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Hamilton’s Principal Function [mln96]

We seek a canonical transformation H(q, p, t) → K(Q,P ) ≡ 0.
Here q stands for q1, . . . , qn etc.

Canonical equations:

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

→ Q̇i =
∂K

∂Pi

= 0, Ṗi = − ∂K

∂Qi

= 0.

Hamilton’s principal function: S(q, P, t).

• S is the F2-type generating function of this canonical transformation.

• S depends on n + 1 variables q1, . . . , qn, t and n parameters P1, . . . , Pn.

• pj =
∂S

∂qj

, Qj =
∂S

∂Pj

, K −H =
∂S

∂t
.

Hamilton-Jacobi equation: H

(
q1, . . . , qn;

∂S

∂qn

, . . . ,
∂S

∂qn

; t

)
+

∂S

∂t
= 0.

• First-order partial differential equation for S(q, P, t).

• Integration constants P1, . . . , Pn plus additive constant.

• For given solution: pj(q, P, t) =
∂S

∂qj

, Qj(p, P, t) =
∂S

∂Pj

= const.

• ⇒ qj(Q,P, t), pj(Q,P, t) (transformation relations).

• The constants Qj, Pj are functions of the initial values q
(0)
j , p

(0)
j .

Physical significance of Hamilton’s principal function:

dS

dt
=

∑
j

∂S

∂qj

q̇j +
∂S

∂t
=

∑
j

pj q̇j −H = L.



Hamilton’s Characteristic Function [mln97]

Two distinct ways of solving the Hamilton-Jacobi equation become available
when the Hamiltonian does not explicitly depend on time.

If H(q, p) = E = const. then
∂S

∂t
= −E = const.

Set S(q, P, t) = W (q, P )− Et.

Hamilton’s characteristic function: W (q1, . . . , qn; P1, . . . , Pn).

Method #1:

• Solve the Hamilton-Jacobi equation H

(
q,

∂S

∂q

)
+

∂S

∂t
= 0.

• Proceed as in [mln96] but use S(q, P, t) = W (q, P )− Et.

• One of the integration constants is reserved: P1 = E.

Method #2:

• Solve the Hamilton-Jacobi equation H

(
q,

∂W

∂q

)
− E = 0.

• W (q, P ) is a F2-type generating function of a canonical transformation
to action-angle coordinates with P1 = K(P ) = E.

• Canonical Equations: Q̇j =
∂K

∂Pj

= δj1, Ṗj = − ∂K

∂Qj

= 0.

• Solution: Pj = const., Qj = tδj1 + Q
(0)
j .

• Transformation to original canonical coordinates:

Qj =
∂

∂Pj

W (q, P ), pj =
∂

∂qj

W (q, P ).

⇒ qj = qj

(
Q(0), P, t

)
, pj = pj

(
Q(0), P, t

)
.



[mex97] Hamilton-Jacobi equation for the harmonic oscillator

Determine the time evolution of the canonical coordinates q(t), p(t) for the harmonic oscillator,
H(q, p) = p2/2m+ 1

2mω2
0q

2, by solving the Hamilton-Jacobi equation along two different avenues.
(a) Use the ansatz S(q, E, t) = W (q, E)−Et for Hamilton’s principal function. Solve the Hamilton-
Jacobi equation for S(q, E, t). Use Q = ∂S/∂E to derive q(t) and ∂S/∂q to derive p(t).
(b) Solve the Hamilton-Jacobi equation for Hamilton’s principal function W (q, E). Use Q =
∂W/∂E to derive q(E,Q) and ∂W/∂q to derive p(E,Q). Substitute these results into H(q, p) to
obtain the transformed Hamiltonian K(E) = E. Solve the canonical equations for the transformed
canonical coordinates Q,E and substitute them into q(E,Q) and p(E,Q) to obtain q(t), p(t).

Solution:



[mex98] Hamilton’s principal function for central force problem

Consider the one-body central-force problem specified by the Hamiltonian

H(r, p, `) =
1

2m

(
p2 +

`2

r2

)
+ V (r),

where p ≡ pr and ` ≡ pϑ are the canonical momenta conjugate to r and ϑ, respectively. Solve the
Hamilton-Jacobi equation for Hamilton’s principal function. (a) Use the ansatz S(r, ϑ, `, E, t) =
W1(r, `, E)+`ϑ−Et for the principal function and determine W1(r, `, E). (b) Infer from ∂S/∂E =
R = const the time evolution of the radial motion r(t, E, `, r0). (c) Infer from ∂S/∂` = Θ = const
the orbital relation ϑ(r, E, `, r0, ϑ0), which, in combination with r(t, E, `, r0), determines the time
evolution of the angular motion.

Solution:



[mex99] Hamilton’s characteristic function for central force problem

Consider the one-body central-force problem specified by the Hamiltonian

H(r, p, `) =
1

2m

(
p2 +

`2

r2

)
+ V (r),

where p ≡ pr and ` ≡ pϑ are the canonical momenta conjugate to r and ϑ, respectively. Solve the
Hamilton-Jacobi equation for Hamilton’s characteristic function. (a) Use the ansatz W (r, ϑ, `, E) =
W1(r, `, E) + `ϑ for the characteristic function and determine W1(r, `, E). (b) The characteristic
function W (r, ϑ, `, E) is the generating function of a canonical transformation (r, ϑ) → (R,Θ),
which transforms the Hamiltonian as follows: H(r, p, `) = K(E, `) = E. Solve the canonical
equations for R,Θ. (c) Infer from ∂W/∂E = R = const the time evolution of the radial motion
r(t, E, `, r0). (c) Infer from ∂W/∂` = Θ = const the orbital relation ϑ(r, E, `, r0, ϑ0), which, in
combination with r(t, E, `, r0), determines the time evolution of the angular motion.

Solution:



[mex201] Particle in time-dependent field

Consider the dynamical system described by the time-dependent Hamiltonian

H(q, p, t) =
p2

2m
−mAtq,

where A is a constant. (a) Find Hamilton’s principal function S(q, P, t) as the solution of the
Hamilton-Jacobi equation. (b) Derive the solutions q(t), p(t) from S(q, P, t) for initial conditions
q(0) = 0, p(0) = mv0.

Solution:



[mex202] Hamilton-Jacobi theory for projectile motion

Consider a particle of mass m moving in a uniform vertical gravitational field:

H =
1

2m
(p2x + p2y) + mgy.

(a) Find Hamilton’s principal function S(x, y, P1, P2, t) as the solution of the Hamilton-Jacobi
equation. (b) Derive the solutions x(t), y(t) from S(x, y, P1, P2, t) for initial conditions x(0) =
y(0) = 0, ẋ(0) = ẋ0, ẏ(0) = ẏ0.

Solution:
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