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ARTICLES

Stationary tempering and the complex quadrature problem
Dubravko Sabo and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freemana)

Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

~Received 24 September 2001; accepted 4 December 2001!

In the present paper we describe a stochastic quadrature method that is designed for the evaluation
of generalized, complex averages. Motivated by recent advances in sparse sampling techniques, this
method is based on a combination of parallel tempering and stationary phase filtering methods.
Numerical applications of the resulting ‘‘stationary tempering’’ approach are presented. We also
examine inherent structure decomposition from a probabilistic clustering perspective. ©2002
American Institute of Physics.@DOI: 10.1063/1.1446431#

I. INTRODUCTION

Since their formal introduction approximately five de-
cades ago,1,2 Monte Carlo methods have emerged as unusu-
ally robust and powerful tools for the study many-
dimensional problems.3 These methods have two features
that are of particular note. First, because they tend to treat all
problems on a common footing, Monte Carlo methods effec-
tively ‘‘uncouple’’ the physical and computational complex-
ity of a given application. Second, as observed from the
beginning,1 these methods have an inherent ‘‘replica’’ char-
acter that makes them unusually well-suited for implementa-
tion in parallel computing environments.

In the present developments we are concerned princi-
pally with Monte Carlo approaches as they relate to the
evaluation of general statistical averages. To focus the dis-
cussion more tightly, we wish to consider the problem of
constructing moment generating functions of the form

f~h!5
*e2S~x!ei h•xdx

*e2S~x!dx
. ~1.1!

As will be more fully discussed in Sec. II, the construction of
moment generating functions can be considered the proto-
typical averaging problem. In Eq.~1.1! x represents the natu-
ral variables of an ‘‘action,’’S(x). We assume for the mo-
ment that this action is real-valued and known and that the
associated probability distribution,e2S(x), is integrable. In
any particular application, the identification ofS(x) is an
important, but separate task.

Stochastic quadrature methods estimate averages such as
those in Eq.~1.1! by discrete sums of the form2–5

fN~h!5
1

N (
n51

N

ei h•xn. ~1.2!

Provided that the configurations appearing in the sum,$xn%,
are appropriately sampled from the probability distribution,
e2S(x), fN(h) converges tof(h) as N→`. To see more

clearly the nature of the sampling problem that is involved, it
is useful to recast Eq.~1.1! in inherent structure form.6,7 As
discussed in Appendix A, Eq.~1.1! can be written as

f~h!5(aGa^eih•x&a , ~1.3!

where the summation is over the inherent structures of the
probability distribution,e2S(x). It is important to note that
the relevantnumber of inherent structures in the summation
can be vastly smaller than thetotal number of such
structures.8 In Eq. ~1.3! the bracketed quantity denotes a lo-
cal, inherent structure average whileGa is the corresponding
statistical weight@cf. Eqs.~A4! and ~A5!, respectively#.

Equation ~1.3! emphasizes the two distinct computa-
tional problems we face when constructing a stochastic
quadrature average. These problems are:

~i! performing a local statistical average within a speci-
fied inherent structure; and

~ii ! including properly the contributions of all relevant in-
herent structures.

While typically not treated as separate, identifiable tasks,
these steps are implicitly present in the evaluation of any
generalized average.

Performing a local average over a well-defined probabil-
ity distribution is the quintessential Monte Carlo problem
and is soluble with well-established methods.2,3,5Assuring a
proper accounting of the contributions of all relevant inher-
ent structures, however, is a potentially more involved issue
whose complexity depends sensitively on the details of the
probability distribution in question. When the inherent struc-
tures of the distribution are not simply connected~i.e., the
distribution is ‘‘sparse’’!, for example, specialized techniques
are generally required in order to achieve a proper sampling.4

The technical difficulties of assuring a proper sampling not-
withstanding, the general methodology for constructing av-
erages of the type in Eq.~1.1! is well-developed and numeri-
cally robust whenS(x) is a real-valued function.

Our ability to treat generalized averages such as those in
Eq. ~1.1! drops significantly whenS(x) becomes complex.a!Electronic mail: freeman@chm.uri.edu
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This drop is understandable since a key element in the de-
velopment of general numerical tools for treating the real-
valued limit, the probabilistic interpretation of the distribu-
tion e2S(x), is lost under such circumstances and the direct
use of stochastic quadrature methods becomes problematic.
While limited progress can be made using approximate
saddle point methods,9 general, arbitrarily refinable numeri-
cal methods remain elusive. This lack of broadly applicable
numerical methods is unfortunate in view of the many prob-
lems that can be expressed in terms of such generalized,
complex-valued averages.

In the present paper, we discuss a general method for the
treatment of complex averages that combines stationary
phase filtering10 and sparse sampling techniques.11–14 Sta-
tionary phase Monte Carlo methods provide a means for cre-
ating self-adaptive numerical filters that suppress trouble-
some phase oscillations and provide a natural means for
locating the stationary phase regions of the problem. More-
over, these filters produce a natural importance function that
can serve as the basis of a practical Monte Carlo procedure.
The importance functions so generated, however, are often
sparse. Recent developments involving replica and temper-
ing approaches have greatly expanded our general ability to
treat sparse sampling problems.13–16 Because the topics are
closely linked, advances in sparse sampling methods have
important implications for the complex Monte Carlo prob-
lem. These implications, in large measure, are both the mo-
tivation for and the major emphasis of the present develop-
ments.

The remainder of this paper is organized as follows: Sec-
tion II outlines the central components of our proposed
method and presents a simple numerical example designed to
illustrate key elements of its application. Section II also in-
cludes a brief review of stationary phase filtering methods.
Section III contains sample numerical applications, including
an example designed to illustrate the applicability of the
present approach to real-time, path-integral dynamical prob-
lems.

II. FORMAL DEVELOPMENTS

In the present section we present a generalization of sto-
chastic quadrature methods designed to treat complex aver-
ages. This method, described in Sec. II B, combines features
adapted from stationary phase filtering techniques10 and from
sparse sampling developments.11–14 Section II A presents a
brief summary of stationary phase filtering methods in order
to highlight key features of the method and to establish a
consistent notation for the discussion.

A. Stationary phase Monte Carlo methods

In what follows we focus attention on evaluating the
generalized moment generating function,f~h!, defined by

f~h!5^ei h•x&S . ~2.1!

The bracketed quantity on the right-hand side of Eq.~2.1!
denotes the average defined by Eq.~1.1!. In Eq. ~2.1! and the
remainder of the present discussion, however, we no longer

assume that the average is over a positive probability density,
but instead that it involves an exponential of a complex ac-
tion, S(x).

As is the case with their real-valued counterparts, knowl-
edge of the moment generating functions defined by Eq.
~2.1! is sufficient to permit the construction of more general
averages. If, for example, an arbitrary function ofN dimen-
sions, f (x), can be written as

f ~x!5E
2`

` dk

~2p!N F̂~k!eik"x, ~2.2!

then the average off (x) over the distributione2S(x) is given
by

^ f ~x!&S5E
2`

` dk

~2p!N F̂~k!f~k!. ~2.3!

The construction of the moment generating function, Eq.
~2.1!, thus represents the prototypical complex averaging
problem.

Direct Monte Carlo methods are not generally useful for
the evaluation of complex averages. While one can, in prin-
ciple, reformulate the problem using a modulus-phase de-
composition ofe2S(x),

e2S~x!5ue2S~x!ueiu~x!, ~2.4!

the resulting expressions are numerically ill-posed. Using
Eqs. ~2.1! and ~2.4!, for example, the moment generating
function becomes

f~h!5
^ei h•xeiu~x!& ue2S~x!u

^eiu~x!& ue2S~x!u
, ~2.5!

where the bracketed quantities in Eq.~2.5! represent aver-
ages over the distribution,ue2S(x)u. While formally correct,
Eq. ~2.5! is of little practical value. If the integrands are
highly oscillatory~the case of primary interest!, then the in-
tegrations in Eq.~2.5! are governed by the stationary phase
regions of the complex action.9 Since these regions typically
represent a vanishingly small fraction of the volume for
which the modulusue2S(x)u is significant, the numerator and
denominator in Eq.~2.5! tend to vanish separately leading to
an ill-conditioned result. Worse, the severity of these numeri-
cal difficulties tends to be an exponentially increasing func-
tion of the dimensionality of the averages involved.

The immediate problems associated with complex aver-
ages~severe phase oscillations and the lack of a natural im-
portance function! can be addressed using stationary phase
Monte Carlo techniques.10 These methods are based on the
invariance of a broad class of integrals to a group of ‘‘aver-
aging’’ operations. Specifically, if the integral defined by

I 5E dxf ~x!, ~2.6!

involves an infinite domain or if it involves a finite domain
over which the integrand is periodic, then the integral is in-
variant to the replacement of the integrand,f (x), by its
‘‘preaveraged’’ value. That is, the original integral is rigor-
ously equivalent to

3510 J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Sabo, Doll, and Freeman



I 5E dx^ f ~x!&« , ~2.7!

where^ f (x)&« is defined by

^ f ~x!&«5
*dyP«~y! f ~x1y!

*dyP«~y!
. ~2.8!

To demonstrate the equality of Eqs.~2.6! and ~2.7!, one
needs merely to substitute Eq.~2.8! into Eq. ~2.7!, and to
invert the orders of the integration. This process reveals that
Eq. ~2.7! represents many, superimposed copies of the origi-
nal integral defined by Eq.~2.6!. This demonstration also
indicates that the equality of Eqs.~2.6! and ~2.7! holds for
any P«(x) that is integrable and for which the inversion of
the order of integrations is valid. Thus, while it will often be
convenient to chooseP«(x) to correspond to a probability
density, it is important to recognize that this choice is overly
restrictive. In practical terms it is necessary only to choose
P«(x) in such a manner that the convolutions defined by Eq.
~2.8! converge and can be readily evaluated.

Equations~2.6!–~2.8! define a group of operations for
which a broad class of integrals remain invariant. By allow-
ing us to remould troublesome integrands without altering
the values of the associated integrals, this set of operations
provides us with a useful tool for the reformulation of the
complex Monte Carlo average, Eq.~2.1!. Using Eq.~2.8!, for
example, we can rewrite Eq.~2.1! as

f~h!5
*dx^e2S~x!ei h•x&«

*dx^e2S~x!&«
. ~2.9!

We can, in fact, go further and utilize different preaveraging
distributions in the numerator and denominator of Eq.~2.9!.
For simplicity, however, we consider here only the simpler
result in which a common distribution is utilized in both
terms.

A key feature of Eq.~2.9! is that we have introduced a
controllable set of length scales into the problem. The preav-
erages in Eq.~2.9! tend to destroy the regions of nonstation-
ary phase, thus making the modified integrands ‘‘simpler’’
than their original counterparts. If, for example,S is a rapidly
varying function~on the length scale ofP«! in a particular
region, then preaveraging tends to destroye2S(x) in that re-
gion. If, on the other hand,S is slowly varying, then preav-
eraging tends to leavee2S(x) relatively unchanged. By con-
struction, therefore, the modified integrands in Eq.~2.9! tend
to be oscillatory where they are unimportant and important
where they are nonoscillatory. The degree to which the
preaveraging suppresses the phase oscillations in the original
integrands is set by the~controllable! length scales of the
preaveraing distribution,P«.

In addition to suppressing phase oscillations, stationary
phase filtering produces a natural importance function for the
complex quadrature problem. The selection of this impor-
tance function is a matter of key practical significance in
implementing the method. As emphasized by Kalos and
Whitlock,3 importance sampling is a valuable, general tool in
Monte Carlo approaches. By reducing the integrand’s fluc-
tuations, a suitably chosen importance function can produce
a large, often infinite, reduction in the variance associated

with statistical estimates of the associated integral. To iden-
tify the most appropriate importance function for the com-
plex quadrature problem, we rewrite Eq.~2.9! for the mo-
ment generating function as

f~h!5

E dxW~x!H ^e2S~x!ei h•x&«

W~x! J
E dxW~x!H ^e2S~x!&«

W~x! J , ~2.10!

or, more compactly as

f~h!5

K ^e2S~x!ei h•x&«

W~x! L
W

K ^e2S~x!&«

W~x! L
W

. ~2.11a!

The bracket notation in Eq.~2.11a! denotes an average over
an ~as yet to be identified! importance function,W(x). The
generalization to include the use of different preaveraging
distributions and importance functions in the numerator and
denominator of Eq.~2.11a! is again straightforward. For
completeness, if we were to utilize the preaveraging distri-
butionsP«N

(x) andP«D
(x) and importance functionsWN(x)

and WD(x) in the numerator and denominator of Eq.~2.9!,
for example, then the expression for the moment generating
function would become

f~h!5

K ^e2S~x!ei h•x&«N

WN~x!
L

WN

K ^e2S~x!&«D

WD~x!
L

WD

*WN~x!dx

*WD~x!dx
. ~2.11b!

The bracketed terms in Eq.~2.11b! represent averages over
the associated distributions and can be evaluated using con-
ventional Monte Carlo methods. The ratio of the integrals of
the two importance functions in Eq.~2.11b! is analogous to
equilibrium partition function ratios and can be estimated
using methods similar to those designed to compute thermo-
dynamic free-energy differences.4,5,17 Equation ~2.11b! is
useful in situations where the integration regions that are
‘‘important’’ to the numerator and to the denominator differ
significantly.

Why is Eq.~2.11! any better than Eq.~2.5!, a result we
previously dismissed as unacceptable? The essential advan-
tage of Eq.~2.11! over Eq.~2.5! is that the important regions
of the integration are no longer automatically a vanishingly
small fraction of the total volume. By choosing the impor-
tance function wisely, we can restrict attention to the integra-
tion regions that dominate the results, thereby avoiding the
ill-posed nature of Eq.~2.5!.

Generalizing slightly the arguments given by Kalos and
Whitlock,3 it is not hard to show that a reasonable choice for
the importance function in Eq.~2.11a! is the modulus of the
preaveragedcomplex exponential. That is, it is sensible to
select

W«~x!5u^e2S~x!&«u. ~2.12!

3511J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Stationary tempering



This choice amounts to the modulus-phase decomposition of
the preaveragedexponential

^e2S~x!&«5u^e2S~x!&«ueix~x!. ~2.13!

Unlike the corresponding result for the ‘‘bare’’ exponential,
Eq. ~2.4!, the modulus-phase decomposition in Eq.~2.13!
leads to a computationally viable result. In particular, the
modulus, u^e2S(x)&«u, tends to be small in nonstationary
phase regions and the phase,x(x), weakly oscillatory where
the importance function is significant.

The choice of importance functions given in Eq.~2.12!
smoothly bridges steepest descents and stationary phase
situations.9 If, for example, the imaginary portion of the ac-
tion is small, then the important regions ofW«(x) correspond
to minima of the real part of the action. If, on the other hand,
the imaginary portion of the action becomes more dominant,
W«(x) increasingly reflects the stationary phase regions of
the problem. Because the stationary phase regions of the
problem are no longer a vanishingly small fraction of the
integration volume, the numerator and denominator of Eq.
~2.11!, unlike those of Eq.~2.5!, do not automatically tend to
vanish.

It is convenient to express Eq.~2.11a! in terms of the
inherent structures of the stationary phase importance func-
tion, W«(x), given by Eq.~2.12!. Using the methods of Ap-
pendix A@c.f. Eqs.~A3!–~A6!#, we can express the moment
generating function for this distribution as

f~h!5

(
a

GaK ^e2S~x!ei h•x&«

W«~x! L
a

(
a

GaK ^e2S~x!&«

W«~x! L
a

, ~2.14!

where

Ga5
*adxW«~x!

*dxW«~x!
. ~2.15!

The ratio Ga represents the fractional statistical weight of
inherent structurea. Since Eq.~2.14! is a ratio, we can fur-
ther factor out a common inherent structure weight from both
the numerator and denominator. Denoting this common sta-
tistical weight asG1 , we have

f~h!5

(
a

gaK ^e2S~x!ei h•x&«

W«~x! L
Wa

(
a

gaK ^e2S~x!&«

W«~x! L
Wa

, ~2.16!

wherega is given by

ga5
Ga

G1
. ~2.17!

We now turn to the problem of developing a viable proce-
dure for evaluating the preaverages that appear in Eq.~2.8!.
We assume, for simplicity, that these involve a normalized
Gaussian distribution of the form

P«~y!5

expS 2
1

2
yT
•~«2!21

•yD
A~2p!NDet~«2!

. ~2.18!

Here, «2 is the positive definite covariance matrix that de-
fines the Gaussian distribution and whose linear dimension is
equal to the number of integration variables in Eq.~2.8!.
Although this matrix will often be taken to be diagonal in
practical applications, it is both straightforward and useful to
retain the generalized quadratic form in Eq.~2.18!. Since it is
not generally possible to evaluate the necessary Gaussian
integrals analytically, it is convenient to consider an imple-
mentation based on gradient approximations to the various
preaverages. Methods designed to correct for the effects of
these gradient approximations have been considered else-
where.18 Expanding the complex action through second-
order, and performing the associated integrations19 we obtain

^e2S~x!&«5e2S~x!

expS 1

2
BT

•~11«TS9«!21
•BD

ADet~11«TS9«!
, ~2.19!

where the matrix« is formally the ‘‘square-root’’ of the ma-
trix «2 @i.e., («)(«)5(«2)#. The vectorB in Eq. ~2.19! is
given by matrix product expression

B5«•S8, ~2.20!

and the matrices of first and second derivatives are given by

~S8!n5
]S

]xn
~2.21!

and

~S9!n,m5
]2S

]xn]xm
, ~2.22!

respectively. Combining Eqs.~2.12! and ~2.19!–~2.22! we
obtain an approximation to the stationary phase importance
function,W«(x), in terms of the action and its first and sec-
ond derivatives. Using methods adapted from semiclassical
collision theory,20 one can assign the proper branch of the
square root appearing in Eq.~2.19! from the phases of the
eigenvalues of the complex matrix that appears in the deter-
minant of Eq.~2.19!. Examining Eq.~2.19! in detail, we see
that preaveraging process acts as a generalized ‘‘band-pass
filter’’ that modifies the original integrand only slightly in
near stationary phase regions, but effectively damps it to zero
elsewhere.

Conventional stationary phase expressions can be recov-
ered from Eq.~2.14! by expanding the gradient approxima-
tion to the stationary phase importance function@obtained by
combining Eqs.~2.12! and~2.19!# to second-order about the
associated stationary phase point and performing the result-
ing integrations analytically. More generally, however, the
stationary phase importance function serves as the starting
point for refinable, stochastic approach to the complex
quadrature problem.

3512 J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Sabo, Doll, and Freeman



It is useful to illustrate the application of the stationary
phase Monte Carlo method with a simple, one-dimensional
example. For simplicity, we assume that the ‘‘action’’ is
given by

S~x,t !52 i S x3

3
1txD , ~2.23!

wheret corresponds to a~real! controllable parameter. Using
standard special function definitions, the moment generating
function for this action specified by Eq.~2.1! is given ana-
lytically by

f~h!5
Ai~ t1h!

Ai~ t !
, ~2.24!

whereAi(t) is the familiar Airy function.21

The stationary phase preaverages and importance func-
tions required for a numerical treatment based on gradient-
level stationary phase filtering methods are obtained by com-
bining Eqs.~2.19!–~2.23! and ~2.12!. Figure 1 displays the
real portion of the ‘‘bare’’ complex exponential, Re@e2S(x,t)#,
for the case wheret5216. For negative values of the pa-
rametert, there are two real-valued stationary phase points,
x56A2t. Rapid oscillations, evident in Fig. 1 except in the
vicinity of the stationary phase regions, make the direct nu-
merical integration of Eq.~2.1! difficult. Second-order gradi-

ent approximations to the importance function, shown in Fig.
2 as a function of the preaveraging length scale,«, display
the characteristic band-pass nature of the importance func-
tion. As the parametert increases toward zero and ultimately
becomes positive, the stationary phase points coalesce and
eventually become complex. Reflecting this behavior, the
corresponding inherent structures ofW«(x) merge, and, ast
becomes positive, are strongly attenuated. As will be dis-
cussed more fully in Sec. II B, the sharpness of the inherent
structures ofW«(x) is a function of the preaveraging length
scale,«. In general terms, maximum compression of the im-
portance function is achieved when the filter length scale is
comparable to the natural width of the corresponding station-
ary phase region.18 In the case of Fig. 2, this corresponds to
a choice of«50.38.

Figure 3 shows the real portion of the preaveraged com-
plex exponential, Re@^e2S(x,t)&«#, again for the case wheret
5216. Comparing Figs. 1 and 3, we see that stationary
phase filtering has suppressed the troublesome oscillations in
the problem, thereby dramatically simplifying the original
integrand. Figure 4 compares the moment generating func-
tions obtained using various preaveraging length scales with
the exact analytic result obtained from Eq.~2.24!. The preav-
eraged integrands@cf. Eq. ~2.19!# are sufficiently well be-
haved that the results in Fig. 4 can be~and were! produced
by simply integrating Eq.~2.11a! with a standard numerical

FIG. 2. Second-order gradient result for the stationary phase importance
function, W«(x,t), for the Airy action. Plots correspond to«
5(0.08,0.38,0.68). All results correspond tot5216. Note the variation of
the dispersion about the stationary phase regions with filter length scale.

FIG. 1. Plot of the real part ofe2S(x,t) for the Airy action, Eq.~2.23!, (t
5216).

FIG. 3. Plot of the real part of the second-order gradient approximation to
^e2S(x,t)&« for the Airy action. Results are shown fort5216, «50.38.

FIG. 4. Plot of the real part of the second-order gradient approximation to
the moment generating function,f(h,t5216), for the Airy action. Results
for «5(0.08,0.38,0.68) were obtained by integrating Eq.~2.9! using direct
quadrature methods. Only one curve is visible because, as discussed in the
text, the second-order results are exact for this example.

3513J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Stationary tempering



package such as Mathematica. More generally, as discussed
in Sec. III, such results will be obtained from Monte Carlo
estimates of the integrals involved. We see from Fig. 4 that
the second-order gradient results are quite good. They are, in
fact, exactfor this example. This somewhat surprising result
is a consequence of the cubic nature of the Airy action@Eq.
~2.23!#. While the second-order gradient treatments of the
preaverages in the numerator and denominator of Eq.~2.11a!
are separately approximate, each term differs from the corre-
sponding exact value by a common, multiplicative factor.
This cancellation of errors does not hold for Eq.~2.11b!
where different preaveraging distributions for numerator and
denominator are involved.

B. Stationary tempering

As summarized in the preceding section, the stationary
phase Monte Carlo method addresses two of the central is-
sues associated with the application of stochastic quadrature
techniques to complex averages. The method suppresses
troublesome phase oscillations, and, in the process, provides
a natural importance function. There is, however, a Faustian
element to these developments. As is apparent in Fig. 2, the
importance function produced by the preaveraging process
can be sparse in nature. That is, there is no guarantee that the
inherent structures of the stationary phase importance func-
tion are connected. Under such circumstances specialized
methods are required in order to assure a valid statistical
sampling.4

Sparse sampling problems arise in a number of familiar
contexts, the most common of which are perhaps the ‘‘rare
event’’ problems associated with thermally activated pro-
cesses. At low temperatures, the equilibrium configurational
distributions for general physical systems typically cluster
about isolated inherent structures that correspond to the vari-
ous local minima of the potential energy surface of the sys-
tem. Unless special care is exercised, conventional sampling
methods typically fail to sample the entire distribution, in-
stead becoming trapped in these isolated, local minima.
Techniques for detecting and overcoming sparse sampling
difficulties have been discussed elsewhere.4,5,11–14

A general strategy for dealing with sparse distributions is
to create a computational ensemble that is ‘‘richer’’ in the
space of trial moves than are conventional Monte Carlo sam-
pling procedures. A way of doing this is combine results
from several simulations, each corresponding to a different
value of a control parameter such as the temperature. Assum-
ing that the control parameter involved influences the con-
nectedness of the relevant probability distribution, one then
performs random walks for each of the computational ele-
ments involved, using configurations selected from the com-
putational ensemble to supplement conventional trial moves.
While the details of the various steps differ depending on the
particular sparse sampling procedure involved, the essential
result is that if the acceptance–rejection logic of the process
is properly designed and if the computational ensemble is
suitably chosen, then the approach produces a proper sam-
pling for all elements in the ensemble, including those for
which the associated probability densities are sparse. Both

J-walking and parallel tempering techniques are based on
this general strategy.11–16

Sparse sampling methods offer a practical way to ad-
dress the sampling difficulties associated with the stationary
phase Monte Carlo method. As suggested by Fig. 2, a natural
control parameter in such applications is the length-scale of
the filtering process rather than the physical temperature. In
Fig. 5 we present a schematic outline of a ‘‘stationary tem-
pering’’ approach based on a combination of parallel temper-
ing and stationary phase Monte Carlo techniques. In this
method, parallel tempering simulations are performed on an
ensemble of importance distributions corresponding to vari-
ous stationary phase filter length-scales. As discussed in Sec.
II A, if the filtering process involved is implemented exactly,
then the results calculated via stationary phase Monte Carlo
are formally independent of choice of filter length scale. The
necessary statistical errors in the calculated results, on the
other hand, vary with the sparse sampling control parameter.
We are thus free to select from our sparse sampling compu-
tational ensemble an ‘‘optimal’’ filter length scale based on a
variance minimization criteria. The required statistical errors
can be estimated in practice by examining the numerical
scatter in various elements within the stationary tempering
ensemble. In situations where the filtering methods involved
are implemented in an approximate gradient manner~i.e.,
without ‘‘corrections’’!, the calculated results are no longer
guaranteed to be exact. In such circumstances, the most re-
liable results will be those for which the underlying gradient
approximation is the most accurate~i.e., results obtained us-
ing the smallest, computationally viable filter length scales!.
A practical indicator of the adequacy of gradient-based meth-
ods is thus the degree to which there exists a length-scale
independent ‘‘plateau value’’ in the computed results at
smaller filter length scales. Numerical applications of the sta-
tionary tempering approach will be discussed in Sec. III.

We close this section by making two points concerning
the nature of the importance function,W«(x), defined by Eq.
~2.12!. First, it will prove useful to consider the auxiliary
moment generating function associated withW«(x), fW(h),
by

FIG. 5. Schematic illustration of the stationary tempering method. In this
approach, the control parameter that governs the sparseness of the associated
probability distribution is the stationary phase filter length scale,«. In the
short segment depicted in the illustration, the simulation corresponding to
filter length scale«4 does not undergo a tempering exchange attempt.
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fW~h!5
*W«~x!ei h "xdx

*W«~x!dx
. ~2.25!

This moment generating function contains information that is
useful in optimizing the performance of stationary tempering
techniques. Specifically, the ‘‘sharpness’’ of the stationary
phase filters in the stationary tempering ensemble can be
quantified by examining the large argument behavior of the
corresponding auxiliary moment generating function,
fW(h). The narrower the filter is about a particular station-
ary phase region, the longer-lived will be that inherent struc-
ture’s contribution to the associated moment generating func-
tion, fW(h). Comparison of Figs. 2, 6, and 7 illustrates this
correlation for the Airy example. The asymptotic behavior of
fW thus provides us with a second means for monitoring the
numerical performance of the stationary phase tempering
method, the first being the length-scale dependence of the
statistical variance in the computed results.

The second point we wish to make concerns the inherent
structure analysis of the stationary phase importance func-
tion, W«(x). In the Stillinger–Weber approach,6,7 inherent
structures of a given distribution are generated by direct-
space quench procedures. The integration domain is decom-
posed into cells by assigning each point in the volume to the

nearest local maxima of the distribution. As discussed in Ap-
pendix A, it is useful to consider the inherent structure prob-
lem from an alternative point of view. In applied mathemat-
ics, a common problem involves the reconstruction of a
probability distribution from a proper statistical sampling of
that distribution. In this ‘‘probabilistic clustering’’ problem,22

one is attempting to identify within the large statistical data
set originally provided a few, meaningful parameters that
characterize the underlying probability distribution. So
phrased, this data compression task is a~slightly! modified
version of the inherent structure problem. Stationary temper-
ing methods, in conjunction with probabilistic clustering
techniques, thus provide an alternate way to probe the inher-
ent structures of the stationary phase importance function,
W«(x).

III. NUMERICAL EXAMPLES

In the present section, we wish to illustrate the formal
developments of Sec. II with a number of applications. These
include both simple, pedagogical results and results from
more physically relevant, dynamical path-integration appli-
cations. Unless noted otherwise, all results utilize an uncor-
rected, second-order implementation of the stationary tem-
pering approach.

We begin by returning to the simple, Airy action ex-
ample discussed in Sec. II A. As illustrated by Figs. 1–4, the
stationary phase filtering approach dramatically simplifies
the construction of the generalized moment generating func-
tion and produces excellent~in this case exact! results. As
was emphasized in Sec. II A, however, the results displayed
in Fig. 4 were generated by directly integrating Eq.~2.5!
with standard quadrature methods, not by statistical means. It
is thus important to demonstrate that stationary tempering
methods can reliably produce these results. Figure 8 com-
pares f(h) calculated with the stationary tempering ap-
proach described in Sec. II and the exact results of Eq.

FIG. 6. Plots of the real part of the auxiliary moment generating function,
fW(h,t5216), defined by Eq. ~2.25! for the Airy action for «
5(0.08,0.38,0.68). As discussed in the text, this function provides a probe
of the structure of the stationary phase importance function,W«(x,t).

FIG. 7. Plot of the second-order inherent cumulant for the second-order
gradient approximation to the stationary phase importance function,
W«(x,t), for the Airy action as a function of filter length-scale,«. The
minimum, which corresponds to the most highly compressed importance
function, corresponds to«50.38.

FIG. 8. Real portion of the moment generating function for the Airy action
(t5216). Solid line~smooth! is exact result@Eq. ~2.24!#. Plotting symbols
correspond to results of second-order gradient stationary tempering calcula-
tions for variety of filter length scales. Results for the different« values
agree because, as discussed in the text, the second-order results for this
particular example are exact. Stationary tempering calculations were per-
formed using of the order of 107 Monte Carlo points. The erratic solid line
corresponds to a conventional Monte Carlo simulation («50) with 106

points. Error bars for all tempering calculations are smaller than the corre-
sponding plotting symbols.
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~2.20!. The numerical calculations were performed using on
the order of 107 Monte Carlo points. The tempering en-
semble utilized in these calculations involved seven filter
parameters distributed uniformly over the closed interval
@0.01, 0.43#. As can be seen in Fig. 2, the tempering en-
semble thus includes importance functions ranging from
sharply defined to diffuse. The optimal filter parameter, de-
termined on the basis of the sharpness of the importance
function,W«(x), about the stationary phase regions~cf. Fig.
7! and on the rate of decay of auxiliary moment generating
function ~cf. Fig. 6!, fW(h), is approximately«50.38. Trial
moves that involve the exchange of configurations between a
single, randomly selected pair of tempering distributions
with different filter parameters were attempted after every
ten Monte Carlo steps. We see from Fig. 8 that the results of
stationary tempering are excellent. Of particular note is the
way in which the method ‘‘uniformly’’ treats the transition
from oscillatory to damped behavior~i.e., the coalescence of
the real-valued stationary phase points!. We also see the dra-
matic increase in noise as the stationary phase filtering is
turned off, a reminder of how ill-suited conventional Monte
Carlo methods are for the complex quadrature problem.

It is important to demonstrate that the stationary temper-
ing approach is not limited to applications where the station-
ary phase structure of the problem is simple. To this end, we
consider a ‘‘modified’’ Airy action of the form

S~x,t !52 i S x3

3
1t sin~x! D . ~3.1!

Figure 9 plots the imaginary part of the derivative of the
action as a function of position for various values ofh andt.
The number of stationary phase points~zeros of the deriva-
tive! varies depending on the parameter values. These sta-
tionary phase regions are visible in Fig. 10 as the inherent
structures of the importance function for this modified ac-
tion.

Moment generating functions for the modified Airy ac-
tion, produced by directly integrating Eq.~2.9! for various
filter length scales using Mathematica, are displayed in Fig.
11. Unlike the gradient results for the Airy action, the calcu-
lated values for the modified Airy example are not exact and
a dependence on the filter parameter can be seen at larger
length scales. As illustrated in Fig. 11, however, the results
for smaller filter length scales approach a common, limiting
value, an indication that the corresponding gradient results
are reliable. We note that for larger length scales, where the
uncorrected gradient results are less accurate, the errors ap-
pear to be only in the amplitude of the calculated results. The
frequency dependence, on the other hand, appears to be
faithfully reproduced. Further work will be required to estab-
lish the degree of generality of this behavior.

Figure 12 compares moment generating functions for the
modified Airy action obtained using stationary tempering

FIG. 9. Plots of](S(x,t)2 ihx)/]x for modified Airy action (t5236,
h5245,0,45).

FIG. 10. Plots of the second-order gradient stationary phase importance
function,W«(x,t), for modified Airy action;t5236, h50, «50.01, 0.05,
0.10, 0.20. Note the sparseness of the distributions at larger« values.

FIG. 11. Real part of second-order gradient approximation to the moment
generating function for modified Airy action. The plot is broken into two
panels in order to expand the plotting scale. Results shown were computed
for various filter length scales by direct quadrature integration of Eq.~2.9!.
Note that the results are independent of filter length scale as« tends to zero.
The number of stationary phase regions involved for the various values ofh
can be determined from Fig. 9.
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methods to the quadrature results of Fig. 11. The tempering
ensemble consisted of six filter length scales distributed
evenly in the range of@0.01, 0.31#. Of the order of 107

Monte Carlo points were utilized in all calculations. Ran-
dom, pairwise tempering exchanges were attempted every 10
Monte Carlo moves. The agreement between the stationary
tempering and quadrature results is excellent. In Fig. 13 we
present moment generating function results produced using
stationary phase filteringwithout tempering. While correct
~for the present example! at smaller length scales, nontem-
pering results are generally unreliable. In particular, we see
in Fig. 13 that the results computed at larger filter length
scales are qualitatively incorrect. The reason for this break-
down is apparent in Fig. 10. At smaller filter length scales,
the stationary phase importance function remains sufficiently
connected that conventional sampling is, for this example,
sufficient. As the stationary phase filtering becomes more
aggressive, however, the stationary phase importance func-
tion becomes more disconnected. Under such conditions
conventional techniques essentially become ‘‘locked’’ in one
of the many inherent structures and the numerical results
produced become unreliable. In the present example, this
breakdown of conventional methods is evident. In general,
however, this is not the case. Moreover, without sparse sam-

pling methods it becomes extremely difficult to separate the
effects of sampling from those of the gradient implementa-
tion of the stationary phase Monte Carlo approach.

Finally, we wish to illustrate the application of the sta-
tionary tempering method to a problem that is representative
of those that arise in the context of dynamical path integra-
tion. To this end, we examine the calculation of the moment
generating function associated with the complex action for a
particle of mass m moving in a one-dimensional Lennard-
Jones cage.23 In the Fourier path integral language,10 the rel-
evant portion of the action for the problem is

S~a,bc!5(k51
` ak

2/2sk
21bcV̄, ~3.2!

wherebc is the complex temperature

bc5
b

2
1 i

t

\
, ~3.3!

b is the ~reciprocal! temperature

b5
1

kBT
, ~3.4!

t is the physical time, andsk
2 is given by

sk
25

2bc\
2

mp2k2 . ~3.5!

In terms of the Fourier coefficients,$ak%, the path,x(u) is
given by

x~u!5x1~x82x!u1 (
k51

kmax

ak sin~kpu!, ~3.6!

where x and x8 are the values of the path atu50 and u

51, respectively. In Eq.~3.6! V̄ represents the average of the
potential energy along the path,x(u)

V̄5E
0

1

duV~x~u!!. ~3.7!

The degree of detail in the path is controlled by the number
of path variables,kmax, utilized in the calculation, a number
that will vary depending on the system as well as on the time
and temperature.

Figure 14 displays moment generating functions for the
cage problem calculated with the~second-order gradient! sta-
tionary tempering method. These results correspond to
Lennard-Jones interaction parameters representative of mo-
lecular hydrogen24 («LJ /kB534.2 K,sLJ52.96 Å). Four
Fourier path variables are included in all calculations and the
one-dimensional path averages of the potential energy, Eq.
~3.7!, are evaluated using 32 point Gauss quadrature. Results
in the panels~a!–~c! correspond the physical times of 0, 100,
and 200 fs, respectively. The temperature in all cases is 300
K. These simulations utilize filter parameters based on re-
sults suggested by Fourier path integral analysis of the
simple harmonic oscillator. That is, the stationary phase filter
parameter for thekth Fourier path variable is assumed to be
proportional to the natural width of the corresponding har-
monic path variable. Specifically,«k , is taken to be

FIG. 12. Comparison of stationary tempering results with corresponding
results of Fig. 11. See Fig. 13 for an illustration of the importance of sparse
sampling. Error bars for both tempering results presented average less than
0.2 over the range ofh values displayed.

FIG. 13. As in Fig. 12, butwithoutparallel tempering. Note the breakdown
of the Monte Carlo results at larger filter length scales where the stationary
phase importance function,W«(x,t), is sparse~cf. Fig. 10!. Results in both
Figs. 12 and 13 utilized the same number (107) of Monte Carlo points.
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«k5«0S usk
2uY F11S ubcu\v0

kp D 2G D 1/2

, ~3.8!

where«0 is an overall scale parameter,sk
2 is the free-particle

Gaussian variance@Eq. ~3.5!, and v0 is an adjustable con-
stant, taken here to beb\v051#. In the simulations for both
t50 and 100 fs, the tempering ensemble utilized three val-
ues of«0 ~0.2, 0.4, 0.8! while the results fort5200 fs uti-
lized four filter length scales~0.2, 0.4, 0.8, 1.6!. Of the order
of 23106 Monte Carlo points were utilized in all calcula-
tions. The frequency of pairwise tempering exchange at-
tempts was one in every ten Monte Carlo steps.

The dynamics of the cage problem are reflected in the
time evolution of the moment generating function seen in
Fig. 14. At shorter times@panel~a!#, the moment generating
function viewed in various directions is essentially gaussian
in nature. At longer times, however, damped oscillatory be-
havior is evident. Using the stationary tempering method, we
have been able to extend calculations such as those in Fig. 14
to more than 1 ps for this system at 300 K, times for which
the ratio of the physical to thermal time,t/(b\/2), exceeds
80. It should be noted that while the complex-temperature
matrix elements of one-dimensional cage problem are readily
calculable by a variety of means, the moment generating
functions in Fig. 14 are not. Thus, unlike previous examples

in this section, the calculated results in Fig. 14 cannot be
readily checked by comparison with separately available
analytic or exact numerical values. As discussed in Sec. II,
however, a practical indicator of the adequacy of gradient-
based methods is the degree to which there exists a length-
scale independent ‘‘plateau value’’ in the computed results at
smaller filter length scales. In the present calculations, nu-
merical results obtained using«050.2 and«050.4 are sta-
tistically indistinguishable, an indication that the gradient-
based results shown in Fig. 14 are reliable.

Finally, as discussed in Appendix A, the temporal evolu-
tion of the moment generating function reflects the low-
order, dynamical inherent structures of the problem. Proba-
bilistic clustering methods applied to the stationary
tempering results thus provide a means for both revealing
and characterizing the dynamical inherent structures that are
associated with the quantum dynamics. Such analyses and
more extensive dynamical path-integral applications will be
considered elsewhere.

IV. DISCUSSION AND SUMMARY

We have examined numerical methods for evaluating
complex generalizations of conventional equilibrium aver-
ages. Such complex averages arise naturally in a number of
contexts, including semiclassical and path-integral dynami-
cal applications. Unfortunately, such problems typically lack
the natural ‘‘importance function’’ structure of their equilib-
rium counterparts. Instead of a positive Boltzmann distribu-
tion, the ‘‘weights’’ in such generalized averages are
complex-valued objects that prevent the direct application of
conventional stochastic quadrature techniques.

Previous efforts have shown that stationary phase filter-
ing techniques10 are useful in confronting the immediate
problems associated with the complex quadrature problem.
Based on the invariance of the underlying complex average
to a general class of ‘‘preaveraging’’ operations, these meth-
ods suppress troublesome phase oscillations and produce a
natural stationary-phase importance function by means of a
numerical ‘‘filtering’’ process. Such self-adaptive filtering
techniques permit the rigorous reformulation of the original
complex average in Monte Carlo form. In the stationary
phase importance functions so produced, however, the statis-
tically important regions of the integration volume are gen-
erally not connected in a simple manner. Stationary phase
filtering methods, by themselves, thus exchange one set of
difficulties ~oscillations and lack of importance function! for
another~sparse sampling!.

In the present paper we have introduced a ‘‘stationary
tempering’’ technique that combines stationary phase
filtering10 and parallel tempering methods.11–16 The result is
an approach that is designed to cope with the twin issues of
phase oscillations and sparse sampling that arise in the treat-
ment of generalized complex averages. Here the length-scale
of the stationary-phase filtering process~as opposed to the
system temperature! serves as the control parameter for the
creation of a ensemble in which the computational elements
exhibit varying degrees of connectedness.

We have examined a number of numerical applications
of the parallel tempering approach to explore the basic ap-

FIG. 14. Real part of moment generating function for LJ cage problem.
System parameters correspond to those of molecular hydrogen («LJ /kB

534.2 K,sLJ52.96 Å) and T5300 K. Plots, in the order of increasing
length scale of their variation, correspond toh being oriented along the
Fourier componentsa1 , a2 , a3 , a4 , respectively. Four Fourier components
were utilized in the paths for all calculations. Panels~a!–~c! correspond to
t5(0 – 200) fs, respectively. Results plotted correspond to«050.4 @cf. Eq.
~3.8!#. While not shown~for reasons of clarity!, the calculated results ob-
tained using«050.2 are statistically indistinguishable from those shown in
Fig. 14.
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proach and to establish its utility. Our results for illustrative
examples, including prototypical dynamical path integral ap-
plications, have indicated that the stationary tempering
method provides an effective means for addressing the com-
plex quadrature problem. Our results have also suggested
practical methods for optimizing the numerical efficiency of
the stationary tempering method. These include methods
based on the minimization of the statistical variance of the
calculation with respect to the filter length-scale and on the
asymptotic behavior of the moment generating function as-
sociated with the stationary-phase importance function.
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APPENDIX A: INHERENT STRUCTURE, CUMULANTS
AND PROBABILISTIC CLUSTERING

Given a moment generating function of a specified prob-
ability density,W(x)

fW~h!5
*W~x!ei h•xdx

*W~x!dx
, ~A1!

conventional cumulants are defined by25

fW~h!5expH (
m51

~ i !m

m!
^̂ ~h•x!m&&J . ~A2!

While convenient, such cumulants are ‘‘global’’ properties
that do not directly reflect the ‘‘inherent structure’’ of the
underlying probability distribution.

Following Stillinger and Weber,6,7 we can decompose
the integration domain in Eq.~A1! into nonoverlapping do-
mains by assigning each point in the integration volume to
one of the local maxima of the probability distribution
through suitably designed quench procedures.

Alternatively, we can perform a Wigner–Seitz decompo-
sition based on the local maxima of the probability distribu-
tion. However, we choose to define them, the average in Eq.
~A1! can be written in terms of the ‘‘inherent structures’’ of
the probability distribution as

fW~h!5(
a

Ga^ei h•x&a . ~A3!

Here ^ei h•x&a denotes a ‘‘local’’ average ofei h•x over the
integration domain corresponding to theath inherent struc-
ture

^eih•x&a5
*adxW~x!ei h•x

*adxW~x!
, ~A4!

whose corresponding fractional weight,Ga , is given by

Ga5
*adxW~x!

*dxW~x!
. ~A5!

Expanding thelocal averages in Eq.~A3! @as opposed to the
global average in Eq.~A1!# in cumulant form gives

fW~h!5(
a

Ga expH (
m51

~ i !m

m!
^̂ ~h•x!m&&aJ , ~A6!

where^̂ (h•x)m&&a represents themth-order ‘‘inherent cumu-
lant’’ ~i.e., themth-order cumulant associated with theath
inherent structure! of the distribution, W(x). Unlike the
analogous quantities in Eq.~A2!, the inherent cumulants de-
fined by Eq.~A6! are ‘‘local’’ quantities that reflect directly
the properties of the inherent structures of the distribution,
W(x).

An important problem in applied mathematics is the re-
construction of an unknown probability distribution,W(x),
from a statistical sampling of configurations,$xn%. The
probabilistic clustering problem, is effectively the inverse of
the sparse sampling problem. Rather than the focus being to
produce a statistical sampling of a given distribution, in clus-
tering applications we seek instead to reconstruct an un-
known distribution from a known statistical sampling. This
problem is of broad significance in information technology
and has received considerable attention.22

Our point in emphasizing the links between sparse sam-
pling, probabilistic clustering and inherent structure methods
is that advances in one topic contain implications for the
others. In particular, our increased ability to sample sparse
distributions appears to offer an alternative approach to the
inherent structure decomposition problem. Equation~A6!,
for example, expresses the moment generating function in a
crystallographic-like manner in terms of parameters that
characterize the strength, position, dispersion, etc. of the in-
herent structures of the probability density. This structural
analogy is relevant because we have a practical way of
‘‘measuring’’ fW(h). Although computational as opposed to
experimental, we can estimate Eq.~A6! with Monte Carlo
methods. Such an estimate,fW,N(h), defined by

fW,N~h!5
1

N (
n51

N

ei h "xn, ~A7!

provides us with a refinable means of evaluatingfW(h) nu-
merically in terms of configurations,$xn%, which can, in
turn, be produced using the sparse sampling methods de-
scribed in Sec. II. Viewed from this perspective, performing
an inherent structure decomposition of the probability distri-
bution W(x) amounts to forcing the ansatz forfW(h), Eq.
~A6!, and the ‘‘measured’’ result, defined by Eq.~A7!, to
‘‘agree.’’ This sparse sampling approach to inherent structure
analysis will be discussed in greater detail elsewhere.
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