
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Computer Science and Statistics Faculty
Publications Computer Science and Statistics

2019

Clustered Hierarchical Entropy-Scaling Search of Astronomical Clustered Hierarchical Entropy-Scaling Search of Astronomical

and Biological Data and Biological Data

Najib Ishaq
University of Rhode Island

George Student
University of Rhode Island

Noah M. Daniels
University of Rhode Island, noah_daniels@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/cs_facpubs

Citation/Publisher Attribution Citation/Publisher Attribution
N. Ishaq, G. Student and N. M. Daniels, "Clustered Hierarchical Entropy-Scaling Search of Astronomical
and Biological Data," 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA,
2019, pp. 780-789, doi: 10.1109/BigData47090.2019.9005688.
Available at: http://dx.doi.org/10.1109/BigData47090.2019.9005688

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Computer
Science and Statistics Faculty Publications by an authorized administrator of DigitalCommons@URI. For more
information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact
the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/cs_facpubs
https://digitalcommons.uri.edu/cs_facpubs
https://digitalcommons.uri.edu/cs
https://digitalcommons.uri.edu/cs_facpubs?utm_source=digitalcommons.uri.edu%2Fcs_facpubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/BigData47090.2019.9005688
mailto:digitalcommons-group@uri.edu

Clustered Hierarchical Entropy-Scaling Search of Astronomical and Biological Clustered Hierarchical Entropy-Scaling Search of Astronomical and Biological
Data Data

The University of Rhode Island Faculty have made this article openly available. The University of Rhode Island Faculty have made this article openly available.
Please let us knowPlease let us know how Open Access to this research benefits you. how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy
Articles, as set forth in our Terms of Use.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cs_facpubs/17

http://web.uri.edu/library-digital-initiatives/open-access-online-form/
https://digitalcommons.uri.edu/oa_policy_terms.html
https://digitalcommons.uri.edu/cs_facpubs/17

Clustered Hierarchical Entropy-Scaling Search of Astronomical and Biological Data

Najib Ishaq
Computer Science and Statistics

University of Rhode Island
Kingston, RI 02881

najib ishaq@zoho.com

George Student
Computer Science and Statistics

University of Rhode Island
Kingston, RI 02881

Noah M. Daniels
Computer Science and Statistics

University of Rhode Island
Kingston, RI 02881

noah daniels@uri.edu

Abstract—Both astronomy and biology are experiencing ex-
plosive growth of data, resulting in a “big data” problem
that stands in the way of a “big data” opportunity for dis-
covery. One common question asked of such data is that of
approximate search (ρ−nearest neighbors search). We present
a hierarchical search algorithm for such data sets that takes
advantage of particular geometric properties apparent in both
astronomical and biological data sets, namely the metric
entropy and fractal dimensionality of the data. We present
CHESS (Clustered Hierarchical Entropy-Scaling Search), a
search tool with virtually no loss in specificity or sensitivity,
demonstrating a 13.6× speedup over linear search on the Sloan
Digital Sky Survey’s APOGEE data set and a 68× speedup
on the GreenGenes 16S metagenomic data set, as well as
asymptotically fewer distance comparisons on APOGEE when
compared to the FALCONN locality-sensitive hashing library.
CHESS demonstrates an asymptotic complexity not directly
dependent on data set size, and is in practice at least an
order of magnitude faster than linear search by performing
fewer distance comparisons. Unlike locality-sensitive hashing
approaches, CHESS can work with any user-defined distance
function. CHESS also allows for implicit data compression,
which we demonstrate on the APOGEE data set. We also
discuss an extension allowing for efficient k-nearest neighbors
search.

1. Introduction

Astronomers have learned much of what they know
about celestial objects by studying their electromagnetic
spectra. By attaching an instrument known as a spectrograph
to a telescope, astronomers are able to separate the incoming
light by its wavelength, generating a fingerprint of the
object being observed. We call this fingerprint a spectrum.
Spectra can reveal information about characteristics of ce-
lestial objects including chemical composition, luminosity,
and temperature.

The amount of astronomical data is massive and has
been growing rapidly in recent years due to improved
storage capacity and scientific instruments [1]. The rate of
growth of this data is outpacing the computational improve-
ments from Moore’s Law [2]. As a result, better algorithms

are required to keep up with this growth of data. This
has prompted the emergence of astroinformatics, a new
discipline at the intersection of astronomy and computer
science [2].

The Sloan Digital Sky Survey (SDSS) [3], the first
in a series of survey telescopes, is designed to catalog
vast numbers of celestial objects. SDSS comprises several
projects, including the Apache Point Observatory Galactic
Evolution Experiment (APOGEE) [4], which by 2020 will
have cataloged over 263,000 stars in the Milky Way galaxy.
SDSS will be succeeded by the Large Synoptic Survey
Telescope (LSST) [5] which is expected to catalog 37 billion
stars and galaxies over ten years, producing 15 terabytes of
data every night. Other large astronomical data sets are be-
coming available, such as the recent release of the National
Optical Astronomy Observatory’s All-Sky Survey [6], which
contains 2.9 billion unique objects.

Prior work by Yu, et al. demonstrated that a flat clus-
tering approach could accelerate approximate search on
biological and biochemical data sets [7]. As the growth of
biological data has also outpaced Moore’s law [8], we also
build on these results by demonstrating the applicability
of CHESS to a biological data set. Metagenomics is the
study of entire microbial communities in environments such
as seawater, soil, or the human gut. The compositional
and functional analysis of the human gut microbiome is
essential in the study of human health and disease [9], [10],
[11]. One common approach to identifying what species or
subspecies of bacteria are present is 16S ribosomal gene am-
plicon sequencing [12]. The ribosome, essential to all known
life, comprises both protein and RNA elements; the 16th
component of the small ribosomal subunit (16S) is highly
conserved among bacteria, but has enough variation to make
it a useful “fingerprint” to identify bacterial species [13].
The GreenGenes project [14] provides a multiple-sequence-
alignment of over one million bacterial 16S sequences.

Recent approaches to dealing with the exponential
growth of data have included locality-sensitive hashing [15],
clever text indices such as FM Index [16], and a recent paper
introducing “entropy-scaling search” for large biological
data sets [7]. The key contribution of [7] is an asymptotic
complexity for ρ-nearest neighbors search. This asymptotic
complexity is given by:

978-1-5386-5541-2/18/$31.00 c©2018 IEEE

O

(
k︸︷︷︸

metric entropy

+

output size︷ ︸︸ ︷
|BD(q, r)|

(
r + 2rc
r

)d

︸ ︷︷ ︸
scaling factor

)
(1)

where k denotes the metric entropy of the data at cluster
radius rc (equivalently, the number of clusters), BD(q, r)
denotes the number of data points in a ball of radius r
around a query q (i.e. the output size of the search), and d
denotes the fractal dimension in the range from query radius
to cluster radius. Notably, n (the size of the database) does
not appear in the complexity (though BD(q, r) is unlikely to
be independent of the size and density of the data). Entropy-
scaling search demonstrates particular effectiveness when
data appear confined to a lower-dimensional manifold of a
high-dimensional space, as hypothesized in [7] and further
explored in [8].

The tasks of searching, analyzing, and storing the astro-
nomical and biological data discussed above pose a true “big
data” problem. Approximate search is useful for “guilt by
association” to inexact matches that have been well studied,
and is also a building block for the ubiquitous k-nearest
neighbors (KNN) algorithm [17]. In this paper, we focus
on the specific problem of approximate search (ρ-nearest
neighbors search). Building on the concept of “entropy-
scaling search” as applied to biological and biochemical
data [7], we extend entropy-scaling ρ-nearest neighbors
search to a hierarchical clustering approach, with similarities
to binary search, called CHESS (Clustered Hierarchical
Entropy-Scaling Search). In doing so, we gain an expected
logarithmic improvement in the coarse search, bringing the k
term to log2 k. We demonstrate this approach on the Green-
Genes biological data set and the Sloan Digital Sky Survey’s
APOGEE astronomical data set. It should be noted CHESS
is applicable to any problem with a well-defined distance
function. In the case of astronomical data, we compare the
performance of CHESS to FALCONN [18], a state-of-the-
art locality sensitive hashing library. CHESS also allows for
lossless compression for storage and transmission of data.

Given the rise of “big data,” there has been an interest
in sublinear-time algorithms [15], [19], [20]. With CHESS,
we demonstrate a search algorithm whose asymptotic com-
plexity is not a function of data set size but rather geomet-
ric properties of the data. CHESS’s advantages over naı̈ve
search will grow as data sets grow in size. We demonstrate
that CHESS is an order-of-magnitude (or more) faster than
naı̈ve search.

2. Methods

In this manuscript, we are primarily concerned with
the problem of ρ-nearest neighbors search in a finite-
dimensional (typically high-dimensional) vector space.

For our purposes, a data point is one datum or obser-
vation; it might represent the electromagnetic spectrum of a
star, the entire genome of an organism, or any other entity
on which a distance function is defined.

A distance function is any function d : D × D → R+,
where D is the set of data points. A distance function may
also map to a subset of the nonnegative real numbers (for
instance, cosine distance). A distance function that obeys
the triangle inequality is also a distance metric. Sensible
distance functions are chosen for the data: for spectral
data, both Euclidean (L2) and cosine distance are used;
for biological sequence data, Levenshtein edit distance or
Hamming distance make sense [21].

We distinguish the embedding dimension from another
concept, the discrete fractal dimension of the data at some
particular length scale. We define local fractal dimension
as:

log2

(
|BD(q, r1)|
|BD(q, r2)|

)
(2)

where BD(q, r) is the set of points contained in a ball
on the dataset D of radius r centered on a point q; here,
fractal dimension is computed for a radius r1 and a smaller
radius r2 = r1

2
For instance, the SDSS’s APOGEE data are embedded

in R8575
+ (they are nonnegative real-valued vectors of length

8,575) and they do not uniformly occupy that space. This
is due to physical constraints (namely, the laws that govern
stellar fusion and spectral emission lines); as famouly illus-
trated by the Hertzsprung-Russel diagram [22] plotting lumi-
nosity against temperature. The notion of high-dimensional
data constrained to a lower-dimensional manifold is known
as the manifold hypothesis [23].

We define a cluster as a set of points with a center, a
radius, and an approximation of the local fractal dimension.
The center is the geometric median of the set of points in
the cluster, and so is a real data point. The radius is the
maximum distance from the points to the center. The local
fractal dimension is estimated at the cluster radius and half
the cluster radius. Each cluster (unless it is a leaf cluster)
has two child clusters in much the same way as a node in
a binary tree has two child nodes.

We define the metric entropy of a data set under a
hierarchical clustering scheme as a refinement of [7], where
metric entropy for a given cluster radius rc was the number
of clusters of that radius needed to cover all data. Here, we
use a binary, divisive clustering approach, but with early-
stopping criteria; clusters smaller than a certain threshold are
not further split. Since we frame the asymptotic complexity
of search in terms of the number of leaf clusters, the
metric entropy is best thought of in terms of the number of
leaf clusters, which is an emergent property for any given
data set. Divisive clustering is chosen because we want a
hierarchical “walk” of the data during search; determining
an optimal clustering is not the goal.

2.1. Data Sets

2.1.1. Sloan Digital Sky Survey. The Sloan Digital Sky
Survey [3] Apache Point Observatory Galaxy Evolution
Experiment (APOGEE) [4] data set contains near-infrared

Figure 1. T-SNE visualization of the SDSS Apogee data set, using L2 norm
as the distance function.

spectra of approximately 130,000 stellar objects in the Milky
Way galaxy. Each spectral datum describes a star’s flux in
Janskys (1 Jy = 10−26 W ·m−2 ·Hz−1) at each of 8, 575
wavelengths ranging from λ = 1.51 µm to 1.70 µm. Thus,
each datum is a real-valued vector in R8575

+ . These near-
infrared spectra are used by astronomers to achieve a better
understanding of how our galaxy has evolved. The APOGEE
dataset used was downloaded in June 2017 from SDSS Data
Release 12 [24].

Figure 1 shows a t-Stochastic Neighbor Embedding (t-
SNE) [25] visualization of the APOGEE data, where colors
represent leaf clusters of spectra (some colors are reused
due to a limited palette). This visualization suggests support
for the “manifold hypothesis.” Note that while the varia-
tion among spectra appears relatively continuous (there are
few distinct, isolated clusters), there are large regions of
unoccupied space in the reduced-dimension representation.
In contrast, uniformly distributed data, when visualized via
t-SNE, appear as a uniform cloud. This apparent constraint
to a “sheetlike” manifold embedded in the high-dimensional
vector space suggests that the APOGEE data is a reasonable
candidate for CHESS.

Figure 2 shows the mean local fractal dimension of the
APOGEE data at each level of hierarchical clustering, under
the L2 (Euclidean) distance metric. Each plot line represents
a decile of fractal dimension; note that, other than the most
extreme 10% of clusters, virtually all clusters have a local
fractal dimension of less than 2. Figure 3 provides the
same visualization under cosine distance and, once again,
indicates that most clusters have a local fractal dimension
of less than 2.

2.1.2. GreenGenes bacterial genomes. The GreenGenes
project [14] provides a set of 1,027,383 bacterial 16S
sequences. These sequences contain several duplicates so
805,434 unique sequence user used in clustering. Given
a metagenomic sample, a bioinformatician might search

Figure 2. Mean fractal dimension of APOGEE clusters as a function of
depth when clustered based on L2 norm. Each plotline represents a distinct
decile of fractal dimension. Beyond a depth of 56, no clusters are further
divided due to the minimum-cluster-cardinality stopping criteria.

Figure 3. Mean fractal dimension of APOGEE clusters as a function of
depth when clustered based on cosine distance. Each plotline represents a
distinct decile of fractal dimension. Beyond a depth of 66, no clusters are
further divided due to the minimum-cluster-cardinality stopping criteria.

those million-plus sequences for close matches to the 16S
sequences identified in a sample of interest. A typical dis-
tance function here would be edit (Levenshtein) distance
or Hamming distance, which roughly models the insertions,
deletions, and substitutions that happen during the course
of evolution [21]. These sequences are already aligned and,
thus, form sequences of {A,C,G, T,−} (where − repre-
sents a gap corresponding to an insertion or deletion during
the course of evolution). Thanks to the alignment, every
sequence in the set is 7,682 characters long, so Hamming
distance is an appropriate metric.

During the course of evolution, organisms adapt to their
environment by random mutation and the retention of (or se-
lection for) those mutations that are beneficial. In [7], it was
hypothesized that this process could result in the low fractal
dimension and low metric entropy for which entropy-scaling
search is suited. Figure 4 shows a t-SNE visualization of
the GreenGenes dataset under Hamming distance, where
colors indicate the genus of a bacterium (some colors are
reused due to a limited palette). Clearly, these data appear
fundamentally different from the APOGEE data. There are
distinct clusters of species separate from one another, which
tend to be grouped by genus, and the continuity seen in the

Figure 4. T-SNE visualization of the GreenGenes 16S RNA data set, using
Hamming distance.

Figure 5. Mean fractal dimension of GreenGenes clusters as a function of
depth when clustered based on Hamming distance. Each plotline represents
a distinct decile of fractal dimension.

APOGEE data is not present. Like the APOGEE data, entire
regions of the embedding space are unoccupied, suggesting
that CHESS is well-suited to the GreenGenes dataset.

Figure 5 shows the local fractal dimension of the Green-
Genes data at each level of hierarchical clustering under
Hamming distance. Each plot line represents a decile of
fractal dimension; once again, other than the most extreme
10% of clusters, virtually all clusters have a local fractal
dimension of less than 2.

For this study, we used the October 2012 release of
Greengenes, downloaded in April 2019.

2.2. Hierarchical clustering and search

2.2.1. Clustering. Hierarchical clustering lends itself to a
binary search on clusters, followed by one or more “fine”
(linear) searches inside clusters. As such, the k term in the
asymptotic complexity from flat-clustered search becomes
log2 k. However, the fine search term is more difficult to
quantify, as cluster radius is no longer an input param-
eter, but instead an emergent property. Unlike classical
binary search, there are cases (such as the “ball” around a

query crossing into multiple child clusters) where multiple
branches of the binary tree must be searched. However,
under an assumption of low fractal dimension and low
metric entropy, where much of the high-dimensional space
is unoccupied by data, traversing multiple branches of the
tree should be rare. This is demonstrated in Section 3.

Hierarchical clustering follows the procedure outlined in
Algorithm 1.

Algorithm 1 Cluster(data)
Require: maxdepth > 0
Require: minsize > 0
d⇐ 0
clusters = {}
n = |data|
while d ≤ maxdepth do
numseeds⇐

√
n

seeds⇐ numseeds chosen randomly from data
l, r ⇐ {l, r|l, r ∈ seeds∧ l, r = argmax d(x, y)|x, y ∈
seeds}
clusters[l]⇐ {x|x ∈ data ∧ d(l, x) ≤ d(r, x)}
clusters[r]⇐ {x|x ∈ data ∧ d(r, x) < d(l, x)}
if |clusters[l]| > minsize then

Cluster(clusters[l])
end if
if |clusters[r]| > minsize then

Cluster(clusters[r])
end if

end while

Hierarchical clustering is essentially a recursive pro-
cedure that relies on some distance function d(x, y). In
order to cluster n data points,

√
n are chosen at random

as possible cluster centers (seeds). All pairwise distances
are computed among these

√
n seeds, and the two furthest

seeds are chosen as the “left” and “right” cluster centers.
All n data points are then partitioned into “left” and “right”
“child” clusters by whichever seed they are closer to. This
procedure recurses until a user-specified maximum depth is
reached. Any cluster containing fewer than a user-specified
minimum count (typically 10) is not recursively clustered
further.

2.2.2. Search. Rather than an exact search (which may
not return any hits), we conduct an approximate (ρ-nearest
neighbor) search. Given a hierarchical clustering, the search
procedure begins much like classical binary search. During
this search, it is possible that both children of a cluster
contain valid hits. Thus, a search radius of r + rci (the
query radius plus the cluster radius for a cluster ci) is used
to determine whether a subtree might contain valid hits.
Search proceeds recursively down the binary tree of clusters,
exploring any child of a cluster if that child’s cluster center is
within r+rc of the query, where rc is the radius of that child.
Once leaves are reached, the union of all leaves identified
as containing candidate hits are searched exhaustively. The
procedure is outlined in Algorithm 2.

Algorithm 2 Search(q,r,clusters)
Require: r ≥ 0
Require: clusters 6= ∅
results⇐ {}
if clusters.left then

if d(q, clusters.l.center) ≤ r + clusters.l.radius
then

Search(q,r,clusters.l)
end if

end if
if clusters.right then

if d(q, clusters.rt.center) ≤ r + clusters.rt.radius
then

Search(q,r,clusters.rt)
end if

end if
if ¬clusters.l ∧ ¬clusters.rt then

for p ∈ clusters.points do
if d(q, p) ≤ r then
results⇐ r

end if
end for

end if
return results

2.3. Data compression

Each leaf cluster contains a cluster center (a real data
point, rather than a centroid). Therefore, each member of
that cluster can be represented as the set of differences from
that center. The optimal representation of these differences
depends on the nature of the data as well as the distance
function. In the case of string data (such as biological
sequence data) under a Hamming distance metric, the repre-
sentation is naturally a set of edits to transform the cluster
center into any data point in the cluster. The number of
these edits is bounded by the cluster radius. In the case
of astronomical spectra, the data are real-valued vectors in
(R8575

+) and so a compact encoding appears elusive. This
is because the upper bound difference of one cluster radius
from the center could be distributed in any manner among
the 8,575 bins.

However, the underlying APOGEE data is not of arbi-
trary precision. Due to the physical limitations inherent in
measurement, these values are quantized [26] and this makes
an integer encoding of differences possible. Consider, by
way of analogy, a meter rule that is marked in increments
of 1mm. Any length measured by the meter rule is mea-
sured as some integer multiple of 1mm even though the
actual length is some real number. Any difference of less
than 1mm between two lengths cannot be measured and
is ignored. Lengths measured by such a meter rule can,
thus, be thought to be quantized by 1mm sized quanta.
The telescope and spectrometer used for APOGEE have
an analogous limitation. APOGEE reports that it can detect
stars of magnitude H = 12.2 [4] (where H = −2.5 log10(I)
and I is the intensity of the star). This leads to quanta of

size 10−12.2/2.5.
For lossless compression of clustered data, we calculate

the difference between each point in a cluster and the cluster
center. This difference is then quantized to give an integer
encoding. These encodings can then be compressed using
any suitable compression library. We used the zipfile
library in Python for our implementation.

2.4. Benchmarks

2.4.1. Sloan Digital Sky Survey APOGEE. Fifty
randomly-selected data points were held out from the data
prior to hierarchical clustering. Each of those points was
treated as a query, and the data set was searched to return
all spectra within a specific radius of the query. For L2
(Euclidean) distance, these radii were 2,000 and 4,000. We
measured the wall-clock time for each query, as well as
the number of distance comparisons required to perform
the search. We report the mean and standard deviation for
distance comparisons, search time (in seconds), the fraction
of the dataset that was searched, and the mean speedup fac-
tor compared to a naı̈ve, linear search implementation. This
linear search must make n comparisons given a database of
size n.

All benchmarks were conducted on an Intel Xeon
E5-2690 v4 2.60GHz (single threaded), with 512GB
RAM and CentOS 7 Linux with kernel 3.10.0-
862.9.1.el7.x86 64. FALCONN is not versioned, but com-
mit a4c0288edb2575b0306c5f6b4ab1f559b1e2a
from GitHub was used.

FALCONN is written in C++ (and heavily optimized for
CPUs) while CHESS is written in Python. As such, wall-
clock time comparisons are not truly fair; a GPU-optimized
or multithreaded FALCONN would likely provide improved
performance, while CHESS rewritten in C++ would likely
boast improved all-round performance. To remedy this in-
consistency, we report the number of distance comparisons
made by the two methods while conducting the same search
on the same dataset. We used Valgrind’s callgrind
tool [27] to produce a performance profile of FALCONN’s
underlying C++ library, and we used internal source-code
instrumentation to profile CHESS.

2.4.2. GreenGenes. Fifty randomly-selected data points
were held out from the data prior to hierarchical clustering.
Each of those points was treated as a query, and the data
set was searched to return all 16S sequences within a
specific radius of the query. We used Hamming distances
corresponding to 99.9% and 99% sequence identity (note
that at 95% sequence identity a query returns, on average,
nearly 75% of the data set, while at 90% sequence identity
a query would return almost the entire dataset, so we expect
no improvement over naı̈ve search). We measured the wall-
clock time for each query, as well as the number of distance
comparisons required to perform the search. We report the
mean and standard deviation for comparisons, search time
(in seconds), the fraction of the dataset that was searched,

and the mean speedup factor compared to a naı̈ve, linear
search implementation.

The GreenGenes benchmarks for CHESS were con-
ducted on a Xeon E5-2620 v4 2.10GHz with 64GB RAM,
hosted on Ubuntu Linux with kernel 4.15.0-54-generic,
Python 3.6.8.

FALCONN only supports L2 and cosine distances, not
Hamming distance, so it is not directly comparable on the
GreenGenes data set. Thus, we did not benchmark FAL-
CONN on GreenGenes.

3. Results

3.1. Asymptotic complexity

To analyze the computational complexity of hierarchical
clustering, consider the top level of the hierarchy. There
are n data points, from which

√
n seeds are chosen. All

pairwise distances between these seeds are computed, i.e. n
comparisons are made. The furthest pair of points are chosen
as the centers of child-clusters. Every data point except the
two chosen centers is then compared to both centers; i.e.,
an additional 2n comparisons. In general, at depth d of
the hierarchy, we have n

2d
points per cluster (assuming a

perfectly balanced clustering, which will turn out to not be
required),

√
n
2d

seeds, n
2d

pairwise seed comparisons, and
2 × n

2d
additional comparisons when each other data point

is compared to the two cluster centers, for a total of 3× n
2d

distance comparisons. At each level, there are 2d clusters,
so the total number of distance comparisons per level is
3n. Thus, the asymptotic complexity in terms of distance
comparisons for a cluster tree of depth d is O(dn).

Since hierarchical entropy-scaling search begins as a
search over a binary tree, it would appear that the coarse
search (the tree traversal) would take O(log2 k) time, if there
are k leaf clusters. However, there is a complication: since
this is approximate rather than exact search, a nonzero query
radius, r, is used. The “ball” of possible points around the
query may overlap multiple branches of the tree. While it
is clear that some of the search space is pruned during the
tree traversal, there is no guarantee that the fine search will
be over only one leaf cluster.

Consider a clustering using L2 norm. Suppose that
the data comprise a one-dimensional manifold in a two-
dimensional embedding. Then, every level of the binary tree
represents some line dividing the parent cluster into two (not
necessarily equally-sized) clusters. If a parent cluster is not
identified as a target for search, neither of its children will
be. However, it is possible that both children of a given
parent cluster could be considered. Once cluster radius has
decreased to be smaller than the search radius, there is no
advantage to further tree traversal, and the entire subtree
must be searched. However, above the level of the tree where
search radius approximates cluster radius, at most both chil-
dren of an internal cluster node need to be searched; even in
this instance, only half of their descendents would need to be
searched, because of the two-dimensional nature of the data

set. Thus, the coarse search (in one dimension) requires only
a constant factor of 2; O(2 log2 k) = O(log2 k). However,
as dimensionality increases the argument requires using the
geometry of an n−sphere.

Recall that our clustering approach chooses (or esti-
mates) the two furthest points in a cluster to determine
the cluster centers at the next level of the hierarchy. First,
consider data in one dimension. The very first cut into two
clusters results in a boundary on which a query with nonzero
radius might hit results from both clusters. However, any
further division of those clusters separates the data into non-
adjacent regions, so continued binary clustering and then
search will result in a pruning of the search space. Next,
consider data in two dimensions. Without loss of generality,
consider those data uniformly occupying the interior of a
circle around some origin. A first cut will separate the data
into two approximate semicircles. But, the furthest points
on each semicircle will likely be 180 degrees apart, along
the diameter of the cut. Thus, a second cut will separate
each semicircle into a quarter-circle, which contains a right
triangle. Thus, the furthest points in each quarter-circle
could still be at the two intersections of the triangle with
the circumference of the circle. It is only after this point
that, under a uniform distribution of data, the third cut will
separate each quarter-circle into an eighth-circle, leading the
fourth cut to be orthogonal to a radius, separating “outer”
points from “inner” points and guaranteeing that no query
with radius smaller than the cluster radius would require
searching inside every cluster.

Taken to three dimensions, orthogonal cuts are only
guaranteed once the wedges of the sphere are less than 60
degrees in both φ and θ, which requires six cuts. Gener-
alizing to the n−sphere, described in polar coordinates as
containing angles φ1 · · ·φn, the first 3 × (d − 1) cuts are
not guaranteed to be orthogonal to a radius. If our data
were uniformly distributed in a high-dimensional space, this
would bode poorly for CHESS.

Of course, with the APOGEE data set, we have not two
dimensions but 8,575. By the curse of dimensionality, we
might need to explore many thousands of “neighboring”
tree branches. How can this explosion be reconciled with
the empirically faster search as tree depth increases? There
is no such explosion because the number of neighboring
branches that may need to be searched grows not with the
embedding dimension (i.e. the dimensionality of each data
point, 8,575 for APOGEE and 7,682 for GreenGenes) but
with the local fractal dimension on the length scale of the
cluster and search radii. As in [7], we use Equation 2 to
estimate the local fractal dimension between two radii at
a given point. As illustrated in Figures 2, 3, and 5, this
fractal dimension is low, typically less than 2, except for
the most extreme decile of clusters. Thus, empirically for
both the APOGEE and GreenGenes data sets, the multiplier
is bounded by 4, which means that once clustering exceeds a
depth of 3, we can claim an effective asymptotic complexity
of:

TABLE 1. CHESS PERFORMANCE ON APOGEE VS. NAÏVE, L2 NORM

Depth Comparisons Search Fraction Speedup
×104 Time (s) Searched Factor

µ σ µ σ µ σ µ

r = 2,000 Output Size: µ = 482 σ = 1, 004

10 7.79 2.86 5.03 1.82 0.63 0.23 3.42
20 3.30 1.88 2.38 1.22 0.27 0.15 9.20
30 1.44 1.20 1.57 0.94 0.12 0.10 12.85
40 0.73 0.69 1.40 0.88 0.06 0.06 13.52
50 0.68 0.63 1.38 0.87 0.05 0.05 13.55

r = 4,000 Output Size: µ = 4, 563 σ = 5, 803

10 7.87 2.86 5.04 1.81 0.64 0.23 3.37
20 3.55 1.99 2.57 1.30 0.29 0.16 9.11
30 1.97 1.47 1.96 1.04 0.16 0.12 9.77
40 1.54 1.22 1.84 0.99 0.12 0.10 9.86
50 1.54 1.21 1.84 0.98 0.12 0.10 9.85

Figure 6. Speedup Factor of CHESS on APOGEE vs. Naı̈ve Search Under
L2 Norm as a Function of Search Depth

O

(
log2 k︸ ︷︷ ︸

metric entropy

+

output size︷ ︸︸ ︷
|BD(q, r)|

(
r + 2r̂c
r

)d

︸ ︷︷ ︸
scaling factor

)
(3)

where r̂c is the mean cluster radius of leaf clusters.
Similar to the original entropy-scaling search [7], this

approach is ill-suited to data that are not constrained to low-
dimensional manifolds in their higher-dimensional embed-
ding. On the other hand, when data exhibit such constraints,
entropy-scaling search is appropriate.

3.2. Benchmark Results

On the SDSS’s APOGEE data set, using L2 norm, there
is a clear reduction in search time as the maximum tree
depth increases. Table 1 shows the number of comparisons,
search time in seconds, what fraction of the data needed to
be searched, and the speedup factor vs. naı̈ve linear search
for L2 norm. Figure 6 illustrates the speedup as a function
of depth.

On the APOGEE data set using cosine distance, there
is no clear reduction in search time until CHESS begins to
significantly prune the search space, which requires a much

TABLE 2. CHESS PERFORMANCE ON APOGEE VS. NAÏVE, COSINE
DISTANCE

Depth Comparisons Search Fraction Speedup
×104 Time (s) Searched Factor

µ σ µ σ µ σ µ

r = 0.0005 Output Size: µ = 3 σ = 8

10 12.24 0.02 7.75 0.09 0.99 0.00 1.00
20 10.82 1.08 7.58 0.73 0.88 0.09 1.04
30 4.19 2.11 4.93 1.97 0.34 0.17 2.06
40 0.88 0.72 3.85 1.92 0.07 0.06 2.76
50 0.62 0.49 3.83 1.93 0.05 0.04 2.78

r = 0.001 Output Size: µ = 73 σ = 163

10 12.24 0.02 7.78 0.09 0.99 0.00 0.99
20 10.85 1.08 7.63 0.76 0.88 0.09 1.03
30 4.40 2.21 5.19 2.14 0.36 0.18 2.03
40 1.07 0.90 4.30 2.34 0.09 0.07 2.64
50 0.78 0.66 4.34 2.43 0.06 0.05 2.64

Figure 7. Speedup Factor of CHESS on APOGEE vs. Naı̈ve Search Under
Cosine Distance as a Function of Search Depth

higher depth than the L2 norm. Table 2 shows benchmark
results under cosine distance at depths of 10 through 50 with
increments of 10. At a depth of 30, CHESS begins to show
moderate speedup, leveling off by depth 45. The greater
depth requirement appears to be a result of the fact that
cosine distance cannot make orthogonal cuts to the space the
way L2 norm or Hamming distance can. While on a circle,
with angle θ, a query with small radius can hit at most two
clusters. On a 3-sphere, with angles φ and θ, a query could
hit 2d−1 = 4 clusters. Thus, it takes greater cluster depth to
begin to see significant pruning of the search space.

On the GreenGenes data set, using Hamming distance,
there is a clear reduction in search time as long as the search
radius is small. Table 3 shows the number of comparisons,
search time in seconds, the fraction of leaf clusters that must
be searched, and the speedup factor vs. naı̈ve linear search.
At 99.9% and 99% sequence identity, speedup factors of
68.02 and 18.39 are observed. Figure 8 illustrates that, for
small search radii, CHESS search performance improves
with depth. These small radii are biologically meaningful, as
every sequence represents the same functional and structural
component of the ribosome and, thus, almost the entire data
set exists within a diameter of 90% sequence identity.

FALCONN’s benchmark results on APOGEE appear in

TABLE 3. CHESS PERFORMANCE ON GREENGENES VS. NAÏVE,
HAMMING DISTANCE

Depth Comparisons Search Fraction Speedup
×105 Time (s) Searched Factor

µ σ µ σ µ µ

99.9% Seq. Identity Output Size: µ = 245 σ = 486

10 46.84 18.58 26.86 10.67 0.582 3.02
20 3.39 4.24 2.88 2.90 0.042 57.54
30 0.32 0.34 1.40 1.02 0.004 66.86
40 0.22 0.19 1.37 0.98 0.003 67.51
50 0.21 0.17 1.36 0.99 0.003 68.02

99% Seq. Identity Output Size: µ = 1, 924 σ = 2, 364

10 59.09 14.46 33.86 8.21 0.734 1.45
20 12.59 9.05 9.82 6.45 0.156 12.57
30 2.79 2.82 5.77 4.22 0.035 18.20
40 2.66 2.69 5.58 3.98 0.033 18.34
50 2.66 2.69 5.57 3.98 0.033 18.39

Figure 8. Speedup Factor of CHESS on GreenGenes vs. Naı̈ve Search
Under Hamming Distance as a Function of Search Depth.

TABLE 4. FALCONN SEARCH PERFORMANCE ON APOGEE

Distance Radius Comparisons Search Time (s)
×105 µ σ

L2 2000 1.32 0.563 0.008
4000 1.32 0.564 0.008

Cosine 0.0005 1.32 0.520 0.014
0.001 1.32 0.517 0.011

Table 4. While FALCONN is uniformly faster in terms of
wall-clock time than CHESS, we note that the number of
comparisons required by FALCONN is significantly greater
than that required by CHESS. In particular, at a radius of
2,000 and a depth of 50, CHESS under L2 Norm requires, on
average, only 6.8 ·103 distance comparisons; and at a radius
of 0.0005 and a depth of 50, CHESS under Cosine Distance
requires, on average, only 6.4 · 103 distance comparisons.
FALCONN requires 1.32 · 105 comparisons in all cases,
showing that CHESS provides an order of magnitude al-
gorithmic improvement over FALCONN. In all cases, naı̈ve
search, CHESS, and FALCONN agreed on all search results,
so we can consider all searches to be exact.

3.3. Accuracy

Similar to the argument presented in [28], the triangle in-
equality guarantees perfect accuracy as long as the distance
function used is a metric. To search for all points within
radius r of a query, at each node we only need to look
inside child-clusters whose centers are within radius r + ri
of a query, where ri is the cluster radius of a child of that
node. False positives as compared against naı̈ve search are
not possible with CHESS. Under Hamming and Euclidean
distances, which both obey the triangle inequality, the false
negative rate is zero. Under cosine distance, which does not
obey the triangle inequality, the false negative rate averages
4.4× 10−4 and is only nonzero at clustering depths greater
than 30.

3.4. Compression

Our implementation of data compression as described
in Section 2.3 results in shrinking the APOGEE data set
from 4 GB of storage (already represented as a NumPy
memmap, a compact binary file) to 3.4 GB. With a larger
data set and thus greater redundancy, we would expect
greater compression. It may be worthwhile future work
to investigate representing differences at each level of the
binary tree, particularly for string or genomic data, where
all differences are discrete.

3.5. k-Nearest Neighbors Search Extension

Machine learning and data science practitioners consider
k-nearest neighbors (KNN) a nearly ubiquitous classification
tool [29], [30], [31], [32]. While in this paper we have
focused on the related ρ-nearest neighbors problem, it is
worth discussing an extension to KNN. Under clustered
search, KNN can be implemented as follows:

Perform CHESS (Algorithm 2) with ρ = r̂c.
If |BD(q, ρ)| > k and more than one leaf cluster
was searched:

Repeat CHESS, halving ρ until |BD(q, ρ)| ≤ k.
Double ρ once.

If |BD(q, ρ)) < k and ρ 6 rc0 :
Repeat CHESS, doubling ρ until |BD(q, ρ)| >

k.
Return k-nearest neighbors from BD(q, ρ).

where r̂c is the median cluster radius of leaf clusters,
and rc0 is the radius of the root cluster.

The loops inside both conditionals are bound by log(rc0)
calls to the search function. The return statement has an
asymptotic complexity of O(|BD(q, ρ)|·log k) if a k-element
min-heap is used to filter the results. Therefore the complex-
ity of KNN search is:

O(S · log(r′) + |BD(q, ρ)| · log k) (4)

where S is the asymptotic complexity of CHESS given in
Equation 3 and the radius r′ is rc0 when rc0 includes values
greater than 1, and otherwise 1

rc0
.

4. Conclusion and Discussion

We have presented CHESS (Clustered Hierarchical
Entropy-Scaling Search), an algorithm and software im-
plementation for ρ-nearest neighbors approximate search
of large data sets, which improves the coarse search time
of entropy-scaling search [7] from k to log2k, where k
is the number of clusters. Like [7], CHESS’s asymptotic
complexity is not defined in terms of n (the size of the data
set being searched. However, the BD(q, r) term (which is
equivalent to the output size) has an implicit dependence
on the size of the data set; as more data are collected,
particularly if they are similar to existing data, they are
expected to increase the density of each cluster. This can be
addressed by further deepening the hierarchical clustering,
but this also creates an implicit dependence on n (as n
grows, so k should grow, but only as log(n)).

CHESS is most effective when data exhibit low metric
entropy and fractal dimension. CHESS requires an order of
magnitude fewer comparisons than the FALCONN locality-
sensitive hashing library, and provides data compression.
While the wall-clock benchmarks slightly favor FALCONN,
it is important to note that CHESS’s Python implementation
imposes some overhead, despite using the sklearn library
for distance computations. In contrast, FALCONN relies on
the highly-optimized Eigen linear-algebra library, which
uses AVX intrinsics to achieve vectorization on the CPU. In
addition, CHESS’s I/O routines are in Python, which also
adds overhead. A native implementation of CHESS in C++
or Rust will be worthwhile future engineering work. Unlike
locality-sensitive hashing approaches, CHESS is extensible
to any user-defined edit distance or similarity function.
Examples include Jaccard similarity for sets, Wasserstein
(Earth-Mover) distance for distributions, a variety of inter-
graph distances for graphs, and others. As long as the
distance function obeys the triangle inequality, search is
guaranteed to be exact; non-metric distance functions such
as cosine distance or BLAST E-values [33] can lead to
false negatives, though not false positives. This is further
discussed in section 3.3.

CHESS did not begin to provide benefits on APOGEE
with cosine distance until significantly higher cluster depths
compared to L2 norm. This is at odds with the flat entropy-
scaling search results from [7], though those were from a
protein structure data set. Further investigation into cosine
distance on APOGEE is warranted, but so is the investi-
gation of other distance functions, such as Wasserstein or
Earth Mover distance.

We have also discussed the theoretical properties of
implementing k-nearest neighbor search using CHESS (as
well as flat entropy-scaling search). The implementation is
a topic for future work.

In our comparison to FALCONN [18], it is worth noting
that CHESS can be thought of as a form of locality-sensitive
hashing [34], [35], though one not based on the choice
of random separating hyperplanes. Similar objects hash, or
cluster, into like clusters, but (other than the possibility of
near neighbors appearing in neighboring clusters) it lacks

the probabilistic nature of classical locality-sensitive hashing
approaches. It is also reasonable to think of CHESS as a
form of database index; if one wished to dispense with the
data compression aspect, the cluster hierarchy itself could
be thought of as an index. Indeed, we do not foresee any
serious theoretical obstacles to incorporating such an index
into a relational or key-value database such as PostgreSQL
or MongoDB.

CHESS can easily be extended to use GPU-accelerated
distance calculations. We provide some distance functions
implemented in tensorflow. We did not use them for bench-
marks because the overhead of sending data to the GPU
is far greater than the computational cost of the distance
functions used in this manuscript. For more costly distance
functions, for example maximal common subgraph, GPU
implementations may be worthwhile.

CHESS can easily be adapted to allow for live updates
to the data. As new data points become available, we can
perform a binary search with zero search radius to identify
the leaf cluster to which the new point would best belong.
If a point is added that is far outside a leaf cluster (for
example, twice the cluster radius or more), a new cluster is
created.

The original entropy-scaling search manuscript [7] led
to a thoughtful discussion of the fundamental limits of
search [36]. In this study, we have suggested a further
lowering of these limits to be logarithmic rather than linear
in the number of leaf clusters.

The source code for CHESS is available under an MIT
license at https://github.com/nishaq503/CHESS.

Acknowledgments

The authors would like to thank Bonnie Berger, Michael
Baym, and Y. William Yu for suggesting the extension of
entropy-scaling search to a hierarchical paradigm, and Tom
Howard and Matthew Daily for helpful discussions.

References

[1] Y. Zhang and Y. Zhao, “Astronomy in the big data era,” Data Science
Journal, vol. 14, 2015.

[2] M. Brescia, S. Cavuoti, G. S. Djorgovski, C. Donalek, G. Longo, and
M. Paolillo, “Extracting knowledge from massive astronomical data
sets,” in Astrostatistics and Data Mining. Springer, 2012, pp. 31–45.

[3] M. R. Blanton, M. A. Bershady, B. Abolfathi, F. D. Albareti, C. Al-
lende Prieto, A. Almeida, J. Alonso-Garcı́a, F. Anders, S. F. Anderson,
B. Andrews, and et al., “Sloan Digital Sky Survey IV: Mapping
the Milky Way, Nearby Galaxies, and the Distant Universe,” The
Astronomical Journal, vol. 154, p. 28, Jul. 2017.

[4] S. R. Majewski, R. P. Schiavon, P. M. Frinchaboy, C. Allende Prieto,
R. Barkhouser, D. Bizyaev, B. Blank, S. Brunner, A. Burton, R. Car-
rera, S. D. Chojnowski, K. Cunha, C. Epstein, G. Fitzgerald, A. E.
Garcı́a Pérez, F. R. Hearty, C. Henderson, J. A. Holtzman, J. A. John-
son, C. R. Lam, J. E. Lawler, P. Maseman, S. Mészáros, M. Nelson,
D. C. Nguyen, D. L. Nidever, M. Pinsonneault, M. Shetrone, S. Smee,
V. V. Smith, T. Stolberg, M. F. Skrutskie, E. Walker, J. C. Wilson,
G. Zasowski, F. Anders, S. Basu, S. Beland, M. R. Blanton, J. Bovy,
J. R. Brownstein, J. Carlberg, W. Chaplin, C. Chiappini, D. J. Eisen-
stein, Y. Elsworth, D. Feuillet, S. W. Fleming, J. Galbraith-Frew, R. A.

Garcı́a, D. A. Garcı́a-Hernández, B. A. Gillespie, L. Girardi, J. E.
Gunn, S. Hasselquist, M. R. Hayden, S. Hekker, I. Ivans, K. Kine-
muchi, M. Klaene, S. Mahadevan, S. Mathur, B. Mosser, D. Muna,
J. A. Munn, R. C. Nichol, R. W. O’Connell, J. K. Parejko, A. C.
Robin, H. Rocha-Pinto, M. Schultheis, A. M. Serenelli, N. Shane,
V. Silva Aguirre, J. S. Sobeck, B. Thompson, N. W. Troup, D. H.
Weinberg, and O. Zamora, “The Apache Point Observatory Galactic
Evolution Experiment (APOGEE),” The Astronomical Journal, vol.
154, p. 94, Sep. 2017.

[5] Ž. Ivezić, S. M. Kahn, J. A. Tyson, B. Abel, E. Acosta, R. Allsman,
D. Alonso, Y. AlSayyad, S. F. Anderson, J. Andrew et al., “Lsst: from
science drivers to reference design and anticipated data products,” The
Astrophysical Journal, vol. 873, no. 2, p. 111, 2019.

[6] D. L. Nidever, A. Dey, K. Olsen, S. Ridgway, R. Nikutta, S. Juneau,
M. Fitzpatrick, A. Scott, and F. Valdes, “First data release of the all-
sky noao source catalog,” The Astronomical Journal, vol. 156, no. 3,
p. 131, 2018.

[7] Y. W. Yu, N. Daniels, D. C. Danko, and B. Berger, “Entropy-scaling
search of massive biological data,” Cell Systems, vol. 1, no. 2, pp.
130–140, 2015.

[8] B. Berger, N. M. Daniels, and Y. W. Yu, “Computational biology in
the 21st century: Scaling with compressive algorithms,” Communica-
tions of the ACM, vol. 59, no. 8, p. 72, 2016.

[9] S. R. Gill, M. Pop, R. T. DeBoy, P. B. Eckburg, P. J. Turnbaugh, B. S.
Samuel, J. I. Gordon, D. A. Relman, C. M. Fraser-Liggett, and K. E.
Nelson, “Metagenomic analysis of the human distal gut microbiome,”
science, vol. 312, no. 5778, pp. 1355–1359, 2006.

[10] M. Arumugam, J. Raes, E. Pelletier, D. Le Paslier, T. Yamada,
D. R. Mende, G. R. Fernandes, J. Tap, T. Bruls, J.-M. Batto et al.,
“Enterotypes of the human gut microbiome,” nature, vol. 473, no.
7346, p. 174, 2011.

[11] T. Yatsunenko, F. E. Rey, M. J. Manary, I. Trehan, M. G. Dominguez-
Bello, M. Contreras, M. Magris, G. Hidalgo, R. N. Baldassano, A. P.
Anokhin et al., “Human gut microbiome viewed across age and
geography,” nature, vol. 486, no. 7402, p. 222, 2012.

[12] J. Jovel, J. Patterson, W. Wang, N. Hotte, S. O’Keefe, T. Mitchel,
T. Perry, D. Kao, A. L. Mason, K. L. Madsen et al., “Characterization
of the gut microbiome using 16s or shotgun metagenomics,” Frontiers
in microbiology, vol. 7, p. 459, 2016.

[13] M. G. Langille, J. Zaneveld, J. G. Caporaso, D. McDonald,
D. Knights, J. A. Reyes, J. C. Clemente, D. E. Burkepile, R. L. V.
Thurber, R. Knight, and C. Huttenhower, “Predictive functional
profiling of microbial communities using 16S rRNA marker gene
sequences,” Nature Biotechnology, vol. 31, no. 9, pp. 814–821, 2013.

[14] T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie,
K. Keller, T. Huber, D. Dalevi, P. Hu, and G. L. Andersen, “Green-
genes, a chimera-checked 16s rrna gene database and workbench
compatible with arb,” Appl. Environ. Microbiol., vol. 72, no. 7, pp.
5069–5072, 2006.

[15] P. Indyk, “Sublinear time algorithms for metric space problems,”
Symposium on Theory of Computing, 1999.

[16] J. T. Simpson and R. Durbin, “Efficient construction of an assembly
string graph using the fm-index,” Bioinformatics, vol. 26, no. 12, pp.
i367–i373, 2010.

[17] T. M. Cover, P. Hart et al., “Nearest neighbor pattern classification,”
IEEE transactions on information theory, vol. 13, no. 1, pp. 21–27,
1967.

[18] I. Razenshteyn, L. Schmidt, A. Andoni, P. Indyk, and T. Laarhoven,
“Falconn: Similarity search over high-dimensional data,” 2015.

[19] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. Tsourakakis,
“Space-and time-efficient algorithm for maintaining dense subgraphs
on one-pass dynamic streams,” in Proceedings of the forty-seventh
annual ACM symposium on Theory of computing. ACM, 2015, pp.
173–182.

[20] D. M. Kane, J. Nelson, and D. P. Woodruff, “On the exact space
complexity of sketching and streaming small norms,” in Proceedings
of the twenty-first annual ACM-SIAM symposium on Discrete Algo-
rithms. Society for Industrial and Applied Mathematics, 2010, pp.
1161–1178.

[21] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[22] H. Rosenberg, “Über den zusammenhang von helligkeit und spektral-
typus in den plejaden,” Astronomische Nachrichten, vol. 186, p. 71,
1910.

[23] C. Fefferman, S. Mitter, and H. Narayanan, “Testing the manifold
hypothesis,” Journal of the American Mathematical Society, vol. 29,
no. 4, pp. 983–1049, 2016.

[24] S. Alam, F. D. Albareti, C. A. Prieto, F. Anders, S. F. Anderson,
T. Anderton, B. H. Andrews, E. Armengaud, É. Aubourg, S. Bailey
et al., “The eleventh and twelfth data releases of the sloan digital sky
survey: final data from sdss-iii,” The Astrophysical Journal Supple-
ment Series, vol. 219, no. 1, p. 12, 2015.

[25] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[26] M. Goldberg, P. Boucher, and S. Shlien, “Image compression using
adaptive vector quantization,” IEEE Transactions on Communica-
tions, vol. 34, no. 2, pp. 180–187, 1986.

[27] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in ACM Sigplan notices, vol. 42,
no. 6. ACM, 2007, pp. 89–100.

[28] Y. W. Yu, D. Yorukoglu, J. Peng, and B. Berger, “Quality score
compression improves genotyping accuracy,” Nature Biotechnology,
vol. 33, no. 3, pp. 240–243, 2015.

[29] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340,
p. 2, 2009.

[30] M. E. Houle and J. Sakuma, “Fast approximate similarity search in
extremely high-dimensional data sets,” in 21st International Confer-
ence on Data Engineering (ICDE’05). IEEE, 2005, pp. 619–630.

[31] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast
approximate nearest-neighbor search with k-nearest neighbor graph,”
in Twenty-Second International Joint Conference on Artificial Intel-
ligence, 2011.

[32] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 11, pp. 2227–2240, 2014.

[33] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology,
vol. 215, no. 3, pp. 403–410, 1990.

[34] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Vldb, vol. 99, no. 6, 1999, pp. 518–529.

[35] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate nearest
neighbor: Towards removing the curse of dimensionality,” Theory of
computing, vol. 8, no. 1, pp. 321–350, 2012.

[36] S. Kannan and D. Tse, “Fundamental limits of search,” Cell systems,
vol. 1, no. 2, pp. 102–103, 2015.

	Clustered Hierarchical Entropy-Scaling Search of Astronomical and Biological Data
	Citation/Publisher Attribution

	Clustered Hierarchical Entropy-Scaling Search of Astronomical and Biological Data
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use

	tmp.1613142933.pdf.icgZv

