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ARTICLES

Stationary tempering and the complex quadrature problem

Dubravko Sabo and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman®
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

(Received 24 September 2001; accepted 4 Decemben 2001

In the present paper we describe a stochastic quadrature method that is designed for the evaluation
of generalized, complex averages. Motivated by recent advances in sparse sampling techniques, this
method is based on a combination of parallel tempering and stationary phase filtering methods.
Numerical applications of the resulting “stationary tempering” approach are presented. We also
examine inherent structure decomposition from a probabilistic clustering perspectiv200®
American Institute of Physics[DOI: 10.1063/1.1446431

I. INTRODUCTION clearly the nature of the sampling problem that is involved, it

Since their formal introduction approximately five de- "> useful to recast qu'l) In inherent structure forri As
discussed in Appendix A, Eq1.1) can be written as

cades agd;> Monte Carlo methods have emerged as unusu-
ally robust and powerful tools for the study many- d(p) ==, (e, 1.3
dimensional problem$.These methods have two features L .
that are of particular note. First, because they tend to treat awhere the summation is over the inherent structures of the

problems on a common footing, Monte Carlo methods ef'fecpmbability distribution,e*. It is important to note that
tively “uncouple” the physical a,nd computational complex- the relevantnumber of inherent structures in the summation

ity of a given application. Second, as observed from the"an be vastly smaller than theotal number of such

beginning! these methods have an inherent “replica” char- struc;turess. In Eq. (1.3) the bracketed quantity denotes a lo-
acter that makes them unusually well-suited for implementag:"’“’.m.herent _structure average whilg is the correspondmg
tion in parallel computing environments. statistical weighfcf. Egs.(A4) and (A5), respectively.

In the present developments we are concerned princi- Equation (1.3) emphasizes the two distinct computa-

pally with Monte Carlo approaches as they relate to the’uonal problems we face when constructing a stochastic

evaluation of general statistical averages. To focus the disquadrature average. These problems are:
cussion more tightly, we wish to consider the problem of(i) performing a local statistical average within a speci-
constructing moment generating functions of the form fied inherent structure; and
e SMginxgy (i) including properly the contributions of all relevant in-
o( ):W' (1.1 herent structures.

As will be more fully discussed in Sec. I, the construction of While typically not treated as separate, identifiable tasks,
moment generating functions can be considered the protdhese steps are implicitly present in the evaluation of any

typical averaging problem. In E¢L.1) x represents the natu- 9eneralized average. _ _
ral variables of an “action,”S(x). We assume for the mo- Performing a local average over a well-defined probabil-

ment that this action is real-valued and known and that thdy distribution is the quintessential Monte Carlo problem
associated probability distributiorS®, is integrable. In and is soluble with well-established methdds. Assuring a

any particular application, the identification 8(x) is an  Proper accounting of the contributions of all relevant inher-
important, but separate task. ent structures, however, is a potentially more involved issue
Stochastic quadrature methods estimate averages such'%80se complexity depends sensitively on the details of the

those in Eq(1.1) by discrete sums of the foRTP probability distribution in question. When the inherent struc-
tures of the distribution are not simply connectge., the

18 , distribution is “sparse}, for example, specialized techniques
en(m)= N ngl el (1.2 are generally required in order to achieve a proper sampling.
) ) ) o The technical difficulties of assuring a proper sampling not-
Provided that the configurations appearing in the sp;, withstanding, the general methodology for constructing av-
aEeS(Xa)pproprlately sampled from the probability dlstnbutlon,erages of the type in EGL.1) is well-developed and numeri-
e =%, ¢n() converges toh(y) asN—o=. To see more a1y robust wherS(x) is a real-valued function.
Our ability to treat generalized averages such as those in
¥Electronic mail: freeman@chm.uri.edu Eqg. (1.2) drops significantly wherS(x) becomes complex.
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This drop is understandable since a key element in the deassume that the average is over a positive probability density,
velopment of general numerical tools for treating the real-but instead that it involves an exponential of a complex ac-
valued limit, the probabilistic interpretation of the distribu- tion, S(x).
tion e S, is lost under such circumstances and the direct  As is the case with their real-valued counterparts, knowl-
use of stochastic quadrature methods becomes problematiedge of the moment generating functions defined by Eq.
While limited progress can be made using approximatg?2.1) is sufficient to permit the construction of more general
saddle point methodsgeneral, arbitrarily refinable numeri- averages. If, for example, an arbitrary functionhtlimen-
cal methods remain elusive. This lack of broadly applicablesions,f(x), can be written as
numerical methods is unfortunate in view of the many prob-
lems that can be expressed in terms of such generalized, f(x)=fx dk ’I‘:(k)eik-x 2.2

N 1 .
complex-valued averages. —w(2m)

In the present paper, we discuss a general method for the Sy i
treatment of complex averages that combines stationarg1en the average di(x) over the distributiore IS given
phase filtering’® and sparse sampling techniqdés'* Sta-  °Y
tionary phase Monte Carlo methods provide a means for cre- = dk .
ating self-adaptive numerical filters that suppress trouble- (f(x)s= f_m(zw)NF(k)¢(k)' 23
some phase oscillations and provide a natural means for
locating the stationary phase regions of the problem. MoreThe construction of the moment generating function, Eq.
over, these filters produce a natural importance function thaf2.1), thus represents the prototypical complex averaging
can serve as the basis of a practical Monte Carlo procedur@roblem.

The importance functions so generated, however, are often Direct Monte Carlo methods are not generally useful for

sparse. Recent developments involving replica and tempethe evaluation of complex averages. While one can, in prin-
ing approaches have greatly expanded our general ability toiple, reformulate the problem using a modulus-phase de-
treat sparse sampling problefis® Because the topics are composition ofe™ (),

closely linked, advances in sparse sampling methods have B ‘

important implications for the complex Monte Carlo prob- e e Gl (2.4

lem. These implications, in large measure, are both the Moye resulting expressions are numerically ill-posed. Using
tivation for and the major emphasis of the present develoqus_ (2.1) and (2.4), for example, the moment generating

ments. _ _ _ . function becomes
The remainder of this paper is organized as follows: Sec- o
tion Il outlines the central components of our proposed (e""xe'e(x>)|e—3(x>\
method and presents a simple numerical example designed to b(m) = (e 0(X)>|e75(x)| ' (2.5

illustrate key elements of its application. Section Il also in-

cludes a brief review of stationary phase filtering methodswhere the bracketed quantities in E@.5 represent aver-
Section Il contains sample numerical applications, includingages over the distributionie™S®|. While formally correct,
an example designed to illustrate the applicability of theEq. (2.5 is of little practical value. If the integrands are
present approach to real-time, path-integral dynamical probhighly oscillatory(the case of primary intergsthen the in-
lems. tegrations in Eq(2.5 are governed by the stationary phase
regions of the complex actichSince these regions typically
represent a vanishingly small fraction of the volume for
which the moduluge™ S| is significant, the numerator and
denominator in Eq(2.5 tend to vanish separately leading to

In the present section we present a generalization of st@n ill-conditioned result. Worse, the severity of these numeri-
chastic quadrature methods designed to treat complex avef@l difficulties tends to be an exponentially increasing func-
ages. This method, described in Sec. Il B, combines featurdton of the dimensionality of the averages involved.
adapted from stationary phase filtering technidfiaad from The immediate problems associated with complex aver-
sparse sampling developmefhts* Section Il A presents a ages(severe phase oscillations and the lack of a natural im-
brief summary of stationary phase filtering methods in ordePortance functioncan be addressed using stationary phase

to highlight key features of the method and to establish glonte Carlo technique¥. These methods are based on the
consistent notation for the discussion. invariance of a broad class of integrals to a group of “aver-

aging” operations. Specifically, if the integral defined by

Il. FORMAL DEVELOPMENTS

A. Stationary phase Monte Carlo methods

In what follows we focus attention on evaluating the |:J dxf(x), (2.6)
generalized moment generating functi@i{ ), defined by

¢(1,):<ei XY (2.2) involves. an infinite domain or if it ?nvolves a fipite domaip
over which the integrand is periodic, then the integral is in-
The bracketed quantity on the right-hand side of Efjl)  variant to the replacement of the integrarfdx), by its
denotes the average defined by EQl). In Eq.(2.1) and the  “preaveraged” value. That is, the original integral is rigor-
remainder of the present discussion, however, we no longeasusly equivalent to
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with statistical estimates of the associated integral. To iden-
'ZJ dx(f(x)). , (2.7 tify the most appropriate importance function for the com-
) ) plex quadrature problem, we rewrite E®.9) for the mo-
where(f(x)), is defined by ment generating function as
_fdyps(y)f(x+y) e—S(x)ei 7 X .
0=y (2.9 f W) %J
To demonstrate the equality of Eq&.6) and (2.7), one ¢(m)= (e*5<><>>8 ' (2.10
needs merely to substitute E(.8) into Eq. (2.7), and to f dxW(x) W}
invert the orders of the integration. This process reveals that
Eq. (2.7) represents many, superimposed copies of the origior, more compactly as
nal integral defined by Eq(2.6). This demonstration also (X)X
indicates that the equality of Eq&.6) and (2.7) holds for <<e € >€>
any P_(x) that is integrable and for which the inversion of W(x) W
the order of integrations is valid. Thus, while it will often be ()= (e Sy : (2113
convenient to choos®,(x) to correspond to a probability <W)£>
w

density, it is important to recognize that this choice is overly

restric_tive. In practical terms it is necessary only to chooSerne pracket notation in Eq2.113 denotes an average over
P.(x) in such a manner that the_convolutlons defined by Eqgp, (as yet to be identifiedimportance functionW(x). The
(2.8) converge and can be readily evaluated. _ generalization to include the use of different preaveraging

_Equations(2.6~(2.8) define a group of operations for gjstributions and importance functions in the numerator and
which a broad class of integrals remain invariant. By allow-genominator of Eq.2.113 is again straightforward. For
ing us to remould troublesome integrands without altering:ompleteness, if we were to utilize the preaveraging distri-
the values of the associated integrals, this set of operations,ijonsp (x) andP,_(x) and importance functiond/y(x)

eN D

provm:es I\ljls V;"tkéa luseful tool Ifzc(Jr tlf;eure'fornéulfélcgl ]?f the andWp(x) in the numerator and denominator of E@.9),
complex Monte Carlo average, H@.1). Using Eq.(2.8), for for example, then the expression for the moment generating

example, we can rewrite EqR2.1) as function would become
fdx(e”SXel7x) S ain

— € e e n X .
0= ey (2.9 << Ve

Wi(x) >
We can, in fact, go further and utilize different preaveraging b(q)= " Wi fWN(X)dX_
distributions in the numerator and denominator of E29). <<es(x)>sD> JWp(x)dx
VVD

(2.110

For simplicity, however, we consider here only the simpler W5 (X)
result in which a common distribution is utilized in both

terms. _ . The bracketed terms in Eq2.11b represent averages over
A key feature of Eq(2.9) is that we have introduced a e associated distributions and can be evaluated using con-

controllable set of length scales into the problem. The preavyentional Monte Carlo methods. The ratio of the integrals of
erages in Eq(2.9) tend to destroy the regions of nonstation- the two importance functions in E2.118 is analogous to

ary phase, thus making the modified integrands “simpler”qqjilibrium partition function ratios and can be estimated
than their original counterparts. If, for examp&is a rapidly sing methods similar to those designed to compute thermo-
varying function(on the length scale dP,) |r2 )a particular dynamic free-energy differencé&” Equation (2.11h is

. . oy
region, then preaveraging tends to desteoy*”) in that re-  sefyl in situations where the integration regions that are

gion. If, on the other hf"gds is slowly varying, then preav-  «imnortant” to the numerator and to the denominator differ
eraging tends to leave 5™ relatively unchanged. By con- significantly.

struction, therefore, the modified integrands in Eq9) tend Why is Eq.(2.1D) any better than Eq2.5), a result we
to be oscillatory where they are unimportant and importaniyreviously dismissed as unacceptable? The essential advan-
where they are nonoscillatory. The degree to which thetage of Eq(2.12) over Eq.(2.5) is that the important regions

preaveraging suppresses the phase oscillations in the origingf the integration are no longer automatically a vanishingly
integrands is set by thecontrollable length scales of the  gma| fraction of the total volume. By choosing the impor-

preaveraing distributior®,. tance function wisely, we can restrict attention to the integra-

In addition to suppressing phase oscillations, stationarion regions that dominate the results, thereby avoiding the
phase filtering produces a natural importance function for thﬂl-posed nature of Eq(2.5).

complex quadrature problem. The selection of this impor- Generalizing slightly the arguments given by Kalos and

tance function is a matter of key practical significance inyyhitiock 2 it is not hard to show that a reasonable choice for

imp'lemer;t'ing the method. As emphasized by Kalos angne importance function in Eq2.114 is the modulus of the
Whitlock,” importance sampling is a valuable, general tool iNpreaveragedcomplex exponential. That is, it is sensible to
Monte Carlo approaches. By reducing the integrand's flucgg|ect

tuations, a suitably chosen importance function can produce
a large, often infinite, reduction in the variance associated W, (x)=|(e”S¥)_]. (2.12
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This choice amounts to the modulus-phase decomposition of 1. L,
the preaveragecdexponential ex;{ -5y (&) 'Y)
‘ P.(y)= (2.18
(&%), =|(e”3), e (2.13 Y et

Unlike the corresponding result for the “bare” exponential, Here, £? is the positive definite covariance matrix that de-
Eqg. (2.4), the modulus-phase decomposition in E.13 fines the Gaussian distribution and whose linear dimension is
leads to a computationally viable result. In particular, theequal to the number of integration variables in E}.9).
modulus, [(e~3),|, tends to be small in nonstationary Although this matrix will often be taken to be diagonal in
phase regions and the phag€x), weakly oscillatory where practical applications, it is both straightforward and useful to
the importance function is significant. retain the generalized quadratic form in E2.18). Since it is

The choice of importance functions given in E§.12  not generally possible to evaluate the necessary Gaussian
smoothly bridges steepest descents and stationary phaggegrals analytically, it is convenient to consider an imple-
situations? If, for example, the imaginary portion of the ac- mentation based on gradient approximations to the various
tion is small, then the important regions\df (x) correspond preaverages. Methods designed to correct for the effects of
to minima of the real part of the action. If, on the other hand,these gradient approximations have been considered else-
the imaginary portion of the action becomes more dominantwhere!® Expanding the complex action through second-
W, (x) increasingly reflects the stationary phase regions obrder, and performing the associated integrafion® obtain
the problem. Because the stationary phase regions of the
problem are no longer a vanishingly small fraction of the 1 . Tew 1
integration volume, the numerator and denominator of Eq. )ex EB (1+e'S'e) "B

i ' e Sy =g S , (219
\(li.r}ils)hunllke those of Eq(2.5), do not automatically tend to ( ) Dellte'S'e)

_ Itis convenient to express Eq2.113 in terms of the  \ hore the matrixe is formally the “square-root” of the ma-
inherent structures of the stationary phase importance funqﬁx &2 [i.e., (€)(£)=(€?)]. The vectorB in Eq. (2.19 is

tion, W, (x), given by Eq.(2.12. Using the methods of Ap- iy ' T
pendix A[c.f. Egs.(A3)—(A6)], we can express the moment

given by matrix product expression

generating function for this distribution as B=¢.S, (2.20
(e™SMelmx) , , o .
2 < s> and the matrices of first and second derivatives are given by
a0 We(x)
o(m)= 5% : (2.14 JS
S <M> (= (2.20
=W/, "
where and
S
J 2AXW,(X) (S m=— (2.22
= TIW, () (219 P

The ratioT', represents the fractional statistical weight of '€SPectively. Combining Eqd2.12) and (2.19—~(2.22 we
inherent structurer. Since Eq.(2.14 is a ratio, we can fur- ©OPtain an approximation to the stationary phase importance
ther factor out a common inherent structure weight from botHunction, W;(x), in terms of the action and its first and sec-

the numerator and denominator. Denoting this common st2nd derivatives. Using methods adapted from semiclassical
tistical weight ad';, we have collision theory?® one can assign the proper branch of the

square root appearing in ER.19 from the phases of the

(e SWeglmxy eigenvalues of the complex matrix that appears in the deter-
g 7a< W> minant of Eq.(2.19. Examining Eq.(2.19 in detail, we see
b(m)= W (2.16 that preaveraging process acts as a generalized “band-pass
(e Sy, ’ filter” that modifies the original integrand only slightly in
20; Ya W, (x) W near stationary phase regions, but effectively damps it to zero
« elsewhere.
wherey, is given by Conventional stationary phase expressions can be recov-

ered from Eq.(2.14 by expanding the gradient approxima-
r, tion to the stationary phase importance functiohtained by
Yo, (217 combining Eqs(2.12 and(2.19] to second-order about the

associated stationary phase point and performing the result-
We now turn to the problem of developing a viable proce-ing integrations analytically. More generally, however, the
dure for evaluating the preaverages that appear infE§..  stationary phase importance function serves as the starting
We assume, for simplicity, that these involve a normalizedpoint for refinable, stochastic approach to the complex
Gaussian distribution of the form quadrature problem.
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FIG. 3. Plot of the real part of the second-order gradient approximation to
FIG. 1. Plot of the real part o&~S*Y for the Airy action, Eq.(2.23, (t (e~ S)_for the Airy action. Results are shown for — 16, £ =0.38.
=-16).

ent approximations to the importance function, shown in Fig.

It is useful to illustrate the application of the stationary 2 as a function of the preaveraging length scaledisplay
phase Monte Carlo method with a simple, one-dimensionalhe characteristic band-pass nature of the importance func-
example. For simplicity, we assume that the “action” is tion. As the parametérincreases toward zero and ultimately
given by becomes positive, the stationary phase points coalesce and
eventually become complex. Reflecting this behavior, the
X—+tx (2.23 corresponding inherent structures\Wf (x) merge, and, as
3 ’ becomes positive, are strongly attenuated. As will be dis-

wheret corresponds to &eal) controllable parameter. Using cussed more fully in Sec. II B, the sharpness of the inherent
standard special function definitions, the moment generatingtructures ofW,(x) is a function of the preaveraging length

function for this action specified by E@2.1) is given ana- scale,e. In gen.eraliterms., maximum compression of the im.—
portance function is achieved when the filter length scale is

3
S(x,t)=—i

lytically b
Y il _ comparable to the natural width of the corresponding station-
()= Ai(t+7) (224 &Y phase regioff In the case of Fig. 2, this corresponds to
IO ' a choice ofe =0.38.

Figure 3 shows the real portion of the preaveraged com-

whereAi(t) is the familiar Airy function? _ o) .
The stationary phase preaverages and importance funB—IeX exponenual_, F{zée_ 2], again for the case whe_lte
=—16. Comparing Figs. 1 and 3, we see that stationary

tions required for a numerical treatment based on gradient e I g
level stationary phase filtering methods are obtained by com[—)h"’lse filtering has suppresse(_j the trqublgsgme oscﬂlgu_ons n
bining Egs.(2.19—(2.23 and (2.12. Figure 1 displays the f[he problem_, thereby dramatically simplifying the Qnglnal

real portion of the “bare” complex exponential, g 9], integrand. Figure 4 compares the moment generating func-
for the case where=—16. For negative values of the pa- tions obtained using various preaveraging length scales with

rametert, there are two real-valued stationary phase point the exact analytic result obtained from Ef.24. The preav-

x=+ ,—t. Rapid oscillations, evident in Fig. 1 except in the craged integrandgct. Eq. (2.19] are sufficiently well be-

vicinity of the stationary phase regions, make the direct nu—g‘we_d tTat_ tthe rets_‘ultsEin ; Ifl 4 C.Etil? tim:j V\(/jere(ejproducgd |
merical integration of Eq2.1) difficult. Second-order gradi- y simply integrating Eq(2.113 with a standard numerica

0.8+
=
QO.G = E
vw é
30.4- =
0.2+ I
L ~ i 1 t L : I i
0 Ny oy 40 5 10 15 20
-8 -6 -4 -2 0 2 4 6 8 n
X

FIG. 4. Plot of the real part of the second-order gradient approximation to
FIG. 2. Second-order gradient result for the stationary phase importancthe moment generating functios(»,t=—16), for the Airy action. Results
function, W,(x,t), for the Airy action. Plots correspond tce for £=(0.08,0.38,0.68) were obtained by integrating Ej9) using direct
=(0.08,0.38,0.68). All results correspondtte —16. Note the variation of = quadrature methods. Only one curve is visible because, as discussed in the
the dispersion about the stationary phase regions with filter length scale. text, the second-order results are exact for this example.
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package such as Mathematica. More generally, as discussed £

in Sec. lll, such results will be obtained from Monte Carlo 1
estimates of the integrals involved. We see from Fig. 4 that €
the second-order gradient results are quite good. They are, in 2
fact, exactfor this example. This somewhat surprising result £
is a consequence of the cubic nature of the Airy acfigq. 3
(2.23]. While the second-order gradient treatments of the £ O o—ro—re—rP—r@
preaverages in the numerator and denominator of 139 4
are separately approximate, each term differs from the corre- €
sponding exact value by a common, multiplicative factor. >
This cancellation of errors does not hold for E&.11b g
where different preaveraging distributions for numerator and 6

denominator are involved. FIG. 5. Schematic illustration of the stationary tempering method. In this
. . approach, the control parameter that governs the sparseness of the associated
B. Stationary tempering probability distribution is the stationary phase filter length scaldn the

As summarized in the preceding section, the Stationar?hort segment depicted in the illustration, the _simulation corresponding to
phase Monte Carlo method addresses two of the central iS|lter length scales, does not undergo a tempering exchange attempt.
sues associated with the application of stochastic quadrature
techniques to complex averages. The method suppresses
troublesome phase oscillations, and, in the process, providgswalking and parallel tempering techniques are based on
a natural importance function. There is, however, a Faustiathis general strategy 1
element to these developments. As is apparent in Fig. 2, the Sparse sampling methods offer a practical way to ad-
importance function produced by the preaveraging procesdress the sampling difficulties associated with the stationary
can be sparse in nature. That is, there is no guarantee that taBase Monte Carlo method. As suggested by Fig. 2, a natural
inherent structures of the stationary phase importance fun€ontrol parameter in such applications is the length-scale of
tion are connected. Under such circumstances specializéfe filtering process rather than the physical temperature. In
methods are required in order to assure a valid statisticdfid- 5 We present a schematic outline of a “stationary tem-
sampling’ pering" apprqach based on a combination of pa}rallel temper-
Sparse sampling problems arise in a number of familiai9 and stationary phase Monte Carlo techniques. In this
contexts, the most common of which are perhaps the “raré€thod, paraliel tempering simulations are performed on an
event” problems associated with thermally activated prc)_ensemb'le of |mportanpe distributions corresp'ondlng to. vari-
cesses. At low temperatures, the equilibrium configurationaP!S Stationary phase filter length-scales. As discussed in Sec.
distributions for general physical systems typically cluster!! A if the filtering process involved is implemented exactly,

about isolated inherent structures that correspond to the var]ihen the reSL_JIts calculated via s_tatlongry phase Monte Carlo
are formally independent of choice of filter length scale. The

ous local minima of the potential energy surface of the sys, ecessary statistical errors in the calculated results, on the
tem. Unless special care is exercised, conventional samplin y . : '
her hand, vary with the sparse sampling control parameter.

h ically fail le th i istribution, in- .
methods typically fail to sample the entire distribution, in We are thus free to select from our sparse sampling compu-

%ecidnibjg:r?é?g d;:ggr?d ;::] dthoevseerc:)snciliiteds’ ;cg:l Sgr':'rl?r?'ational ensemble an “optimal” filter length scale based on a
q 9 gsp PiNGariance minimization criteria. The required statistical errors

. . . -14
difficulties have been d|scussgd els_ewh‘b'?él. o _can be estimated in practice by examining the numerical
A general strategy for dealing with sparse distributions is

. o L scatter in various elements within the stationary tempering
to create a computational ensemble that is “richer” in the

i i ensemble. In situations where the filtering methods involved
space of trial moves than are conventional Monte Carlo samy o implemented in an approximate gradient man(er

pling procedures. A way of doing this is combine results,ihoyt “corrections”, the calculated results are no longer
from several simulations, each corresponding to a differenfaranteed to be exact. In such circumstances, the most re-
value of a control parameter such as the temperature. AsSUfiap|e results will be those for which the underlying gradient
ing that the control parameter involved influences the conypproximation is the most accuraiee., results obtained us-
nectedness of the relevant probability d|str|but|on,_one thefhg the smallest, computationally viable filter length scales
performs random walks for each of the computational elex practical indicator of the adequacy of gradient-based meth-
ments involved, using configurations selected from the comp(s is thus the degree to which there exists a length-scale
putational ensemble to supplement conventional trial movesndependent “plateau value” in the computed results at
While the details of the various steps differ depending on themaller filter length scales. Numerical applications of the sta-
particular sparse sampling procedure involved, the essentilbnary tempering approach will be discussed in Sec. Ill.
result is that if the acceptance—rejection logic of the process We close this section by making two points concerning
is properly designed and if the computational ensemble ishe nature of the importance functiow, (x), defined by Eq.
suitably chosen, then the approach produces a proper sarf2.12). First, it will prove useful to consider the auxiliary
pling for all elements in the ensemble, including those formoment generating function associated VWkh(x), ¢w( ),
which the associated probability densities are sparse. Bothy
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FIG. 6. Plots of the real part of the auxiliary moment generating function,FIG. 8. Real portion of the moment generating function for the Airy action
dw(nt=—16), defined by Eq.(2.25 for the Airy action for & (t=—16). Solid line(smooth is exact resulfEg. (2.24)]. Plotting symbols

=(0.08,0.38,0.68). As discussed in the text, this function provides a prob&orrespond to results of second-order gradient stationary tempering calcula-

of the structure of the stationary phase importance funcié(x,t). tions for variety of fiI;er Iength.scales. Results for the differentalues '
agree because, as discussed in the text, the second-order results for this

particular example are exact. Stationary tempering calculations were per-
formed using of the order of Z0Mlonte Carlo points. The erratic solid line
(2.25 corresponds to a conventional Monte Carlo simulatier=0) with 1P

TW,(x)e'” *dx
¢W( 77) - st(x)dx points. Error bars for all tempering calculations are smaller than the corre-
sponding plotting symbols.

This moment generating function contains information that is
useful in optimizing the performance of stationary tempering
techniques. Specifically, the “sharpness” of the stationarynearest local maxima of the distribution. As discussed in Ap-
phase filters in the stationary tempering ensemble can bgendix A, it is useful to consider the inherent structure prob-
quantified by examining the large argument behavior of théem from an alternative point of view. In applied mathemat-
corresponding auxiliary moment generating function,ics, a common problem involves the reconstruction of a
éw(m). The narrower the filter is about a particular station-probability distribution from a proper statistical sampling of
ary phase region, the longer-lived will be that inherent structhat distribution. In this “probabilistic clustering” problef,
ture’s contribution to the associated moment generating funne is attempting to identify within the large statistical data
tion, ¢\ (7). Comparison of Figs. 2, 6, and 7 illustrates this set originally provided a few, meaningful parameters that
correlation for the Airy example. The asymptotic behavior ofcharacterize the underlying probability distribution. So
¢ thus provides us with a second means for monitoring thephrased, this data compression task iglightly) modified
numerical performance of the stationary phase temperingersion of the inherent structure problem. Stationary temper-
method, the first being the length-scale dependence of theg methods, in conjunction with probabilistic clustering
statistical variance in the computed results. techniques, thus provide an alternate way to probe the inher-

The second point we wish to make concerns the inherenént structures of the stationary phase importance function,
structure analysis of the stationary phase importance funop/,(x).
tion, W,(x). In the Stillinger—Weber approaéH,inherent
structures of a given dlstr|but|qn are generated. by dlrectm_ NUMERICAL EXAMPLES
space quench procedures. The integration domain is decom-
posed into cells by assigning each point in the volume to the In the present section, we wish to illustrate the formal
developments of Sec. Il with a number of applications. These
include both simple, pedagogical results and results from
more physically relevant, dynamical path-integration appli-
cations. Unless noted otherwise, all results utilize an uncor-
rected, second-order implementation of the stationary tem-
pering approach.

We begin by returning to the simple, Airy action ex-
ample discussed in Sec. Il A. As illustrated by Figs. 1-4, the
stationary phase filtering approach dramatically simplifies

0.67
0.57
0‘47
0.3-

0.2+ - . : .
] the construction of the generalized moment generating func-
0.1 y tion and produces excellefiin this case exagtresults. As
P P ] was emphasized in Sec. Il A, however, the results displayed

I TN N ST B S TN WS T N M MY
0 01 02 03 04 05 06 07 08 in Fig. 4 were generated by directly integrating E8.5)
with standard quadrature methods, not by statistical means. It
FIG. 7. Plot of the second-order inherent cumulant for the second-orders thus important to demonstra‘te that Stationary tempering

gradient approximation to the stationary phase importance function . . i}
W,(x,t), for the Airy action as a function of filter length-scale, The methods can reliably produce these results. Figure 8 com

minimum, which corresponds to the most highly compressed importanc®ares ¢(7) C§|CU|a_ted with the stationary tempering ap-
function, corresponds te=0.38. proach described in Sec. Il and the exact results of Eqg.
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(2.20. The numerical calculations were performed using on £ ol I
the order of 16 Monte Carlo points. The tempering en- g 5
semble utilized in these calculations involved seven filter ~\
parameters distributed uniformly over the closed interval i — I
[0.01, 0.43. As can be seen in Fig. 2, the tempering en- of e=0.13 4
. . . . L — &=0.. 4
semble thus includes importance functions ranging from T I R T wwr R TR T
sharply defined to diffuse. The optimal filter parameter, de- (b) 45 -40 -35 -30 _2511_20 15 10 50

termined on the basis of the sharpness of the importance
function, W,(x), about the stationary phase regidn Fig.  FIG. 11. Real part of second-order gradient approximation to the moment
7) and on the rate of decay of auxiliary moment generatin@enerat'ing function for modified Airy action. The plot is broken into two
function c. Fig. 6, (). IS approximately =0.38. Trial {21 161 b iberd e pong s, Fesle o e comovts
moves that involve the exchange of configurations between Rote that the resuits are independent of filter length scaletesds to zero.
single, randomly selected pair of tempering distributionsThe number of stationary phase regions involved for the various valugs of
with different filter parameters were attempted after everycan be determined from Fig. 9.

ten Monte Carlo steps. We see from Fig. 8 that the results of
stationary tempering are excellent. Of particular note is the
way in which the method “uniformly” treats the transition X
from oscillatory to damped behavidre., the coalescence of S(X,t)=—1i| = +tsin(x)
the real-valued stationary phase pojint/e also see the dra- 3
matic increase in noise as the stationary phase filtering ifigure 9 plots the imaginary part of the derivative of the
turned off, a reminder of how ill-suited conventional Monte action as a function of position for various values;pandt.

Carlo methods are for the complex quadrature problem.  The number of stationary phase poifitgros of the deriva-

It is important to demonstrate that the stationary tempertive) varies depending on the parameter values. These sta-
ing approach is not limited to applications where the stationtionary phase regions are visible in Fig. 10 as the inherent
ary phase structure of the problem is simple. To this end, weatructures of the importance function for this modified ac-
consider a “modified” Airy action of the form tion.

Moment generating functions for the modified Airy ac-
tion, produced by directly integrating ER.9 for various
filter length scales using Mathematica, are displayed in Fig.
11. Unlike the gradient results for the Airy action, the calcu-
lated values for the modified Airy example are not exact and
a dependence on the filter parameter can be seen at larger
length scales. As illustrated in Fig. 11, however, the results
for smaller filter length scales approach a common, limiting
value, an indication that the corresponding gradient results
are reliable. We note that for larger length scales, where the
uncorrected gradient results are less accurate, the errors ap-
pear to be only in the amplitude of the calculated results. The
O % 6 4 2 0 2 46 510 frequency dependence, on the other hand, appears to be

X faithfully reproduced. Further work will be required to estab-
FIG. 10. Plots of the second-order gradient stationary phase importancIéSh the degree of generality of this beha,VIor' .
function, W, (x,t), for modified Airy action;t=—36, n=0, £=0.01, 0.05, Figure 12 compares moment generating functions for the
0.10, 0.20. Note the sparseness of the distributions at largalues. modified Airy action obtained using stationary tempering

3
: (3.9
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pling methods it becomes extremely difficult to separate the
effects of sampling from those of the gradient implementa-
tion of the stationary phase Monte Carlo approach.

Finally, we wish to illustrate the application of the sta-
tionary tempering method to a problem that is representative
of those that arise in the context of dynamical path integra-
tion. To this end, we examine the calculation of the moment
generating function associated with the complex action for a
particle of mass m moving in a one-dimensional Lennard-
Jones cagé In the Fourier path integral languadf&the rel-

PN I R TR M SR SR N " . . .
4540 35 30 25 20 <15 10 5 0 evant portion of the action for the problem is
n

S(a,Bc) =S 185/208+ BV, (3.2

FIG. 12. Comparison of stationary tempering results with corresponding

results of Fig. 11. See Fig. 13 for an illustration of the importance of sparsavhere 8., is the complex temperature
sampling. Error bars for both tempering results presented average less than

0.2 over the range of; values displayed. B t

ﬁc=§+i %, (33)
methods to the quadrature results of Fig. 11. The temperin% is the (reciproca) temperature
ensemble consisted of six filter length scales distributed

evenly in the range 0f0.01, 0.3]. Of the order of 10 1

Monte Carlo points were utilized in all calculations. Ran- B= kB_T'

dom, pairwise tempering exchanges were attempted every 10

Monte Carlo moves. The agreement between the stationaiyis the physical time, and is given by
tempering and quadrature results is excellent. In Fig. 13 we 2842

present moment generating function results produced using ﬁ:%_
stationary phase filteringvithout tempering While correct mmk
(for the present exampleat smaller length scales, nontem- |, terms of the Fourier coefficient§a,!, the pathx(u) is
pering results are generally unreliable. In particular, we Se§iven by

in Fig. 13 that the results computed at larger filter length

scales are qualitatively incorrect. The reason for this break- Kmax

down is apparent in Fig. 10. At smaller filter length scales, X(U):X+(X'—X)U+k21 ay sin(kmu),
the stationary phase importance function remains sufficiently -

connected that conventional sampling is, for this examplewherex and x’ are the values of the path at=0 andu
sufficient. As the stationary phase filtering becomes more- 1 respectively. In E(3.6) V represents the average of the
aggressive, however, the stationary phase importance fungotential energy along the patk(u)

tion becomes more disconnected. Under such conditions
conventional techniques essentially become “locked” in one
of the many inherent structures and the numerical results
produced become unreliable. In the present example, this
breakdown of conventional methods is evident. In generalThe degree of detail in the path is controlled by the number

however, this is not the case. Moreover, without sparse sanff path variablesky,, utilized in the calculation, a number
that will vary depending on the system as well as on the time

and temperature.

Figure 14 displays moment generating functions for the
cage problem calculated with tligecond-order gradiensta-
tionary tempering method. These results correspond to
Lennard-Jones interaction parameters representative of mo-
lecular hydrogeff (e ;/kg=34.2K,0;,=2.96 A). Four
Fourier path variables are included in all calculations and the
one-dimensional path averages of the potential energy, Eq.
(3.7), are evaluated using 32 point Gauss quadrature. Results
in the panelga)—(c) correspond the physical times of 0, 100,
and 200 fs, respectively. The temperature in all cases is 300
K. These simulations utilize filter parameters based on re-
sults suggested by Fourier path integral analysis of the
simple harmonic oscillator. That is, the stationary phase filter
Parameter for thé&th Fourier path variable is assumed to be
proportional to the natural width of the corresponding har-
monic path variable. Specifically, , is taken to be

(3.9

(3.5

(3.6

_ 1
sz duV(x(u)). (3.7
0

Re[o(m)]

FIG. 13. As in Fig. 12, butvithoutparallel tempering. Note the breakdown
of the Monte Carlo results at larger filter length scales where the stationar
phase importance functioly,(x,t), is sparsecf. Fig. 10. Results in both
Figs. 12 and 13 utilized the same number7)16f Monte Carlo points.
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in this section, the calculated results in Fig. 14 cannot be
readily checked by comparison with separately available
analytic or exact numerical values. As discussed in Sec. ll,
however, a practical indicator of the adequacy of gradient-
based methods is the degree to which there exists a length-
scale independent “plateau value” in the computed results at
smaller filter length scales. In the present calculations, nu-
merical results obtained using,=0.2 ande,=0.4 are sta-
b) tistically indistinguishable, an indication that the gradient-
[ | based results shown in Fig. 14 are reliable.
(R Y ] Finally, as discussed in Appendix A, the temporal evolu-
P s Y Lt tion of the moment generating function reflects the low-
g order, dynamical inherent structures of the problem. Proba-
bilistic clustering methods applied to the stationary
tempering results thus provide a means for both revealing
T ) and characterizing the dynamical inherent structures that are
r 1 associated with the quantum dynamics. Such analyses and
more extensive dynamical path-integral applications will be
considered elsewhere.

Re[o(M)]
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. Re[o(n)]
=
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IV. DISCUSSION AND SUMMARY

We have examined numerical methods for evaluating
n complex generalizations of conventional equilibrium aver-
ages. Such complex averages arise naturally in a number of
FIG. 14. Real part of moment generating function for LJ cage problem.contexts, including semiclassical and path-integral dynami-
System parameters correspond to those of molecular hydrogertke  cal applications. Unfortunately, such problems typically lack

o]
[9)]
—
[e]
H_
W
\]
(@)

1+ |
T

|Bc fiwg z
k

o ST L 00K Pl e 1t 5 S0 the natural “mportance function” structure of their equiib-
Fourier componenta, , a,, as, a,, respectively. Four Fourier components UM counterparts. Instead of a positive Boltzmann distribu-
were utilized in the paths for all calculations. Pan@s-(c) correspond to  tion, the “weights” in such generalized averages are
t:(O—ZOQ) fs, respectively. Results plotteql correspondgte 0.4 [cf. Eq. Comp|ex_\/a|ued Objects that prevent the direct app"ca’[ion of
(3.8]. While not shown(for reasons of clarity the calculated results ob- v entional stochastic quadrature techniques.

tained usings(=0.2 are statistically indistinguishable from those shown in . . .

Fig. 14. Previous efforts have shown that stationary phase filter-
ing technique¥ are useful in confronting the immediate
problems associated with the complex quadrature problem.

12 Based on the invariance of the underlying complex average
8k=80( |o§|/ ) , (3.8 to a general class of “preaveraging” operations, these meth-
ods suppress troublesome phase oscillations and produce a

whereg is an overall scale parameterﬁ is the free-particle  natural stationary-phase importance function by means of a

Gaussian variancfEg. (3.5, and wg is an adjustable con- numerical “filtering” process. Such self-adaptive filtering

stant, taken here to &% wy=1]. In the simulations for both techniques permit the rigorous reformulation of the original

t=0 and 100 fs, the tempering ensemble utilized three valeomplex average in Monte Carlo form. In the stationary
ues ofegq (0.2, 0.4, 0.8 while the results foit=200 fs uti-  phase importance functions so produced, however, the statis-
lized four filter length scale).2, 0.4, 0.8, 1.6 Of the order tically important regions of the integration volume are gen-
of 2x10° Monte Carlo points were utilized in all calcula- erally not connected in a simple manner. Stationary phase
tions. The frequency of pairwise tempering exchange atfiltering methods, by themselves, thus exchange one set of
tempts was one in every ten Monte Carlo steps. difficulties (oscillations and lack of importance functjofor

The dynamics of the cage problem are reflected in thanother(sparse sampling

time evolution of the moment generating function seen in  In the present paper we have introduced a “stationary

Fig. 14. At shorter timegpanel(a)], the moment generating tempering” technique that combines stationary phase

function viewed in various directions is essentially gaussiarfiltering'® and parallel tempering methods:*® The result is

in nature. At longer times, however, damped oscillatory be-an approach that is designed to cope with the twin issues of

havior is evident. Using the stationary tempering method, wehase oscillations and sparse sampling that arise in the treat-

have been able to extend calculations such as those in Fig. ent of generalized complex averages. Here the length-scale
to more than 1 ps for this system at 300 K, times for whichof the stationary-phase filtering proce@s opposed to the

the ratio of the physical to thermal tim&(84/2), exceeds system temperatureserves as the control parameter for the

80. It should be noted that while the complex-temperaturereation of a ensemble in which the computational elements

matrix elements of one-dimensional cage problem are readilgxhibit varying degrees of connectedness.

calculable by a variety of means, the moment generating We have examined a number of nhumerical applications

functions in Fig. 14 are not. Thus, unlike previous examplef the parallel tempering approach to explore the basic ap-
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proach and to establish its utility. Our results for illustrative Expanding thdocal averages in EqA3) [as opposed to the

examples, including prototypical dynamical path integral ap-global average in Eq(A1)] in cumulant form gives

plications, have indicated that the stationary tempering (im

method provides an effective means for addressing the com- ¢, () = > Faexp[ Z W«( 7-X) ™o !, (AB)

plex quadrature problem. Our results have also suggested @ m=1 1k

practical methods for optimizing the numerical efficiency of where(( 5 x)™), represents thenth-order “inherent cumu-

the stationary tempering method. These include methodgnt” (j.e., themth-order cumulant associated with ta¢h

based on the minimization of the statistical variance of th@nnerent structure of the distribution, W(x). Unlike the

calculation with respect to the filter length-scale and on theynajogous quantities in E¢A2), the inherent cumulants de-

asymptotic behavior of the moment generating function asfined by Eq.(A6) are “local” quantities that reflect directly

sociated with the stationary-phase importance function.  the properties of the inherent structures of the distribution,

W(X).
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APPENDIX A: INHERENT STRUCTURE, CUMULANTS and has received considerable attenffon.

AND PROBABILISTIC CLUSTERING Our point in emphasizing the links between sparse sam-

. ) ) N pling, probabilistic clustering and inherent structure methods
Given a moment generating function of a specified probys that advances in one topic contain implications for the

ability density, W(x) others. In particular, our increased ability to sample sparse
TW(x)e'7*dx distributions appears to offer an alternative approach to the
dwl 77)=W, (A1)  inherent structure decomposition problem. EquatitG),

for example, expresses the moment generating function in a

conventional cumulants are definedby crystallographic-like manner in terms of parameters that
(i)m characterize the strength, position, dispersion, etc. of the in-

Pl n)zexp{ > — (- x)") ¢ (A2)  herent structures of the probability density. This structural
m=1 M analogy is relevant because we have a practical way of

While convenient, such cumulants are “global” properties “measuring” ¢y,(7). Although computational as opposed to
that do not directly reflect the “inherent structure” of the experimental, we can estimate E#\6) with Monte Carlo

underlying probability distribution. methods. Such an estimaigy, n(7), defined by
Following Stillinger and Webet we can decompose LN
the integration domain in EqA1) into nonoverlapping do- dwn(m)= N E gl 7 *n, (A7)
' n=1

mains by assigning each point in the integration volume to

one of the local maxima of the probability distribution provides us with a refinable means of evaluatifig( ) nu-
through suitably designed quench procedures. merically in terms of configurationg,x,}, which can, in

Alternatively, we can perform a Wigner—Seitz decompo-yym, pe produced using the sparse sampling methods de-
sition based on the local maxima of the probability distribu-gcriped in Sec. II. Viewed from this perspective, performing
tion. However, we choose to define them, the average in Eyp inherent structure decomposition of the probability distri-
(A1) can be written in terms of the “inherent structures” of ption W(x) amounts to forcing the ansatz fdr,(7), Eq.

the probability distribution as (A6), and the “measured” result, defined by EEA7), to
_ “agree.” This sparse sampling approach to inherent structure
pw(m) =2 T (%), (A3)  analysis will be discussed in greater detail elsewhere.
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h di f . | iobt. i . b B. J. Berng(Plenum, New York, 1977
whose corresponding fractional weight, , Is given by 5J. P. Valleau and S. G. Whittington, iModern Theoretical Chemistry
J LAXW(X) edited by B. J. BernéPlenum, New York, 1977
:“—_ (A5) F. H. Stillinger and T. A. Weber, Phys. Rev.28, 2408(1983.
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