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Phase changes in 38-atom Lennard-Jones clusters. Il. A parallel tempering
study of equilibrium and dynamic properties in the molecular dynamics
and microcanonical ensembles
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J. D. Doll
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We study the 38-atom Lennard-Jones cluster with parallel tempering Monte Carlo methods in the
microcanonical and molecular dynamics ensembles. A new Monte Carlo algorithm is presented that
samples rigorously the molecular dynamics ensemble for a system at constant total energy, linear
and angular momenta. By combining the parallel tempering technique with molecular dynamics
methods, we develop a hybrid method to overcome quasiergodicity and to extract both equilibrium
and dynamical properties from Monte Carlo and molecular dynamics simulations. Several
thermodynamic, structural, and dynamical properties are investigated4gribdluding the caloric

curve, the diffusion constant and the largest Lyapunov exponent. The importance of insuring
ergodicity in molecular dynamics simulations is illustrated by comparing the results of ergodic
simulations with earlier molecular dynamics simulations. 2@00 American Institute of Physics.
[S0021-960600)51323-3

I. INTRODUCTION cause of the high free-energy barrier separating the two
funnels!* In the preceding papethereafter referred to as
The simulation of systems having complex potential en4),1® we have shown how the parallel tempering algorithm
ergy surfacesPES is often difficult owing to the problem of can be used to deal with this particularly complex system for
quasiergodicity. Quasiergodicity can arise in systems having/onte Carlo simulations in the canonical ensemble. Achiev-
several energy minima separated by high energy barriersng ergodicity in microcanonical simulations is much harder
When such situations occur, as for example in proteinsthan in the canonical ensemble, because the system is unable
glasses or clusters, the system can become trapped in loaal cross any energy barrier higher than the total energy avail-
basins of the energy landscape, and the ergodic hypothesi®le. The 38-atom Lennard-Jones cluster is fundamentally
fails on the time scale of the simulation. In the canonicalnonergodic in a range of energies. This nonergodicity may
ensemble, the high energy regions of the PES are exponenot be a serious problem when considering one particular
tially suppressed and barrier crossings become rare eveniduster on a short time scale. However, in a statistical sample
Calculations of equilibrium properties when phase space isf such systems it is important to have ergodic results.
thus partitioned require methods that overcome quasiergod- To allow MD simulations to cross the high energy bar-
icity by enhanced barrier crossing. Many techniques haveiers, one may think of heating the systé¢hy increasing its
been proposed to address this problem, including the use &inetic energy, followed by a cooling back to its initial ther-
generalized ensembles such as multicanohicalr modynamic state. Although this process is straightforward,
Tsallisian?® simulated temperin§configurational or force  the dynamics becomes biased and non physical during the
bia® Monte Carlo, or various versions of the jump- heating and cooling processes. Moreover, it is difficult to
walking’~** algorithm. Most of these techniques have beencontrol accurately the heating and cooling rates that should
introduced for Monte CarldMC) simulations rather than be chosen for any system. This latter aspect is particularly
molecular dynamics(MD) simulations. These techniques critical for the 38-atom Lennard-Jones cluster where the nar-
have been applied to a variety of sampling and optimizatiomow and deepest funnel is hard to reach even at high tem-
problems, and phase changes in clusters have often been cqreratures.
sidered as a benchmark to test these methdys Because of the inherent difficulties of molecular dynam-
The double-funnel energy landscape of the 38-atonics, MC approaches can be especially useful for dealing with
Lennard-JoneflJ) cluster has been investigated in detail by the problem of crossing high energy barriers. Monte Carlo
Doye, Miller, and Wale$?~*° who recently also estimated methods have been developed in previous Whtkin the
the interfunnel rate constants using master equatiomicrocanonical ensemble. In these approaches the microca-
dynamicst® This landscape is challenging for simulation be- nonical sampling is at fixed energy without any additional
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constraints. Such methods can be contrasted with isoener- 1
getic molecular dynamics where the total, linear and angular Q(N,V,E)= | SNJ S[H(r,p)—E]d3Nrd®Np, (D)
momenta are also conserved. These additional constraints N'h

must be considered even at zero angular momentafiTo whereh is Planck’s constant and whek¥(r,p) denotes the
differentiate microcanonical simulations, where only the en-;assical Hamiltonian function of the coordinateand mo-
ergy is fixed, from molecular dynamics simulations, wherémentap of the N particles. Knowing the microcanonical den-
additional constraints are imposed, we identify the former Gty of statesQ, one can calculate the canonical partition
be simulations in the microcanonical ensemble and identify,ction Q(N,V,T) by a Laplace transformatidf. The ki-

the latter simulations to be in the molecular dynamics enygtic part of the Hamiltoniai is quadratic in the momenta,
semble. The differences in the two ensembles can be particyy, 4 Eq.(1) can be partly integrated to gite?*

larly important when the angular momentum is large enough
to induce structuralcentrifuga) distortions?® Because dy- 2mm
namical properties are calculated using molecular dynamics Q(N'V*E):( h2
methods, in this work we find that a combination of Monte
Carlo and molecular dynamics methods are most convenient X[E—U(r)]3N?2=1g3Nr 2
for developing ergodic approaches to dynamics. . ) )

In this paper, we adapt the parallel tempering method td" E_q. (2), I is the Ga}mma functlo_rm Is the mass 9f each
both the microcanonical and molecular dynamics ensemble®article, U(r)=H—K is the potential energy an@ is the
The application of parallel tempering in the molecular dy-€aviside step functior)(x) =1 if x=0, 0 otherwise. Mi-

namics ensemble requires the incorporation of the conservz%ocanomgal average; of a coordinate-dependent variable
tion of the total linear and angular momenta into the prob- (r) can be expresse

3N/2

1
N!F(3N/2)f

O[E-U(N)]

abilities. In order to extract ergodic dynamical properties, we _ _ 3N/2—1 3N
combine Monte Carlo methods with molecular dynamics to(A)(N,V,E) = JOIE-U(NIE-U(r)] :A(r)d '
develop a hybrid ergodic MC/MD algorithm. The efficiency JO[E—=U(r)[E-U(r)]3N?d*r

of the simulation tools developed in this work is demon- ©)
strated by applications to the 38-atom Lennard-Jones clustethe microcanonical entropg can be defined bg(N,V,E)
which exhibits a solid—solid transition prior to me|t||]1 :!'6 :kB In Q(N,V’E) with kB the Boltzmann constant. The ther-

This transition to an equilibrium phase between truncatednodynamic temperatur&(N,V,E) is given by the thermo-
octahedral and icosahedral geometries makes this cluster @namic relation ¢S/JE)y,=1/T, and can be obtained

ideal candidate for investigating how the ergodic hypothesigrom a microcanonical averatfe
can influence the dynamical behavior of a complex system.

The contents of the remainder of this paper are as fol- 2 1
lows. In the next section, we recall the basic principle of T(N,V.E)= 3IN—2 ﬁ
Monte Carlo sampling in the microcanonical ensemble, and
we present the simple modifications needed to include paralFhis expression is slightly different from the kinetic tem-
lel tempering. We test microcanonical parallel temperingperature 2K)/3N, which is a consequence of our choice in
methods on the 38-atom Lennard-Jones cluster, and compaitge definition of the entropy. As discussed by Pearson and
the microcanonical results with those found in | using theco-workers’! it is also possible to define the entropy using
canonical ensemble. We focus on equilibrium properties, inthe phase space volume
cluding the caloric curve and the isomers distributions. In £
Sec. Il we review the characteristics of the molecular dy- CI)(N,V,E)zf Q(N,V,E")dE’. (5)
namics ensemble at fixed total linear and angular momenta 0

and fixed total energy. We extend the parallel temperingbefinitions of the temperature based ondiffer from the

M_onte Carlq method to the MD. ense_.\mble, and we Comb_mefemperature based @b to order 1N, and the two definitions
microcanonical parallel tempering with molecular dynamlcsag]ree only in the thermodynamic limit

to produce an ergodic MD method. We also apply these Monte Carlo simulations can be used to explore the mi-

methods to several dynamical properties ofgl..In particu- crocanonical ensemble by performing a random walk in con-

lar the diffusion constant and the largest Lyapunov eXponer.]hguration space. In the standard Metropolis scheme, a trial

We summarize our findings and discuss our results Thove from configuratiorry to configurationr, is accepted

4

Sec. IV. with the probability?
r)T(rp—r
acdry—r,)=min 1’—pEErn;TErn rO; , (6)
Il. PARALLEL TEMPERING MONTE CARLO Peto o
IN THE MICROCANONICAL ENSEMBLE whereT(rq—r,) is a trial probability. The acceptance prob-

ability expressed in Eq6) ensures detailed balance so that
the random walk visits points in configuration space propor-
tional to the equilibrium distributiopg(r) defined by

The fundamental quantity in the microcanonical en-
semble is the density of stat€s. For a system havindN
identical particles, volum¥ and total energ¥, () is defined
by pe(r)=¢{ "O[E-U(N][E-U(n)]*V> 1, )
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where { is the normalization. In practicel(rqo—r,) is a ' ' ' ' '
uniform distribution of points of widthA centered abouty, 8
andA is adjusted as a function of the energy so that not too
many trial moves are either accepted or rejected.

Implementation of microcanonical Monte Carlo is as
easy as its canonical version. Because Monte Carlo methods
are based on random walks in configuration space, in prin-
ciple the system can cross energy barriers higher than the
available energy. However, in difficult cases like;4 Jlarge 6 1
atomic displacements having poor acceptance ratios are
needed to reach ergodicity.

Parallel tempering—2® has proved to be an important
approach to ensure ergodicity in canonical Monte Carlo
simulations, and parallel tempering can be easily adapted to
the microcanonical ensemble by replacing the Boltzmann
factors in the acceptance probability by the microcanonical
weight pg(r). In the parallel tempering scheme, several mi-
crocanonical MC simulations are performed simultaneously
at different total energie$E;}. With some predetermined 8t ]
probability, two simulations at energi&s andE; attempt to . , . , ,
exchange their current configurations, respectivelyand -180 170 —160 -150 —140 -130 —120
ri, and this exchange is accepted with probability Ef

-
T
1

(C,)NK,

FIG. 1. The heat capacity as a function of energy calculated in the micro-
) ( PEi(rj)PEj(ri)> canonical ensemble. The melting peak occurs at the same calculated tem-
mn I——————]. perature in the microcanonical ensemble as found in the canonical ensemble,
pEi(ri)pEj(rj) but the height of the microcanonical peak is significantly higher than the
canonical peakKcompare with Fig. 1 in)l Both the microcanonical and

The acceptance ratio is analogous to the canonical expreganonical heat capacities display a region of_change in slopg at the transition
sion given in I. In microcanonical simulations the potential ?:;‘;‘;Zr;tﬂt‘\zgr:g:gg?dogéi?eigr?g ;”t‘:]éh;g;ons_ahedral basin. The error bars
energies must be smaller than ning;); otherwise the
move is rejected. Parallel tempering microcanonical MC
works in the same way as in standard canonical MC. As wittpacity calculated in this fashion and shown in Fig. 1, is quali-
canonical parallel tempering MC, the gaps between adjaceriatively the same as the canonical heat capdsiée ). The
total energies must be chosen to be small enough so thatelting peak in the microcanonical heat capacity occurs at
exchanges between the corresponding trajectories are aitie same calcuated temperature as the temperature of the
cepted with a reasonable probability. melting peak in the canonical heat capacity, and there are
By using a histogram reweighting technicffdt is pos-  slope change regions at temperatures that correspond to equi-
sible to extract from the MC simulations the density of statedibrium between the icosahedral basin and the truncated oc-
Q, and then all the thermodynamic quantities in both thetahedral global minimum structure. The present simulations
microcanonical and the canonical ensembles. The proceduege also used to obtain structural insight about the cluster as
is similar to that described in Ref. 28, and relies on the cala function of total energy. We have calculated the order pa-
culation of the distributior®(U,E) of potential energyJ at  rameterQ, as defined in | as a function of temperature, and
the total energyE. P is fitted to the microcanonical form compared the classification into the three categories of iso-
P(U,E)=Qc(U)(E-U)3N2"10O(E), whereQ stands for mers (truncated octahedral, icosahedral or liquidlikesing
the configurational density of states, aQidE) is extracted the energy criterion also outlined in I.
by convolution ofQ(U) and E—U)3V?2"1, In Fig. 2 we show the caloric curv&(E) determined
We have tested the parallel tempering Monte Carlo alfrom our parallel tempering microcanonical MC simulations.
gorithm in the microcanonical ensemble on the 38-atoniWe also present the canonical curve for comparison. The
Lennard-Jones cluster previously investigated. Forty differmelting transition nearT~0.166/kg is reflected in the
ent total energies ranging from172.473¢ to —124¢ have change in slope of the temperature as a function of the en-
been used, and the same simulation conditions have beamngy. The microcanonical curve does not display a van der
chosen as in I. In addition to a constraining sphere of radiu$Vaals loop, and remains very close to the canonical curve.
2.25r to prevent evaporation, exchanges have been affhe average value of the order paramétgy) is displayed
tempted every 10 passes, with the same method for choosing the lower panel of Fig. 2 as a function of the total energy.
exchanging trajectories as described in the previous articleds has been discussed in | for the canonical simulation, the
The simulations are begun with random configurations of therder parameter begins to drop at energies where there is the
cluster geometry, and consist of K20 points accumu- onset of isomerization transitions to the icosahedral basin
lated following equilibration moves consisting of 830°  (nearE=—160Q), and the order parameter reaches its low-
Metropolis points (no exchangesfollowed by 190<10°  est value at the melting transition. The isomer distributions
points using parallel tempering. The microcanonical heat cahave been evaluated either using the paranf@teor using
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FIG. 2. (Upper panel The microcanonical caloric curve for 4gJobtained Ef

from parallel tempering Monte Carlo simulations. The temperature is plotted

as a function of the total energy, both expressed in reduced LJ units. ThEIG. 3. (Upper paneglThe probability distribution of the order parame@y
circles are the direct results of microcanonical simulations. The solid line is2S @ function of the total energfl.ower panel The probability distribution

a fit obtained by the histogram reweighting technique. Also plotted as &f the energy of the quenched structure as a function of the total energy. For
dotted line is the caloric curve in the canonical ensem@lewer pane) both quantities, FCC labels the truncated octahedron, IC labels structures

Average value of the order parame®j as a function of the total energy. from the icosahedral basin, and LIQ labels structures from the liquid region.
For both panels, the error bars are smaller than the size of the symbols. !N the lower panel, the error bars are smaller than the size of the symbols. In
the upper panel, the error bars represent two standard deviations of the

mean.

the energy criteriorisee the discussion in paper The re-
sults have been plotted in Fig. 3 as a function of the total
energy. The behavior of the isomer distributions as a funcheen made to ensure ergodicity. To contrast these past stud-
tion of energy is similar to the canonical distributions as ajes with the molecular dynamics technique discussed in the
function of temperature, and the cluster exhibits equilibriumnext section of this paper, we defismndard molecular dy-
between truncated octahedral and icosahedral geometries fiamicsto represent the usual molecular dynamics method
the energy range- 160e <E=< —15Qe, prior to the solidlike  where no special procedure is introduced to ensure ergodic-
to liquidlike phase change. As in the canonical case, thety, Simulations of Ldg using standard molecular dynamics
icosahedral distribution is a symmetric function of the en-invariably lead to a caloric curve with a clear van der Waals
ergy when the energy criterion is used rather than the defipop and a melting temperature higher than that inferred
nition based orQ,. This difference reflects the differences from Fig. 22° From the results of Ref. 29, the cluster is
between the two definitions of icosahedral and liquid basinsgrapped in the octahedral basin, and the system does reflect
The oscillatory structure observed at the pealPgf for the  the true dynamical coexistence state between the truncated
icosahedral distribution in the upper panel of Fig. 3 isoctahedron and the icosahedral basin. This is the common
smaller than the calculated errdte/o standard deviations of situation encountered in MD simulations of they4 dystem;
the mean are shownWhether the observed structure would the cluster chooses either to remain trapped in the octahedral
persist for a longer simulation is not known to us. Becauséasin, or to escape and coexist between the icosahedral sol-
the definition that assigns configurations to the icosahedratllike and liquidlike forms. Because the system is unable to
basin is arbitrary, we have chosen not to investigate thiseturn from the octahedral basin, the microcanonical tem-
structure further. perature decreases. In the usual case, van der Waals loops
It is useful to contrast the current results with previousarise when there are large energy gaps between the lowest-
constant energy studies of {;J Previous simulations have energy isomer’ In the specific case of Lg, it appears that
used molecular dynamics methods where no attempt habe presence of extréicosahedral isomers only slightly
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higherin energy than the octahedral structure eliminates thiktions can sample the MD ensemble by performing a ran-
loop in the ergodic microcanonical caloric curve. dom walk in configuration space. The acceptance probability
In order to extract dynamical quantities, the Monte Carlofrom configurationr, to configurationr,, is
method we have presented must be modified to sample the (r)T(r i)
MD ensemble. The modification is the subject of the next  acqr,—r,)=min 1 PELYn) HnTo (11)
. 0 n ’
section. PeL(ro)T(ro—ry)

in the Metropolis scheme. The microcanonical weightr)
Il. ERGODIC MOLECULAR DYNAMICS is now replaced by the MD weightgz | given by

The molecular dynamics ensemble differs from the mi-
crocanonical ensemble in that two quantities are conserve@iE,L(r)Ifl\/ﬁ@[E—UL(f)][E—UL(F)]SN/}“, (12)
in addition to the total energk, volumeV, and number of €
particlesN. These two quantities are the total linear momen-where ¢ is a normalization. The expression for the accep-
tum P and total angular momenturn. If their values are tance probability is similar to Eq6), and a practical imple-
prescribed, the density of states remains the fundamentahentation of Monte Carlo in the MD ensemble is made in

quantity of interest, and is now defined by the same way as in the true microcanonical ensemble, given
N the vectorL. Parallel tempering can be also easily combined
Q(N,V,E,P,L)= f 5[H(r,p)—E]5( pP— E Di) with the MC simulations. The acceptance probability of ex-
N!h3N i=1 changing the configurations and r; initially at the total
N energiesE; andE;, respectively, is then
X 5 L—gl rixp; | d®Nrd3Np. (8) . (1([Ei—uL(rj)][Ej—uL(ri)] SN/2-4

. _ _ _ [Ei—UL(r)I[E;—UL(r)]
As is the case in the microcanonical enseniske Eq(2)], _ o »
for atomic systems the momentum integrations in@ycan  Provided that all quantities inside brackets are positote-
be evaluated explicithj®2° Because the thermodynamic €rwise the move is rejectedit is remarkable that the geo-
properties are not affected by the translational motion of thénetrical weights have canceled in this expression.

center of mass, we can assume tRat0. We then obtaif? The Monte Carlo method we have just described allows
aNj2-3 sampling of configuration space rigorously equivalent to the

27m 1 sampling we would obtain using molecular dynamics, but

Q(N,V,E,P=0L)= 2 NIT(3N/2—3) with the additional possibility of crossing the energy barriers

higher than the available energy. The method can be used in
its present form to extract equilibrium properties only depen-

X f O[E-UL(N][E-U ()34 dent on the energy or geometry, as has been illustrated in the

previous section. To compute dynamical quantities, the

d3Nr method can also provide a database of configurations repre-
X \/ﬁ 9 sentative of a given total energy. Instead of performing a few
e

very long MD simulations that are in principle unable to
wherel is the inertia matrix and, (r)=U(r) + Lt1~iL/2is reach other parts of the energy surface separated by barriers
the effective rovibrational energy. This effective potentialhigher than the available energy, we choose to perform a
energy includes the kinetic energy contribution of the rotat-Statistical number of short simulations starting from configu-
ing cluster considered as a rigid botly?? The landscape of rations obtained by parallel tempering Monte Carlo in the
rotating clusters has been investigated by Miller and WaleMD ensemble with same total energy and angular momen-
in order to study cluster evaporatihAverages in the MD  tum. By construction, if the MC method is correctly ergodic,

ensemble are now expressed as then the hybrid MD method we have suggested can be ex-
pected to yield ergodic dynamical observables.
3N . . . .
3Nf2—4 r We now illustrate this ergodic molecular dynamics
JO[E-UL(MI[E-UL(1] A(r) \/@ method on the Ls} problem. Two essentially dynamical pa-
(A)= . (10 rameters have been calculated. The first is the self diffusion
a3Ny constanD, obtained from the derivative of the average mean
[O[E—U_(r)][E- UL(r)]3N’2*4\/? square atomic displacement
etl
1d
As in the microcanonical ensemble, we define the entropy in D= = —([r(t)— r(0)]2), (13

the molecular dynamics ensemble 8y kg In Q. The differ- 6 dt

ences between the microcanonical and molecular dynamiashere the average is taken over all particles of the system
ensembles are the exponeni/2 which is reduced by 3 and over all short MD simulations. The other parameter is
owing to the geometrical constraints, the potential energyhe largest Lyapunov exponeit that measures the expo-

which now includes the contribution of the centrifugal en-nential rate of divergence of the distance between two ini-
ergy, and the weight Ydetl which is a consequence of the tially close trajectories in the phase space. If we write the
conservation of the angular momentum. Monte Carlo simuequation describing the Hamiltonian dynamics in condensed
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form as (t)=F (), whereF is a nonlinear function and 10 - - - - :
={r,p} the phase space point, then a small perturbatipn
evolves according to the simple equatiodsy/dt o—o Standard
= (9F/d¢) 8. The largest Lyapunov exponexts obtained 102 | ** Ergodic i
from the time evolution of the vectadi,
A=lim  lim — Inw. (14) o 10* | ;
o spoyot 1690 S

In Eq. (14), ||-|| is a metric on the phase space. In principle,
any metric can be used, and we choose the Euclidian metric  10° |
including both the momenta and the coordinates. The nu-
merical procedur¥ involves a periodic renormalization of

the vectorsy to prevent its exponential divergence. The suc- 10°
cessive lengths are accumulated and contribute to the aver 25 . . . . .
age value of\.

In |, the clusters have been defined using a hard sphere o—o Standard

constraining potential. Because the angular momentum is not 2 o= Ergodic T
conserved after reflection from such hard wall boundaries, in

the molecular dynamics simulations we have chosen a soft 15
repulsive spherical wall . defined with respect to the center

of mass of the cluster for each particle by <
1 L -
0, r<Rg
Ug(r)= 15

(1 k(r—R.)*4, r=R.. (19 o5
In this equation, the atomic distancesare measured with '
respect to the cluster center of mass. The simulations have
been performed setting the angular momentum to zero for 0,80 170 160 150 —140 —130  —120
simplicity. We stress that even in this caséth L=0), the Ek

weight 1A/detl must be included in the Monte Carlo prob- _ o
abilities so that we effectively sample the MD ensemble. Thé:IG' 4. Two dynamical parameters calculated foggluking either standard
molecular dynamics starting from the lowest-energy structenepty sym-

actual thermodynamic behavior in the MD ensemble at zergog or the hybrid ergodic MD/MC methodiull symbols, as a function of
angular momentum is nevertheless nearly identical to thene total energy. The results are expressed in Lennard-Jones timequnits
microcanonical behavior. (Upper panel Diffusion constantD; (lower panel largest Lyapunov expo-
The application to the Ly cluster has been made by nentA. For both panels, the error bars are smaller than the size of the
performing 18° MC steps following 10 equilibration steps symbols.
in a parallel tempering simulation in the MD ensemble. The
same 40 total energies have been chosen as in the previous
section, and 10configurations have been stored every 10
steps for each simulation. Short molecular dynamics runs adibrium between truncated octahedral and icosahedral geom-
10* time steps following 19 equilibration steps have been etries occurs. The thermodynamic temperature, not plotted
performed for each of these configurations, with the saméere, has the same variations as the caloric curve of Fig. 2
total energy as the corresponding MC trajectory of origin,when calculated with ergodic MD. Standard molecular dy-
and with zero total linear and angular momenta as well. Tha@amics predicts a van der Waals loop centeredTat
parameters used for the constraining wall are respectively-0.18&/kg. For standard MD, the cluster is trapped in the
R.=2.25r and k=100, for both the MC and MD runs. A icosahedral basin and is, in practice, unable to reach the oc-
simple Verlet algorithm has been used to propagate the MBahedral basin. Only the equilibrium between the icosahedral
trajectory with the time stept=0.01 reduced LJ units. The basin and liquidlike structures occurs. As can be seen from
propagation of the tangent trajectory to calculate thethe upper panel of Fig. 4, this change in curvature of the
Lyapunov exponent has been determined with a fourth ordelemperature is also present for the diffusion constant, which
Runge—Kutta scheme. The final values»fand A are an  exhibits strong variations at the energy where the octahedral
average over the 2OMD simulations. The variations dd  structure vanishes when standard MD is used. In contrast, the
and\ with total energy are depicted in Fig. 4. In both casesyariations in ergodic MD are smooth.
two curves have been plotted, calculated either from standard The melting temperature implied by the largest
molecular dynamics(with 10° time steps following 10  Lyapunov exponent is also higher in standard MD than in
equilibration steps, and starting initially from the lowest- ergodic MD, even though the variations of the Lyapunov
energy structune or from our hybrid ergodic molecular dy- exponent are continuous in both MD scherfiekdeed, us-
namics method. For both quantities, the two MD schemeéng ergodic molecular dynamics we observe a shift of the
clearly yield distinct values in the energy range where equicurve obtained by standard MD toward the lower energies.
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As shown by Hinde, Berry, and Walé%;* the Lyapunov figurations. In the case of kghaving only three main re-
exponent and the Kolmogorov entropy are quantities essefiions on the energy surface, one possibility is to compute a
tially dependent on the local properties of the energy landgynamical property as the average value over three different
scapes. One contribution comes from the negative curvatur§mulations starting either from the truncated octahedral ge-
of the landscape, and another contribution is the quctuatiorémetry, one icosahedral geometry or a low-lying liquid ge-
of positive curvaturé® Both contributions are affected by ometry, all carried out at the same total energy. However, as
the cluster being trapped either inside the truncated octahgge have seen in Fig. 3, it is not obvious how to choose
dral_basin or ins?de the i_cosahedral bas_in. In this Igtter case iBroperIy the weights of each basin in this average because of
particular, the different isomers belonging to the icosahedrag gifficulty in distinguishing between icosahedral and lig-
basin are connected through regions of negative CUrVaturgiq siryctures in many cases. For this reason, we believe that
while only one ISomer defines the octa_hedral funnel. the first parallel tempering MC step of the hybrid ergodic
Because.ergodlc mqleculgr dynam|c§ allows the Clu.Stanethod is essential in the vicinity of phase changes to cap-
to rl:])e four_1d II'E ?Oth basins pno;f to melting, the dﬁ:nam'calture many starting configurations that are used subsequently
\?v?tha;/ézr ;’:t It: tyhéo dbﬁ very Idlb ehrenf(and fTr? re lc ?Otbc in standard molecular dynamics. The enhanced sampling of-
' P yhamical benavior of the ciuster conw, o by parallel tempering can also act as a statistical rep-
fined to the octahedral funnel. This difference is premse'yresentation of the energy surface at a given total energy, and
what we observe on the lower panel of Fig. 4. . . . . "
the long time dynamics may be further investigated by using
V. CONCLUSION master equations after searching the saddle pb'?r‘l& _
We have calculated two dynamical quantities with the
In this paper, we have explored the parallel temperingyresent hybrid MD/MC method, the diffusion constant and
method in simulations in the microcanonical ensemble. Thene largest Lyapunov exponent in the 38-atom Lennard-Jones
implementation of the parallel tempering algorithm in this ¢|yster. The variations of both quantities with the total en-
ensemble is straightforward, the Boltzmann factorgrgy are significantly different when evaluated with standard
exp(—BQL‘JN)/ZPlelng replaced by the microcanonical weight onergodis molecular dynamics or with our hybrid ergodic
(E-U) - Application to the Lds cluster has shown the  \ip method. These results emphasize the different contribu-

thermodynamic behavior in the microcanonical ensemble t@,,< of the two funnels of the energy landscape to the aver-
be similar to the behavior in the canonical ensemble. Th%ge value of the parameters estimated

solid—liquid phase change is preceded by a solid—solid phase The algorithms developed in this investigation allow the

change where the cluster is in equilibrium between truncategalculation of thermodynamic, structural, or dynamical prop-
octahedral and icosahedral geometries. This phase equilil% ' '

. ) ) . . . rties of systems such aszgdhat can be expressed as phase
rium is well reproduced in the simulations owing to the y % P P

. : . space or time averages. Parallel tempering works using a
power of parallel tempering. The calculated microcanonical .. " .
. . . criterion based on the potential energy but not on the geom-
caloric curve, which does not display a van der Waals loop

is consistent with the single peaked heat capacity observe%lry' Consequently permutat_lonal ISOMETS can be introduced
in 116 in the course of the simulation. Quantities such as fluctua-

We have extended the parallel tempering microcanonicaﬁions of configuration-dependent properties are much more
Monte Carlo algorithm to sample the molecular dynamicsdifficult to extract than actual averages. For instance, the

ensemble at constant total energy, linear momentum, angndémann indexs, which measures the root mean square

angular momentum. Combined with standard molecular dy_bond length fluctuation, is often considered to be a reliable

namics, this method circumvents the lack of connectivity beParameter for detecting melting in atomic and molecular sys-

tween regions of the potential energy surface. The methoff™MS- This quantity cannot be properly estimated with the
can ensure ergodicity in microcanonical simulations, whichrgodic MD scheme, and the same difficulty persists for
is much more difficult to achieve than in the canonical en-Other methods based on the use of different trajectories.
semble. Ironically, this ergodic MD method can be viewed as ~ Although the idea of combining Monte Carlo sampling
the counterpart of the techniques developed by Chekmare¥ith standard molecular dynamics can be applied to other
and Krivov to study the dynamics of systems confined totechniques such as jump-walking, we believe that parallel
only one catchment basin in the energy surfice. tempering is the key to the success in the case gf.LAs in

We have performed a statistical number of short molecuthe canonical version, the equilibrium phase between trun-
lar dynamics runs starting from configurations stored pericated octahedral and icosahedral structures is correctly repro-
odically in parallel tempering Monte Carlo simulations. duced in an energy range preceding the melting region, be-
These simulations sample the MD ensemble at the same toté®use in this range configurations may be accessed either
energies, linear and angular momenta as the standard m@iom higher energy trajectories containing mainly icosahe-
lecular dynamics runs. In fact, the length of the MD runs isdral geometries, or from lower energy trajectories acting as a
mainly dictated by the large number of starting configura-reservoir for the octahedral geometry. As noticed by Falcioni
tions. One may think of reducing drastically this number, toand Deent® the parallel tempering algorithm is especially
allow for the calculation of parameters varying on longeruseful at low temperatures, or in our case, at low energy. The
time scales. Unfortunately, if the energy landscape is notong relaxation times inherent in systems like clusters, pro-
known in advance, then it is hard to guess how important aréeins, critical or glassy liquids, are a serious difficulty for
the contributions of the basins not selected as starting corstandard simulation methods. We expect the present ergodic
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