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Phase changes in 38-atom Lennard-Jones clusters. II. A parallel tempering
study of equilibrium and dynamic properties in the molecular dynamics
and microcanonical ensembles
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CEA Grenoble, F38054 Grenoble Cedex, France

J. P. Neirotti and David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881-0809

J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912
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We study the 38-atom Lennard-Jones cluster with parallel tempering Monte Carlo methods in the
microcanonical and molecular dynamics ensembles. A new Monte Carlo algorithm is presented that
samples rigorously the molecular dynamics ensemble for a system at constant total energy, linear
and angular momenta. By combining the parallel tempering technique with molecular dynamics
methods, we develop a hybrid method to overcome quasiergodicity and to extract both equilibrium
and dynamical properties from Monte Carlo and molecular dynamics simulations. Several
thermodynamic, structural, and dynamical properties are investigated for LJ38, including the caloric
curve, the diffusion constant and the largest Lyapunov exponent. The importance of insuring
ergodicity in molecular dynamics simulations is illustrated by comparing the results of ergodic
simulations with earlier molecular dynamics simulations. ©2000 American Institute of Physics.
@S0021-9606~00!51323-3#

I. INTRODUCTION

The simulation of systems having complex potential en-
ergy surfaces~PES! is often difficult owing to the problem of
quasiergodicity. Quasiergodicity can arise in systems having
several energy minima separated by high energy barriers.
When such situations occur, as for example in proteins,
glasses or clusters, the system can become trapped in local
basins of the energy landscape, and the ergodic hypothesis
fails on the time scale of the simulation. In the canonical
ensemble, the high energy regions of the PES are exponen-
tially suppressed and barrier crossings become rare events.
Calculations of equilibrium properties when phase space is
thus partitioned require methods that overcome quasiergod-
icity by enhanced barrier crossing. Many techniques have
been proposed to address this problem, including the use of
generalized ensembles such as multicanonical1 or
Tsallisian,2,3 simulated tempering,4 configurational5 or force
bias6 Monte Carlo, or various versions of the jump-
walking7–11 algorithm. Most of these techniques have been
introduced for Monte Carlo~MC! simulations rather than
molecular dynamics~MD! simulations. These techniques
have been applied to a variety of sampling and optimization
problems, and phase changes in clusters have often been con-
sidered as a benchmark to test these methods.2,10,11

The double-funnel energy landscape of the 38-atom
Lennard-Jones~LJ! cluster has been investigated in detail by
Doye, Miller, and Wales,12–15 who recently also estimated
the interfunnel rate constants using master equation
dynamics.13 This landscape is challenging for simulation be-

cause of the high free-energy barrier separating the two
funnels.14 In the preceding paper~hereafter referred to as
I!,16 we have shown how the parallel tempering algorithm
can be used to deal with this particularly complex system for
Monte Carlo simulations in the canonical ensemble. Achiev-
ing ergodicity in microcanonical simulations is much harder
than in the canonical ensemble, because the system is unable
to cross any energy barrier higher than the total energy avail-
able. The 38-atom Lennard-Jones cluster is fundamentally
nonergodic in a range of energies. This nonergodicity may
not be a serious problem when considering one particular
cluster on a short time scale. However, in a statistical sample
of such systems it is important to have ergodic results.

To allow MD simulations to cross the high energy bar-
riers, one may think of heating the system~by increasing its
kinetic energy!, followed by a cooling back to its initial ther-
modynamic state. Although this process is straightforward,
the dynamics becomes biased and non physical during the
heating and cooling processes. Moreover, it is difficult to
control accurately the heating and cooling rates that should
be chosen for any system. This latter aspect is particularly
critical for the 38-atom Lennard-Jones cluster where the nar-
row and deepest funnel is hard to reach even at high tem-
peratures.

Because of the inherent difficulties of molecular dynam-
ics, MC approaches can be especially useful for dealing with
the problem of crossing high energy barriers. Monte Carlo
methods have been developed in previous work10,17 in the
microcanonical ensemble. In these approaches the microca-
nonical sampling is at fixed energy without any additional
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constraints. Such methods can be contrasted with isoener-
getic molecular dynamics where the total, linear and angular
momenta are also conserved. These additional constraints
must be considered even at zero angular momentum.18–20To
differentiate microcanonical simulations, where only the en-
ergy is fixed, from molecular dynamics simulations, where
additional constraints are imposed, we identify the former to
be simulations in the microcanonical ensemble and identify
the latter simulations to be in the molecular dynamics en-
semble. The differences in the two ensembles can be particu-
larly important when the angular momentum is large enough
to induce structural~centrifugal! distortions.20 Because dy-
namical properties are calculated using molecular dynamics
methods, in this work we find that a combination of Monte
Carlo and molecular dynamics methods are most convenient
for developing ergodic approaches to dynamics.

In this paper, we adapt the parallel tempering method to
both the microcanonical and molecular dynamics ensembles.
The application of parallel tempering in the molecular dy-
namics ensemble requires the incorporation of the conserva-
tion of the total linear and angular momenta into the prob-
abilities. In order to extract ergodic dynamical properties, we
combine Monte Carlo methods with molecular dynamics to
develop a hybrid ergodic MC/MD algorithm. The efficiency
of the simulation tools developed in this work is demon-
strated by applications to the 38-atom Lennard-Jones cluster,
which exhibits a solid–solid transition prior to melting.13,16

This transition to an equilibrium phase between truncated
octahedral and icosahedral geometries makes this cluster an
ideal candidate for investigating how the ergodic hypothesis
can influence the dynamical behavior of a complex system.

The contents of the remainder of this paper are as fol-
lows. In the next section, we recall the basic principle of
Monte Carlo sampling in the microcanonical ensemble, and
we present the simple modifications needed to include paral-
lel tempering. We test microcanonical parallel tempering
methods on the 38-atom Lennard-Jones cluster, and compare
the microcanonical results with those found in I using the
canonical ensemble. We focus on equilibrium properties, in-
cluding the caloric curve and the isomers distributions. In
Sec. III we review the characteristics of the molecular dy-
namics ensemble at fixed total linear and angular momenta
and fixed total energy. We extend the parallel tempering
Monte Carlo method to the MD ensemble, and we combine
microcanonical parallel tempering with molecular dynamics
to produce an ergodic MD method. We also apply these
methods to several dynamical properties of LJ38; in particu-
lar the diffusion constant and the largest Lyapunov exponent.
We summarize our findings and discuss our results in
Sec. IV.

II. PARALLEL TEMPERING MONTE CARLO
IN THE MICROCANONICAL ENSEMBLE

The fundamental quantity in the microcanonical en-
semble is the density of statesV. For a system havingN
identical particles, volumeV and total energyE, V is defined
by

V~N,V,E!5
1

N!h3NE d@H~r ,p!2E#d3Nrd3Np, ~1!

whereh is Planck’s constant and whereH(r ,p) denotes the
classical Hamiltonian function of the coordinatesr and mo-
mentap of theN particles. Knowing the microcanonical den-
sity of statesV, one can calculate the canonical partition
function Q(N,V,T) by a Laplace transformation.10 The ki-
netic part of the HamiltonianH is quadratic in the momenta,
and Eq.~1! can be partly integrated to give10,21

V~N,V,E!5S 2pm

h2 D 3N/2
1

N!G~3N/2!
E Q@E2U~r !#

3@E2U~r !#3N/221d3Nr . ~2!

In Eq. ~2!, G is the Gamma function,m is the mass of each
particle, U(r )5H2K is the potential energy andQ is the
Heaviside step function,Q(x)51 if x>0, 0 otherwise. Mi-
crocanonical averages of a coordinate-dependent variable
A(r ) can be expressed

^A&~N,V,E!5
*Q@E2U~r !#@E2U~r !#3N/221A~r !d3Nr

*Q@E2U~r !#@E2U~r !#3N/221d3Nr
.

~3!

The microcanonical entropyS can be defined byS(N,V,E)
5kB ln V(N,V,E) with kB the Boltzmann constant. The ther-
modynamic temperatureT(N,V,E) is given by the thermo-
dynamic relation (]S/]E)N,V51/T, and can be obtained
from a microcanonical average21

T~N,V,E!5
2

3N22

1

^K21&
. ~4!

This expression is slightly different from the kinetic tem-
perature 2̂K&/3N, which is a consequence of our choice in
the definition of the entropy. As discussed by Pearson and
co-workers,21 it is also possible to define the entropy using
the phase space volume

F~N,V,E!5E
0

E

V~N,V,E8!dE8. ~5!

Definitions of the temperature based onV differ from the
temperature based onF to order 1/N, and the two definitions
agree only in the thermodynamic limit.

Monte Carlo simulations can be used to explore the mi-
crocanonical ensemble by performing a random walk in con-
figuration space. In the standard Metropolis scheme, a trial
move from configurationr0 to configurationrn is accepted
with the probability22

acc~r0→rn!5minS 1,
rE~rn!T~rn→r0!

rE~r0!T~r0→rn! D , ~6!

whereT(r0→rn) is a trial probability. The acceptance prob-
ability expressed in Eq.~6! ensures detailed balance so that
the random walk visits points in configuration space propor-
tional to the equilibrium distributionrE(r ) defined by

rE~r !5z21Q@E2U~r !#@E2U~r !#3N/221, ~7!
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where z is the normalization. In practice,T(r0→rn) is a
uniform distribution of points of widthD centered aboutr0 ,
andD is adjusted as a function of the energy so that not too
many trial moves are either accepted or rejected.

Implementation of microcanonical Monte Carlo is as
easy as its canonical version. Because Monte Carlo methods
are based on random walks in configuration space, in prin-
ciple the system can cross energy barriers higher than the
available energy. However, in difficult cases like LJ38, large
atomic displacements having poor acceptance ratios are
needed to reach ergodicity.

Parallel tempering23–26 has proved to be an important
approach to ensure ergodicity in canonical Monte Carlo
simulations, and parallel tempering can be easily adapted to
the microcanonical ensemble by replacing the Boltzmann
factors in the acceptance probability by the microcanonical
weight rE(r ). In the parallel tempering scheme, several mi-
crocanonical MC simulations are performed simultaneously
at different total energies$Ei%. With some predetermined
probability, two simulations at energiesEi andEj attempt to
exchange their current configurations, respectively,r i and
r j , and this exchange is accepted with probability

minS 1,
rEi

~r j !rEj
~r i !

rEi
~r i !rEj

~r j !
D .

The acceptance ratio is analogous to the canonical expres-
sion given in I. In microcanonical simulations the potential
energies must be smaller than min(Ei ,Ej); otherwise the
move is rejected. Parallel tempering microcanonical MC
works in the same way as in standard canonical MC. As with
canonical parallel tempering MC, the gaps between adjacent
total energies must be chosen to be small enough so that
exchanges between the corresponding trajectories are ac-
cepted with a reasonable probability.

By using a histogram reweighting technique,27 it is pos-
sible to extract from the MC simulations the density of states
V, and then all the thermodynamic quantities in both the
microcanonical and the canonical ensembles. The procedure
is similar to that described in Ref. 28, and relies on the cal-
culation of the distributionP(U,E) of potential energyU at
the total energyE. P is fitted to the microcanonical form
P(U,E)5VC(U)(E2U)3N/221/V(E), whereVC stands for
the configurational density of states, andV(E) is extracted
by convolution ofVC(U) and (E2U)3N/221.

We have tested the parallel tempering Monte Carlo al-
gorithm in the microcanonical ensemble on the 38-atom
Lennard-Jones cluster previously investigated. Forty differ-
ent total energies ranging from2172.4737« to 2124« have
been used, and the same simulation conditions have been
chosen as in I. In addition to a constraining sphere of radius
2.25s to prevent evaporation, exchanges have been at-
tempted every 10 passes, with the same method for choosing
exchanging trajectories as described in the previous article.
The simulations are begun with random configurations of the
cluster geometry, and consist of 1.331010 points accumu-
lated following equilibration moves consisting of 953106

Metropolis points ~no exchanges! followed by 1903106

points using parallel tempering. The microcanonical heat ca-

pacity calculated in this fashion and shown in Fig. 1, is quali-
tatively the same as the canonical heat capacity~see I!. The
melting peak in the microcanonical heat capacity occurs at
the same calcuated temperature as the temperature of the
melting peak in the canonical heat capacity, and there are
slope change regions at temperatures that correspond to equi-
librium between the icosahedral basin and the truncated oc-
tahedral global minimum structure. The present simulations
are also used to obtain structural insight about the cluster as
a function of total energy. We have calculated the order pa-
rameterQ4 as defined in I as a function of temperature, and
compared the classification into the three categories of iso-
mers ~truncated octahedral, icosahedral or liquidlike! using
the energy criterion also outlined in I.

In Fig. 2 we show the caloric curveT(E) determined
from our parallel tempering microcanonical MC simulations.
We also present the canonical curve for comparison. The
melting transition nearT;0.166«/kB is reflected in the
change in slope of the temperature as a function of the en-
ergy. The microcanonical curve does not display a van der
Waals loop, and remains very close to the canonical curve.
The average value of the order parameter^Q4& is displayed
in the lower panel of Fig. 2 as a function of the total energy.
As has been discussed in I for the canonical simulation, the
order parameter begins to drop at energies where there is the
onset of isomerization transitions to the icosahedral basin
~nearE52160«), and the order parameter reaches its low-
est value at the melting transition. The isomer distributions
have been evaluated either using the parameterQ4 or using

FIG. 1. The heat capacity as a function of energy calculated in the micro-
canonical ensemble. The melting peak occurs at the same calculated tem-
perature in the microcanonical ensemble as found in the canonical ensemble,
but the height of the microcanonical peak is significantly higher than the
canonical peak~compare with Fig. 1 in I!. Both the microcanonical and
canonical heat capacities display a region of change in slope at the transition
between the truncated octahedron and the icosahedral basin. The error bars
represent two standard deviations of the mean.
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the energy criterion~see the discussion in paper I!. The re-
sults have been plotted in Fig. 3 as a function of the total
energy. The behavior of the isomer distributions as a func-
tion of energy is similar to the canonical distributions as a
function of temperature, and the cluster exhibits equilibrium
between truncated octahedral and icosahedral geometries in
the energy range2160«&E&2150«, prior to the solidlike
to liquidlike phase change. As in the canonical case, the
icosahedral distribution is a symmetric function of the en-
ergy when the energy criterion is used rather than the defi-
nition based onQ4 . This difference reflects the differences
between the two definitions of icosahedral and liquid basins.
The oscillatory structure observed at the peak ofPQ4

for the
icosahedral distribution in the upper panel of Fig. 3 is
smaller than the calculated errors~two standard deviations of
the mean are shown!. Whether the observed structure would
persist for a longer simulation is not known to us. Because
the definition that assigns configurations to the icosahedral
basin is arbitrary, we have chosen not to investigate this
structure further.

It is useful to contrast the current results with previous
constant energy studies of LJ38. Previous simulations have
used molecular dynamics methods where no attempt has

been made to ensure ergodicity. To contrast these past stud-
ies with the molecular dynamics technique discussed in the
next section of this paper, we definestandard molecular dy-
namics to represent the usual molecular dynamics method
where no special procedure is introduced to ensure ergodic-
ity. Simulations of LJ38 using standard molecular dynamics
invariably lead to a caloric curve with a clear van der Waals
loop and a melting temperature higher than that inferred
from Fig. 2.29 From the results of Ref. 29, the cluster is
trapped in the octahedral basin, and the system does reflect
the true dynamical coexistence state between the truncated
octahedron and the icosahedral basin. This is the common
situation encountered in MD simulations of the LJ38 system;
the cluster chooses either to remain trapped in the octahedral
basin, or to escape and coexist between the icosahedral sol-
idlike and liquidlike forms. Because the system is unable to
return from the octahedral basin, the microcanonical tem-
perature decreases. In the usual case, van der Waals loops
arise when there are large energy gaps between the lowest-
energy isomers.30 In the specific case of LJ38, it appears that
the presence of extra~icosahedral! isomers only slightly

FIG. 2. ~Upper panel! The microcanonical caloric curve for LJ38 obtained
from parallel tempering Monte Carlo simulations. The temperature is plotted
as a function of the total energy, both expressed in reduced LJ units. The
circles are the direct results of microcanonical simulations. The solid line is
a fit obtained by the histogram reweighting technique. Also plotted as a
dotted line is the caloric curve in the canonical ensemble.~Lower panel!
Average value of the order parameterQ4 as a function of the total energy.
For both panels, the error bars are smaller than the size of the symbols.

FIG. 3. ~Upper panel! The probability distribution of the order parameterQ4

as a function of the total energy.~Lower panel! The probability distribution
of the energy of the quenched structure as a function of the total energy. For
both quantities, FCC labels the truncated octahedron, IC labels structures
from the icosahedral basin, and LIQ labels structures from the liquid region.
In the lower panel, the error bars are smaller than the size of the symbols. In
the upper panel, the error bars represent two standard deviations of the
mean.
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higherin energy than the octahedral structure eliminates this
loop in the ergodic microcanonical caloric curve.

In order to extract dynamical quantities, the Monte Carlo
method we have presented must be modified to sample the
MD ensemble. The modification is the subject of the next
section.

III. ERGODIC MOLECULAR DYNAMICS

The molecular dynamics ensemble differs from the mi-
crocanonical ensemble in that two quantities are conserved
in addition to the total energyE, volumeV, and number of
particlesN. These two quantities are the total linear momen-
tum P and total angular momentumL . If their values are
prescribed, the density of states remains the fundamental
quantity of interest, and is now defined by

V~N,V,E,P,L !5
1

N!h3NE d@H~r ,p!2E#dS P2(
i 51

N

pi D
3dS L2(

i 51

N

r i3pi D d3Nrd3Np. ~8!

As is the case in the microcanonical ensemble@see Eq.~2!#,
for atomic systems the momentum integrations in Eq.~8! can
be evaluated explicitly.18–20 Because the thermodynamic
properties are not affected by the translational motion of the
center of mass, we can assume thatP50. We then obtain20

V~N,V,E,P50,L !5S 2pm

h2 D 3N/223
1

N!G~3N/223!

3E Q@E2UL~r !#@E2UL~r !#3N/224

3
d3Nr

AdetI
, ~9!

whereI is the inertia matrix andUL(r )5U(r )1L†I21L /2 is
the effective rovibrational energy. This effective potential
energy includes the kinetic energy contribution of the rotat-
ing cluster considered as a rigid body.31,32 The landscape of
rotating clusters has been investigated by Miller and Wales
in order to study cluster evaporation.33 Averages in the MD
ensemble are now expressed as

^A&5

*Q@E2UL~r !#@E2UL~r !#3N/224A~r !
d3Nr

AdetI

*Q@E2UL~r !#@E2UL~r !#3N/224
d3Nr

AdetI

. ~10!

As in the microcanonical ensemble, we define the entropy in
the molecular dynamics ensemble byS5kB ln V. The differ-
ences between the microcanonical and molecular dynamics
ensembles are the exponent 3N/2 which is reduced by 3
owing to the geometrical constraints, the potential energy
which now includes the contribution of the centrifugal en-
ergy, and the weight 1/AdetI which is a consequence of the
conservation of the angular momentum. Monte Carlo simu-

lations can sample the MD ensemble by performing a ran-
dom walk in configuration space. The acceptance probability
from configurationr0 to configurationrn is

acc~r0→rn!5minS 1,
rE,L~rn!T~rn→r0!

rE,L~r0!T~r0→rn! D ~11!

in the Metropolis scheme. The microcanonical weightrE(r )
is now replaced by the MD weightrE,L given by

rE,L~r !5z21
1

AdetI
Q@E2UL~r !#@E2UL~r !#3N/224, ~12!

where z is a normalization. The expression for the accep-
tance probability is similar to Eq.~6!, and a practical imple-
mentation of Monte Carlo in the MD ensemble is made in
the same way as in the true microcanonical ensemble, given
the vectorL . Parallel tempering can be also easily combined
with the MC simulations. The acceptance probability of ex-
changing the configurationsr i and r j initially at the total
energiesEi andEj , respectively, is then

minS 1,S @Ei2UL~r j !#@Ej2UL~r i !#

@Ei2UL~r i !#@Ej2UL~r j !#
D 3N/224D

provided that all quantities inside brackets are positive~oth-
erwise the move is rejected!. It is remarkable that the geo-
metrical weights have canceled in this expression.

The Monte Carlo method we have just described allows
sampling of configuration space rigorously equivalent to the
sampling we would obtain using molecular dynamics, but
with the additional possibility of crossing the energy barriers
higher than the available energy. The method can be used in
its present form to extract equilibrium properties only depen-
dent on the energy or geometry, as has been illustrated in the
previous section. To compute dynamical quantities, the
method can also provide a database of configurations repre-
sentative of a given total energy. Instead of performing a few
very long MD simulations that are in principle unable to
reach other parts of the energy surface separated by barriers
higher than the available energy, we choose to perform a
statistical number of short simulations starting from configu-
rations obtained by parallel tempering Monte Carlo in the
MD ensemble with same total energy and angular momen-
tum. By construction, if the MC method is correctly ergodic,
then the hybrid MD method we have suggested can be ex-
pected to yield ergodic dynamical observables.

We now illustrate this ergodic molecular dynamics
method on the LJ38 problem. Two essentially dynamical pa-
rameters have been calculated. The first is the self diffusion
constantD, obtained from the derivative of the average mean
square atomic displacement

D5
1

6

d

dt
^@r ~ t !2r ~0!#2&, ~13!

where the average is taken over all particles of the system
and over all short MD simulations. The other parameter is
the largest Lyapunov exponentl, that measures the expo-
nential rate of divergence of the distance between two ini-
tially close trajectories in the phase space. If we write the
equation describing the Hamiltonian dynamics in condensed
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form as ċ(t)5F(c), whereF is a nonlinear function and
c5$r ,p% the phase space point, then a small perturbationdc
evolves according to the simple equationddc/dt
5(]F/]c)dc. The largest Lyapunov exponentl is obtained
from the time evolution of the vectordc,

l5 lim
t→`

lim
dc~0!→0

1

t
ln

idc~ t !i
idc~0!i . ~14!

In Eq. ~14!, i•i is a metric on the phase space. In principle,
any metric can be used, and we choose the Euclidian metric
including both the momenta and the coordinates. The nu-
merical procedure34 involves a periodic renormalization of
the vectordc to prevent its exponential divergence. The suc-
cessive lengths are accumulated and contribute to the aver-
age value ofl.

In I, the clusters have been defined using a hard sphere
constraining potential. Because the angular momentum is not
conserved after reflection from such hard wall boundaries, in
the molecular dynamics simulations we have chosen a soft
repulsive spherical wallUc defined with respect to the center
of mass of the cluster for each particle by

Uc~r !5H 0, r ,Rc

k~r 2Rc!
4/4, r>Rc .

~15!

In this equation, the atomic distancesr are measured with
respect to the cluster center of mass. The simulations have
been performed setting the angular momentum to zero for
simplicity. We stress that even in this case~with L50), the
weight 1/AdetI must be included in the Monte Carlo prob-
abilities so that we effectively sample the MD ensemble. The
actual thermodynamic behavior in the MD ensemble at zero
angular momentum is nevertheless nearly identical to the
microcanonical behavior.

The application to the LJ38 cluster has been made by
performing 1010 MC steps following 107 equilibration steps
in a parallel tempering simulation in the MD ensemble. The
same 40 total energies have been chosen as in the previous
section, and 105 configurations have been stored every 105

steps for each simulation. Short molecular dynamics runs of
104 time steps following 103 equilibration steps have been
performed for each of these configurations, with the same
total energy as the corresponding MC trajectory of origin,
and with zero total linear and angular momenta as well. The
parameters used for the constraining wall are respectively
Rc52.25s andk5100«, for both the MC and MD runs. A
simple Verlet algorithm has been used to propagate the MD
trajectory with the time stepdt50.01 reduced LJ units. The
propagation of the tangent trajectory to calculate the
Lyapunov exponent has been determined with a fourth order
Runge–Kutta scheme. The final values ofD and l are an
average over the 105 MD simulations. The variations ofD
andl with total energy are depicted in Fig. 4. In both cases,
two curves have been plotted, calculated either from standard
molecular dynamics~with 108 time steps following 107

equilibration steps, and starting initially from the lowest-
energy structure!, or from our hybrid ergodic molecular dy-
namics method. For both quantities, the two MD schemes
clearly yield distinct values in the energy range where equi-

librium between truncated octahedral and icosahedral geom-
etries occurs. The thermodynamic temperature, not plotted
here, has the same variations as the caloric curve of Fig. 2
when calculated with ergodic MD. Standard molecular dy-
namics predicts a van der Waals loop centered atT
;0.18«/kB . For standard MD, the cluster is trapped in the
icosahedral basin and is, in practice, unable to reach the oc-
tahedral basin. Only the equilibrium between the icosahedral
basin and liquidlike structures occurs. As can be seen from
the upper panel of Fig. 4, this change in curvature of the
temperature is also present for the diffusion constant, which
exhibits strong variations at the energy where the octahedral
structure vanishes when standard MD is used. In contrast, the
variations in ergodic MD are smooth.

The melting temperature implied by the largest
Lyapunov exponent is also higher in standard MD than in
ergodic MD, even though the variations of the Lyapunov
exponent are continuous in both MD schemes.29 Indeed, us-
ing ergodic molecular dynamics we observe a shift of the
curve obtained by standard MD toward the lower energies.

FIG. 4. Two dynamical parameters calculated for LJ38 using either standard
molecular dynamics starting from the lowest-energy structure~empty sym-
bols! or the hybrid ergodic MD/MC method~full symbols!, as a function of
the total energy. The results are expressed in Lennard-Jones time unitst0 .
~Upper panel! Diffusion constantD; ~lower panel! largest Lyapunov expo-
nent l. For both panels, the error bars are smaller than the size of the
symbols.
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As shown by Hinde, Berry, and Wales,35–37 the Lyapunov
exponent and the Kolmogorov entropy are quantities essen-
tially dependent on the local properties of the energy land-
scapes. One contribution comes from the negative curvature
of the landscape, and another contribution is the fluctuation
of positive curvature.38 Both contributions are affected by
the cluster being trapped either inside the truncated octahe-
dral basin or inside the icosahedral basin. In this latter case in
particular, the different isomers belonging to the icosahedral
basin are connected through regions of negative curvature,
while only one isomer defines the octahedral funnel.

Because ergodic molecular dynamics allows the cluster
to be found in both basins prior to melting, the dynamical
behavior is likely to be very different~and more chaotic!
with respect to the dynamical behavior of the cluster con-
fined to the octahedral funnel. This difference is precisely
what we observe on the lower panel of Fig. 4.

IV. CONCLUSION

In this paper, we have explored the parallel tempering
method in simulations in the microcanonical ensemble. The
implementation of the parallel tempering algorithm in this
ensemble is straightforward, the Boltzmann factor
exp(2bU) being replaced by the microcanonical weight
(E2U)3N/221. Application to the LJ38 cluster has shown the
thermodynamic behavior in the microcanonical ensemble to
be similar to the behavior in the canonical ensemble. The
solid–liquid phase change is preceded by a solid–solid phase
change where the cluster is in equilibrium between truncated
octahedral and icosahedral geometries. This phase equilib-
rium is well reproduced in the simulations owing to the
power of parallel tempering. The calculated microcanonical
caloric curve, which does not display a van der Waals loop,
is consistent with the single peaked heat capacity observed
in I.16

We have extended the parallel tempering microcanonical
Monte Carlo algorithm to sample the molecular dynamics
ensemble at constant total energy, linear momentum, and
angular momentum. Combined with standard molecular dy-
namics, this method circumvents the lack of connectivity be-
tween regions of the potential energy surface. The method
can ensure ergodicity in microcanonical simulations, which
is much more difficult to achieve than in the canonical en-
semble. Ironically, this ergodic MD method can be viewed as
the counterpart of the techniques developed by Chekmarev
and Krivov to study the dynamics of systems confined to
only one catchment basin in the energy surface.39

We have performed a statistical number of short molecu-
lar dynamics runs starting from configurations stored peri-
odically in parallel tempering Monte Carlo simulations.
These simulations sample the MD ensemble at the same total
energies, linear and angular momenta as the standard mo-
lecular dynamics runs. In fact, the length of the MD runs is
mainly dictated by the large number of starting configura-
tions. One may think of reducing drastically this number, to
allow for the calculation of parameters varying on longer
time scales. Unfortunately, if the energy landscape is not
known in advance, then it is hard to guess how important are
the contributions of the basins not selected as starting con-

figurations. In the case of LJ38 having only three main re-
gions on the energy surface, one possibility is to compute a
dynamical property as the average value over three different
simulations starting either from the truncated octahedral ge-
ometry, one icosahedral geometry or a low-lying liquid ge-
ometry, all carried out at the same total energy. However, as
we have seen in Fig. 3, it is not obvious how to choose
properly the weights of each basin in this average because of
the difficulty in distinguishing between icosahedral and liq-
uid structures in many cases. For this reason, we believe that
the first parallel tempering MC step of the hybrid ergodic
method is essential in the vicinity of phase changes to cap-
ture many starting configurations that are used subsequently
in standard molecular dynamics. The enhanced sampling of-
fered by parallel tempering can also act as a statistical rep-
resentation of the energy surface at a given total energy, and
the long time dynamics may be further investigated by using
master equations after searching the saddle points.15,40

We have calculated two dynamical quantities with the
present hybrid MD/MC method, the diffusion constant and
the largest Lyapunov exponent in the 38-atom Lennard-Jones
cluster. The variations of both quantities with the total en-
ergy are significantly different when evaluated with standard
~nonergodic! molecular dynamics or with our hybrid ergodic
MD method. These results emphasize the different contribu-
tions of the two funnels of the energy landscape to the aver-
age value of the parameters estimated.

The algorithms developed in this investigation allow the
calculation of thermodynamic, structural, or dynamical prop-
erties of systems such as LJ38 that can be expressed as phase
space or time averages. Parallel tempering works using a
criterion based on the potential energy but not on the geom-
etry. Consequently permutational isomers can be introduced
in the course of the simulation. Quantities such as fluctua-
tions of configuration-dependent properties are much more
difficult to extract than actual averages. For instance, the
Lindemann indexd, which measures the root mean square
bond length fluctuation, is often considered to be a reliable
parameter for detecting melting in atomic and molecular sys-
tems. This quantity cannot be properly estimated with the
ergodic MD scheme, and the same difficulty persists for
other methods based on the use of different trajectories.

Although the idea of combining Monte Carlo sampling
with standard molecular dynamics can be applied to other
techniques such as jump-walking, we believe that parallel
tempering is the key to the success in the case of LJ38. As in
the canonical version, the equilibrium phase between trun-
cated octahedral and icosahedral structures is correctly repro-
duced in an energy range preceding the melting region, be-
cause in this range configurations may be accessed either
from higher energy trajectories containing mainly icosahe-
dral geometries, or from lower energy trajectories acting as a
reservoir for the octahedral geometry. As noticed by Falcioni
and Deem,25 the parallel tempering algorithm is especially
useful at low temperatures, or in our case, at low energy. The
long relaxation times inherent in systems like clusters, pro-
teins, critical or glassy liquids, are a serious difficulty for
standard simulation methods. We expect the present ergodic
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method to be particularly useful to deal with the dynamics of
such systems.

The method we have presented works at constant total
energy. It is possible to improve ergodicity in constant-
temperature MD either by using canonical parallel tempering
as in the work of Sugita and Okamoto,41 or by coupling
parallel tempering canonical Monte Carlo to short Nose´–
Hoover trajectories. In the Nose´–Hoover approach such mo-
lecular dynamics simulations do conserve a zero angular mo-
mentum, so a rigorous MC sampling should include the
geometrical weight 1/AdetI in the probabilities also in this
case. The present microcanonical scheme can be easily used
for rotating bodies, which makes the method suitable for
investigating the strong influence of centrifugal effects on
phase changes in atomic clusters.
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