Prevention of Surgical-Site Infections

Aisling R. Caffrey
University of Rhode Island, aisling_caffrey@uri.edu

Kerry L. LaPlante PharmD
University of Rhode Island, kerrylaplante@uri.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/php_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution
Available at: http://dx.doi.org/10.1056/NEJMc1002218

This Article is brought to you for free and open access by the Pharmacy Practice at DigitalCommons@URI. It has been accepted for inclusion in Pharmacy Practice Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Prevention of Surgical-Site Infections

TO THE EDITOR: I am concerned about the generalizability of the findings of Bode et al. (Jan. 7 issue) regarding the identification of nasal carriers of *Staphylococcus aureus* and the subsequent use of mupirocin nasal ointment and chlorhexidine soap. First, it is unclear how the researchers identified patients who were expected to be hospitalized for 4 or more days, since no specific protocol is provided. Second, key surgical data are lacking, despite the preponderance of surgical patients (88%). No data are provided on the appropriateness of antimicrobial prophylaxis, in particular the timing of administration; 84 of 828 surgical patients (10%) received no prophylaxis. Similarly, no data are provided to explain the high rate of infection: among surgical patients, *S. aureus* infection developed in 3.6% of those receiving prophylaxis and 8.4% of those receiving placebo; 11 to 12% of patients had non–*S. aureus* infection. Would the intervention be as effective in a hospital with lower baseline rates of infection? Finally, it is unclear whether such a screening protocol would work in settings with a high rate of methicillin-resistant *S. aureus* infection, as is the case in many community hospitals.

Deverick J. Anderson, M.D., M.P.H.
Duke University Medical Center
Durham, NC
dja@duke.edu

No potential conflict of interest relevant to this letter was reported.


TO THE EDITOR: The study by Bode et al. highlights the value of mupirocin–chlorhexidine prophylaxis in preventing nosocomial *S. aureus* infection. Although resistance rates are low in the Netherlands, where Bode et al. conducted their study, our experience at the Providence Veterans Affairs Medical Center has shown that increased use of mupirocin can result in increased rates of resistance in methicillin-resistant *S. aureus*.

Our targeted presurgical surveillance and decolonization program for methicillin-resistant *S. aureus* with mupirocin–chlorhexidine started in 2006, followed by facility-wide surveillance and provider-initiated decolonization in 2007. Using Pearson correlation coefficients, we have been evaluating mupirocin resistance in *S. aureus* since June 2004 and assessing the effect of facility-level use of mupirocin. In 980 isolates of methicillin-resistant *S. aureus*, we found that an increase in the monthly use of mupirocin had a significant association with subsequent increases in low-level resistance after 1 month (P=0.05) and in high-level resistance after 2 months (P=0.03). Mupiro-
cillin resistance in methicillin-susceptible *S. aureus* was uncommon during the 4.5-year period (9 cases of resistance in 342 isolates), and the use of mupirocin was not correlated with lagged resistance in the subsequent 12 months. These data suggest an ecologic association between mupirocin use and resistance in methicillin-resistant *S. aureus*. These findings have implications for facilities instituting decolonization programs, since the increased use of mupirocin may reduce the drug’s effectiveness.

Kerry L. LaPlante, Pharm.D.
University of Rhode Island
Kingston, RI
kerrytedesco@uri.edu

Aisling R. Caffrey, M.S., Ph.D.
Veterans Affairs Medical Center
Providence, RI

Kalpana Gupta, M.D., M.P.H.
Massachusetts Veterans Epidemiology Research Information Center
Boston, MA

No potential conflict of interest relevant to this letter was reported.


TO THE EDITOR: We do not believe that preoperative *S. aureus* screening and decolonization provides only a marginal benefit or should be reserved for the highest-risk surgical patients, as suggested by Wenzel in the editorial accompanying the article by Bode et al. *S. aureus*, a virulent pathogen, can cause a substantial number of surgical-site infections and deaths across a wide spectrum of patients.

A total of 91 patients with *S. aureus* colonization in three studies underwent preoperative screening and decolonization; no *S. aureus* infections developed in these patients, as compared with 32 of 533 patients (6%) with such colonization who received chlorhexidine antisepsis but not decolonization (P = 0.009). Screening also facilitates better perioperative prophylaxis (e.g., for methicillin-resistant *S. aureus*). Without screening, appropriate switching from cefazolin to vancomycin often does not happen. In one cited study, surgeons routinely switched antibiotics, and methicillin-susceptible *S. aureus* caused the only surgical-site infection in a patient who did not receive mupirocin. In another study, surgeons did not switch antibiotics, and methicillin-resistant *S. aureus* was rare and prophylaxis usually appropriate. In a third study, which was focused on patients with methicillin-resistant *S. aureus*, those who underwent decolonization also received appropriate perioperative prophylaxis, whereas the other patients who were colonized with methicillin-resistant *S. aureus* usually did not receive a glycopeptide, a factor that may have influenced the development of 29 surgical-site infections with the methicillin-resistant strain.

One advantage of screening is that colonized patients can be isolated to prevent spread. More than 30 studies have shown that active detection and isolation were effective at controlling methicillin-resistant *S. aureus* infections among surgical patients, and 12 studies of cost-effectiveness reported savings with such prophylaxis.

Barry M. Farr, M.D.
University of Virginia Health System
Charlottesville, VA

William R. Jarvis, M.D.
Jarvis and Jason Associates
Hilton Head Island, SC

Dr. Jarvis reports having received consulting fees from Becton Dickinson, Johnson & Johnson, Bard, Kimberly-Clark, and 3M. No other potential conflict of interest relevant to this letter was reported.


TO THE EDITOR: In their study comparing chlorhexidine–alcohol with povidone–iodine for surgical-site antisepsis, Darouiche et al. (Jan. 7 issue)