of the two devices combined, and the rms value of the current $I_4.$

In the two ac circuits shown the ammeter and voltmeter readings are rms values.

- (a) In the circuit on the left, find the capacitance C of the capacitor, the inductance L of the network inductance \tilde{L} of the network is inductant the impactness \tilde{L} of the two deviase combined and the valu inductor, the impedance Z of the two devices combined, and the voltage \mathcal{E}_{rms} of the power source.
- (b) In the circuit on the right, find the capacitance C of the capacitor, the resistance R of the contract produce Z of the two deviase combined and the rma value of the current resistor, the impedance Z of the two devices combined, and the rms value of the current I_4 .

