
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Chemistry Faculty Publications Chemistry 

11-22-2003 

Energy Estimators for Random Series Path-Integral Methods Energy Estimators for Random Series Path-Integral Methods 

Cristian Predescu 

Dubravko Sabo 

J. D. Doll 

David L. Freeman 
University of Rhode Island, dfreeman@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/chm_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Predescu, C., Sabo, D., Doll, J. D., & Freeman, D. L. (2003). Energy Estimators for Random Series Path-
Integral Methods. Journal of Chemical Physics, 119(20), 10475-10488. doi: 10.1063/1.1619372 
Available at: http://dx.doi.org/10.1063/1.1619372 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Chemistry 
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/chm_facpubs
https://digitalcommons.uri.edu/chm
https://digitalcommons.uri.edu/chm_facpubs?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1063/1.1619372
mailto:digitalcommons-group@uri.edu


Energy Estimators for Random Series Path-Integral Methods Energy Estimators for Random Series Path-Integral Methods 

Publisher Statement Publisher Statement 
© 2003 American Institute of Physics. 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/chm_facpubs/16 

https://digitalcommons.uri.edu/chm_facpubs/16


ARTICLES

Energy estimators for random series path-integral methods
Cristian Predescu,a) Dubravko Sabo, and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

~Received 28 May 2003; accepted 25 August 2003!

We perform a thorough analysis on the choice of estimators for random series path integral methods.
In particular, we show that both the thermodynamic~T-method! and the direct~H-method! energy
estimators have finite variances and are straightforward to implement. It is demonstrated that the
agreement between the T-method and the H-method estimators provides an important consistency
check on the quality of the path integral simulations. We illustrate the behavior of the various
estimators by computing the total, kinetic, and potential energies of a molecular hydrogen cluster
using three different path integral techniques. Statistical tests are employed to validate the sampling
strategy adopted as well as to measure the performance of the parallel random number generator
utilized in the Monte Carlo simulation. Some issues raised by previous simulations of the hydrogen
cluster are clarified. ©2003 American Institute of Physics.@DOI: 10.1063/1.1619372#

I. INTRODUCTION

Numerical path integral methods have proved to be
highly useful tools in the analysis of finite temperature,
many-body quantum systems.1 A central theme in such stud-
ies is the conscious use of dimensionality, both in the refor-
mulation of the original problem and in the subsequent nu-
merical simulations.

As the scale of the problems under study continues to
grow, it becomes increasingly important that the formal
properties of the numerical methods that are utilized be prop-
erly characterized. Recently, Predescu and co-workers2–4

have presented a number of results concerning the conver-
gence properties of random series-based path integral tech-
niques. Important in their own right, these formal properties
have also led to the development of a new class of path
integral methods, the so-called reweighted techniques.4 Re-
weighted approaches accelerate the convergence of ‘‘primi-
tive’’ series methods by including the effects of ‘‘higher-
order’’ path variables in a simple, approximate fashion.
Reweighted methods achieve the convergence rate of related
partial averaging approaches5 without requiring the construc-
tion of the Gaussian transform of the underlying potential
energy function.

Previous work on the reweighted method has focused
principally on the construction of the quantum-mechanical
density matrix.4,6 In the present work, we wish to examine
estimators for various coordinate-diagonal and off-diagonal
properties. While the present discussion is focused princi-
pally on reweighted methods, the results obtained are
broadly applicable to more general random series ap-
proaches.

In Sec. II of the present article, we examine the thermo-
dynamic ~T-method! and direct~H-method! estimators for
the total energy. In order to avoid any confusion with earlier
estimators, we mention that in the present article by
T-method and H-method estimators we understand the re-
spective energy estimators introduced by Predescu and Doll
in Ref. 2. Thus, the T-method estimator we employ does not
have the variance difficulties associated with the Barker es-
timator for large numbers of path variables.7 As the low-
temperature simulation presented in the second part of the
article demonstrates, the present T-method estimator does not
exhibit any of the difficulties sometimes associated with the
virial estimator for low-temperature systems or for strongly
correlated Monte Carlo sampling techniques.8–12 The
T-method estimator is closely related and similar in form to
the centroid virial estimator.13,14 We expect the two estima-
tors to have similar behavior with the nature of the quantum
system, the temperature, and the Monte Carlo sampling
method. However, an important difference between the two
estimators is the fact that the T-method estimator is a veri-
table thermodynamic estimator, in the sense that it is ob-
tained by temperature differentiation of the quantum parti-
tion function. This observation is important because the
temperature differentiation can be implemented numerically
by a finite-difference scheme and, in principle, may lead to
numerically stable algorithms that do not require derivatives
of the potential. For large dimensional systems or systems
described by complicated potentials, we expect such algo-
rithms to be significantly faster than those based on explicit
analytical formulas. The relative merits of such algorithms
will be examined in future work.

In Sec. III, we examine the application of the reweighted
methods to a model problem, that of simulating the thermo-
dynamic properties of the (H2)22 molecular cluster. In Sec.a!Electronic mail: cristian–predescu@brown.edu
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IV, we summarize our present findings and clarify a number
of issues raised in previous studies of this molecular hydro-
gen system.15,16

II. ENERGY ESTIMATORS

In this section, we consider a one-dimensional quantum
canonical system characterized by inverse temperatureb
51/(kBT) and set forward the task of computing its average
energy by Monte Carlo integration methods developed
around several reweighted techniques.4,6 The physical system
is made up of a particle of massm0 moving in the potential
V(x). We discuss the numerical implementation and the
computational merits of both the T-method and H-method
estimators. Any time the multidimensional extension is not
obvious, we present the explicit formulas of the respective
estimators.

We begin by presenting the general form of the path
integral methods we employ in this paper. We remind the
reader that in terms of a standard Brownian motion$Bu ,u
>0%, the Feynman–Kac¸ formula has the expression17

r~x,x8;b!5P@sB15x8usB05x#

3E@e2b*0
1V(sBu)duusB15x8,sB05x#, ~1!

wheres5(\2b/m0)1/2. In this paper, we shall use the sym-
bol E to denote the expected value~average value! of a cer-
tain random variable against the underlying probability mea-
sure of the Brownian motionBu . It is straightforward to see
that the first factor of the product in Eq.~1! ~which represents
the conditional probability density that the rescaled Brown-
ian motionsBu reaches the pointx8 provided that it starts at
the pointx) is the density matrix of a free particle of mass
m0

P@sB15x8usB05x#5r f p~x,x8;b!.

Moreover, rather than using the conditional expectation ap-
pearing in the second factor of Eq.~1!, one usually employs
a stochastic process$Bu

0 ;0<u<1%, called a standard
Brownian bridge,17,18 which is defined as a standard Brown-
ian motion conditioned on the end points such thatB0

050
and B1

050. In terms of the newly defined process, the
Feynman–Kac¸ formula reads

r~x,x8;b!

r f p~x,x8;b!
5E expH 2bE

0

1

V@xr~u!1sBu
0#duJ ,

wherexr(u)5x1(x82x)u is a straight line connecting the
pointsx andx8 and is called the reference path.

As discussed in Ref. 2, one of the most general construc-
tions of the standard Brownian bridge is given by the Ito–
Nisio theorem.19 Let $lk(t)%k>1 be a system of functions on
the interval@0,1#, which together with the constant function
l0(t)51, make up an orthonormal basis inL2@0,1#. Let

Lk~ t !5E
0

t

lk~u!du.

If V is the space of infinite sequencesā[(a1 ,a2 ,...) and

dP@ ā#5)
k51

`

dm~ak!, ~2!

is the probability measure onV such that the coordinate
maps ā→ak are independent identically distributed~i.i.d.!
variables with distribution probability

dm~ai !5
1

A2p
e2ai

2/2dai , ~3!

then

Bu
0~ ā!5

d

(
k51

`

akLk~u!, 0<u<1, ~4!

i.e., the right-hand side random series is equal in distribution
to a standard Brownian bridge. The notationBu

0(ā) in ~4! is
then appropriate and allows us to interpret the Brownian
bridge as a collection of random functions of argumentā,
indexed byu.

Using the Ito–Nisio representation of the Brownian
bridge, the Feynman–Kac¸ formula takes the form

r~x,x8;b!

r f p~x,x8;b!
5E

V
dP@ ā#expH 2bE

0

1

VFxr~u!

1s(
k51

`

akLk~u!GduJ . ~5!

For a multidimensional system, the Feynman–Kac¸ formula
is obtained by employing an independent random series for
each additional degree of freedom.

A reweighted method constructed from the random se-
ries (k51

` akLk(u) is any sequence of approximations to the
density matrix of the form4

rn
RW~x,x8;b!

r f p~x,x8;b!
5E

R
dm~a1!...E

R
dm~aqn1p!

3expH 2bE
0

1

VFxr~u!

1s (
k51

qn1p

akL̃n,k~u!GduJ , ~6!

whereq andp are some fixed integers, where

L̃n,k~u!5Lk~u! if 1<k<n, ~7!

and where

(
k5n11

qn1p

L̃n,k~u!25 (
k5n11

`

Lk~u!2. ~8!

In Eq. ~6!, n indexes the sequence of reweighted approxima-
tions rn

RW(x,x8;b), sequence that converges to the density
matrix r(x,x8;b) in the limit n→`. Remark that the ap-
proximation of indexn actually utilizesqn1p variables for
path parameterization. In the construction of a certain path,
the first n functionsL̃n,k(u) coincide with the ones for the
corresponding series representation, as shown by Eq.~7!. A
number of (q21)n1p additional functions are constructed
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so that to maximize the order of convergence of the re-
weighted approximation. Notice that if the resulting approxi-
mation has a convergence of ordera as measured againstn,
then it has the same order of convergence when measured
against the total number of variablesqn1p, though the con-
vergence constant isqa times larger. This explains why the
number of additional functions is chosen to scale linearly
with n. For additional information, the reader is advised to
consult Ref. 4.

It is convenient to introduce the additional quantities
Xn(x,x8,ā;b) andX`(x,x8,ā;b), which are defined by the
expressions

Xn~x,x8,ā;b!5r f p~x,x8;b!expH 2bE
0

1

VFxr~u!

1s (
k51

qn1p

akL̃n,k~u!GduJ ~9!

and

X`~x,x8,ā;b!5r f p~x,x8;b!expH 2bE
0

1

VFxr~u!

1s(
k51

`

akLk~u!GduJ , ~10!

respectively. With the new notation, Eq.~6! becomes

rn
RW~x,x8;b!5E

V
dP@ ā#Xn~x,x8,ā;b!, ~11!

while the Feynman–Kac¸ formula reads

r~x,x8;b!5E
V

dP@ ā#X`~x,x8,ā;b!. ~12!

The analytical expressions of the functionsL̃n,k(u) de-
pend on the nature of the reweighted techniques and are gen-
erally chosen to maximize the asymptotic convergence of the
respective reweighted techniques.4 To a large extent, the spe-
cific form of these functions is not important for the present
development, but the reader is advised to consult Refs. 4 and
6 for quadrature techniques and additional clarifications.

The remainder of the present section is split into two
parts. First, we discuss the problem of computing the en-
semble averages of operators diagonal in coordinate repre-
sentation. In particular, this resolves the problem of comput-
ing the average potential energy. Second, we consider the
problem of evaluating the total energies~hence, also the ki-
netic energies! by means of the T-method and H-method es-
timators.

A. Operators diagonal in the coordinate
representation

By definition, the ensemble average of an operatorÔ
diagonal in the coordinate representation is

^O&b5
*Rr~x;b!O~x!dx

*Rr~x;b!dx
. ~13!

The quantityr(x;b)5r(x,x;b) is the diagonal density ma-
trix. By convention, we drop the second variable of the pair
(x,x8) any timex5x8. For instance, we useXn(x,ā;b) in-
stead ofXn(x,x,ā;b). By means of Eq.~12!, the average
above can be recast as

^O&b5
*Rdx*VdP@ ā#X`~x,ā;b!O~x!

*Rdx*VdP@ ā#X`~x,ā;b!
. ~14!

This average can be recovered as the limitn→` of the se-
quence

^O&b,n
pt 5

*Rdx*VdP@ ā#Xn~x,ā;b!O~x!

*Rdx*VdP@ ā#Xn~x,ā;b!
, ~15!

the terms of which are to be evaluated by Monte Carlo inte-
gration. The estimating functionO(x) appearing in the above
formula is called the point estimating function of the opera-
tor Ô.

An alternative to the point estimating function is the so-
called path estimating function, the derivation of which is
presented shortly. As demonstrated in the Appendix, the
function O(x) appearing in Eq.~14! can be replaced by
O@x1sBu

0(ā)#, without changing the value of the average
^O&b . That is, the equality

^O&b5
*Rdx*VdP@ ā#X`~x,ā;b!O@x1sBu

0~ ā!#

*Rdx*VdP@ ā#X`~x,ā;b!
,

is valid for all 0<u<1. Averaging over the variableu, one
obtains

^O&b5
*Rdx*VdP@ ā#X`~x,ā;b!*0

1O@x1sBu
0~ ā!#du

*Rdx*VdP@ ā#X`~x,ā;b!
.

~16!

Equation~16! shows that the ensemble average of the opera-
tor Ô can also be recovered as the limitn→` of the se-
quence

^O&b,n
pth

5
*Rdx*VdP@ ā#Xn~x,ā;b!*0

1O@x1sB̃u,n
0 ~ ā!#du

*Rdx*VdP@ ā#Xn~x,ā;b!
,

~17!

where we have set

B̃u,n
0 ~ ā!5 (

k51

qn1p

akL̃n,k~u!,

for convenience of notation.
In the remainder of the present subsection, we discuss

the relative merits of the point and path estimators. We first
consider which of̂ O&b,n

pt and^O&b,n
pth is closer to^O&b for a

given n assuming the averages given in Eqs.~15! and ~17!
are computed exactly. Let us notice that Eq.~15! can be put
in the form

^O&b,n
pt 5

*Rdxrn
RW~x;b!O~x!

*Rdxrn
RW~x;b!

.

The probability distribution

10477J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Energy estimators for path-integral methods



rn
RW~x;b!dx

*Rrn
RW~x;b!dx

, ~18!

represents the marginal distribution of the variablex re-
garded as a random variable on the spaceR3V, which is
endowed with the probability measure

Xn~x,ā;b!dx dP@ ā#

*Rdx*VdP@ ā#Xn~x,ā;b!
. ~19!

The reweighted techniques are designed so that the distribu-
tion given by Eq.~18! is as close as possible to the quantum
statistical one, which is given by the expression

r~x;b!dx

*Rr~x;b!dx
.

In designing the reweighted techniques, one seeks to opti-
mize the rate of convergence of the sequencern

RW(x,x8;b)
→r(x,x8;b) for all x andx8.4

For arbitrary u, the marginal distribution of x
1sBu,n

0 (ā) is usually different from the one given by Eq.
~18! and is not optimized. With few notable exceptions to be
analyzed below, the pointsx1sBu,n

0 (ā) for different u are
not equivalent, and their probability distribution may differ
significantly from the quantum statistical one.~However, as
shown in the Appendix, they become equivalent in the limit
n→`.) Therefore, especially for those reweighted tech-
niques having fast asymptotic convergence, we expect the
point estimator to be more rapidly convergent withn than
the path estimator.

An additional issue appearing in Monte Carlo computa-
tions is the variance of the two estimating functionsO(x)
and*0

1O@x1sBu,n
0 (ā)#du. In the limit n→`, the variance

of the point estimating function converges to

*Rdx*VdP@ ā#X`~x,ā;b!O~x!2

*Rdx*VdP@ ā#X`~x,ā;b!
2^O&b

2

5
*Rdx*VdP@ ā#X`~x,ā;b!*0

1O@x1sBu
0~ ā!#2du

*Rdx*VdP@ ā#X`~x,ā;b!

2^O&b
2 ,

while the variance of the path estimating function converges
to

*Rdx*VdP@ ā#X`~x,ā;b!$*0
1O@x1sBu

0~ ā!#du%2

*Rdx*VdP@ ā#X`~x,ā;b!

2^O&b
2 .

The Cauchy–Schwartz inequality implies

H E
0

1

O@x1sBu
0~ ā!#duJ 2

<E
0

1

O@x1sBu
0~ ā!#2du,

and shows that the variance of the path estimating function is
always smaller than that of the point estimating function. The
actual decrease in the variance is not always significant be-
cause the pointsx1sBu

0(ā) for different u are strongly cor-
related. Depending on the nature of the functionO(x), the
variance decrease may not compensate the effort required to

compute the average*0
1O@x1sB̃u,n

0 (ā)#du. However, if the
function O(x) is the potentialV(x), then the smaller vari-
ance of the path estimator is a desirable feature because the
path average*0

1V@x1sB̃u,n
0 (ā)#du, which also enters the

expression ofXn(x,ā;b), is computed anyway.
To summarize the findings of the present subsection, the

point estimator provides a more accurate value but has a
larger variance than the path estimator. We next ask if there
are any methods for which one may construct an estimator
providing the same values as the point estimator but having
the variance of the path estimator. More precisely, we seek
methods for which there is a division 05u0<u1<...<uqn

<uqn1151 such that the mesh max0<i<qn
uui112uiu con-

verges to zero asn→` and such that the points$x
1sB̃ui ,n

0 (ā);0< i<qn11% have the same marginal distribu-

tion asx. For such methods, the expected value of the esti-
mating function

(
i 50

qn

O@x1sB̃ui ,n
0 ~ ā!#~ui 112ui !, ~20!

under the probability distribution given by Eq.~19! is an
estimator satisfying the criteria outlined in this paragraph.

There are two methods we employ in the present paper
for which such an estimator exists. The first one, is the trap-
ezoidal Trotter discrete path integral method~TT-DPI! ob-
tained by the Trotter composition

rn
TT~x,x8;b!5E

R
dx1 ...E

R
dxnr0S x,x1 ;

b

n11D
...r0S xn ,x8;

b

n11D , ~21!

of the short-time approximation

r0
TT~x,x8;b!5r f p~x,x8;b!expF2b

V~x!1V~x8!

2 G .
It has been shown20 that for n52k21, the TT-DPI method
admits the following implementation

rn
TT~x,x8;b!

r f p~x,x8;b!
5E

R
da1,1...E

R
dak,2k21~2p!2n/2

3expS 2
1

2 (
l 51

k

(
i 51

2l 21

al ,i
2 D

3expH 2b(
i 50

2k

v iVFxr~ui !

1s(
l 51

k

Fl ,[2l 21ui ] 11~ui !al ,[2l 21ui ] 11G J ,

~22!

whereui522ki for 0< i<2k and

v i5H 22(k11), if i P$0,2k%,

22k, if 1< i<2k21.
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The functionsFl ,k(u) are the so-called Schauder functions,21

the definitions of which are presented in the cited references.
We leave it for the reader to use Eq.~21! and show that if
x5x8, then all the pointsx1sB̃ui ,n

0 (ā) have identical mar-

ginal distribution given by the formula

rn
TT~x;b!dx

*Rrn
TT~x;b!dx

.

In this case, the point and the path estimators produce iden-
tical results for the ensemble average of a diagonal operator
Ô

*Rrn
TT~x;b!O~x!dx

*Rrn
TT~x;b!dx

.

At least for the ensemble average of the potential energy, one
should always use the path estimator, which has smaller
variance.

A second method for which there is an estimator giving
the same values as the point estimator but having~asymp-
totically, asn→`) the variance of the path estimator is the
so-called Le´vy–Ciesielski reweighted technique~RW-LCPI!
defined by the formula4

rn
LC~x,x8;b!

r f p~x,x8;b!
5E

R
da1,1...E

R
dak12,2k11~2p!2(4n13)/2expS 2

1

2 (
l 51

k12

(
j 51

2l 21

al , j
2 D

3expH 2bE
0

1

VFxr~u!1s(
l 51

k12

al ,[2l 21u] 11F̃ l ,[2l 21u] 11
(n)

~u!GduJ , ~23!

where @2l 21u# is the integer part of 2l 21u. It has been
shown that forn52k21, the RW-LCPI method can be put in
the Trotter product form4

rn
LC~x,x8;b!5E

R
dx1 ...E

R
dxnr0

LCS x,x1 ;
b

n11D
3...r0

LCS xn ,x8;
b

n11D , ~24!

where

r0
LC~x,x8;b!

r f p~x,x8;b!
5

1

~2p!3/2E
R
E

R
E

R
e2(a1

2
1a2

2
1a3

2)/2

3expH 2bE
0

1

V@x1~x82x!u

1a1sC0~u!1a2sL0~u!

1a3sR0~u!#duJ da1da2da3 .

The analytical expressions of the functionsF̃k,l
(n)(u), L0(u),

R0(u), andC0(u) can be found in Refs. 4 and 6.
Again, we leave it for the reader to use Eq.~24! and

prove that ifx85x, then all the points

x1s(
l 51

k12

al ,[2l 21ui ] 11F̃ l ,[2l 21ui ] 11
(n)

~ui !,

with ui522ki for 0< i<2k have identical marginal distribu-
tions equal to that ofx. The estimator

22k (
i 50

2k21

OFx1s(
l 51

k12

al ,[2l 21ui ] 11F̃ l ,[2l 21ui ] 11
(n)

~ui !G ,

~25!

produces the same results as the point estimator, but it has
the variance of the path estimator. As far as the evaluation of
the average potential energy is concerned, in order to avoid
unnecessary calls to the potential routine, it is desirable that
the points$22ki ;0< i<2k% be among the quadrature points
utilized for the computation of the path averages appearing
in Eq. ~23!. The quadrature technique designed in Ref. 6
shares this property. As opposed to the TT-DPI method, the
point and the path estimators for the RW-LCPI method pro-
duce different results.

B. Estimators for the total energy

In this subsection, we discuss the implementation of the
thermodynamic~T! and the direct~H! estimators for the total
energy. The T-method estimator is defined as the following
functional of the diagonal density matrix:

^E&b
T52

]

]b
lnF E

R
r~x;b!dxG . ~26!

The above formula can be expressed as the statistical average

^E&b
T5

*Rdx*VdP@ ā#X`~x,ā;b!E`
T~x,ā;b!

*Rdx*VdP@ ā#X`~x,ā;b!
, ~27!

where the T-method estimating functionE`
T(x,ā;b) can be

shown to be2

E`
T~x,ā;b!5

1

2b
1E

0

1

V@x1sBu
0~ ā!#du

1
s

2 E
0

1

V8@x1sBu
0~ ā!#Bu

0~ ā!du, ~28!

provided thate2bV(x) has~Sobolev! first order derivatives as
a function ofx. For ad-dimensional system, the expression
of the T-method estimating function reads
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E`
T~x1 ,...,xd ,ā1 ,...,ād ;b!

5
d

2b
1E

0

1

V@x11s1Bu
0,1~ ā1!,...,xd

1sdBu
0,d~ ād!#du1(

i 51

d
s i

2 E
0

1H ]

]xi
V@x1

1s1Bu
0,1~ ā1!,...,xd1sdBu

0,d~ ād!#J
3Bu

0,i~ āi !du. ~29!

The ensemble average energy can be obtained as the
limit n→` of the sequence

^E&b,n
T 5

*Rdx*VdP@ ā#Xn~x,ā;b!En
T~x,ā;b!

*Rdx*VdP@ ā#Xn~x,ā;b!
, ~30!

where

En
T~x,ā;b!5

1

2b
1E

0

1

V@x1sB̃u,n
0 ~ ā!#du

1
s

2 E
0

1

V8@x1sB̃u,n
0 ~ ā!#B̃u,n

0 ~ ā!du. ~31!

The finite-dimensional integral appearing in Eq.~30! can be
evaluated by Monte Carlo integration. In the limitn→`, the
variance of the estimator is finite because the square of

E`
T(x,ā;b) given by Eq. ~21! is a well defined function,

the average value of which is finite for smooth enough
potentials.

A second energy estimator we employ in the present
paper is the H-method estimator. This direct estimator is de-
fined by the equation

^E&b
H5

*RĤx8r~x,x8;b!ux85xdx

*Rr~x;b!dx
, ~32!

where the Hamiltonian of the systemĤx8 is assumed to act
on the density matrix through the variablex8. By explicit
computation and some integration by parts, the H-method
estimator can be expressed as the statistical average

^E&b
H5

*Rdx*VdP@ ā#X`~x,ā;b!E`
H~x,ā;b!

*Rdx*VdP@ ā#X`~x,ā;b!
, ~33!

of the estimating function2

E`
H~x,ā;b!5

1

2b
1V~x!1

\2b2

4m0
E

0

1E
0

1

~u2t!2

3V8@x1sBu
0~ ā!#V8@x1sBt

0~ ā!#du dt.

~34!

The H-estimator is properly defined even for potentials that
do not have second-order derivatives. For ad-dimensional
system, the H-method estimating function reads

E`
H~x1 ,...,xd ,ā1 ,...,ād ;b!5

d

2b
1V~x1 ,...,xd!1(

i 51

d
\2b2

4m0,i
E

0

1E
0

1

~u2t!2H ]

]xi
V@x11s1Bu

0,1~ ā1!,...,xd1sdBu
0,d~ ād!#J

3H ]

]xi
V@x11s1Bt

0,1~ ā1!,...,xd1sdBt
0,d~ ād!#J du dt. ~35!

The reader should notice that the double integral appearing
in Eq. ~34! is really a sum of products of one dimensional
integrals. Indeed, one easily computes

E`
H~x,ā;b!5

1

2b
1V~x!1

\2b2

2m0

3H E
0

1

u2V8@x1sBu
0~ ā!#duJ

3H E
0

1

V8@x1sBu
0~ ā!#duJ

2
\2b2

2m0
H E

0

1

uV8@x1sBu
0~ ā!#duJ 2

. ~36!

The H-method estimator is the sum of the ‘‘classical’’ energy
and a ‘‘quantum’’ correction term. Equation~33! shows that
the total energy can also be recovered as the limitn→`
from the sequence

^E&b,n
H 5

*Rdx*VdP@ ā#Xn~x,ā;b!En
H~x,ā;b!

*Rdx*VdP@ ā#Xn~x,ā;b!
, ~37!

where

En
H~x,ā;b!5

1

2b
1V~x!1

\2b2

4m0
E

0

1E
0

1

~u2t!2

3V8@x1sB̃u,n
0 ~ ā!#

3V8@x1sB̃t,n
0 ~ ā!#du dt. ~38!

The forms of the T- and the H-method estimators derived
here with the reweighted techniques in mind extend naturally
to the TT-DPI method by means of Eq.~22!. One just re-
places the one dimensional integrals appearing in Eqs.~31!
and ~38! by appropriate trapezoidal quadrature sums.

For the reweighted techniques, we anticipate that the ki-
netic energy estimator entering the H-method estimator pro-
vides more accurate results than the kinetic energy estimator
entering the T-method estimator. As for the point and the
path estimators of diagonal operators, the derivatives of the
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density matrix against the spatial coordinates, which measure
fluctuations around the preferential pointsx andx8 for which
the reweighted density matrices are optimized, are expected
to be reproduced in a better way than the temperature deriva-
tives, which involve unoptimized path-averaged fluctuations.
However, for sufficiently low temperatures, the variance of
the H-method kinetic energy estimator is expected to be
larger than the variance of its thermodynamic counterpart.
This larger variance is due to the factorb2 appearing in Eqs.
~34! and ~38!.

There is one special property of the T- and H-method
estimators that proves to be important in simulations. Let us
notice that by virtue of the Bloch equation

Ĥx8r~x,x8;b!52
]

]b
r~x,x8;b!,

we have the equality

^E&bª^E&b
H5^E&b

T .

Here, the symbolª signifies that the average energy^E&b is
definedto be the common value of the T-method and the
H-method energy estimators, provided that these are equal.
However, sincern

RW(x,x8;b) does not satisfy the Bloch
equation~except for the free particle!, in general

^E&b,n
H 5

*RĤx8rn
RW~x,x8;b!ux85xdx

*Rrn
RW~x;b!dx

Þ^E&b,n
T 52

]

]b
lnF E

R
rn

RW~x;b!dxG
and the T- and H-method estimators produce the same result
only in the limit n→`. Given that the two energy estimators
discussed in the present section can be computed simulta-
neously without incurring any computational penalty, we rec-
ommend that the agreement between the T- and the
H-method estimators be used as a verification tool in actual
simulations in order to check the convergence of various
path integral methods. However, we emphasize that the
agreement between the T- and the H-method estimators is not
a sufficient convergence criterion and in practice, the conver-
gence of different ensemble averages with the number of
path variables should also be monitored.

As Eqs.~31! and ~38! show, the path and the point esti-
mating functions for the potential energy enter naturally the
expressions of the T- and H-method estimating functions,
respectively. For the purpose of using the agreement between
the two energy estimators as a verification tool for conver-
gence, one should not replace the path estimating function
for the potential energy in the expression of the T-method
estimator with the point estimating function, even if this may
improve the estimated energy. For special cases, as for in-
stance the TT-DPI and RW-LCPI methods discussed in the
previous subsection, one may replace the point estimating
function for the potential energy appearing in the expression
of the H-method estimator with other estimating functions
that produce the same value but have smaller variance. In
this paper, we replace the point estimating function with the

path estimating function for the TT-DPI method and with the
estimating function given by Eq.~25! for the RW-LCPI
method, respectively.

III. A NUMERICAL EXAMPLE

We have tested the relative merits of the T- and
H-method energy estimators on a cluster of 22 hydrogen
molecules at a temperature of 6 K, using three different path
integral methods. Two of these methods, the trapezoidal
Trotter discrete path integral method and a Le´vy–Ciesielski
reweighted technique, have been already presented in the
preceding section. The third method is a Wiener–Fourier re-
weighted ~RW-WFPI! technique introduced in Ref. 4. The
numerical implementation of the methods has been exten-
sively discussed in Ref. 6 by some of us and are not re-
viewed here.

The physical system we study has been recently exam-
ined by Chakravarty, Gordillo, and Ceperley15 as well as by
Doll and Freeman16 in their comparison of Fourier and dis-
crete path integral Monte Carlo methods. The total potential
energy of the (H2)22 cluster is given by

Vtot5(
i , j

N

VLJ~r i j !1(
i 51

N

Vc~r i!, ~39!

whereVLJ(r i j ) is the pair interaction of Lennard-Jones~LJ!
potential

VLJ~r i j !54eLJF S sLJ

r i j
D 12

2S sLJ

r i j
D 6G , ~40!

andVc(r i) is the constraining potential

Vc~r i!5eLJS ur i2Rcmu
Rc

D 20

. ~41!

The values of the Lennard-Jones parameterssLJ andeLJ used
are 2.96 Å and 34.2 K, respectively.15 Rcm is the coordinate
of the center of mass of the cluster and is given by

Rcm5
1

N (
i 51

N

r i . ~42!

Finally, Rc54sLJ is the constraining radius. The role of the
constraining potentialVc(r i) is to prevent molecules from
permanently leaving the cluster since the cluster in vacuum
at any finite temperature is metastable with respect to
evaporation.

At the temperature of 6 K and at the small densities
employed in our computation, the molecules of hydrogen can
be described by spherical rotational wave functions, because
the majority of the molecules are in theJ50 state. To a good
approximation, the molecules can be regarded as spherical
bosons interacting through isotropic pair potentials. How-
ever, a thorough study of parahydrogen clusters has showed
that quantum exchange of molecules is small at temperatures
greater than 2 K and that the hydrogen molecules can be
safely treated as distinguishable particles.22

The optimal choice of the parameterRc for the con-
straining potential has been discussed in recent work.23 If Rc

is taken to be too small, the properties of the system become
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sensitive to its choice, whereas large values ofRc can result
in problems attaining an ergodic simulation. To facilitate
comparisons, in the current work,Rc has been chosen to be
identical to that used in Ref. 15. While this choice of con-
straining potential can induce ergodicity problems in calcu-
lations of fluctuation quantities like the heat capacity, we
provide evidence below that the simulations in the current
work are ergodic.

The three path integral methods we have employed uti-
lize different numbers of path variables for a given indexn.
For instance, the TT-DPInth order approximation to the den-
sity matrix rn

TT(x,x8;b) utilizes n path variables for each
physical dimension, whereasrn

LC(x,x8;b) andrn
WF(x,x8;b)

utilize 4n13 and 4n path variables, respectively. To ensure
fair comparison with respect to the number of path variables
employed, we have tabled the total number of variablesnv
used for each physical dimension and not the indexn.

A. Sampling strategy

We have discussed in Sec. II that the evaluation of the
ensemble average of any observable eventually reduces to
the evaluation of the average of a certain estimating function
against the probability distribution

Xn~x,ā;b!dx dP@ ā#

*Rdx*VdP@ ā#Xn~x,ā;b!
~43!

or its multidimensional counterpart. This probability distri-
bution can be sampled with the help of the Metropolis algo-
rithm, which comprises the following steps.24,25 One initial-
izes the imaginary-time paths in some fashion. Then, one
attempts a trial move of the paths, which may involve chang-
ing several coordinates at a time. The displacement of the
new paths is usually chosen to be relative to the old paths. To
ensure ergodicity, one makes sure that all variables of the
system are eventually moved in a cyclic or a random fashion.
The proposed path is then accepted or rejected with a certain
probability. The average value of the quantity of interest is
computed by averaging the values of the corresponding esti-
mating function evaluated at the current paths.

To establish some notation necessary for our discussion,
for each vectorr i5(xi ,yi ,zi) denoting the physical coordi-
nates of the particlei , we let āi5$ai ,1 ,...,ai ,nv

% be the col-
lection of path variables associated with the respective par-
ticle. Each

ai ,k5~ai ,k
x ,ai ,k

y ,ai ,k
z !

is itself a three-dimensional vector whose components de-
note thekth parameter of particlei for the x, y, andz coor-
dinates, respectively. Going back to the description of the
Metropolis algorithm, the full imaginary-time path has been
initialized by choosing the physical coordinatesr i randomly
in a sphere of radiusRc centered about origin. The path
variablesāi have been initialized with zero.

Except for the Wiener–Fourier method withnv5512
(n5128), we update the individual particles one at a time in
a cyclic fashion. Each update of a particle consists of an
attempt to move the physical coordinater i together with the
first one quarter of the path variablesāi ~that is, together with
the variables$ai ,k ;1<k<@nv/4#%) followed by a separate

attempt to move the rest of the path variables associated with
the particle i . Both the physical coordinates and the path
variables are moved in a cube centered about the old coordi-
nates:

r i85r i1D r~2u21!

and

ai ,k8 5ai ,k1Da~2u21!,

where the three components ofu are independent uniformly
distributed random numbers on the interval@0,1#. Through-
out our simulations, we have used the following maximum
displacement values:D r50.26 Å andDa50.15. The sam-
pling technique employed guarantees an acceptance ratio be-
tween 30% and 70% for all methods studied and fornv
<256.

Because the acceptance ratio drops below 20% for the
Wiener–Fourier reweighted technique withnv5512, each
most basic step of the previously described algorithm has
been decomposed into two successive steps. The first step is
decomposed into an attempt to move the physical coordinate
r i together with the first 1/8 of the path variablesāi , fol-
lowed by an attempt to move the physical coordinater i to-
gether with the next 1/8 path variablesāi . The second step is
decomposed in a similar fashion; half of the remaining vari-
ables have been moved in a first attempt and then the other
half in a second attempt. This restores the overall acceptance
ratio to about 33%. In fact, we have monitored separately the
acceptance ratio for the four different steps necessary to up-
date all the coordinates associated with a given particle and
have made sure that the sampling is well balanced in the
sense that the acceptance for each individual step is about
30% or larger.

As a counting device, we define apassas the minimal
set of Monte Carlo attempts over all variables in the system.
A pass consists of 2•22544 basic steps for all simulations
with nv<256. For the Wiener–Fourier reweighted technique
with nv5512, a pass consists of 4•22588 basic attempted
moves. One also defines ablock as a computational unit
made up of ten thousand passes.

B. Embarrassingly parallel computation

In order to achieve a statistical error of about 0.1
K/molecule for all computed energies, we have employed a
large number of Monte Carlo passes~10.4 million! and we
have divided the computation in 16 independent tasks to be
run in parallel. For the Wiener–Fourier reweighted method
with nv5512, we have utilized a number of 40 million
passes divided in 80 independent tasks. The Monte Carlo
simulations are embarrassingly parallel provided that one can
generate independent streams of uniformly distributed ran-
dom numbers. In this situation, there is no need for commu-
nication among the different code replica running on differ-
ent nodes, and the program is an ideal candidate for use on a
distributed computing cluster. However, to be mathemati-
cally rigorous, it is necessary to ensure that all the commu-
nication needed is already buried in the independence of the
streams of random numbers. This underlies the need for
‘‘good’’ parallel random number generators.
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The Mersenne twister~MT! is a fast serial pseudoran-
dom number generating algorithm with a long period and
good k-distribution properties.26 Quite interestingly, the al-
gorithm allows for the development of random number gen-
erators meeting certain user specifications. For instance, one
may specify the period~which must be a Mersenne prime
number, i.e., a prime number of the form 2p21), the word
size, or the memory size. Given a specified period, one may
still produce various algorithms which differ by their charac-
teristic polynomials. The dynamic creation of distributed ran-
dom number generators is based on the hypothesis that MT
random number generators having relatively prime character-
istic polynomials produce highly independent streams of ran-
dom numbers.27 Because the laws by which the numbers are
generated are significantly different, it is very probable that
the streams produced by the different generators are highly
uncorrelated. In this paper, we have used the Dynamic Cre-
ator C-language library28 with the Mersenne number 23217

21. The library outputs streams of 32-bit integers, which are
easy to convert into real numbers on the interval@0,1#. Dif-
ferent streams are identified by different identification num-
bers. The streams have been initialized once at the beginning
of the simulation with different seeds.

Given the 16 streams of independent random numbers,
the Monte Carlo simulation proceeds as follows. For each
stream, one performs an independent simulation consisting
of 65 blocks. These blocks are preceded by 13 equilibration
blocks, which are needed to bring the system into probable
configurations but do not contribute to the averages of the
estimating functions. For the Wiener–Fourier reweighted
method withnv5512, we use 80 independent streams of 50
blocks each, for a total of 40 million passes. The equilibra-
tion phase consists of 10 blocks for each stream. Ideally, the
length of the individual streams should be chosen to be suf-
ficiently large, that the averages of the computed property for
different streams are independent and normally distributed,
as dictated by the central limit theorem. This requirement is
satisfied by all simulations we have performed.

We have collected individual averages for all blocks and
streams and performed several statistical tests verifying the
applicability of the central limit theorem as well as the inde-
pendence between the block averages of same or different
streams. Let$Zi , j :1< i<16;1< j <65% denote the block-
averages of the propertyZ for stream i and block j ~the
RW-WFPI simulation fornv5512 has been analyzed in a
similar fashion!. Under the assumption that the size of the
blocks is large enough so that the correlation between differ-
ent block-averages is negligible and under the assumption
that the block-averages for different streams are highly un-
correlated, the valuesZi , j should have a Gaussian distribu-
tion centered around the average value

Z̄5
1

16•65(
i 51

16

(
j 51

65

Zi , j , ~44!

with variance

s2~Z!5
1

16•65S (i 51

16

(
j 51

65

Zi , j
2 D 2Z̄2. ~45!

The validity of this assumption can be verified with the help
of the Shapiro–Wilks normality test.29 If the collection of
samplesZi , j does not pass the test, it does not necessarily
follow that the samplesZi , j are not independent, as their
distribution is normal only if the size of the blocks is suffi-
ciently large. At a significance level of 5%, we do not reject
the Gaussian distribution hypothesis for all computed aver-
age properties. To within the statistical significance of our
calculations, the samplesZi , j can be assumed to be indepen-
dent and have a Gaussian distribution.

A second set of tests consists in verifying that the row
and column averages ofZi , j have Gaussian distributions cen-
tered aroundZ̄ with variancess2(Z)/65 ands2(Z)/16, re-
spectively. The validity of this distribution follows from the
central limit theorem and the assumption that the samples
Zi , j are independent and have a Gaussian distribution char-
acterized by the averageZ̄ and the variances2(Z). It is
important to emphasize that the row averages must pass this
test. As previously discussed, the number of blocks in a
stream should be sufficiently large so that the row averages
have the required distribution even if the independent
samplesZi , j do not have a Gaussian distribution. Again, un-
der the assumption of independence only, the row averages
should have a Gaussian distribution centered aroundZ̄ and
have variances2(Z)/Nblocks for a sufficiently large number
of blocks Nblocks. We have employed the Kolmogorov–
Smirnov test30 to compare the distributions of the row and
column averages with the theoretical Gaussian distributions.
For all computed average properties, we find that the respec-
tive distributions are identical at a statistical significance
level of 5%. The agreement for the distribution of the row
averages is evidence that the streams generated by the Dy-
namic Creator package are sufficiently independent, whereas
the agreement for the distribution of the column averages is
evidence that the block averages of the same streams are
independent.

For the third set of tests, we have considered two time-
series$Zi8 ,1< i<16•65% and$Zi9 ,1< i<16•65% obtained by
concatenating the rows of the matrixZi , j and the columns,
respectively. We then have studied the autocorrelation of the
two time series for a maximum lag of 32. The correlation
coefficients for a lagk<32 are computed with the formula

r k85
1

s2~Z!

1

16•65 (
i 51

16•65

~Zi82Z̄!~Zi 1k8 2Z̄!,

whereZi 1k8 5Zi 1k216•658 if i 1k.16•65. Under the indepen-
dence hypothesis of the samplesZi8 , the statistics of the
correlation coefficients for 1<k<32 is normal with average
zero and standard deviations851/A16•65. Moreover, the
correlation coefficients can be regarded as independent
samples of this normal distribution. By the binomial distri-
bution, the probability that at mostm correlation coefficients
lie outside the interval@22s8,2s8# is given by the formula

P~m!5 (
k50

m
32!

k! ~322k!!
qk~12q!322k,

whereq'0.046 is the probability that a normal distributed
variable of mean zero and standard deviations8 lies outside
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the interval@22s8,2s8#. One computesP(3)50.942 and
P(4)50.985 so at a level of significance of 5%, the hypoth-
esis that ther k8 are independent samples of a normally dis-
tributed variable of mean zero and standard deviations8
51/A16•65 should be rejected if 4 or more correlation
coefficients lying outside the interval@22s8,2s8# are
observed.

The autocorrelation of the seriesZi8 is representative of
the correlation between the block averages of same streams,
whereas the autocorrelation of the time seriesZi9 is represen-
tative of the correlation between the blocks of similar rank
corresponding to different streams. Figure 1 shows the cor-
relograms of the two series for a RW-WFPI Monte Carlo
simulation with nv532. The computed property is the
H-method energy estimator. Both seriesZi8 andZi9 have only
one point lying outside the interval@22s8,2s8#. These
points arer 58 and r 219 , respectively~of course, the pointsr 08
5r 0951 are not counted!. Consequently, the simulation
passes our third statistical test. In fact, all the simulations
performed have passed this statistical test for all computed
properties. We conclude that the correlation between the
block averages of same or different streams is negligible. By
the central limit theorem, the statistical error in the determi-
nation of the average of the propertyZ is

62s~Z!/A16•65, ~46!

wheres2(Z) is defined by Eq.~45!. ~For the statistical error,
we employ the 2s value, corresponding to an interval of 95%

confidence. The 5% probability that the results lie outside the
confidence interval is chosen to agree with the level of sig-
nificance of the statistical tests!.

The analysis performed in the present subsection dem-
onstrates that the streams generated by the Dynamic Creator
algorithm have negligible correlation at least for our
purposes.

A separate advantage in the use of independent streams
is to overcome the phenomenon of quasiergodicity,31 which
might appear in Monte Carlo simulations whenever the dis-
tribution that is sampled has several well defined minima that
are separated by walls of high energy. In this case, the ran-
dom walker may be trapped in one of the wells and never
sample the others, or sample them with the wrong frequency.
The Monte Carlo simulation may pass all the aforementioned
statistical tests but still produce the wrong results. For our
system, the probability that such a situation may occur is
quite low because the system is highly quantum mechanical
with strong barrier tunneling. Moreover, the 16 independent
streams have been initialized randomly in configuration
space. This makes it unlikely that all the streams are trapped
precisely into the same local minimum or group of local
minima. Evidence for quasiergodicity may be captured in the
form of a few outlying averages among the stream averages.
Such outlying averages have not been observed.

C. Summary and discussion
of the computed averages

The computed averages for all methods and estimators
utilized are presented in Tables I–III. For a given number of
path variablesnv , the RW-WFPI, RW-LCPI, and TT-DPI
methods utilize 2nv , 2.25nv , andnv quadrature points, re-
spectively. ~For a discussion of the minimal number of
quadrature points and of the nature of the quadrature
schemes that must be employed for the first two methods, the
reader should consult Ref. 6. For the RW-WFPI method, we
have utilized 2nv Gauss–Legendre quadrature points, though
a number of 1.75nv points would have sufficed.! The ob-
served overall computational time for the three methods have
followed the ratios 2:2.25:1, even though the time necessary
to compute the paths is proportional tonv

2 for the first
method and tonv log2(nv) for the other methods. The com-
putation of the paths takes full advantage of the vector float-
ing point units of the modern processors and is dominated by
the calls to the potential, except for very largenv .

FIG. 1. Correlograms for the time-seriesZi8 andZi9 . The propertyZ is the
average ensemble energy computed by means of the H-method estimator
using the RW-WFPI method withnv532. One notices that both the corre-
lation between the block averages (r k8) and the correlation between the
streams (r k9) are negligible.

TABLE I. Listed are the results obtained by the Wiener–Fourier reweighted path integral method. Average
potential^V&b , kinetic ^K&b , and total energieŝE&b are calculated with the help of the T- and H-estimators as
functions of the number of path variablesnv . The error bars are two standard deviation values. All energies are
given in K/molecule.

nv ^E&b
T ^E&b

H ^V&b
T ^V&b

H ^K&b
T ^K&b

H

4 257.6660.05 216.6360.18 282.1460.07 261.7260.12 24.4860.02 45.0960.15
8 237.6160.05 217.7760.16 264.7460.06 253.0760.11 27.1360.02 35.2960.13
16 225.6860.04 218.2860.13 254.2760.06 249.3360.10 28.6060.03 31.0660.11
32 220.2360.04 218.0060.12 249.6660.06 248.0560.10 29.4260.03 30.0560.11
64 218.2960.04 217.8560.11 248.1960.06 247.8660.09 29.9060.03 30.0160.11
128 217.7560.04 217.6460.12 247.8360.06 247.8160.09 30.0860.03 30.1760.11
256 217.7160.04 217.7060.12 247.8560.07 247.8760.10 30.1460.03 30.1760.12

10484 J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Predescu et al.



As discussed in Ref. 6, the asymptotic convergence for
the reweighted techniques is expected to be cubic, even for
the Lennard-Jones potential that is not included in the class
of potentials for which cubic convergence has been demon-
strated formally. We find that the asymptotic convergence is
attained only for very largenv , as one may see by compar-
ing for example the total, potential, and kinetic energies
computed with the help of the T-method estimator for the
RW-LCPI and the TT-DPI methods. Even if the latter method
has only 1/nv

2 asymptotic convergence, the two methods pro-
duce almost equal results. In fact, a numerical analysis of the
relationship

^E&b,nv

T '^E&b1
const

~nv!a ,

in which the left-hand side quantity is plotted against 1/(nv)a

for different values ofa, suggests that, while the methods
have converged within the statistical error, none of the three
methods includes sufficiently large values ofnv to attain the
ultimate asymptotic rate of convergence.

When comparing the values of the H-method energy es-
timator and of the related potential and kinetic estimators for
the three path integral techniques, one notices that the RW-
LCPI technique provides better values than the TT-DPI
method. The H-method estimator has a better behavior if
used together with a reweighted technique. This behavior is
consistent with the analysis we have performed in Sec. II on
the values of the potential point-estimators and the excellent
values found with the RW-WFPI method. For the reweighted
techniques, the H-method estimator provides better energy
values than the T-method estimator. This is also true of the
potential and kinetic parts of the estimators. However, the
variance of the H-method estimator is significantly larger

than the variance of the T-method estimator and the differ-
ence is even more pronounced if one compares the corre-
sponding kinetic estimators.

As discussed in Sec. II A, the path estimator for the po-
tential energy has a smaller variance than the point estimator.
Indeed, the results from Table I show that the variance of the
path estimator is approximately (0.9/0.6)252.25 times
smaller than the variance of the point estimator. In the case
of the RW-LCPI and TT-DPI methods, we have employed
the estimator given by Eq.~25! and the path estimator, re-
spectively. These were shown to produce values identical to
the point estimator but have the variance of the path estima-
tor. For the RW-WFPI and RW-LCPI methods, the point and
the path estimators produce different results. Due to the very
design of the reweighted techniques, we have argued that the
point estimator results should be the more accurate ones.
This theoretical prediction is well supported by the values
presented in Tables I and II.

While we have argued that the H-method estimator is a
better estimator as value~but not necessarily as variance!
than the T-method estimator for the reweighted methods, it is
apparent from Table III that the same difference persists for
the trapezoidal Trotter scheme. As discussed before, for the
TT-DPI method, the point and path estimators provide the
same value for the average potential. As opposed to the re-
weigthed techniques, the H-method kinetic estimator is less
accurate than the T-method kinetic energy estimator. Quite
interestingly, even if individually the potential and the ki-
netic parts are more accurate for the T-method estimator, it is
the H-method energy estimator that provides a more accurate
total energy. Clearly, a strong compensation of errors appears
in the case of the H-method estimator. Such a compensation
of errors is generally characteristic of variational methods. In

TABLE II. Listed are the results obtained by the Le´vy–Ciesielski reweighted path integral method. The format
is that of Table I.

nv ^E&b
T ^E&b

H ^V&b
T ^V&b

H ^K&b
T ^K&b

H

3 270.4660.06 18.2460.20 293.4760.07 269.0360.09 23.0160.02 87.2760.19
7 244.0860.05 210.8160.15 271.0360.06 255.0860.08 26.9460.02 44.2860.14
15 229.8460.04 215.8460.12 258.3360.06 249.1060.07 28.5060.02 33.2660.12
31 222.7660.04 217.4060.10 251.9560.06 247.8360.06 29.1960.03 30.4360.11
63 219.5060.04 217.6860.10 249.1560.06 247.6960.06 29.6560.03 30.0160.11
127 218.2560.04 217.6860.10 248.2060.06 247.8060.06 29.9560.03 30.1160.11
255 217.8460.04 217.6560.11 247.9360.07 247.8560.07 30.0960.03 30.2060.12

TABLE III. Listed are the results obtained by the trapezoidal Trotter discrete path integral method. The format
is that of Table I.

nv ^E&b
T ^E&b

H ^V&b
T ^V&b

H ^K&b
T ^K&b

H

3 268.5460.05 78.0860.30 289.8860.07 289.8860.07 21.3460.02 167.9760.32
7 245.2960.05 7.2260.19 270.8860.06 270.8860.06 25.5860.02 78.1060.21
15 230.6160.04 212.5260.13 258.5360.06 258.5360.06 27.9260.02 46.0160.15
31 222.9560.04 216.8660.11 251.9960.06 251.9960.06 29.0460.03 35.1460.12
63 219.5560.04 217.6660.10 249.1960.06 249.1960.06 29.6560.03 31.5360.11
127 218.2960.04 217.7060.10 248.2760.06 248.2760.06 29.9760.03 30.5760.11
255 217.8660.04 217.7160.11 247.9460.07 247.9460.07 30.0760.03 30.2360.12
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this respect, notice that the TT-DPI density matrices are posi-
tive definite because they are obtained by Lie–Trotter com-
posing a certain symmetrical short-time approximation. By
the Ritz variational principle, the H-method energy estimator
cannot have a value smaller than the ground-state energy.
Thus, the Ritz variational principle provides some control on
the values of the H-method estimator, but not on the indi-
vidual components, nor on the T-method estimator. The RW-
LCPI density matrices are also positive definite forn>2 and
indeed, the energy provided by the H-method estimator is
still better than what the values of the potential and kinetic
parts suggest. While a final resolution awaits further study, it
is apparent that this finding is not related to the asymptotic
rate of convergence of the path integral technique.

Among the three methods presented, the RW-WFPI has
the fastest convergence for all properties studied. Moreover,
for nv5128 andnv5256, there is a good agreement~within
statistical noise! between the T- and the H-method energy
estimators, as well as between their potential and kinetic en-
ergy components. Fornv5256, one concludes that the sys-
tematic error is smaller than the statistical error for all prop-
erties computed. An additional RW-WFPI simulation with
nv5512 in 40 million Monte Carlo passes has produced
results consistent with the findings above. The results are
summarized in Table IV and represent the energy values
we report.

IV. CONCLUSIONS

In the present work we have considered a number of
issues related to the choice of estimators for random series
path integral methods. We have illustrated our results by ap-
plying them to the problem of computing various thermody-
namic properties of a model of the (H2)22 cluster using re-
weighted path integral techniques. The molecular hydrogen
cluster is a strongly quantum mechanical system and is rep-
resentative of the type of problems one is likely to encounter
in many applications. Hence, it constitutes a useful bench-
mark for present and future path integral techniques and for
this reason it is important that its physical properties be de-
termined within advertized statistical error bars. Path integral
methods capable of dealing with such highly quantum-
mechanical systems in an efficient manner are needed, both
for reliable determinations of the physical properties of the
respective systems as well as for accurate parameterizations
of the intermolecular potentials.

We wish to make a number of points concerning the
present results and the methods we have utilized to obtain
them. At a more general level, we would like to emphasize

that the reweighted path integral methods discussed here pro-
vide a broadly applicable, simple, and formally well charac-
terized set of techniques. As demonstrated by the present
results, they are capable of producing high-quality numerical
results for problems of appreciable physical complexity.
Moreover, they do so without the assumption of a particular
form for the underlying microscopic forces. Furthermore, the
estimators described in the present paper are convenient, ac-
curate, and easily implemented for any random series ap-
proach. As discussed in Sec. III, when used together, the T
and H-method estimators provide an important consistency
check on the quality of the path integral simulations. Such
consistency checks are a valuable element in judging the
reliability of particular simulations.

As previously mentioned, the cluster application dis-
cussed here provides a convenient test bed for the develop-
ment of numerical methods. For this reason, we have exer-
cised due diligence with respect to the quality of our final
results summarized in Table IV. As discussed in Sec. III, we
have subjected both the parallel random number generator
employed and the numerical results obtained to a series of
quality-control tests. Beyond these statistical checks, it is
important to note there is an internal consistency check on
the quality of the present results. Specifically, as is evident in
Tables I–III, the kinetic, potential, and total energies from
the three different path integral approaches~trapezoidal Trot-
ter, reweighted Le´vy–Ciesielski, and reweighted Wiener-
Fourier! all agree. It is also important to note in this context
that, while the presently computed total energies agree with
those reported by Chakravartyet al.,15 the individual kinetic
and potential energies do not. The kinetic energy reported by
Chakravartyet al.15 is ;0.8 K/particle higher than found in
the present simulations~with the potential energy being cor-
respondingly lower!. The magnitude of this difference is well
outside the statistical error bars involved and appears to sig-
nal a systematic error. Based on the observed consistency
between the results produced by three different path integral
methods and on the agreement between the T and H-method
estimators for each of these path integral formulations, we
feel confident of the results we have reported in Table IV.

Note:After the present simulations had been completed,
we have learned from D. M. Ceperley that the off-diagonal
pair density used as the starting point in the simulations re-
ported in Ref. 15 was truncated at first order in the expansion
of off-diagonal displacements instead of second order and
that the inclusion of this second-order term resolves the ki-
netic and potential energy difference noted above.

ACKNOWLEDGMENTS

The authors acknowledge support from the National Sci-
ence Foundation through award Nos. CHE-0095053 and
CHE-0131114. They also wish to thank the Center for Ad-
vanced Scientific Computing and Visualization~TCASCV!
at Brown University, especially Dr. James O’Dell, for valu-
able assistance with respect to the numerical simulations de-
scribed in the present paper. They would also like to thank
Mr. Cristian Diaconu for helpful discussions concerning the
present work. Finally, the authors would like to express a
special thanks to Professor David Ceperley for continuing

TABLE IV. Estimated energies in K/molecule for the (H2)22 cluster com-
puted with the help of the Wiener–Fourier reweighted technique using 512
path variables and 40 million Monte Carlo passes. Listed are the average
potential^V&b , kinetic ^K&b , and total energieŝE&b calculated with the
help of the T-method~left column! and H-method~right column! estimators.
The reported errors are two standard deviations.

^E&b
T 217.6960.02 ^E&b

H 217.7160.06

^V&b
T 247.8260.03 ^V&b

H 247.8160.05
^K&b

T 30.1360.02 ^K&b
H 30.1060.06
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discussions concerning the present simulations and for his
efforts in tracking down the origin of the pair density issues
noted in Sec. IV.

APPENDIX: EQUIVALENCE OF PATH
AND POINT ESTIMATORS

The main purpose of this section is to give a compact
form for the integral

E
V

dP@ ā#X`~x,x8,ā;b!O@xr~u!1sBu
0~ ā!#, ~A1!

whereu is an arbitrary point in the interval@0,1#. In terms of
a standard Brownian motion@see Eq.~1!#, the above integral
can be put into the form

P@sB15x8usB05x#E@e2b*0
1V(sBu)duO~sBu!usB15x8,

sB05x]

5E
R
O~y!P@sB15x8,sBu5yusB05x#

3E@e2b*0
1V(sBu)duusB15x8,sBu5y,sB05x#dy.

~A2!

Using the Markov property of the Brownian motion, one
readily justifies the equalities

P@sB15x8,sBu5yusB05x#

5P@sB15x8usBu5y#P@sBu5yusB05x#

5r f p~x,y,ub!r f p@y,x8;~12u!b# ~A3!

and

E@e2b*0
1V(sBu)duusB15x8,sBu5y,sB05x#

5E@e2b*0
uV(sBu)duusBu5y,sB05x#

3E@e2b*u
1V(sBu)duusB15x8,sBu5y#. ~A4!

Performing the transformation of coordinatesu85u2u
in the second factor of the right-hand side of Eq.~A4! and
employing the invariance of the Brownian motion under time
translation

$sBu1uusBu5y,sB15x8,u>0%

5
d

$sBuusB05y,sB12u5x8,u>0%,

one obtains

E@e2b*0
1V(sBu)duusB15x8,sBu5y,sB05x#

5E@e2b*0
uV(sBu)duusBu5y,sB05x#

3E@e2b*0
12uV(sBu)duusB12u5x8,sB05y#. ~A5!

Let us focus on the term

E@e2b*0
uV(sBu)duusBu5y,sB05x#.

Performing the substitution of variablesu85u/u and em-
ploying the scaling property of the Brownian motion

$sBuuusB05x,sBu5y,u>0%

5
d

$su1/2Buusu1/2B05x,su1/2B15y,u>0%,

one proves

E@e2b*0
uV(sBu)duusBu5y,sB05x#

5E@e2bu*0
1V(su1/2Bu)duusu1/2B15y,su1/2B05x#

5r~x,y;ub!/r f p~x,y;ub!. ~A6!

In a similar fashion, one demonstrates that

E@e2b*0
12uV(sBu)duusB12u5x8,sB05y#

5r@y,x8;~12u!b#/r f p@y,x8;~12u!b#. ~A7!

We now combine Eqs.~A1!–~A3! and~A5!–~A7! to ob-
tain

E
V

dP@ ā#X`~x,x8,ā;b!O@xr~u!1sBu
0~ ā!#

5E
R
r~x,y;ub!r@y,x8;~12u!b#O~y!dy. ~A8!

With the help of Eq.~A8! and by cyclic invariance,

E
R
dxE

V
dP@ ā#X`~x,ā;b!O@x1sBu

0~ ā!#

5E
R
dxE

R
dyr~x,y;ub!r@y,x;~12u!b#O~y!

5E
R
dyr~y,y;b!O~y!

5E
R
dxE

V
dP@ ā#X`~x,ā;b!O~x!. ~A9!

Moreover, since the functionO(x) is arbitrary, the last iden-
tity also implies that the random variablesx and x
1sBu

0(ā) have identical distribution functions under the
probability measure

X`~x,ā;b!dx dP@ ā#

*Rdx*VdP@ ā#X`~x,ā;b!
.

By settingO(x)51 in Eq.~A8!, one obtains the well-known
product formula

r~x,x8;b!5E
V

dP@ ā#X`~x,x8,ā;b!

5E
R
r~x,y;ub!r@y,x8;~12u!b#dy, ~A10!

which is seen to be a consequence of some basic properties
of the Brownian motion.
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