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Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary
producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan
genusThalassiosira are difficult to distinguish in mixed populations using light microscopy.
Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean
transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To
quantify shifts in Thalassiosira species composition, we developed a targeted automated
ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in
environmental samples. As many specific fragment lengths are indicative of individual
Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in
the relative abundance and distribution of specific species. The method also enabled
us to assess changes in Thalassiosira community composition in response to chemical
and physical forcing. Thalassiosira spp. community composition in the core of a 3-
month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite
moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes
in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously
tracking community composition and relative abundance of Thalassiosira species within
the physical and chemical context they occurred allowed us to identify quantitative linkages
between environmental conditions and community response.

Keywords:Thalassiosira, iron, temperature, Haida eddy, community composition, automated ribosomal intergenic

spacer analysis

INTRODUCTION
Diatoms are unicellular, photosynthetic eukaryotes found
throughout marine and freshwater environments (Round et al.,
1990). They are important primary producers, believed to gen-
erate roughly 40% of the 45–50 billion tons of organic carbon
fixed annually in the sea and up to 90% of the photosyntheti-
cally derived organic carbon fueling coastal ecosystems (Nelson
et al., 1995). Diatoms are the most diverse group of phytoplank-
ton, with an estimated 200,000 different species (Mann and Droop,
1996). Within the genus Thalassiosira alone, there are an esti-
mated 100 different freshwater and marine species from a wide
range of habitats (Round et al., 1990). Thalassiosira species are
important contributors to marine primary production in tem-
perate to polar regions (Karentz and Smayda, 1984; Degerlund
and Eilertsen, 2010), where they can be a significant component
of phytoplankton blooms (Haigh et al., 1992; Hoppenrath et al.,
2007; Yoshie et al., 2010).

It can be challenging to elucidate the biogeography and the
composition of complex diatom communities. Some diatoms have
unique morphological features that enable them to be identified
and enumerated with light microscopy and cell counts. Many other
diatoms, including smaller Thalassiosira spp., cannot be visually

distinguished by light microscopy (Tomas, 1997; Kaczmarska et al.,
2009). Thus, it is difficult to assess the ecological importance of
individual species when it is only possible to classify and enu-
merate them based on genus level data. Diatom species from the
same genus can have distinct physiological properties that may
have significant consequences for the environment. For example,
Thalassiosira oceanica can grow at close to maximal growth rates in
much lower iron (Fe) concentrations than do other members of the
Thalassiosira genus (Sunda and Huntsman, 1995). There are also
differences in the amount of nitrogen that various Thalassiosira
species store when nitrogen is in excess (Dortch et al., 1984). These
physiological differences within the Thalassiosiroids have ecologi-
cal consequences for bloom formation in different oceanic regimes
and for how different species respond to climatically modulated
changes.

Given their importance to marine food webs, nutrient cycling,
and global climate, there have been significant efforts to classify
Thalassiosira species using genetic techniques (Medlin et al., 1996;
Kaczmarska et al., 2005; Alverson et al., 2007). Genetic studies
highlight discrepancies between morphological- and sequence-
based classifications. For example, the Provasoli-Guillard National
Center for Marine Algae and Microbiota strain CCMP1010 was
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originally identified as T. pseudonana on the basis of morphology
and was reclassified as T. weissflogii when its rRNA sequence was
obtained (Von Dassow et al., 2008). While the reclassification of
CCMP1010 was also justified by a re-evaluation of its morphol-
ogy, another Thalassiosira species, T. oceanica CCMP1004 remains
morphologically classified as T. oceanica, while rRNA phylogeny
supports that it is a strain of T. rotula (Von Dassow et al., 2008).
Thalassiosira species are also becoming important model diatoms
because of the increasing availability of genomic information,
which currently includes the completed genomes of T. pseudo-
nana (Armbrust et al., 2004) and T. oceanica (Lommer et al., 2012).
An analytical tool that can rapidly distinguish among Thalas-
siosira species enables investigations of species distributions in situ
and allows for a broader assessment of community responses to
environmental and ecological change.

Here we examine Thalassiosira community composition in nat-
ural populations in the northeast Pacific Ocean using an assay we
developed that distinguishes species and assesses diversity within
the genus Thalassiosira. The assay uses polymerase chain reaction
(PCR) amplification with primers specific for the Thalassiosiroid
internal transcribed spacer region two (ITS2), the region between
the 5.8S rDNA and the 28S rDNA. The length of the ITS2 region

varies between species and the patterns of diagnostic lengths
amplified from a given sample can be resolved in a capillary
sequencer. This method, known as automated ribosomal inter-
genic spacer analysis (ARISA), was developed to rapidly compare
microbial bacterial diversity (Fisher and Triplett, 1999) and has
been applied to assess diversity in a number of different habitats
(e.g., Dorigo et al., 2005; Danovaro et al., 2006). In the majority
of ARISA studies, primers are designed to be inclusive of a broad
range of taxonomic groups and the focus is not necessarily on
identifying species, but on assessing the overall diversity of a pop-
ulation. While the application of ARISA to eukaryotic organisms
is much more limited, it has been used to explore diatom diversity
and community composition in two recent studies (Hubbard et al.,
2008; Fechner et al., 2010). Similar to the Hubbard et al. (2008)
ARISA method targeting the diatom genus Pseudo-nitzschia, we
developed a Thalassiosira-specific ARISA method to both identify
individual Thalassiosira species as well as to compare Thalassiosira
community composition in different samples.

We used ARISA to assess Thalassiosira diversity in field samples
collected from both nearshore and offshore regions of the north-
eastern Pacific Ocean (Figure 1A). Stations sampled included one
of the longest running open ocean time-series stations, ocean

FIGURE 1 | (A) Station locations for cruise T0206 on the R/V Thomas G.
Thompson from May 12 to June 8, 2007. Stations from the eddy core are
labeled with a black box and stations from the leading edge are labeled
with a white box. Stations where ITS2 was sequenced, but ARISA analysis
was not done because samples were collected with a different size cut-off
filter are indicated by “*” symbol. (B) Temperature contours through the

Haida eddy when first encountered (May 19–20, 2007). Station numbers
corresponding to the labels in (A) are shown at the top of the contour
plot. The arrow marks the shallow warm waters characteristic of Haida
eddies. (C) Temperature contours through the Haida eddy on the return trip
approximately 2 weeks later (June 3–4, 2007). The arrow marks the
shallow warm waters characteristic of Haida eddies.
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station papa (OSP; Harrison, 2002) and two transects through
a 3-month-old Haida eddy (Xiu et al., 2011). As it is well estab-
lished that Fe inputs significantly impact phytoplankton biomass
and species composition in these waters (Boyd et al., 2004; Johnson
et al., 2005) and, more recently, that anticyclonic mesoscale Haida
eddies may be a major mechanism for transporting Fe from shelf
to offshore waters (Johnson et al., 2005; Xiu et al., 2011), measure-
ments of dissolved Fe were included in our analyses. Correlations
between ARISA data and environmental variables indicated that
dissolved Fe and temperature were important drivers of shifts in
Thalassiosiroid community composition among sampling loca-
tions. Our findings demonstrate the usefulness of ARISA-like
methods for quickly identifying specific species that may be impor-
tant players in a given ecosystem and enabling the comparison of
species assemblages and environmental variables between regions.

MATERIALS AND METHODS
SAMPLE COLLECTION
Samples were collected on cruise T0206 on the R/V Thomas G.
Thompson from May 12–June 8, 2007 (Figure 1). Approximately

1 L of surface water was collected at each station using the
shipboard conductivity, temperature, depth (CTD) profiler rosette
and filtered by pressure onto 25 mm diameter 0.2 μm polyether-
sulfone Supor® 200 filters (Pall Corporation, USA) using a
Masterflex® peristaltic pump. In a few samples from OSP, water
was collected via a towfish without corresponding CTD measure-
ments. Water from the towfish was prefiltered through 10 μm
polyester filters that were discarded resulting in only the 0.2–
10 μm fraction of biomass being collected. Since these samples
were processed differently, we included sequences from these sam-
ples in our phylogenetic analysis (annotated on the tree in Table 2
and Figure 2 as OSP). Samples filtered from the towfish were
not included in ARISA analysis because of lacking corresponding
environmental data and that a different size class of organisms
was captured on the filters in comparison to the other stations.
Likewise, samples from stations 38, 39, and 42 were filtered on
5 μm polyester filters, so the 0.2–5 μm fraction of biomass was
not collected. Sequences from these samples were also included in
the phylogenetic analysis but these samples were not considered in
the ARISA analysis. Immediately following filtration, filters were

FIGURE 2 | Maximum likelihood tree of ITS2 sequences from GenBank®

and field samples generated in the sequence analysis program

Geneious® using the PHYML algorithm with the Jukes-Cantor

substitution model and 1000 bootstraps. Sequences with >90% identity at
the sequence level have been condensed into groups. Branch labels indicate

the type strain of sequences within a branch if there is a species that has
previously been described in the group. Throughout the figure Thalassiosira is
abbreviated as T. If the group does not include a type strain, the branch was
given a letter (branches a–k). Information on the sequences in each branch is
listed inTable 2. Bootstrap values greater than 50 are indicated.
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transferred to screw-cap tubes containing 500 μl Qiagen® AP1
buffer (Qiagen®, Germany), flash frozen in liquid nitrogen, and
stored at −80◦C until analysis.

ENVIRONMENTAL DATA
Surface temperature, salinity, and fluorescence values were
obtained from the Sea-Bird SBE-911+ CTD system attached to
the sampling rosette. Surface (10 m) dissolved Fe (0.2-μm filtra-
tion) was determined as described in Roy et al. (2008). To briefly
summarize the Roy et al. (2008) method, total Fe concentrations
were determined by chemically reducing all dissolved Fe species to
Fe(II) with sulfite. The amount of Fe(II) was determined using
an automated flow injection-based FeLume system (Waterville
Analytical) that measures the luminescence associated with the
reaction between Fe(II) and an alkaline luminol solution.

DNA EXTRACTION
Filters were extracted using the Qiagen® DNeasy® plant DNA
extraction kit (Qiagen®, Germany) following the general proto-
col with one minor exception. To lyse the cells, a mixture of 0.1
and 0.5 μm silica beads was added to each tube with the RNase
A enzyme, the tubes were then incubated at 65◦C for 10 min,
followed by bead beating for 1 min to enhance cell breakup. At
the end of the protocol, samples were eluted in two elution steps
into a total of 200 μl Qiagen® AE buffer and quantified using a
NanoDropTM 8000 spectrophotometer.

CLONING
The ITS2 region was amplified using degenerate PCR primers
designed to amplify all of the ITS2 sequences of the Thalas-
siosiroids with an effort to avoid those from other closely related
diatoms (forward primer: 5′-RCGAAYTGCAGAACCTCG-3′;
reverse primer: 5′-TACTYAATCTGAGATYCA-3′). The PCR used
the following conditions: 2–8 ng of template DNA, 500 nmol L−1

forward and reverse primers, 1× BIO-X-ACTTM Short Mix (Bio-
line USA Inc., Taunton, MA, USA) and PCR-grade water were
combined in a 25 μL reaction in PCR tubes. The PCR cycling con-
ditions were: 95◦C for 5 min; 35 cycles of: 95◦C for 1 min, 46◦C
for 1 min, and 72◦C for 30 s; followed by a final extension at 72◦C
for 10 min and cooling to 4◦C. All PCRs were performed using a
Mastercycler® gradient PCR machine (Eppendorf AG, Hamburg,
Germany).

Polymerase chain reaction products were observed by agarose
gel electrophoresis and all positive PCRs were cleaned up using the
QIAquick PCR purification kit (Qiagen®, Germany). In a few cases
amplicons were gel extracted using the QIAquick gel extraction kit
(Qiagen®, Germany) because multiple bands occurred well outside
the range of expected ITS2 sizes, indicating amplification of a non-
Thalassiosiroid ITS2 amplicon or significant quantities of primer
dimers.

Purified amplicons (3 μL) were ligated into the pGEM®-T vec-
tor overnight at 4◦C (Promega Corporation, Madison, WI, USA).
Ligations were used to transform Z-CompetentTM Escherichia
coli (Zymo Research Corporation, Irvine, CA, USA), plated onto
Luria–Bertani (LB) agar plates with 100 μg mL−1 carbenicillin,
80 μg mL−1 5-bromo-4-chloro-indolyl-galactopyranoside (X-
gal), and 0.5 mmol L−1 isopropyl-β-D-1-thiogalactopyranoside

(IPTG), and incubated overnight at 37◦C. White colonies were
picked onto another LB agar/carbenicillin/X-gal/IPTG plate and
again incubated overnight at 37◦C to confirm blue-white screen-
ing. Approximately five white colonies per PCR were grown
overnight in liquid LB/carbenicillin at 37◦C and plasmids were
purified using the QIAprep spin miniprep kit (Qiagen®, Germany).
Three stations (stations 5, 17, and OSP) were sequenced to greater
depth (10–20 clones each). Purified plasmids were sequenced
using the universal T7 primer (5′-TAATACGACTCACTATAGGG-
3′) on an ABI 3130xl genetic analyzer (Life Technologies Corpo-
ration, Carlsbad, CA, USA) by the Rhode Island Genomics and
Sequencing Center.

Sequences were trimmed using the Geneious ProTM soft-
ware package (Biomatters, Auckland, New Zealand; Drummond
et al., 2011), and aligned with all ITS2 sequences of Thalas-
siosira, Minidiscus, Skeletonema, and Chaetoceros species found
in GenBank® trimmed to the same region amplified by our
degenerate ITS2 primers (excluding the primer region itself)
using the MUSCLE algorithm (Edgar, 2004). The accession num-
bers for sequences obtained from other studies in GenBank®

which were included in the phylogenetic analysis are: AY660001,
DQ280326, DQ469928, DQ897642, EF134953–4, EF208779–
EF208794, EF208796, EF208799–EF208801, EF362633, ET018147,
ET022313, ET029232, ET600777, FJ590769, FJ590771, and
HQ685854. The MUSCLE alignment was examined by eye to fix
any small errors and the PHYML algorithm (Guindon and Gas-
cuel, 2003) with the Jukes–Cantor substitution model was used to
generate a maximum likelihood tree with 1000 bootstraps.

FRAGMENT ANALYSIS
Fragment analysis was done using a method similar to Hubbard
et al. (2008) where PCR amplification used the forward degenerate
ITS2 PCR primer (5′-RCGAAYTGCAGAACCTCG-3′) modified
by the addition of a 5′ fluorescent FAM label (Life Technolo-
gies Corporation, Carlsbad, CA, USA) and the non-fluorescently
labeled reverse degenerate ITS2 PCR primer listed earlier. For the
fragment analysis PCR, 6 ng of DNA, 500 nmol L−1 primers,
1× BIO-X-ACTTMshort mix (Bioline USA Inc., Taunton, MA,
USA) and PCR-grade water were combined in a 25 μL reaction
in PCR tubes. The PCR cycling conditions were: 95◦C for 5 min;
32 cycles of: 95◦C for 1 min, 46◦C for 1 min, and 72◦C for 30
s; followed by a final extension at 72◦C for 10 min and cooling
to 4◦C. All PCRs were performed using a Mastercycler® gradient
PCR machine (Eppendorf AG, Hamburg, Germany).

FAM labeled PCR products were purified using ethanol pre-
cipitation in 1.5 mL tubes with 0.1 volumes of 3 mol L−1 sodium
acetate and two volumes of 100% ethanol. The reaction was well
mixed and incubated at −80◦C for a minimum of 30 min. Tubes
were then centrifuged (20,000 × g) for 45 min at 4◦C in an Eppen-
dorf 5810R centrifuge (Eppendorf AG, Hamburg, Germany). The
supernatant was carefully decanted and the pellet was washed with
200 μL 70% ethanol and then with 200 μL 100% ethanol, being
centrifuged (20,000 × g) for 5 min at 4◦C after each wash. After
decanting the final ethanol wash the tubes were dried completely
at 37◦C for 5–10 min and pellets were resuspended in 50 μL PCR-
grade water. One microliter of resuspended sample was mixed with
0.3 μL GeneScanTM 600 LIZ® size standard (Life Technologies
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Corporation, Carlsbad, CA, USA) and 10.7 μL Hi-Di formamide
and run on an ABI 3130xl genetic analyzer (Life Technologies
Corporation, Carlsbad, CA) by the Rhode Island Genomics and
Sequencing Center. Fragment profiles were analyzed using Peak
ScannerTM v1.0 software.

CLUSTER ANALYSIS
Comparative analysis of fragments from all samples was done in
a manner similar to Nelson (2009). Peak height and size were
determined for each FAM peak between 320 and 420 bases on
every fragment run and binned into the fragment lengths listed in
Table 1. If peak heights were off-scale, the PCR product was re-
run at a 1:2 or 1:10 dilution. If the majority of peaks were below
1000 in peak height, and there were no peaks dominating the pro-
file that would end up offscale, the PCR product was re-run with
twice to four times as much sample added to the fragment analysis
mixture and re-analyzed. Data for each sample were normalized
to total peak height and all analyses were done using relative peak
heights (the height of each peak relative to the overall height of
peaks in that sample). A relative abundance matrix was gener-
ated combining the relative peak height data for all samples at
all fragment lengths where a peak was detected. Samples that did
not have a measurable peak for one of the fragment lengths were
recorded as zero. All subsequent analyses were done using PRIMER
v.6 (Primer-E Ltd, Plymouth, UK; Clark, 1993). Fragment analysis
data from multiple ARISA runs (duplicate PCR runs and/or dupli-
cate fragment analysis runs) were averaged for each sample. The
Shannon–Wiener index of diversity was computed on the relative

Table 1 | Fragment sizes of 5.8S-ITS2 sequences in fragment analysis

and their associated labels in Figure 2.

Size of fragment

(bases)

Branch label in Figure 2 Group label

in Figure 4

348–349 T. oceanica 1

357–358 N/A 2

362–363 N/A 3

366–367 d 4

368–369 Skeletonema 5

374–375 Minidiscus, Skeletonema 6

377–378 CCMP1616, Skeletonema 7

384–385 e, g, T. minuscula 8

386–387 f, i, j, T. puntigera, T. rotula,

Skeletonema

9

388–389 h, k, T. anguste-lineata,

CCMP1004

10

390–391 T. aestivalis 11

393–394 T. guillardi, T. pseudonana 12

396–397 T. weissflogii 13

402–403 N/A 14

404–405 C 15

409–410 C. atlanticus, a, b 16

abundance data for each station. For ARISA samples, a similarity
matrix of Bray–Curtis coefficients was used to compare the relative
abundance data and to establish a cluster dendrogram using the
“group average” mode of clustering. Fragment analysis profiles of
replicates were also used to generate a Bray–Curtis coefficient sim-
ilarity index and produced the same results as the averages (data
not shown). To determine which single environmental variable or
group of environmental variables (temperature, salinity, dissolved
Fe, fluorescence, and bottom depth) best explained the similarity
distribution of these data, the environmental data and Bray–Curtis
similarity matrices were analyzed using the BEST analysis with the
BIOENV algorithm using the Spearman rank correlation method
and D1 Euclidean distance as the resemblance measure. Addi-
tionally, we ran a non-parametric (Spearman) correlation on all
of the environmental variables against each other and report the
Spearman correlations (ρ) and the two-tailed p values. To eval-
uate whether autocorrelation of variables impacted our results,
we reran the BEST analysis and individually removed correlated
variables.

RESULTS
STUDY SITE
On a 1-month cruise in the northeastern Pacific Ocean
(Figure 1A), we collected biological samples from coastal stations
(2, 5, 7, 8, 26, 27, 28, 29, 30, 31, 38, and 39), two offshore tran-
sects (stations 9–15 and stations 31–35) that crossed through a
juvenile (3-month-old) Haida eddy, and multiple samples at the
high nitrate low chlorophyll (HNLC) time-series station, OSP. The
details of the Haida eddy are described elsewhere (Xiu et al., 2011).
The depth profiles of temperature for the first transect through
the Haida eddy (May 18–19, 2007) showed a vertically structured
water column (Figure 1B). Stations 11 and 12 represent the center
of the eddy as indicated by the warming of waters below 100 m
when compared to surrounding stations, which is characteristic of
a Haida eddy (Crawford, 2002). Station 17 was a reoccupation of
station 11 approximately 1 day later. The depth profiles of tem-
perature of the second transect through the Haida eddy 2 weeks
later (June 3–4, 2007) show that the center of the eddy moved
slightly southwest of its previous location (station 34) and was
subsequently located at station 35 (Figure 1C).

PHYLOGENETIC ANALYSIS OF 5.8S-ITS2 SEQUENCES
The GenBank® accession numbers for the sequences generated
in this study are: JQ044517–JQ044679. A maximum likelihood
tree of 5.8S-ITS2 sequences of samples from this cruise, isolates
in the Jenkins laboratory diatom collection, and Thalassiosiroid
sequences available in GenBank® shows that sequences resembling
T. oceanica were found at almost all stations (Branch “T. oceanica”:
Figure 2; Table 2). T. oceanica was a dominant portion the Tha-
lassiosira sequence library composition at stations along the two
transects off Haida Gwaii (stations 9–17 and 31–35) as well as
in the center of the Haida eddy (stations 11, 12, 17, and 35). In
contrast, OSP samples were dominated by a single as yet uncul-
tured species of Thalassiosira (Branch “g”: Figure 2; Table 2). Our
sequence library data showed that the Thalassiosira ITS2 primers
sometimes amplified sequences from other closely related centric
diatoms including Skeletonema spp. (12%), Minidiscus spp. (4%),
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Table 2 | List of sequences associated with each phylogenetic branch shown in Figure 2.

Branch label Sequences

C. atlanticus Chaetoceros atlanticus, Stn 25(1)

a Stn 25(1)

b Stn 25(2)

CCMP1616 CCMP1616 (Thalassiosira oceanica morphology)

c Stn 38(1)

T. guillardii Thalassiosira guillardii (CCMP988)

T. weissflogii a Thalassiosira weissflogii (CCMP1051)

T. weissflogii b Thalassiosira weissflogii (CCMP:1010,1047,1048,1050,1052,1053,1336,1587; BILB2001)

T. pseudonana Thalassiosira pseudonana (CCMP:1011,1012,1014,1015,1335)

Skeletonema spp. Skeletonema sp. GFC-2005, Stn 2(3), Stn 5(3), Stn 7(2), Stn 26(2), Stn 29(2), Stn 42(5)

d Stn 11(1), Stn 39(2)

Minidiscus spp. Minidiscus tricolatus, Minidiscus sp. CCL-2009, Stn 2(1), Stn 27(1), Stn 30(2), Stn 38(1), Stn 39(1)

T. oceanica Thalassiosira oceanica (CCMP:999,1001,1005,1006), Stn 2(2), Stn 5(2), Stn 7(4), Stn 8(4), Stn 9(4), Stn 10(5), Stn 11(4), Stn 12(5),

Stn 13(4), Stn 14(6), Stn 15(4), Stn 17(2), Stn 25(1), Stn 26(2), Stn 27(4), Stn 30(1), Stn 32(5), Stn 33(5), Stn 34(6), Stn 35(4)

e Stn 17(1), Stn 19(1)

f Lab isolate Th-6, Stn 5(1), Stn 19(1)

g OSP (19), Stn 32(1), Stn 35(1)

h Stn 38(1)

T. anguste-lineata Thalassiosira anguste-lineata, Stn 5(3)

T. aestivalis Thalassiosira aestivalis

i Stn 30(1)

j Lab isolate B-A1, Stn 26(1)

T. minuscula Thalassiosira minuscula (CCMP1093)

CCMP1004 CCMP1004 (Thalassiosira oceanica morphology)

k Stn 2(1)

T. punctigera Thalassiosira punctigera

T. rotula Thalassiosira rotula (CCMP:1018, 3096), Stn 26(1)

Values in parentheses following station numbers represent the number of sequences of that type recovered in the sequences from that station.

and Chaetoceros spp. (6%), but the majority of our sequence
data (78%) was associated with Thalassiosira species (Figure 2;
Table 2).

FRAGMENT ANALYSIS OF AMPLIFIED ITS2 REGION
In addition to validating ARISA fragment length identity by com-
parison to our 5.8S-ITS2 sequence database, the assignment of
ARISA peaks was verified by amplifying the 5.8S-ITS2 region from
cultured isolates from the National Center for Marine Algae and
Microbiota (NCMA, formerly the CCMP): Thalassiosira oceanica
CCMP1005, Thalassiosira pseudonana CCMP1335, Thalassiosira
weissflogii CCMP1010, and Thalassiosira rotula CCMP3096, iso-
lated by T. Rynearson on this cruise. The resulting ARISA elec-
tropherograms revealed distinct peaks corresponding to expected
ITS2 sequence lengths (Figure 3A). The length of the amplicon
region in sequences from NCBI and field samples varied by 60
bases, and there were 16 distinct length groupings among the dif-
ferent species (Table 1). In some cases, the amplicon length is
distinct at the species level (e.g., groups 1, 4, 11, 13, 15, and

16). Some fragment lengths are associated with two species; e.g.,
group 6 is associated with both Minidiscus spp. and a Skele-
tonema sp. In our field samples, the majority of 375 base length
sequences can likely be assigned to Minidiscus spp., since only one
of the seven 375 base sequences returned was a Skeletonema sp.
sequence. Most of the Skeletonema spp. sequences in our database
had a fragment length of 369 bases. There were also ITS2 ampli-
con lengths associated with multiple species of Thalassiosira (e.g.,
groups 8–10).

Electropherograms from field samples with mixed populations
of Thalassiosira species also showed well-resolved peaks centered
on different fragment lengths, though multiple peaks were present
per sample (Figure 3B). Comparing the relative abundance of the
different fragment lengths at all stations demonstrates clear com-
munity composition shifts between different sampling locations
(Figure 4). The shallow coastal stations (stations 2, 5, 26, and
29) had the most peaks, the open ocean stations (stations 9–25)
had fewer peaks, and the stations at the shelf break along Haida
Gwaii (stations 7, 27, 28, and 31) had the fewest peaks (Figure 4).
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FIGURE 3 | (A) Fragment analysis plots from four cultured isolates of
Thalassiosira (T. oceanica CCMP1005, T. rotula CCMP3096, T. pseudonana
CCMP1335, and T. weissflogii CCMP1010). The x -axis for each trace is the
fluorescence scaled to the largest peak for each sample. The y -axis is the
length in bases associated with each peak, as determined by the 600-LIZ®

standard. (B) Example of fragment analysis plots from four representative
stations. The axes are the same as in 3A. Station 5 is a coastal station close
to Vancouver Island, station 9 is a station at the coastal edge of the transect
off Haida Gwaii, station 11 is at the center of the Haida eddy, and station 25
is from OSP. The dashed box marked “a” is surrounding the peaks at
348–349 bases associated with T. oceanica. The dashed boxes marked “b”
surrounds peaks at 366–367 bases, which is associated with an
unidentified Thalassiosira sp. for which we have ITS2 sequence data. The
dashed box marked “c” surrounds the peaks at 374–375 bases associated
with Minidiscus spp. The dashed box marked “d” surrounds the peaks
between the sizes of 384 and 389 bases that are not associated with
phylogenetically distinct species (Table 2).

It is also evident that at most of the stations, except the shallow
coastal stations (stations 2, 5, 26, and 29), one or two fragment
lengths dominated most of the fragment profiles with the other
peaks being very minimal (Figure 4).

The Shannon–Wiener diversity index (H ′) and evenness (J ′)
of the relative abundance ARISA data were positively correlated
(Table 3). The highest diversity was seen in the shallow coastal
stations (stations 2, 5, 26, and 29). The lowest diversity was seen in
the samples from the deeper but still relatively coastal region off
of Haida Gwaii (stations 7, 27, 28, and 31).

CLUSTER ANALYSIS OF THALASSIOSIRA SPECIES DISTRIBUTIONS
A cluster dendrogram of the Bray–Curtis similarity of the rela-
tive abundance of ITS2 fragments shows that the ARISA pattern is
highly reproducible among replicate samples (Figure 5). Replicate

filtration was conducted at stations 11, 13, and 29 these samples
differed only by ≤10%. In some cases, there were also high similari-
ties in ARISA patterns (≤10% difference) among different stations
(e.g., stations 27, 28, and 31; stations 12 and 17; and stations 13
and 15; Figure 5). Samples from the OSP collected 4 days apart
formed a cluster that was ≥70% similar in Thalassiosira species
composition (cluster I, Figure 5). Cluster II groups at ≥80% sim-
ilarity and was composed of two coastal stations (2 and 5) that
were sampled at the same location 30 h apart (Figure 5). Cluster
III is comprised of station 26, where southward advecting shelf
water was squeezed against the northwest coast of Haida Gwaii,
and station 29, which is on the inshore path of this southward
advecting shelf water and groups together with ≥70% similarity
in Thalassiosira composition (Figure 5). Stations located adjacent
to the shelf break in deeper waters (stations 7, 27, 28, and 31)
formed a cluster that was ≥80% similar in Thalassiosira species
composition (cluster IV, Figure 5). The Thalassiosira species com-
position at station 30 off Cape St. James, near the likely origin
of Haida eddy surface waters, was ≥70% similar to that found at
station 34, which had been the location of the center of the eddy
when we first sampled it (cluster V, Figure 5). Stations inshore
of the eddy but outside the shelf break (stations 9–10 and 32–
33) formed another cluster that was ≥70% similar in Thalassiosira
community composition (cluster VI, Figure 5). All of the samples
during the first excursion through the Haida eddy, plus the sample
from the center of the eddy when we returned 2 weeks later were
≥80% similar in Thalassiosira species composition (stations 11,
12, 17, and 35; Figure 5). Stations at the leading edge of the Haida
eddy (stations 13–15) were ≥80% similar in Thalassiosira species
composition and grouped with the samples from the eddy core
with ≥70% similarity (cluster VII, Figure 5).

ANALYSIS OF CORRELATION BETWEEN ENVIRONMENTAL VARIABLES
AND THALASSIOSIRA COMMUNITY COMPOSITION
The Bio–Env correlation with community dissimilarities included
sea surface values for temperature, salinity, chlorophyll fluores-
cence, and dissolved Fe concentrations as well as bottom depth
(Table 4). Sea surface temperature was highest at the coast,
decreasing offshore, and was the lowest at OSP. Salinity was lowest
at the coast, increased offshore and was highest at OSP. Dis-
solved Fe was high at the coastal and shelf break stations, dropped
significantly as we moved offshore, and was the lowest at OSP. Flu-
orescence was more varied, but was generally highest at the coast
and lower as we moved offshore. The Bio–Env correlation that was
the strongest with the relative abundance data for the fragment
analysis occurred with the following combination of environmen-
tal data: temperature, fluorescence, and dissolved Fe (ρs = 0.664,
p ≤ 0.001). The next strongest correlation (ρs = 0.656, p ≤ 0.001)
was a combination of the above variables and salinity, and the third
strongest correlation (ρs = 0.635, p ≤ 0.001) was a combination of
temperature, dissolved Fe, and salinity. To determine the role that
correlation between environmental variables may be contributing
to the Bio–Env correlation, we ran a non-parametric (Spearman)
correlation of each environmental variable against all the other
environmental variables. All environmental variables were signif-
icantly positively or negatively correlated with one another and
all had their strongest correlation with bottom depth and weakest
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FIGURE 4 | Relative abundance of fragments from all stations. Each
column represents a different sample with its station identifier listed at the
top of the column. Each row represents a different fragment group as listed in
Table 1. Group 13 was not found in any samples and is thus not included in

the figure. The shading of the different boxes indicates the percentage of the
total peak height that each fragment group was responsible for in a given
sample. Samples are ordered based on Bray–Curtis clusters with roman
numerals corresponding to the clusters as identified in Figure 5.

correlation with fluorescence (Table 5). Both temperature and
dissolved Fe were strongly negatively correlated with salinity and
strongly correlated with each other. Removing bottom depth as a
variable from the Bio–Env analysis had no effect as bottom depth
did not prove to be an important variable in influencing com-
munity composition. Removing either salinity or fluorescence as
variables still results in strong Bio–Env correlations (ρs = 0.635
and 0.664, respectively), thus we are unable to distinguish which
of the two correlated variables, fluorescence or salinity, is driv-
ing the relationship between the environmental variables and the
Thalassiosira community composition. Removing either temper-
ature or dissolved Fe as a variable from the Bio–Env analysis,
however, does impact the correlation dropping the strongest cor-
relation to ρs = 0.58 and 0.59, respectively. Thus, it appears that
temperature and Fe individually contribute as factors impact-
ing Thalassiosira community composition. Taking all of these
correlations into consideration, it appears that temperature and
dissolved Fe were the quantitatively most significant drivers in
the shifts in Thalassiosira community composition amongst the
factors we measured. Overlaying the dissolved Fe values on an
multidimensional scaling (MDS) plot of the similarity of frag-
ment distributions between the different stations illustrates the
linkage between dissolved Fe concentrations and Thalassiosiroid
community structure; many of the low Fe stations group together
and many of the high Fe stations group together (Figure 6A).
Overlaying the sea surface temperature values on the same MDS
plot, also highlights the role that temperature might be playing
in driving shifts in Thalassiosira assemblages particularly at OSP
(Figure 6B).

DISCUSSION
Our results clearly associate shifts in the community composi-
tion of Thalassiosira species across a Haida eddy. Our results also

identified temperature and dissolved Fe as factors driving shifts in
Thalassiosira community composition in the northeastern Pacific
Ocean. Recent work indicates that Haida eddies may be con-
tributing as much Fe to the Gulf of Alaska as atmospheric dust
deposition does on an annual basis (Xiu et al., 2011). Haida eddies
have previously been associated with both increased chlorophyll
concentrations and changes in phytoplankton community compo-
sition (Crawford et al., 2005; Peterson et al., 2011a,b), potentially
because they mix coastal waters having high Fe concentrations
with HNLC waters high in macronutrients (Johnson et al., 2005;
Xiu et al., 2011). In particular, biological productivity and diversity
along the leading edge of eddies appears to be stimulated by mixing
water masses combining high nutrients outside the eddy with ele-
vated Fe within the eddy (Peterson et al., 2011b). Another hotspot
of phytoplankton diversity and primary productivity in the north-
eastern Pacific Ocean is the transition zone between coastal and
offshore waters, where high Fe coastal water mixes with nutri-
ent rich open ocean water typical of this HNLC region (Ribalet
et al., 2010), supporting the idea that Fe from coastal waters is an
important driver of biological activity in the region.

VERIFICATION OF PRIMER SPECIFICITY TO THALASSIOSIRA SPP.
Our PCR primers proved successful at amplifying the ITS2 region
from mixed assemblages of Thalassiosira in environmental sam-
ples. While the primer pair was designed to target Thalassiosira
spp., the ITS2 rDNA Skeletonema spp. and Minidiscus spp.
sequences in GenBank® differ from Thalassiosira spp. by only one
to two bases in the primer region. Given that Skeletonema spp. and
Minidiscus spp. often group within Thalassiosira spp. in phyloge-
netic trees based on rDNA cistron components (Kaczmarska et al.,
2005; Alverson et al., 2007), it is not surprising that we obtained
sequences from both of these closely related lineages, especially
in regions where Skeletonema and Minidiscus were likely a major
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Table 3 | Statistical measurements of relative abundance data.

Station H ′ (log10) S J ′

5 0.77 10 0.77

29B 0.75 9 0.78

29A 0.74 9 0.77

32 0.71 6 0.91

26 0.70 9 0.73

2 0.67 9 0.70

8 0.66 7 0.78

30 0.64 7 0.76

17 0.62 6 0.80

10 0.62 6 0.80

33 0.62 6 0.79

12 0.62 5 0.88

9 0.61 6 0.79

19 0.59 5 0.85

35 0.58 6 0.74

25 0.57 6 0.73

11A 0.56 7 0.66

13B 0.56 7 0.66

11B 0.54 7 0.64

13A 0.52 6 0.66

15 0.51 5 0.74

34 0.51 5 0.73

14 0.46 5 0.66

27 0.33 4 0.55

28 0.28 5 0.41

31 0.28 4 0.46

7 0.12 2 0.40

H′, Shannon–Wiener diversity index (calculated with log10). S, richness; J′,
evenness. Samples are ordered based on decreasing H′ values.

proportion of the biomass, as at the coastal stations (Aizawa et al.,
2005; Kaczmarska et al., 2005; Buck et al., 2008). Examination of
the Chaetoceros spp. ITS2 sequences in GenBank® shows multi-
ple mismatches to our primers for the majority of the Chaetoceros
species. Chaetoceros atlanticus has the most similar sequence to our
primers with one mismatch to the forward primer and five mis-
matches to the reverse primer (all at the 5′ end of the primer).
Given the multiple mismatches between our primers and the
Chaetoceros sequences in GenBank®, any significant recovery of
Chaetoceros sequences suggests that Chaetoceros cells greatly out-
numbered Thalassiosira cells in a given sample, as was likely the
case at OSP. This conclusion is supported by analysis of diatom
community composition with shipboard light microscopy of OSP
samples. Few Thalassiosira were identified, but multiple Chaeto-
ceros spp. were present at OSP (L. Whitney, personal observation).
In designing the primer set, efforts were made to ensure the
primers would amplify all Thalassiosira spp. present in a sam-
ple, acknowledging that some non-Thalassiosira spp. might be

amplified. Given that the two non-Thalassiosira spp. most likely
to be amplified by the primers group phylogenetically with the
Thalassiosira genus, the retrieval of those sequences should not be
deemed a failure of the primers, but rather an indication that the
primers provide a useful tool for ascertaining relative changes in
Thalassiosira species and close relatives in mixed assemblages.

ARISA AS A TOOL FOR IDENTIFYING SPECIFIC THALASSIOSIRA
SPECIES
Microscopic examination of samples revealed the presence of
small unidentified Thalassiosira spp. throughout the cruise with
the exception of samples from OSP and that small Thalassiosira
spp. were especially prevalent on the transect off of Haida Gwaii
(T. Rynearson, unpublished). An advantage of our ARISA method
is its ability to identify species that are otherwise difficult to classify
by standard approaches.

Both the ARISA profiles and the sequence library demonstrate
that T. oceanica is a significant component of the Thalassiosira
community in the northeastern Pacific Ocean at the time we sam-
pled, although it was not found at OSP. ARISA analysis indicated
that T. oceanica dominated Thalassiosira community composition
in the open ocean stations associated with the leading edge of the
Haida eddy (stations 13–15). Although T. oceanica often is consid-
ered to be a warm water species (Tomas, 1997; Kaczmarska et al.,
2005), a number of studies report finding T. oceanica in waters
as cold as 12◦C (Harris et al., 1995; Aizawa et al., 2005; Garcia
and Odebrecht, 2009) and the original description of cultivated
T. oceanica maintained growth at 12◦C (Hasle, 1983). The cruise
occurred very shortly after the spring bloom at OSP and water tem-
peratures were 2◦C colder at OSP than at the other stations, which
may have contributed to the absence of T. oceanica there. The pres-
ence of T. oceanica at the shallow coastal stations may seem out
of place for this originally described oceanic species, but T. ocean-
ica has previously been found in coastal environments (Harris
et al., 1995; Aizawa et al., 2005; Garcia and Odebrecht, 2009). The
small size of T. oceanica makes it challenging to identify by light
microscopy, especially when larger diatoms are a more prominent
component of biomass, thus it might be poorly enumerated in
coastal stations.

Minidiscus spp., another genus of the Thalassiosiraceae that
is often missed in microscopic analyses because of its small size
(Kaczmarska et al., 2009), was also shown to be a significant com-
ponent of the Thalassiosira community in both coastal and oceanic
samples, except those at OSP. Previous studies using electron
microscopy have shown Minidiscus spp. to be very abundant in
this region, particularly near the coast (Aizawa et al., 2005). The
requirement for electron microscopy for identifying Minidiscus
spp. means that knowledge about their distribution throughout
the world’s oceans is limited (Tomas, 1997). Minidiscus spp. seem
to be closely associated with coastal and upwelling environments
(Aizawa et al., 2005; Buck et al., 2008), findings our data support.

The sequence analysis revealed a novel Thalassiosira sp. with an
ITS2 length of 367 bases that is also a diagnostic ARISA fragment
length (group“d”: Figure 2). Fragments of this unique length were
detected at low levels in coastal samples, and were a significant
portion of the fragments detected in the center of the Haida eddy
(stations 11, 17, and 35), and similar to T. oceanica and Minidiscus
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FIGURE 5 | A cluster dendrogram showing the Bray–Curtis similarity of

the ITS2 region fragment analysis from field samples. The dashed line
indicates the ≥70% similarity cut-off. The light gray shaded region indicates
≥80% similarity and darkest gray ≥90% similarity. The roman numerals at the

bottom of the dendrogram refer to clusters of stations that are ≥70% similar to
each other. Descriptions are as follows: I. OSP; II. Vancouver Coast; III. Haida
Gwaii shallow; IV. Haida Gwaii deep; V. Cape St. James/former center of eddy;
VI. Between Haida eddy and coast; VII. Haida eddy core and oceanic edge.

spp., were not prevalent at OSP. It is possible that this sequence is
associated with either T. eccentrica, T. nordenskioeldii, or T. pacifica,
species previously shown to be important in the region (Aizawa
et al., 2005) but for which ITS2 sequences in GenBank® are lacking.
Light microscopy on samples from the cruise showed that T. eccen-
trica and T. nordenskioeldii were common along the cruise track
(T. Rynearson, unpublished). Alternatively, this fragment could
be associated with an unknown or uncultured Thalassiosira spp.
As the number of ITS2 sequences in public databases increase, we
may be able to identify this key player in the future.

The “model” Thalassiosira species used regularly in laboratory
studies include T. pseudonana and T. weissflogii but neither were
detected in these analyses, and they are not reported to be com-
mon in temperate offshore phytoplankton assemblages (Haigh
et al., 1992; Aizawa et al., 2005; Hoppenrath et al., 2007). These
findings highlight that the predominant Thalassiosira species in
the northeastern Pacific Ocean are not organisms that are typi-
cally targeted in functional genomic laboratory studies, with the
exception of T. oceanica, which has recently been included in
genomic studies (Lommer et al., 2010, 2012). One of the bene-
fits of the ARISA assay is that it can help to identify Thalassiosira

species that are important players in different oceanic regions,
which, in turn, can help motivate future laboratory physiology and
functional genomic studies to better constrain their physiology
and biogeochemical roles in the environment.

THALASSIOSIRA SPECIES DIVERSITY IN THE NORTHEASTERN PACIFIC
OCEAN
While our sequencing efforts were not done with the goal of
evaluating the diversity of the Thalassiosira in the region, we are
encouraged by the general agreement of sequence data with ARISA
data. Not surprisingly, since sequencing per sample was not satu-
rating, ARISA identified more species than did sequence analysis.
In most cases where this occurred, multiple small ARISA peaks
were observed in samples where only one sequence type, usually
associated with the dominant peak, was detected in the sequence
library from that station. Our goal in generating the sequence
library was to be able to identify fragments that are diagnostic
in length, not to sequence to rarefaction on each sample. These
results serve to highlight an advantage of the ARISA method, the
ability to detect even low abundance sequence types in a given
seawater sample.
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Table 4 | Surface values of environmental parameters used in BVSTEP analysis.

Station Sea surface

temperature (ITS-90)

Salinity (PSS-78) Fluorescence (RFU) Dissolved Fe (nM) Bottom depth (m)

2 9.45 30.6 4.06 1.30 209

5 10.1 30.1 4.03 1.30 209

7 8.45 31.9 1.17 1.45 2260

9 8.89 32.1 1.56 0.30 2610

10 8.61 32.2 1.49 0.14 2668

11 8.47 32.1 0.27 0.16 2692

12 8.53 32.1 0.45 0.17 2906

13 8.84 32.2 1.00 0.16 3005

14 8.55 32.2 0.41 0.13 3191

15 8.49 32.2 0.18 0.12 3379

17 8.59 32.1 0.13 0.16 2692

19 6.34 32.6 0.65 0.08 4226

25 6.49 32.6 0.50 0.08 4226

26 8.85 31.8 2.28 1.64 352

27 9.42 32.1 1.93 1.73 768

28 9.60 32.1 0.94 1.68 1547

29 11.7 30.7 0.70 1.40 252

30 10.2 31.7 1.02 1.59 2138

31 10.2 32.0 1.56 1.76 907

32 9.59 32.1 1.18 0.30 2926

33 9.45 32.2 1.26 0.12 2608

34 9.37 32.1 0.28 0.11 2691

Dissolved Fe values from station 7 (as CSJ), station 11 (as EC), station 15 (as O2), and station 19 (as OSP) were previously published in Xiu et al. (2011). The strongest
correlation between ARISA Bray–Curtis similarity values and environmental variables was achieved by a combination of temperature, fluorescence, and dissolved Fe
(ρs = 0.66).

Table 5 | Spearman’s correlation coefficient (ρ) and associated p values showing the highly significant positive and negative correlations

observed between the environmental parameters measured at the different stations.

Temperature Salinity Fluorescence Dissolved Fe

ρ p ρ p ρ p ρ p

Salinity −0.69 0.0001

Fluorescence 0.49 0.01 −0.51 0.009

Dissolved Fe 0.62 0.0009 −0.77 <0.0001 0.54 0.0046

Bottom depth −0.73 <0.0001 0.92 <0.0001 −0.62 0.0009 −0.76 <0.0001

Both enumeration of ARISA peaks and statistical measures sup-
port our conclusions that the shallow coastal stations were more
diverse than the other stations and the samples from the shelf break
by Haida Gwaii were the least diverse. The increased diversity at
the coastal stations is consistent with higher dissolved Fe concen-
trations in these waters, likely also enriched with macronutrients.
The low diversity at the samples from the shelf break is interest-
ing, as these stations also had high dissolved Fe and chlorophyll
a fluorescence values. Previous work in the region has found that

the shelf break is associated both with high productivity and high
diversity (Ribalet et al., 2010). The shelf break stations in our study
have high fluorescence, which is consistent with it being a highly
productive region, while our ARISA results indicate low Thalas-
siosira diversity. The low diversity in these samples could indicate
a mono-specific Thalassiosira bloom, which would be consistent
with both our ARISA data and fluorescence measurements. Alter-
natively, it could be that phytoplankton species that are not part
of the Thalassiosira genus, which cannot be detected with this

www.frontiersin.org September 2013 | Volume 4 | Article 273 | 11

http://www.frontiersin.org/
http://www.frontiersin.org/Aquatic_Microbiology/archive


“fmicb-04-00273” — 2013/9/25 — 16:26 — page 12 — #12

Chappell et al. Northeast Pacific Ocean Thalassiosira composition

FIGURE 6 | (A,B) Multidimensional scaling plots of the Bray–Curtis similarity
of the fragment analysis profiles of the ITS2 amplicon composition from
field samples. The solid lines encircling various groups of markers
correspond to the 70% similarity line on the Bray–Curtis dendrogram and
the roman numerals and descriptions labeled on (A) are the same as
those in Figures 4 and 5. Stations 8 and 35 are not included in the MDS

analysis, as dissolved Fe was not measured at those stations. (A) The
size of each individual gray marker corresponds to the surface (10 m)
dissolved Fe value measured at that station. (B) The size of each
individual gray marker corresponds to the sea surface temperature value
measured at that station. All corresponding environmental data is listed in
Table 4.

method, are abundant at the shelf break. This method, while use-
ful in comparing the relative proportions of different Thalassiosira
spp. between samples, does not provide information on the abso-
lute abundance of individual species and provides no insight into
the overall diversity of the phytoplankton community.

CLUSTER ANALYSIS OF THALASSIOSIRA SPECIES DISTRIBUTION
Interestingly, cluster analysis of the Thalassiosira species compo-
sition patterns in each sample identified discrete clusters corre-
sponding to geographical regions that are likely to have distinct
oceanographic properties. One such cluster included the stations
along the coast of Haida Gwaii, which were potentially influenced
by recent shelf waters advecting along the outer northwest margin
of the island. Another cluster grouped stations from the shallow
shelf off the northern tip of Vancouver Island. Two separate clus-
ters grouped stations in the region just offshore of the shelf break
and the two samples from OSP taken four days apart.

Many of the Haida eddy stations were grouped in clusters;
consistent with recent data showing that there are significant
shifts in phytoplankton community composition associated with
the edges of Haida eddies (Crawford et al., 2005; Peterson et al.,
2011b). These data show distinct separation in Thalassiosiroid
community composition at the leading and trailing edges of the
westward advecting eddy, with the trailing edge being more simi-
lar to nearshore waters, while the leading edge community was
more aligned with that of the eddy core. The juvenile Haida
eddy in 2007 had only separated from the shelf break near Cape
St. James 3 months earlier (Xiu et al., 2011), and so it is not
surprising that the Thalassiosiroid community in the eddy core
surface waters showed some similarity with shelf waters likely
along the eddy’s path. Batten and Crawford (2005) found shelf
species of diatoms (Thalassiosira spp., Chaetoceros spp., Coscin-
odiscus spp., and Cylindrotheca closterium) and calanoid copepods
within or closely associated with Haida 2000 and 2001, consistent
with our characterization of Thalassiosiroid distributions. That

Thalassiosiroid diversity in stations within the eddy is more simi-
lar to that in oceanic waters than coastal waters could be the result
of the complex patchiness of surface waters generated by dynamic
advective upwelling and downwelling processes in the eddy (Xiu
et al., 2011).

Another interesting feature of the Haida stations clustered by
their similar Thalassiosiroid communities is that station 35, which
was the new center of the eddy core on the return trip 2 weeks
after the initial sampling, groups with the other eddy core sta-
tions. Meanwhile, station 34, which was at the same geographic
location as the original eddy core (stations 11 and 17), does not
cluster with the eddy-associated stations. These findings demon-
strate how ARISA analysis provides unique insights to tease apart
differences among diatom communities or in this case, the differ-
ences in community trajectories as influenced by oceanographic
conditions.

Fe AND TEMPERATURE AS DRIVERS OF SHIFTS IN THALASSIOSIRA
COMMUNITY COMPOSITION
Analyzing Thalassiosiroid distributions in the context of other
environmental variables revealed correlations that may represent
drivers controlling Thalassiosira spp. distributions in the north-
eastern Pacific Ocean. The environmental variables that were
considered were temperature, salinity, chlorophyll a fluorescence,
bottom depth, and dissolved Fe concentrations. Chlorophyll a
fluorescence was included as an environmental variable as it is a
bulk measurement that represents the whole phytoplankton com-
munity, while our assay provides information on a subset of the
chlorophyll-containing phytoplankton community, the Thalas-
siosira diatoms. Bottom depth was included as numerical way to
distinguish between coastal, shelf, and open ocean sites. Removing
it from our statistical analyses does not change the results. Unfor-
tunately, since macro nutrient concentrations were not measured
for every station and we did not measure the concentrations of
other potentially important micronutrients for diatoms such as
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zinc and B vitamins, we could not consider them in our sta-
tistical analysis. The three strongest correlations (ρs ≥ 0.635)
between environmental variables and Thalassiosiroid commu-
nity composition all included dissolved Fe and temperature as
variables contributing to describe the phytoplankton commu-
nity constraints at each station. Previous work in a region just
north of where our samples were taken found that macronutrient
concentrations (NO3

− and PO4
−) and vitamin B12 concentra-

tions inversely correlate with dissolved Fe (at R = −0.75, −0.84,
and −0.49, respectively; Koch et al., 2011), thus implying that if
we had measurements of these variables, they might also corre-
late with the changes in Thalassiosiroid community composition.
Because of the correlation between dissolved Fe and temperature,
it is hard to distinguish the contributions that each variable may
have imparted on Thalassiosira community composition. It may
be that one or both of these environmental factors impart a driv-
ing force on Thalassiosira community composition in concert or
each does fractionally. The marked correlation with dissolved Fe
is likely to have physiological significance given the wide range of
Fe requirements among the few Thalassiosira spp. studied (Sunda
and Huntsman, 1995). Dissolved Fe is known to be a limiting
nutrient for phytoplankton productivity in the region (Boyd et al.,
2004; Johnson et al., 2005), and it is suggested to be a primary
reason why Haida eddies are so productive (Crawford et al., 2005;
Peterson et al., 2011b; Xiu et al., 2011). While our data supports
previous work showing that Fe is an important driver of biologi-
cal processes in the region, temperature was also correlated with
changes in Thalassiosira community composition. This is fitting
with our hypothesis that the colder waters sampled at OSP were a
barrier for T. oceanica growth.

In conclusion, we have developed a method for rapidly iden-
tifying Thalassiosira spp. in environmental samples. The method

is particularly useful at identifying some of the smaller Thalas-
siosira spp. that are difficult to distinguish using light microscopy,
though it lacks in the ability to definitively identify some of the
larger species. This method was used to determine the community
composition of Thalassiosira species in samples from the north-
eastern Pacific Ocean, where microscopic inspection of samples
had revealed small centric diatoms were a significant component
of the planktonic biomass. The method was also able to link some
of the shifts in species distribution to the presence of a 3-month-
old Haida eddy and the Fe that it brought to HNLC waters. The
potential benefits of this method include the ability to monitor
changes in species composition in response to ecological changes,
as well as the ability to screen samples for individual species for
which we have molecular tools to monitor the genetic response to
changing environmental variables. Using species-specific molecu-
lar techniques could enable us to move beyond simply correlating
shifting community composition with Fe values, as we did here, to
assessing Fe limitation of individual species in situ.
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