
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

2013 

Eigenvalue Pairing for Direction Finding with Vector Sensor Arrays Eigenvalue Pairing for Direction Finding with Vector Sensor Arrays 

Kyle T. Martin 
University of Rhode Island, kyletae@gmail.com 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Martin, Kyle T., "Eigenvalue Pairing for Direction Finding with Vector Sensor Arrays" (2013). Open Access 
Master's Theses. Paper 11. 
https://digitalcommons.uri.edu/theses/11 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/11?utm_source=digitalcommons.uri.edu%2Ftheses%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


EIGENVALUE PAIRING FOR DIRECTION FINDING WITH VECTOR

SENSOR ARRAYS

BY

KYLE T. MARTIN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

2013



MASTER OF SCIENCE THESIS

OF

KYLE T. MARTIN

APPROVED:

Thesis Committee:

Major Professor Richard J. Vaccaro

Orlando Merino

Ashwin Sarma

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2013



ABSTRACT

This thesis introduces a novel sorting pairing method for the azimuth-elevation

estimates obtained from the Estimation of Signal Parameters via Rotational In-

variance Techniques (ESPRIT) based closed-form source localization algorithm.

The ESPRIT algorithm estimates Direction of Arrival (DOA) angles from a given

source using arbitrarily spaced three-dimensional arrays of vector sensors, whose

locations need not be known. In estimating the DOAs there can be miss-pairings

of DOA azimuth and elevation direction cosines in certain cases. In such cases,

the incident angles calculated can be permuted which produces miss matching

of angles or misses. The sorting pairing method presented exploits the order of

eigenvalues and thereby the DOAs estimated from the ESPRIT algorithm. The

sorting pairing method is compared to two other pairing methods: the traditional

pairing method, a method that is simplistic in nature when dealing with misses;

and the exhaustive pairing method, a method that exhaustively attempts to find

the eigenvalue pairing that yields the least amount of error. Simulation results

provides strong evidence that the sorting pairing method gives good results over

a much larger range of signal-to-noise ratios than the traditional method, and has

an accuracy that is nearly co-linear with the exhaustive method.
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CHAPTER 1

Introduction

1.1 Outline

This thesis is organized in a fashion that describes Direction of Arrival (DOA)

estimation for vector sensors and classical and improved eigenvalue pairing meth-

ods. The thesis is structurally organized in 4 chapters:

1. Chapter 1 is an overview of vector sensors and their current applications. It

includes a description of the topic and the relevance of the research within.

2. Chapter 2 presents relevant background and assumptions, basic system equa-

tions; the derivations of the noise-free and noisy data models for a field of

vector sensors; the estimation of signal parameters via rotational invariant

techniques (ESPRIT) algorithm and the eigenvalue pairing problem for noise-

free and noisy data models.

3. Chapter 3 gives a detailed description of a novel eigenvalue pairing method

and performs the detailed analysis of a vector-sensor array (VSAs) with and

without noise for both classical and improved pairing methods for VSAs that

have two or more sources.

4. Chapter 4 gives examples of simulation results for scenarios involving two,

three, and four sources impinging upon a 13-element sensor array.

5. Chapter 5 concludes the thesis, and evaluates the research and its contribu-

tion. This chapter also discusses implications of the results and additional

areas for potential research.
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1.2 Hydrophones

Most detection systems in air or free space use electromagnetic waves, but

these generally absorb quickly in salt water; however, sound waves, unlike elec-

tromagnetic waves, can travel great distances, sometimes thousands of kilometers,

before being dissipated underwater. These underwater sound waves are reflected

by objects and are produced by machinery, making sound useful for active and

passive detection. Some undersea applications reject active sonar for two reasons:

• Active sonar pulses travel far beyond the maximum detection range; thus,

targets can intercept these pulses at great distance and avoid detection.

• Active sonar is not covert, and sources actively transmitting energy in the

water may be located and classified.

In order to achieve sensing underwater sound waves, one would require a

hydrophone, a common sensor employed for sonar, which is at its barest an un-

derwater microphone. Like an in air microphone, a hydrophone measures pressure

only and sound waves passing over a hydrophone introduce changes that are mea-

sured and used for detection. Hydrophones that have no directionality are called

omni-directional hydrophones and they are quite common due to the fact that they

are easy to build, maintain, and analyze. Omnidirectional hydrophones measure

the acoustic pressure as a scalar quantity.

1.3 Vector Sensors

Performance of a configuration of sensors can be improved upon by increasing

the amount of information that is measured by each sensor. For acoustic measure-

ments, the particle velocity of the medium in which the sound is traveling through

can provide additional information about the direction of sound arrival. This type

of sensor that measures the particle velocity is known as a vector sensor.

2



1.3.1 Description of Vector Sensors

Acoustic vector sensors measure the pressure as well as non-scalar, vector,

components of an acoustic field such as a particle velocity. The non-scalar compo-

nents of an acoustic field cannot be obtained using a single acoustic pressure sen-

sor which has no directionality, an omni-directional sensor, but can be by a single

acoustic vector sensor which contains one omni-directional hydrophone measuring

pressure and two or three orthogonal velocity hydrophones measuring the compo-

nents of particle velocity [1]. In the past few decades extensive research has been

conducted on the theory and design of vector sensors [2][3], and vector sensors have

been primarily used for underwater target localizations, acoustic communications,

and SOund Navigation And Ranging SONAR applications.

The concept of vector sensors has been within the acoustic community since

the 1930s with the seminal paper by H.F. Olson [4]. In this work Olson provides

the set up and derivation of how a vector sensor would work. Olson describes a

velocity sensor structure that is a tube that contains a magnetic mass suspended by

springs where any vibration along the axis of the tube will cause the mass to move;

thus, inducing a current in a wire coil. This induced current yields a measurement

of velocity along the velocity sensor axis. Olson proved that the response of a high

quality microphone with uniform sensitivity over a wide frequency range set up in

such a system can measure the velocity component of a sound wave.

Vector sensors can be categorized into two general categories: inertial and gra-

dient [5]. Inertial vector sensors measure the acceleration or velocity by responding

to particle motion, while gradient sensors use a finite-difference approximation to

estimate the gradients and thereby the direction of the acoustic field. There are

obvious benefits and drawbacks to each category of sensor, but inertial sensors

offer a broad dynamic range. However, proper supporting and packaging of the

3



sensor without affecting its response to motion is an issue. This is due to the fact

that inertial sensors do not distinguish between acoustic and non-acoustic sources

such as package vibrations; therefore, they must be properly shielded from such

disturbances. This shielding, and supporting and packaging issue makes it difficult

to manufacture accurate and small inertial sensors for higher frequencies. Gradient

sensors, unlike inertial sensors can be manufactured at significantly smaller sizes as

they do not suffer the same drawbacks as their counterpart, inertial sensors. Gradi-

ent sensors smaller size makes them more suitable for higher frequencies; however,

the drawback to gradient sensors is that their method of determining the ’vector’

of an acoustic source, finite-difference approximation, limits their operational use,

e.g. their dynamic range.

The proposed use of vector sensors takes advantage of vector sensor compo-

nents at the receiver and are not limited to a particular sensor type, inertial or

gradient.

1.3.2 Current Applications of Vector Sensors

Vector sensors, despite their history dating back to 1931 [4], took 38 years to

have interest from the United States Navy where they have been used in acous-

tic sensor systems such as the Directional Frequency Analysis and Recording

(DIFAR), the passive Vertical Line Array DIFAR (VLAD), and the DIrectional

Command Activated Sonobuoy System (DICASS) [6][7]. There are also other

uses for vector sensors such as a receiver for underwater acoustic communication

[8].

These systems that use vector sensors can do a wide variety of tasks such as

Direction-Of-Arrival (DOA) estimation or source localization. DOA estimation

is when the bearings of a number of far-field acoustic sources are determined by

utilizing DOA recovery algorithms. Instead of using traditional sensor array fields,

4



spatially distributed passive or active omni-directional scalar sensors, one can use

vector sensors that have the benefits of higher directionality and decreased size

when compared to omni-directional sensors. The directional information that can

be acquired from a vector sensor can greatly improve the number of sources that

can be detected as well as the localization accuracy without increasing the array

aperture [9].

The vector sensor for the purpose of this thesis is assumed to be consisting

of three sensors: two identical co-located but orthogonally oriented velocity hy-

drophone plus another pressure hydrophone. This is covered in greater detail in

Chapter 2.

1.4 ESPRIT Algorithm overview
1.4.1 ESPRIT Algorithm and ESPRIT Algorithm for Vector Sensors

DOA estimation or source localization is important for a wide variety of

reasons and there are two subspace methods that are typically used, MUltiple

SIgnal Classification (MUSIC) [10] that was popularized by Schmidt [11], and

the Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT) Algorithm. The ESPRIT method, first described in [12] and later de-

scribed in more detail in [13, 14], can estimate source DOAs of narrowband sources

that are highly correlated. The ESPRIT algorithm, an eigenstructure source lo-

calization algorithm, has been expanded over the years and adapted for a wide

variety of different systems and purposes. One of the more recent purposes for

vector sensors from Wong et. al. [15, 1] uses the ESPRIT algorithm to estimate

DOA’s for vector sensors.

The ESPRIT algorithm is an eigenstructure (subspace) DOA estimation al-

gorithm that is similar to MUSIC as it exploits the underlying data model, and

generally ESPRIT estimates are unbiased and computationally efficient to obtain.

5



ESPRIT and other eigenstructure source localization algorithms decompose the

column space of the data correlation matrix into a signal subspace and a noise

subspace. ESPRIT is favored over other DOA estimation methods due to the

following features:

• ESPRIT requires less processing when compared to MUSIC, where the com-

putational load for ESPRIT grows linearly, as opposed to MUSIC, which

grows exponentially when the algorithms are extended to multidimensional

systems.

• ESPRIT does not require a priori knowledge of the array geometry and ele-

ment characteristics.

ESPRIT can be extended to vector sensors and DOA performance can be

improved upon as shown by [1]. The improvements made by Wong et. al. is

the advancement of the non-spatial realization of the ESPRIT algorithm and the

extension of ESPRIT to the vector sensor. The improvement allows the ESPRIT

algorithm to depend on only the impinging signals’ direction-cosines and not on

any array parameters as long as all sensors are oriented in the same direction;

however, even if they are not oriented in the same direction Wong et. al. describes

a method to align data received from non-aligned sensors as if it came from sensors

in the same orientation. This extension of the ESPRIT algorithm removes previous

constraints on a priori knowledge of the sensor array by allowing a DOA estimate

when sensors are arbitrarily located in a field of sensors in an arbitrarily spaced

3-Dimensional region with sensors at unknown locations.

It is important to note that without vector sensors, the above claims and

improvements would not be able to be achieved; that is to say, that the ESPRIT

improvements are vector sensor dependent. In the vector sensor that was previous

described, the co-located vector hydrophones in the vector sensors measures two

6



of the three (or all three if the vector sensors has three velocity hydrophones)

Cartesian components of the velocity field plus the over all pressure from the omni-

directional sensor. Normalization of the velocity-field components would give three

Cartesian direction-cosines of the acoustic signal.

Despite the ESPRIT algorithm’s advantages, ESPRIT does have limitations

and these limitations, as well as more information on ESPRIT, are covered in

Chapter 2, Review of Existing ESPRIT Algorithm Development.

1.4.2 Eigenvalue Pairing

Using the ESPRIT algorithm, the DOA estimation of the azimuth and eleva-

tion angles are calculated and recovered in two separate eigenvalue decompositions

(EVDs). The numerical methods used to calculate the eigenvalue decomposition

do not give the eigenvalues in any particular order. Thus, additional calculations

are needed to properly pair an elevation angle obtained from one EVD with the

corresponding azimuth angle obtained from the other EVD. This issue of eigenvalue

permutation and the pairing of permuted eigenvalue pairs is covered in Chapters

2 and 3.

1.4.3 Results and Limitations

Results that compare and contrast three different pairing methods are ex-

plored in Chapter 3: classical, sorting, and exhaustive. The classical pairing

method is the pairing method that is described in [1] and the sorting method is a

new method presented in this thesis. Finally the exhaustive method runs through

every possible permutation and selects the permutation matrix that presents the

least amount of error.

7



1.5 Contributions of thesis

The contribution of this thesis is a new pairing method that relies upon sorting.

This method performs significantly better than the traditional pairing method.

Simulation results in Chapter 4 show that the sorting pairing method performs

better than the traditional method and that the sorting pairing method performs

almost as well as the exhaustive pairing method.
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CHAPTER 2

Review of Existing ESPRIT Algorithm Developments and Eigenvalue
Pairing for VSAs

2.1 Assumptions for the ESPRIT Algorithm

To simplify the derivation and the entire document, the following assumptions

are made throughout the entire thesis.

2.1.1 Coordinate Systems

For this thesis, the 3-Dimensional Cartesian coordinate system consisting of

x, y, and z axes will be used. This system uses θ to refer to the angle from the

vertical z-axis, elevation angle, and φ to refer to the angle from the x-axis in the

xy-plane, azimuth angle.

2.1.2 Sensor and environmental Model

• The entire signal model is in a free-space environment where sound waves

travel in a homogeneous, isotropic fluid wholespace which implies direct-path

propagation only. Constructive and deconstructive interference or multi-path

propagation is not assumed. It is also assumed that the speed of the sound

wave is uniform across all sensors.

• The impinging signal is a narrow-band acoustic source that operates on one

frequency f where the wavelength λ = 1/f . In practice this means that

the signal is sufficiently band-limited to allow narrowband processing in the

frequency domain. Mathematically speaking this would mean that the band-

width β is significantly less than the carrier frequency fc. Such a band-limited

signal may be obtained by pre-filtering or computing the Discrete Fourier

Transform of the time series measurements.
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Figure 1. The 3-Dimensional Cartesian Coordinate System with illustrations to
show X,Y, and Z axis; θ the elevation angle which is the angle from the z axis;
and φ the azimuth angle which is the angle from the x-axis in the xy-plan

• The signal model assumes that the sound waves are planar across the array.

This implies that the unit-vector from each sensor to a source or K sources

is the same, regardless of the sensor location. In practice this would require

sources to be in the far-field whose distances are much greater than the length

of the array.

• The K source signals impinging upon the array of L vector sensors has the

stipulation that L > K at possibly arbitrary and possibly unknown locations

in a 3-D region with arbitrary geometry.
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2.1.3 Vector Sensor Array

• In this thesis it is assumed that each vector sensor consists of three com-

ponents: one pressure hydrophone and two velocity sensors. In each vector

sensor, all three components are located at the same point; in other words

all three sensors are co-located. In practice this requires that the component

spacing is small compared to the minimum wavelength, which is set by the

highest operating frequency.

• Each vector-sensor is modeled as a single point. In practice this requires the

sensor dimensions to be small when compared with the minimum wavelength.

• The signal response of each velocity hydrophone is proportional to the cosine

of the angle between the velocity axis and the source. Cosine velocity re-

sponse results from measuring the velocity, and is performed only along one

axis.

• The axes of the two velocity hydrophones are orthogonal. In practice this is

true where each vector-sensor is a static unit.

• The vector sensor array consists of L vector sensors and while all locations of

the vector sensors need not be known, all the velocity hydrophones, as previ-

ously stated, need to be identically oriented, i.e. the array of L vector sensors

are located at arbitrary and possibly unknown locations in a 3-Dimensional

region with completely arbitrary geometry, and all vector hydrophones are

oriented in the same direction.

12



2.2 Derivation of noise-free VSA data
2.2.1 Signal Measurement Model

Each vector sensor’s (possibly unknown) location can be defined as

pl =

xlyl
zl

 where l = 1, . . . , L (1)

where pl denote the position of the lth vector sensor in 3-Dimensional space, and

each position is defined for the purpose of this paper in units of wavelengths.

The three-component vector hydrophone would produce the following 3 × 1

manifold with regard to the kth source impinging from (θk, φk):

a(3)(θk, φk) ≡

u (θk, φk)
v (θk, φk)

1

 =

sin θk cos φk
sin θk sin φk

1

 (2)

where θ denotes the kth source’s elevation angle measured from the vertical z

axis parametrized by θk ∈ (0, 2π] and φ denotes the kth source’s azimuth angle

parametrized by φk ∈ [−π/2, π/2]. Note that u(θk, φk) and v (θk, φk) or u and v

respectively can be referred to as direction cosines. This nomenclature will be used

later in the chapter and in Chapter 3.

2.2.2 Intervector hydrophone spatial phase factor

Each vector sensor is located at a particular 3-Dimensional (possibly unknown)

location pl (1). Given the different sensor locations and the nature of the signal,

each sensor will have a different phase. In order to simulate this in the signal model,

an intervector hydrophone spatial phase factor is needed. The phase response of

the lth vector sensor from a plane wave impinging from angle θ and φ is given by

ql(θk, φk) ≡ ej2π
xl uk+yl vk+zl

λ

= ej2π
xl uk
λ︸ ︷︷ ︸ ej2π

yl vk
λ︸ ︷︷ ︸ ej2π

zl wk
λ︸ ︷︷ ︸

≡ qxl (uk) ≡ qyl (vk) ≡ qzl

(3)
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The phase responds for all L sensors may be combined into a vectorq1(θk, φk)...
qL(θk, φk)

 ≡ q(θk, φk) = q(u(θk, φk), v(θk, φk)) (4)

This intervector hydrophone spatial phase factor as described in (3) can now be

employed on a 3L × 1 array for the entire L-element vector hydrophone array in

order to spatially relate the received signal on each individual sensor.

a(θk, φk) ≡ a(3)(θk, φk)⊗ q(θk, φk) (5)

where ⊗ symbolizes the Kronecker-product, or tensor product, that is defined as:

A⊗B =



a11

b11 · · · b1m...
. . .

...
bk1 · · · bkm

 · · · a1j

b11 · · · b1m...
. . .

...
bk1 · · · bkm


...

. . .
...

ai1

b11 · · · b1m...
. . .

...
bk1 · · · bkm

 · · · aij

b11 · · · b1m...
. . .

...
bk1 · · · bkm




(6)

where A is an i × j matrix and B is a k ×m matrix. This operation is possible

because the phase vector a is simply the measurement vector for the corresponding

pressure-sensor array. With the total of K ≤ L co-channel signals, the entire array

would yield a 3L × 1 vector measurement z(t) at time t:

z(t) =
K∑
k=1

a(θk, φk)sk(t) + n(t) = As(t) + n(t) (7)

sk ≡
√
Pkσk(t)e

j(2π c
λ
t+ψk) (8)

A ≡ [a(θ1, φ1), . . . , a(θK , φK)] (9)

s(t) ≡

 s1(t)...
sK(t)

 , n(t) ≡

n1(t)
...

nK(t)

 (10)
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where n(t) = 0, Pk denotes the kth signal’s power, σk(t) represents a zero-mean

unit-variance complex random process, λ refers to the signals’ wavelength, c repre-

sents the propagation speed, and ψk denotes the kth signal’s uniformly distributed

random carrier phase. The total of N snapshots (where N > K) taken at the

distinct instants tn, n = 1, · · · , N , yields a 3L X N data matrix

Z ≡ [z(t1) · · · z(tN)]. (11)

This matrix is a representation of the received acoustic energy from the vector-

hydrophone sensor field. In it contains information that can be used to determine

and estimate the DOA’s through direction angles (θk, φk) where k = 1, · · · , K.

2.3 ESPRIT Algorithm

This section will estimate the DOA’s given the measurements from Z through

the ESPRIT algorithm and makes no assumptions about array geometry, element

characteristics, DOA’s, or signal correlations.

2.3.1 Overview of ESPRIT Algorithm

DOA estimation is important for a wide variety of reasons and there are two

methods that are typically used, the single subspace method, MUltiple SIgnal

Classification (MUSIC) [1] that was popularized by Schmidt [2], and the

Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT) Algorithm [3]. The MUSIC algorithm yields asymptotically unbiased

and efficient estimates. The MUSIC algorithm estimates the signal subspace from

the array measurements and then estimates the parameters of interest from the in-

tersections between the array manifold and the estimated signal subspace; however,

in order to use the MUSIC algorithm, a priori knowledge of the array geometry

and element characteristics is required [4]. Therefore it is impossible to do DOA

estimation using MUSIC when the array geometry and element characteristics are

15



unknown.

The ESPRIT approach first proposed in [3] is similar to MUSIC as it exploits

the underlying data model and produces generally unbiased estimates. [3, 4] in

computationally efficient manner. The advantage of using ESPRIT over MUSIC

is that

• ESPRIT does not require a priori knowledge of the array geometry and ele-

ment characteristics.

• It is computationally less complex since it does not need the search procedure

that MUSIC uses.

These benefits explain why ESPRIT has had a significant amount of research over

the past two and a half decades. The ESPRIT algorithm is not perfect as it assumes

that the signal source is in the far field; in other words, the ESPRIT algorithm

can only operate with plane waves.

Despite the above limitations, there are evident reasons why the ESPRIT al-

gorithm would be favored in a wide variety of cases over other algorithms. These

same limitations give rise to the special conditions under which the ESPRIT algo-

rithm can offer a unique solution to the DOA estimation problem.

2.3.2 ESPRIT Algorithm Derivation

It is important to realize that the goal of the ESPRIT algorithm is to effectively

remove the effects of q, shown in (3), the intervector phase factor between the

sensors; thus, recovering the direction-cosines. By recovering the direction-cosines,

the estimated DOA of the source can then be calculated.
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2.3.3 Overview and Intuitive Analysis of the ESPRIT algorithm to
estimate DOA’s

Recall that each column the data matrix Z is a 3L × 1 vector. Each vector can

be divided up into three L × 1 sub-vectors. These L × 1 sub-vectors are related

to one another by invariant factors q that are dependent only on the positional

locations pl of the vector hydrophones and not the direction cosines of the sources.

The 3L × 1 array manifold described as a from equation (5) can be rewritten as:

a(θk, φk) = a(3)(θk, φk)⊗ q =

u (θk, φk)q(θk, φk)
v (θk, φk)q(θk, φk)

q(θk, φk)

 =

a1 (θk, φk)
a2 (θk, φk)
a3 (θk, φk)

. (12)

Now that a is formed in a more explicit way one can see that the three sub-vectors

are each related by the same q(θk, φk) factor. Furthermore, one can form three L

× K data blocks out of the matrix A, shown in (9), as follows

Aj ≡SjA, j = 1, . . . , J (13)

where Sj is an L× JL sub-array selection matrix

Sj ≡[OL,L×(j−1)
...IL

...OL,L×(J−j)] j = 1, . . . , J (14)

where Om,n denotes an m × n zero matrix, and Im denotes an m × m matrix

identity matrix. This matrix multiplication divides up A into 3 sub-blocks, which

can be shown using (12) to be interrelated and described as:

A1 =A3

u(θ1, φ1)
. . .

u(θK , φK)


︸ ︷︷ ︸

≡ Φu

(15)

A2 =A3

v(θ1, φ1)
. . .

v(θK , φK)


︸ ︷︷ ︸

≡ Φv

. (16)
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2.3.4 ESPRIT derivation for Vector Sensors

An alternative derivation to the literature derivation is as follows. Recall that

A1 = A3Φ
u from (15) where Φu is a diagonal matrix containing the u direction

cosines. Also, A2 = A3Φ
v.

In the absence of noise, equation (7) shows that Z = AS, and the column-

space of Z is the same as the column space of A or

col(Z) = col(A) (17)

where col(Z) denotes column-space for Z. If the singular value decomposition

(SVD) is taken of Z, it can be written as follows

Z = U︸︷︷︸ΣVH

3L× 3L

Z = U1︸︷︷︸Σ1V
H
1

3L×K

(18)

where U1 contains the left singular vectors of Z corresponding to the non-zero

singular values. Recall that a property of the SVD is that col(Z) = col(U1) and

using (17) this gives

col(A) = col(U1). (19)

Note that the relationship between the eigenvalue and singular value decomposition

is that the left singular vectors of Z are the eigenvectors of ZZH . Thus [U,E] =

eig(ZZH) could be used in place of the SVD.

From (19) the following is true

A = U1T (20)

where T is a non-singular change-of-basis matrix. Recall that

A =
L{
L{
L{

A1

A2

A3

 (21)
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given this fact, U1 can be partitioned such as the following

U1 =
L{
L{
L{

U11

U21

U31

 . (22)

From (20),

A1 =U11T

A2 =U21T

A3 =U31T

(23)

and through manipulation and substitution of the first and third equations into

A1 = A3Φ
u (15) one can get the resultant equation:

U11T = U31TΦu

U11 = U31TΦuT−1

(24)

where the expression TΦuT−1 is given the name Fu

Fu = TΦuT−1. (25)

Combining (24) and (25) yields U11 = U31Fu, which may be solved for Fu to

obtain

Fu = (UH
31U 31)−1U11. (26)

Using (25) and the fact that Φu is diagonal, the eigenvalues of Fu are the diagonal

elements of Φu.

Similarly through substitution of the second and third equations from (23)

into A2 = A3Φ
v (16) then one can get the resultant equation:

U21T = U31TΦU

U21 = U31TΦUT−1

(27)

where the expression TΦvT−1 is given the name Fv,

Fv = TΦvT−1. (28)
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Using a derivation similar to that for Fu, it can be shown that

Fv = (UH
31U31)

−1U21 (29)

Therefore, the eigenvalues of Fv are the diagonal elements of Φu.

From inspection (25) and (28) show that Fu and Fv have the same eigenvector

matrix T . This is true when the u direction cosines and v direction cosines are listed

in corresponding order. If the eigenvectors of Fu and Fv are computed separately,

it is unlikely that they will be in corresponding order. In general, the eigenvectors

and eigenvalues of Fv will have to be permuted to get into corresponding order

with the eigenvectors and eigenvalues of Fu. Put differently, [T1,Λ1] = eig(Fu)

and [T2,Λ1] = eig(Fv), where T2 = T1P and P is a permutation matrix, and

the diagonal elements of PΛ1P
T are in corresponding order with the diagonal

elements of Λ2. Note that this will be covered more in the next section, and in

much greater detail in Chapter 3.

2.4 Pairing Problem

First recall known facts about permutations. Let π represent the permutation

function that takes integers i = 1, . . . , N into some permuted order defined by

π(i). Let ei be the ith standard basis vector in <n. The permutation matrix

corresponding to the permutation function π is

P = [eπ(i) · · · eπ(i)]. (30)

Also recall some facts regarding permutations matrices

• Permutation matrices are orthogonal such that

P−1 =PT PPT = I where I is the identity matrix (31)

20



• Given a matrix A=[a1 · · · an], multiplication on the right by P permutes

the columns of A as follows:

AP =[aπ(1) · · · aπ(n)] (32)

• A permutation matrix and its inverse may be used to permute the diagonal

elements of a diagonal matrix.

D =diag(d1, . . . , dn) and D =diag(d1, . . . , dn), where di = dπ(i). (33)

If P is defined by (30) then

D =P TDP = P−1DP (34)

2.4.1 Eigenvalue Pairing

To develop the concept of eigenvalue pairing consider two different matrices,

F and G, that have the same eigenvectors but different eigenvalues.

F =T1ΛT
−1
1 , Λ =diag(λ1, . . . , λn)

G =T1DT
−1
1 , D =diag(d1, . . . , dn)

(35)

where the columns of T1 are eigenvectors of the matrices F and G, and the cor-

responding eigenvalues are the diagonal elements of Λ and D. Assume that the

eigenvalues of F and G are real numbers and correspond to each other in the

following order of pairs

(λ1, d1), (λ2, d2), . . . , (λn, dn) (36)

Suppose that the columns of T1 are permuted into a new matrix T2 and that

the diagonal elements of D are permuted by a permutation matrix P into a new

matrix D where

T2 =T1P , D = P TDP . (37)
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Note that the diagonal elements of D are now a permutation of the diagonal el-

ements of D. That is to say that d = dπ(i) where π is the permutation function

and defined in (33); thus, the columns of T2 are eigenvectors of G and the corre-

sponding eigenvalues are the diagonal elements of D. As a result of the preceding

equations

G = T2DT
−1
2 . (38)

In the eigenvalue pairing problem the computed eigendecomposition of G is (38)

and not (35). Therefore given the eigendecomposition G in (38) and the eigende-

composition of F in (35) the eigenvalue pairing problem is to find the permutation

matrix P or its associated permutation function π.

From equation (37) the permutation matrix P and, therefore, the permutation

function π can be obtained from the eigenvector matrices T1 and T2

P = T−1
1 T2. (39)

The classical pairing method algorithm can be described by the following: given the

matrices F andG with identical eigenvectors, suppose that the eigendecomposition

of each matrix can be defined as

F = T1ΛT
−1
1 (40)

G = T2DT
−1
2 (41)

where the permutation matrix that puts the columns of T2 into the same order as

the columns of T1 is

P = T−1
1 T2 (42)

where the elements of P will be 0 or ±1, and where a −1 in the ijth element of

P implies that the ith column of T2 is the negative of the jth column of T1. Note

that the negative signs cancel out in the computation of the diagonal matrix

D = PDP T (43)
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Now that D has been permuted by P , the diagonal elements of D correspond to

the diagonal elements of Λ.
The implementation in MATLAB M-code for calculating equation (42), P , is

as follows:

function [eig_F1,eig_F2]=...

pairing_methods(z,eig_F1,eig_F2,F1,F2,P_extensive,flag_type)

% Find the Eigenvalues and Eigenvectors of the

% matrix from the SVD formulation for both matrices

[T1,Db_1]=eig(F1);

[T2,Db_2]=eig(F2);

% Take the real part of the eigenvalues for both sets

% of eigenvalues

Db_1=real(Db_1);

Db_2=real(Db_2);

% Calculate the permutation matrix

P=(T1\T2);

end

2.5 Consider Noisy Data

Recall from equations (8) and (10) that the additive noise, n(t), to the data

snapshot, z(t), was previously noiseless, n(t) = 0. Now suppose that n(t) 6= 0

and data matrix, which contains additive noise, is Znoise. When the DOAs are

estimated using the ESPRIT algorithm from the steps described in (25) or (28)

and the information provided about the eigenvalue permutation in section 2.4 are

applied toZnoise then the estimated noisy DOAs are the eigenvalues of the following

matrices:

F̃u =Fu + ∆1

F̃v =Fv + ∆2

(44)

where ∆1 and ∆2 represent perturbations due to noise. Note that one of the

eigenvalue sets is ordered; the other has to be put into corresponding order. Let

F = Fu and G = Fv. In this case the eigendecomposition will yield

F =T1noiseΛT
−1
1noise

, Λ =diag(λ1, . . . , λn)

G =T2noiseDT
−1
2noise

, D =diag(d1, . . . , dn)

(45)
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In this particular case when the matrix P is calculated

P = T−1
1noise

T2noise (46)

it is no longer a permutation matrix. The matrix P will instead take on values

other than 0 and 1, which are the only element values of a permutation matrix.

In order to form a permutation matrix from this P that has values other than 0

and 1 one has to modify the classical noise-free algorithm to handle noisy matrices.

The simplest approach, which is used by Wong et al. [5], is to compute the matrix

P and then in each row put a 1 in place of the element with the largest magnitude

and replace all other elements with zeros. In other words let (ji) denote the row

index of the matrix element with the largest absolute value in the ith column of

P such that

(ji) = arg(max(|P (j, i)|)) where i = [1, . . . , K] (47)

The following MATLAB code can be added to the previous function pairing

methods

% Create the permutation matrix such that it consists of all

% zeros and only 1’s at the maximum (j_k,k) locations

for k=1:length(T1)

[m,ind]=max(abs(P(:,k)));

P(:,k)=zeros(length(T1),1);

P(ind,k)=1;

end

This resulting matrix will likely be a permutation matrix. The only way that

this process may fail is when a permutation matrix has the maximum elements from

two different columns occur in the same row. This phenomena occurs when there

are larger perturbations, or low SNR, in the matrices U1 or U2. The terminology

that will be used in this thesis to describe the above phenomena is a miss. The

authors in [5] suggest that with a two source problem K = 2 a miss occurs with
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a near-zero probability if the computer represents numbers by more than a few

bits and that if a miss should occur, however rare, that it shall be handled by

performing the pairing arbitrarily, i.e. coin-toss.

For the case of noiseless or the case of Gaussian additive noise with an infinite

number of snapshots the approximation of P becomes exact which is to say that

the step where the maximum value in P is found is not needed.
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CHAPTER 3

Improved Eigenvalue Pairing Methods for DOA Estimation for VSAs

Recall from Chapter 2 the situation where we assume noisy data and form

the resulting permutation matrices from the ESPRIT calculated results. Let P

represent a ’pseudo-permutation’ matrix where P is a matrix that has values other

than 0 and 1, which are the only element values of a permutation matrix. In order

to form a permutation matrix, P from the ’pseudo-permutation’ matrix P has to

be modified to take on values of 0 and 1. The easiest approach to replace elements

within the matrix P to values of 0 or 1 is calculated by first computing the matrix

P and then in each row put a 1 in place of the element with the largest magnitude

and replace all other elements in that row with zeros. This resulting matrix will

likely be a permutation matrix.

The only way that this process may fail is when a permutation matrix has the

maximum elements from two different columns occur in the same row. This phe-

nomenon, a miss, occurs when there are larger perturbations, low SNR in the data.

This chapter will present the method used by Wong et al. [1] to randomly assign

tied elements or what will be referred to as missed elements in this thesis, e.g.,

coin-toss, in the event of a miss. The following two sections present respectively

a new eigenvalue pairing method based on sorting, and an exhaustive eigenvalue

method, respectively.

3.1 Coin-toss Eigenvalue Pairing Method

A miss, or what is referred to as a miss in this work, according to the authors

in [1] suggest that with a two source problem K = 2 a miss occurs with a near-zero

probability if the computer represents numbers by more than a few bits and that

if a miss should occur, however rare, that it shall be handled by performing the
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pairing arbitrarily, i.e. coin-toss. The methodology to implement a coin-toss can

be best demonstrated with an example.

Let P be a matrix which is a K ×K or 2× 2 matrix

P =

(
1 1
0 0

)
(48)

where there exists a miss in P in row 1 where there are two ones and in row 2

where there are two zeros. Once a row is identified to have a miss, an element is

randomly selected with probability 1/T where T is the number of missed elements.

After the element is selected, it is moved to an empty row, a row that has all 0s

and no 1s, and that has a probability of 1/T as well. This is done iteratively until

there exists no missed rows. In order to ensure that the permutation matrix is well

formed one can multiply P by P T which should by definition return the identity

matrix I.

By the nature of the problem the maximum number of elements that can be

in a missed row is T = K; therefore, if one extends K to a much larger number

there exists a condition in which T becomes much larger as well. If this occurs,

then the probability of the randomly distributed coin-toss matrix P matching the

real or actual permutation matrix Preal becomes smaller according to the following

equation:

Pr =
1

T !
(49)

where Pr is the probability of the matrix P matching Preal. Thus, if K increases

there is a higher probability for more mismatches.

3.2 New Approach to Eigenvalue Pairing
3.2.1 Eigenvalue Pairing for Noise-Free Real-Valued Vectors via Sort-

ing

Given the above issues with the coin-toss method and the likelihood of a

mismatch of DOAs with the coin-toss method an alternative method is proposed.
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Consider two vectors x and y in <N whose elements are identical up to a permu-

tation;

y(i) =x(π(i)) i = 1, . . . , n (50)

where P is some permutation matrix with corresponding permutation function π.

For example, consider

x =


.2
.1
.4
.3

 and y =


.4
.1
.3
.2

 . (51)

By looking at the corresponding vectors (51) and the definition (50) the permuta-

tion function π and the permutation matrix P for these two vectors are defined

as

π =


3
2
4
1

 , P =


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

 (52)

The permutation function for any two such vectors x and y may be calculated

using their sorting index vectors. A sorting index vector sx corresponding to the

given vector x shows how to arrange the elements of x in ascending order:

x(sx(i)) ≤ x(sx(j)) for i < j. (53)

Likewise the sorting index vector for y is denoted by sy. The permutation that

relates the vectors x and y,y(i) = x(π(i)), may be written in terms of the sorting

index vectors sx and sy

π(sy(i)) = sx(i), i = 1, . . . , n. (54)

Now consider the vectors given in (51). Their sorting vectors would be

sx =


2
1
4
3

 , sy =


2
4
3
1

 (55)
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which, when sx and sy are put with (54), yields

π(2) = 2, π(4) = 1, π(1) = 4, π(3) = 3, (56)

which gives the correct result,

π =


3
2
4
1

 . (57)

Equation (54) may be used to solve the eigenvalue pairing problem. Once again

suppose that the matrices F and G have the following eigendecompositions

F =T1ΛT
−1
1 , Λ =diag(λ1, . . . , λn)

G =T2D̄T
−1
2 , D̄ =diag(d̄1, . . . , d̄n)

(58)

where T2 = T1P for some permutation matrix P with corresponding permutation

function π (see (30)). The diagonal elements of D̄ must be permuted in order to

have the elements of D̄ correspond to the diagonal elements of Λ. The permutation

is as follows:

d̄i ↔ λπ(i) (59)

where the permutation function π corresponds to the permutation matrix P . Con-

sider the following matrix M1

M1 = T−1
2 FT2 = P TT−1

1 FT1P = P TΛP (60)

where P represents the permutation matrix, and T2 represents the associated

eigenvectors from the eigendecomposition of the matrix G. The equation shows

that M1 is a diagonal matrix whose diagonal elements, mi, are a permuted version

of the diagonal elements of Λ

mi = λπ(i), i = 1, . . . , n. (61)

Let x and y be the diagonal elements of Λ and M1, respectively, and let sx and

sy be the corresponding sorting index vectors. Once again (54) may be used to
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calculate the permutation function π that relates the eigenvalues of F and the

eigenvalues of M1 from sx and sy.

Consider another matrix M2

M2 = T−1
1 GT1 = PT−1

2 GT2P
T = PD̄P T (62)

where P represents the permutation matrix, and T1 represents the associated

eigenvectors from the eigendecomposition of the matrix F . The equation shows

that M2 is a diagonal matrix whose diagonal elements, m̂i, are a permuted version

of the the diagonal elements of D̄. Similarly (62) can be written as

D̄ = P TM2P (63)

Let x and y be the diagonal elements of D̄ and M2, respectively, and let sx and

sy be the corresponding sorting vector, and then (54) may be used to find the

permutation π that relates the eigenvalues of M2 and the eigenvalues of G.

3.2.2 Eigenvalue Pairing for Noisy Real-Valued Vectors via Sorting

Once again consider two vectors x and y whose elements are identical up to

a permutation function π that is to say

y(i) = π(x(i)) (64)

Now suppose though that only the perturbed versions of these vectors are known,

x̃ = x+ δx , ỹ = y + δy (65)

where δx and δy are perturbations of x and y. That is to say that the two vectors

x and y are perturbed by some amount δx or δy. Recall from (54) that the sorting

vectors can be calculated from x and y. Now assume that the same methodology

from (53) to find the sorting vectors that are associated with x and y (54) is used

to determine the sorting vectors for x̃ and ỹ. If the perturbations of the vectors x
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and y, δx and δy are so small that the sorting vectors for x̃ and ỹ are identical

for x and y then (54) yields the desired permutation function π for both sets of

vectors.

Now suppose the values of a pair of elements in x or y are very close to

each other such that a small perturbation δx or δy may interchange the entries

in the sorting index vectors, creating a transposition in the permutation function

calculated by (54). For example, take the vector x where

x =


.2
.1
.4
.3

 , (66)

with the associated sorting matrix and apply the perturbation δx to x such that

x̃ = x+ δx

x̃ =


.15
.18
.41
.29

 . (67)

The sorting vector for x̃ would be

sx̃ =


1
2
4
3

 (68)

instead of the sorting vector for x

sx =


2
1
4
3

 . (69)

This error or transposition in the sorting matrix occurs only when δx and δy are

large enough to cause elements within the vector to swap places with one another.

That is to say that large perturbations in x and y will cause changes in the sorting

index vectors, which will cause unavoidable errors in the estimated permutation

function; thus, it is proposed to use (54) even in the case of noisy vectors.

31



Using the aforementioned realization, a novel sorting pairing method is ex-

plored. Once again consider matrices F and G whose eigenvectors are identical,

and suppose that for both F and G only the perturbed matrices are known,

F̃ = F + ∆F and G̃ = G + ∆G. Let the eigenvalue decomposition of each

perturbed matrix be given by

F̃ =T̃1Λ̃T̃
−1
1

G̃ =T̃2
˜̄DT̃−1

2

(70)

where the diagonal elements of Λ̃ are x1, and the diagonal elements of D̃ are x2.

Similarly to (53) the sorting index vectors, sx1 and sx2, are calculated from x1 and

x2. Recall that a sorting index vector shows how to arrange elements of a given

vector, x1 or x2, in ascending order. Also recall that the columns of T̃1 and T̃2

are the eigenvectors of F and G, and that the corresponding eigenvalues are the

diagonal elements of Λ̃ and ˜̄D respectively.

Calculate the matricesM1 andM2 that are formed by taking the eigenvectors

T̃1 from matrix F and replacing them for the eigenvectors T̃2 found in the matrix

G and the eigenvectors T̃2 from matrix G and replacing them for the eigenvectors

T̃2 found in the matrix F .

M1 =T̃−1
2 F̃ T̃2

M2 =T̃−1
1

˜̄DT̃1

(71)

Let y1 be the diagonal elements of M1 and y2 be the diagonal elements of M2,

and let sy1 and sy2 be sorting index vectors for y1 and y2 respectively.

Once the sorting index vectors are calculated the permutation functions, π1

and π2 can be calculated as follows:

π1(sy1(i)) =sx1(i), i = 1, . . . , n

π2(sy2(i)) =sy2(i), i = 1, . . . , n

(72)
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Now that the permutation functions, π1 and π2, have been calculated, a test can

be done to see which permutation function might be used. If the permutation

functions are equal to one another, that is to say that

π1 = π2 (73)

then the permutation function π = π1. If π1 is not equal to π2 then one must

calculate the error from each different permutation function in order to determine

which permutation function to use,

α =
n∑
i=1

{[y1(i)− x1(π1(i))]2 + [y2(i)− x2(π1(i))]2}2 (74)

β =
n∑
i=1

{[y1(i)− x1(π2(i))]2 + [y2(i)− x2(π2(i))]2}2 (75)

Once the error values α and β are calculated then the following permutation func-

tion assignment is made based on the following

α ≤ β → π = π1 (76)

α > β → π = π2 (77)

The advantage of the proposed permutation pairing method via sorting is that,

unlike the classical approach, the proposed eigenvalue pairing method via sorting

always returns a valid permutation function.

3.3 Exhaustive Pairing Method

The most exhaustive method is to permute through all possible pairing com-

binations. By utilizing a multitude of options and comparing the calculated error

to one another, the best permutation option can be chosen. Consider a repository

matrix that contains the order of eigenvalues for n different numbers. Then the

following equation summarizes the number of distinct ways in which k eigenvalues
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can be picked in a distinct manner:

nPk =
n!

(n− k)!
. (78)

where the equation assumes distinct numbers. In the case of the paper, it is

assumed that n is finite; therefore, k is also finite. The variations of permutation

listing, i.e. (1 2); (2 1), can be defined as πi where π is the exhaustive list of

permutation matrices and i is the selection of a given permutation within the

exhaustive permutation matrix.

The method described in this paper to determine the proper permutation

matrix from an exhaustive matrix of permutation matrices can be found by cal-

culating the error between one set of eigenvalues and another set of eigenvalues

whose order is permuted through all possible combinations. That is to say

Errori =norm((M1 − yπi)2) + norm((M1 − xπi)2) where i = 1 . . . K! (79)

where K is the number of eigenvalues, Errori is the error, Fu and Fv are labeled

as x and y respectively, M1 refers to equation (60) and M2 refers to equation (62)

and πi is the unique permutation as described above.
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CHAPTER 4

Simulation Results

4.1 Sensor Locations

The simulation results presented in the figures below have the sensor setup

that is described in [1], which consists of a 13-element irregularly spaced 3-D

array of vector sensors. The array is a nine-element non-uniformly spaced cross-

shaped array with elements at Cartesian coordinates: λ/2 × {(0, 0, 0, ), (±1, 0, 0, ),

(±2.7, 0, 0), (0,±1, 0), (0,±2.7, 0)} plus a four-element square array with elements

at the Cartesian coordinates λ/2 × {(±4,±4, 1)}.
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Figure 2. Isometric View of 13-Sensors in a non-uniformly
spaced 3-D array at the Cartesian coordinates: λ/2 ×
{(0, 0, 0, ),(±1, 0, 0, ),(±2.7, 0, 0), (0,±1, 0), (0,±2.7, 0)} plus a four-element
square array with elements at the Cartesian coordinates λ/2 × {(±4,±4, 1)}.
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Figure 3. Top View of 13-Sensors in a non-uniformly spaced 3-D array at Cartesian
coordinates λ/2 × {(0, 0, 0, ), (±1, 0, 0, ), (±2.7, 0, 0), (0,±1, 0), (0,±2.7, 0)} plus
a four-element square array with elements at the Cartesian coordinates λ/2 ×
{(±4,±4, 1)} This view is an X-Y Axis view with the Z-axis coming out of the
page.

4.2 Number of Sources and Respective Parameters

In the results below there exist three separate scenarios consisting of 2, 3,

or 4 sources, respectively, that impinge upon the sensor field. For each source

there exists an angle pair, (θ, φ), and a direction cosine pair (u, v). Recall the

relationship between the angle pair of direction cosine pair from Chapter 2:[
u (θ, φ)
v (θ, φ)

]
=

[
sin θ cos φ
sin θ sin φ

]
. (80)

Note that the first two angle pairs and direction cosine pairs shown in Table 1 below

are the same as those used in [1]. Following the structure laid out by Wong et al.

the additional pairs are designated accordingly such that u2− u1 = v1− v2 = 0.08
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or

uk − uk−1 =vk−1 − vk = 0.08 where k = 2, . . . 4. (81)

The following in Table 1 are the parameters used in the results below. For all cases

Table 1. Table of Parameter Values for Scenarios

Number of Sources Angle Pairs (θ, φ) Direction Cosines (u, v)

2
(58.0700◦, 44.0500◦)
(59.1000◦, 36.4700◦)

(0.61, 0.59)
(0.69, 0.51)

3
(58.0700◦, 44.0500◦)
(59.1000◦, 36.4700◦)
(61.8700◦, 29.1800◦)

(0.61, 0.59)
(0.69, 0.51)
(0.77, 0.43)

4

(58.0700◦, 44.0500◦)
(59.1000◦, 36.4700◦)
(61.8700◦, 29.1800◦)
(50.6866◦, 26.8962◦)

(0.61, 0.59)
(0.69, 0.51)
(0.77, 0.43)
(0.53, 0.35)

the signal power is set equal to unity, P = 1, and the sources impinge upon the

previously outlined and described 13-element non-uniformly spaced 3-D array

4.3 Simulations

The simulation results in 5 through 12 illustrate the effectiveness of the pre-

sented eigenvalue pairing method (eigenvalue pairing via sorting). The figures are

coupled such that all the figures for the two, three, and four source scenarios are

presented together. Note that the miss rate is shown first. If the percentage of

misses, previously described in Chapter 3, is too high, the classical sorting method

is useless. Figures that compare the RMS standard deviation and RMS bias devi-

ation compare three different pairing methods: 1) the traditional pairing method,

the pairing method described in the [1]; 2) the new pairing method, the sorting

pairing method described in this thesis; and 3) the exhaustive pairing method, a

method that covers all possible permutations.
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The simulations have SNR which is defined relative to each source and 100

snapshots are used in each of the 1000 independent Monte Carlo simulation exper-

iments, i.e., 100 snapshots per experiment and 1000 independent experiments per

data point.

The composite Root Mean Squared (RMS) standard deviation plotted is com-

puted by taking the square root of the mean of the respective samples variances

of û and v̂. Likewise the composite bias is computed by taking the square root of

the mean of the sample biases of û and v̂. The classical pairing method misses are

compiled together and computed to create a percent missed which is presented in

its own figure %-missed. It is important to note that the data presented has 100

snapshots and 1000 independent Monte Carlo simulations. If the traditional pair-

ing method gives away misses, its standard deviation and bias are not shown. The

traditional method is considered useless in this case and the data is not presented.

4.3.1 Two Sources

The two source scenario is the same as the simulation presented in [1] as

previously stated. The angle values can be found in Table 1 in the Two Source

row. The results are as follows:
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Figure 4. Miss Rate of {û1, û2, v̂1, v̂2} for the Traditional Pairing Method (%) versus
SNR (dB): two closely spaced equal-powered uncorrelated narrow-band sources
with angular values found in Table 1. Note that the SNR must be greater than 20
dB for the traditional method to give valid results.
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Figure 5. RMS standard deviation of {û1, û2, v̂1, v̂2} versus SNR (dB): two closely
spaced equal-powered uncorrelated narrow-band sources with angular values found
in Table 1. There are three different pairing methods presented: classical, sorting,
and exhaustive pairing method. The traditional method is not used below 30 dB
(see Figure 4)
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Figure 6. RMS Bias of {û1, û2, v̂1, v̂2} versus SNR (dB): same settings as in Fig. 5

4.3.2 Three Source

The three source scenario includes the first two angle pair or direction cosine

pair that the Wong et al. presents and an additional angle pair which follows the

described methodology for choosing direction cosines that are separated by 0.08

by Wong et al. The angle values can be found in Table 1 in the Three Source row.

The results are showing in Figures 7 - 9.
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Figure 7. Miss Rate of {û1, û2, û3, v̂1, v̂2, v̂3} for the Traditional Pairing Method
(%) versus SNR (dB): three closely spaced equal-powered uncorrelated narrow-
band sources with angular values found in Table 1.

4.3.3 Four Source

The Four source scenario includes the first two angle pair or direction cosine

pair that the Wong et al. presents and two additional angle pairs which follows the

described methodology for choosing direction cosines that are separated by 0.08

by Wong et al. The angle values can be found in Table 1 in the Four Source row.

The results are show in Figures 10 - 12.
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Figure 8. RMS standard deviation of {û1, û2, û3v̂1, v̂2v̂3} versus SNR: three closely
spaced equal-powered uncorrelated narrow-band sources with angular values found
in Table 1. There are three different pairing methods presented: classical, sorting,
and exhaustive pairing method. The traditional method is not used below 30 dB
(see 7).
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Figure 9. RMS Bias of {û1û2, û3, v̂1, v̂2, v̂3} versus SNR (dB): same settings as in
Fig. 8

4.4 Analysis
4.4.1 Two Source Analysis

Figures 5 and 6 plot the composite rms standard deviation and composite

rms bias of two sources impinging upon a 3-Dimensional 13-element nonuniform

array for the traditional, sorting, and exhaustive pairing methods. One can see

that the methods of pairing, the exhaustive and the sorting pairing method are

fairly co-linear which indicates that the method results from these two algorithms

are similar. The traditional method has Miss % = 0 for only two SNR values

as indicated by Figure 4. The number of misses made by the traditional pairing

method is significantly high at lower SNRs 0 dB, 5 dB, and 10 dB at approximately

37%, 27%, and 12% respectively. The traditional, sorting and exhaustive pairing

method all are co-linear at 30 and 40 dB.

Recall the relationship between uk − uk−1 and vk−1 − vk from Equation 81,

where uk−uk−1 = vk−1−vk = .08. Note that the two sources, due to this relation-
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Figure 10. Miss Rate of {û1, û2, û3, û4v̂1, v̂2, v̂3.v̂4} for the Traditional Pairing
Method (%) versus SNR (dB): four closely spaced equal-powered uncorrelated
narrow-band sources with angular values found in Table 1

ship, would be resolved and identified with high probability if both the estimation

standard deviation and the bias are under approximately 0.02. The proposed sort-

ing pairing method resolves these closely spaced sources for all SNR’s at or above

approximately 10 dB. Above the SNR resolution thresholds the estimation for both

the standard deviation and bias both decrease for the both the exhaustive and the

sorting pairing method fairly linearly with increasing SNR values. Since biases

are typically one order of magnitude lower than the standard deviations the high

biases are not the limiting factor for resolution of the estimated direction of arrival

angles.

4.4.2 Three Source Analysis

Figures 8 and 9 plot the composite rms standard deviation and composite rms

bias of three sources impinging upon a 3-Dimensional 13-element nonuniform array
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Figure 11. RMS standard deviation of {û1, û2, û3, û4v̂1, v̂2, v̂3.v̂4} versus SNR: four
closely spaced equal-powered uncorrelated narrow-band sources with angular val-
ues found in Table 1. There are three different pairing methods presented: classical,
sorting, and exhaustive pairing method. The traditional method is not used below
30 dB (see Fig 10).
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Figure 12. RMS Bias of {û1, û2, û3, û4v̂1, v̂2, v̂3.v̂4} versus SNR (dB): same settings
as in Figure 11

for the traditional, sorting, and exhaustive pairing methods. The composite rms

standard deviation and composite rms bias for the sorting and exhaustive pairing

method are approximately co-linear throughout all SNR, whereas the traditional

method is co-linear for high SNR values for both the composite rms standard

deviation and bias. The traditional method has Miss % = 0 for only two SNR

values as indicated by Figure 7. The number of misses made by the traditional

pairing method is significantly high at lower SNRs 0 dB, 5 dB, 10 dB, 20 dB at

approximately 72%, 63%, 43%, and 3% respectively. The traditional, sorting and

exhaustive pairing method all are co-linear at 30 and 40 dB.

Recall the relationship between uk − uk−1 and vk−1 − vk from Equation 81,

where uk−uk−1 = vk−1−vk = .08. Note that the three sources, due to this relation-

ship, would be resolved and identified with high probability if both the estimation

standard deviation and the bias are under approximately 0.02. The proposed sort-
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ing pairing method resolves these closely spaced sources for all SNR’s at or above

approximately 13 dB. Above the SNR resolution threshold the estimation for both

the standard deviation and bias both decrease for both the exhaustive and the

sorting pairing method fairly linearly with increasing SNR values. Since biases are

typically one order of magnitude lower than the standard deviations, high biases

do not matter as much as higher standard deviations.

4.4.3 Four Source Analysis

Figures 11 and 12 plot the composite rms standard deviation and composite

rms bias of four sources impinging upon a 3-Dimensional 13-element nonuniform

array for the traditional, sorting, and exhaustive pairing methods. The composite

rms standard deviation and composite rms bias for the sorting and exhaustive

pairing method are approximately co-linear with the sorting method having a

higher composite RMS standard deviation and bias values than the exhaustive

method. These two methods become more co-linear as SNR increases until 20

dB where the two results from the sorting and exhaustive pairing method resolve

themselves to be co-linear. The traditional pairing method has Miss % = 0 for

only two SNR values as indicated by Figure 10. The number of misses made by

the traditional pairing method is significantly high at lower SNRs 0 dB, 5 dB, 10

dB, 20 dB at approximately 82%, 67%, 45%, and 3% respectively. All methods

become co-linear as SNR increases particularly at 30 and 40 dB. Given this fact

it is impressive that the difference between the traditional, and the sorting and

exhaustive pairing method is not more than 0.01 at SNR values of 30 and 40 dB,

and all SNR values for the sorting and exhaustive pairing method case.

Recall the relationship between uk − uk−1 and vk−1 − vk from Equation 81,

where uk−uk−1 = vk−1−vk = .08. Note that the four sources, due to this relation-

ship, would be resolved and identified with high probability if both the estimation
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standard deviation and the bias are under approximately 0.02. The proposed sort-

ing pairing method resolves these closely spaced sources for all SNRs at or above

approximately 15 dB. Above the SNR resolution threshold the estimation for both

the standard deviation and bias both decrease for both the exhaustive and the

sorting pairing method fairly linearly with increasing SNR values. Since biases are

typically one order of magnitude lower than the standard deviations, high biases

do not matter as much as higher standard deviations.

4.4.4 Overall Analysis

Given the fact that the traditional method was only able to avoid producing

misses at very high SNR, it is quite evident that the sorting and exhaustive method

performs better than the traditional method. Due to the fact that the lower limit

where the algorithm can successfully resolve closely spaced sources depends on the

composite rms standard deviation value and the composite rms bias being under

0.02 it is quite evident from inspection that the sorting pairing method presented

as well as the exhaustive method performed as well with SNR = 30 or 40 dB, and

better in all other SNR values.

In all cases the sorting and exhaustive pairing method were relatively co-

linear and would be able to resolve DOAs at approximately the same SNR. This

is important to note as the exhaustive method is considered to be the best that

can be achieved, which in turn means that in the presented scenarios, the sorting

method would be the best pairing method out of the traditional and sorting pairing

method.
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CHAPTER 5

Conclusions and Recommendations for Future Work

5.1 Conclusions

Three different scenarios were presented as evidence for the case of the new

eigenvalue pairing method via sorting. The results from said scenarios or case

studies gives strong evidence that the sorting pairing method presents itself to be

as effective as the exhaustive method for all SNR values, and as effective as the

traditional pairing method for high SNR values.

Recall from Chapter 4 when there were four sources presented, that the sort-

ing pairing method and the exhaustive pairing method achieved effectively the

same composite rms standard deviation and bias values. This presents strong

evidence towards saying that the sorting pairing method is nearly as effective as

the exhaustive pairing method in the presented scenarios. Indeed, the traditional

method failed at low SNR values as there was a high percentage of misses. This

surely presents a strong case for the sorting method being more effective than the

traditional method presented by Wong et al.

Finally, it is important to note that the exhaustive permutation method is

computationally taxing as the number of possible permutations grows exponen-

tially to the number of sources. Due to this fact, as the number of sources increase

the number of computations must increase significantly more than the number

of sources; thus, the sorting method, whose computational complexity increases

approximately linearly to the number of sources, has a practical advantage.

5.2 Future Work

Future work could involve applying the same pairing method for the root-

MUSIC algorithm for a similar case, but unlike the ESPRIT case where the vector
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sensor locations are unknown and the orientation is known, the root-MUSIC case

has the sensor locations known and the orientation unknown. Despite the conclu-

sion that the results would be likely similar in the root-MUSIC case as is found in

the ESPRIT case, it would be of interest to research the future use of this sorting

method in the root-MUSIC algorithm.

Another area that would be significantly interesting would be to formulate

the CR-Bounds for this particular sensor setup. The lack of CR-bounds creates

the ambiguity of how well the algorithm performed with the new pairing method.

It would be of interest to see in future work how the results in this paper compare

to the CR-bound for this field of sensors and different presented scenarios.

It is quite evident that the current algorithm has its limitations where the

direction cosines can be resolved only to difference of 0.08. Therefore, it would be

of great interest to research how high-resolution, a resolution smaller than 0.08 for

close direction cosines, ESPRIT algorithm would perform with this new pairing

method.

There are other eigenvalue pairing problems that can be found in other fields

including but not limited to chemistry, physics, and engineering, it would be inter-

esting to see whether or not any of these methods could benefit from the sorting

pairing method and whether or not it would yield more accurate results.

Finally it would be interesting to retrieve a computational baseline of the

ESPRIT algorithm in terms of the number of flops or pure computations that

is required, particularly when it comes to the pairing schemes when dealing with

eigenvalues. It would be interesting to see how the traditional, sorting, and exhaus-

tive method would compare to one another. As it was mentioned before in Chap-

ters 3 and 4, the computational complexity increases for the exhaustive method as

the number of sources increase as well as the miss rate for the traditional pairing
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method. It would seem as if the sorting pairing method is somewhere in between,

achieving similar composite rms standard deviations and composite rms bias as

the exhaustive method but being significantly less computationally taxing. This

would be of interest to scientists in the field of oceanography and signal processing

where there can be a large number of sources in a large field of buoys, and when

the battery life and/or processing power is limited by either the size or required

longevity of the buoy.
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APPENDIX

Appendix A - MATLAB Code

.1 script.m
% Kyle T. Martin

% 12/1/12

% script.m

%

clear all;

close all;

%

% SNR Value for the Added White Gaussian Noise in the Signal

%

SNR=[0 5 10 20 30 40];

axis_range=[min(SNR) max(SNR)];

%number of failures of traditional pairing at each SNR

miss=zeros(size(SNR));

rms_std=zeros(3,length(SNR));

rms_bias=zeros(3,length(SNR));

%

% N = Snapshots Number_Trials= Number of Trials

N=100; Number_Trials=1000;

%

% theta = incident angle of arrival (elevation)

% phi = incident angle of arrival (azimuth)

% 4 angles

% comment if not needed or uncomment if needed

theta=[58.07 59.1 61.8760 39.4302];

phi=[44.05 36.47 29.1808 33.4399];

%

%

% 3 Angles

% comment if not needed or uncomment if needed

% theta=[58.07 59.1 61.8760];

% phi=[44.05 36.47 29.1808];

%

% 2 angles

% comment if not needed or uncomment if needed

% theta=[58.07 59.1];

% phi=[44.05 36.47];

%

ns=length(theta);
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theta=theta*(pi/180);

phi=phi*(pi/180);

u_1=sin(theta).*cos(phi)

v_1=sin(theta).*sin(phi)

P_ext=combinator(length(u_1),length(u_1),’p’)’;

[u_1,ind]=sort(u_1);

v_1=v_1(ind);

%

%Locations of sensors

%

xLoc=[0 1 -1 2.7 -2.7 0 0 0 0 4 4 -4 -4];

yLoc=[0 0 0 0 0 1 -1 2.7 -2.7 4 -4 4 -4];

zLoc=[0 0 0 0 0 0 0 0 0 1 1 1 1];

%

% stores all "u" direction cosines

U=zeros(Number_Trials,ns);

% stores all "v" using traditional pairing

V1=zeros(Number_Trials,ns);

% stotes all "v" using new pairing

V2=zeros(Number_Trials,ns);

% stores all "v" using extensive pairing

V3=zeros(Number_Trials,ns);

for i = 1 : length(SNR)

inderror=[];

rand(’seed’,0); randn(’seed’,0);

for trials=1:Number_Trials;

[z]=makeData(N,SNR(i),theta,phi,xLoc, yLoc, zLoc);

[u1,v1,v2,v3,error]=...

svd_results (z,length(xLoc),length(theta),theta,phi, P_ext);

if error~=0

miss(i)=miss(i)+1;

inderror=[inderror;trials];

end

%if v2 ~= v3; keyboard;end

U(trials,:)=u1;

V1(trials,:)=v1;

V2(trials,:)=v2;

V3(trials,:)=v3;

end

U1=U;

%remove all trials where traditional pairing failed

U1(inderror,:)=[];

%remove all trials where traditional pairing failed
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V1(inderror,:)=[];

stdU=std(U);

stdU1=std(U1);

stdV1=std(V1);

stdV2=std(V2);

stdV3=std(V3);

% traditional pairing

rms_std(1,i)=sqrt(mean([stdU1.^2 stdV1.^2]));

% new pairing

rms_std(2,i)=sqrt(mean([stdU.^2 stdV2.^2]));

% extensive pairing

rms_std(3,i)=sqrt(mean([stdU.^2 stdV3.^2]));

biasU=u_1-mean(U);

biasU1=u_1-mean(U1);

biasV1=v_1-mean(V1);

biasV2=v_1-mean(V2);

biasV3=v_1-mean(V3);

% traditional pairing

rms_bias(1,i)=sqrt(mean([biasU1.^2 biasV1.^2]));

% new pairing

rms_bias(2,i)=sqrt(mean([biasU.^2 biasV2.^2]));

% extensive pairing

rms_bias(3,i)=sqrt(mean([biasU.^2 biasV3.^2]));

end

miss

% figure 1

semilogy(SNR,rms_bias(1,:),’o’);grid;

hold on

semilogy(SNR,rms_bias(2,:),’x’);

semilogy(SNR,rms_bias(3,:),’v’);

plot([axis_range], [.02 .02]);

axis([axis_range 1e-5 1e-1]);

a=’Traditional Pairing’

b=’Sorting Pairing’

c=’Exhaustive Pairing’

legend(a,b,c);xlabel(’SNR (dB)’)

ylabel(’RMS Bias’)

% figure 2

figure

semilogy(SNR,rms_std(1,:),’o’);grid;

hold on

semilogy(SNR,rms_std(2,:),’x’);

semilogy(SNR,rms_std(3,:),’v’);

plot([axis_range], [.02 .02]);
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axis([axis_range 1e-3 1e-1]);

a=’Traditional Pairing’

b=’Sorting Pairing’

c=’Exhaustive Pairing’

legend(a,b,c);

xlabel(’SNR (dB)’)

ylabel(’RMS Standard Deviation’)

% figure 3

figure

plot(SNR,N*miss/(Number_Trials),’d’); grid; hold on;

xlabel(’SNR (dB)’)

ylabel(’% Runs Returning Complete Miss’)

.2 makeData.m
%Kyle T. Martin

% July 20, 2010

% function to create data using makeKron.m

%and makeSignal.m functions

% N=number of snapshots

% Theta = values of theta

% Phi = value of phi

% x:the x off-set/location in amounts of lamda/2

% y:the y off-set/location in amounts of lamda/2

% z:the z off-set/location in amounts of lamda/2

%

%

function [Z]=makeData(N,SNR,theta,phi,xLoc,yLoc,zLoc)

% Define Variable Inputs

% Defines the Theta and Phi for X# of signal sources

numberComponents=3; % per sensor .. i.e. 3x1 manifold

A=makeKron(theta,phi,numberComponents, xLoc, yLoc,zLoc);

m=size(A);

[S,Noise] = makeSignal(SNR,N,length(theta),m(1));

Z=A*S+Noise; % WITH NOISE

%Z=A*S; % NO NOISE

.3 makeKron
%Kyle T. Martin

%July 20, 2010

%function makeKron

% --Description

% This program creates the intervector hydrophone spatial

% phase factor in order to create simulated data for the
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% ESPRIT Algorithm for vector sensors with arbitrarily

% spaced vector hydrophones at unknown locations

%

% The number of sound sources must be less than the number

% of elements or the co-channel signals.

%

% --Inputs

% theta: the elevation angle of the sources e.g. 45

% phi: the azimuth angle of the sources eg. 200

% numberComponents:

%the number of hydrophones in one location (3x1 or 4x1

% manifold)

% x:the x off-set/location in amounts of lamda/2

% y:the y off-set/location in amounts of lamda/2

% z:the z off-set/location in amounts of lamda/2

% lambda:the wavelength

% --Outputs

% A: matrix of intervector hydrophone spatial phase

% factor for each hydrophone based on a single source

%

function [A]=makeKron (theta,phi,numberSensors,x,y,z)

numberSources=length(theta);

clear j;

if numberSensors==3

u=sin(theta).*cos(phi);

v=sin(theta).*sin(phi);

A=[u;v;ones(1,numberSources)];

for i = 1:1:length(x)

%Q(i,:)= exp((j*2*pi*(x(i)*u+y(i)*v))/2);

%Q(i,:)=exp(j*pi*(((x(i))*u)+((y(i))*v)));

Q(i,:)=exp(j*pi*((x(i)*u)+(y(i)*v)));

end

% Q = exp(j*2*pi*(x.*u+y.*v)/2);

elseif numberSensors==4

u=sin(theta).*cos(phi);

v=sin(theta).*sin(phi);

w=cos(theta);

A=[u;v;w;ones(1,numberSources)];

for i = 1:1:length(x)

Q(i,:)= exp(j*2*pi*(x(i)*u+y(i)*v+2*w)/2);

end

% Q = exp(j*2*pi*(x.*u+y.*v+2.*w)/2);

end
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% Take the Kronecker product operator to determine

% the intervector hydrophone spatial phase factor

% Since amounts in Lamda/2 we can get rid of Lamda

% leaving just /2 in the exponent opposed to the above code.

A = mvkron(A,Q);

.4 makeSignal.m
function [s,n]=makeSignal(SNR,N,numberSources,m)

%this function assumes all sources have the same SNR

signalPower = sqrt(10^(SNR/20));

phase=exp(i*2*pi*rand(numberSources,N));

s=(randn(numberSources,N)+i*randn(numberSources,N))/sqrt(2);

s=diag(signalPower)*s.*phase;

n=(randn(m,N)+i*randn(m,N))/sqrt(2);

end

.5 combinator.m
function [A] = combinator(N,K,s1,s2)

%COMBINATOR Perform basic permutation and combination

% samplings. COMBINATOR will return one of 4 different

% samplings on the set 1:N, taken K at a time.

% These samplings are given as follows:

%

% PERMUTATIONS WITH REPETITION/REPLACEMENT

% COMBINATOR(N,K,’p’,’r’) -- N >= 1, K >= 0

% PERMUTATIONS WITHOUT REPETITION/REPLACEMENT

% COMBINATOR(N,K,’p’) -- N >= 1, N >= K >= 0

% COMBINATIONS WITH REPETITION/REPLACEMENT

% COMBINATOR(N,K,’c’,’r’) -- N >= 1, K >= 0

% COMBINATIONS WITHOUT REPETITION/REPLACEMENT

% COMBINATOR(N,K,’c’) -- N >= 1, N >= K >= 0

%

% Example:

%

% To see the subset relationships, do this:

% Permutations with repetition

% combinator(4,2,’p’,’r’)

% Permutations without repetition

% combinator(4,2,’p’)

% Combinations with repetition

% combinator(4,2,’c’,’r’)

% Combinations without repetition

% combinator(4,2,’c’)
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%

% If it is desired to use a set other than 1:N, simply use the

% output from COMBINATOR as an index into the set of interest.

% For example:

%

% MySet = [’a’ ’b’ ’c’ ’d’];

% MySetperms = combinator(length(MySet),3,’p’,’r’);

% % Take 3 at a time.

% MySetperms = MySet(MySetperms)

%

%

% Class support for input N:

% float: double, single

% integers: int8,int16,int32

%

%

% Notes:

% All of these algorithms have the potential to create VERY

% large outputs.In each subfunction there is an anonymous function

% which can be used to calculate the number of row which will

% appear in the output. If a rather large output is expected,

% consider using an integer class to conserve memory. For example:

%

% M = combinator(int8(30),3,’p’,’r’); % NOT uint8(30)

%

% will take up 1/8 the memory as passing the 30 as a double.

% See the note below on using the MEX-File.

%

% To make your own code easier to read, the fourth argument

% can be any string. If the string begins with an ’r’ (or ’R’),

% the function will be called with the replacement/repetition

% algorithm. If not, the string will be ignored. For instance,

% you could use: ’No replacement’, or ’Repetition allowed’ If

% only two inputs are used, the function will assume ’p’,’r’.

% The third argument must begin with either a ’p’ or a ’c’ but

% can be any string beyond that.

%

% The permutations with repetitions algorithm uses cumsum.

% So does the combinations without repetition algorithm for

% the special case of K=2. Unfortunately, MATLAB does not allow

% cumsum to work with integer classes. Thus a subfunction has been

% placed at the end for the case when these classes are passed.

% The subfunction will automatically pass the necessary matrix to

% the built-in cumsum when a single or double is used. When an
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% integer class is used, the subfunction first looks to see if the

% accompanying MEX-File (cumsumall.cpp) has been compiled. If not,

% then a MATLAB For loop is used to perform the cumsumming. This is

% VERY slow! Therefore it is recommended to compile the MEX-File

% when using integer classes.

% The MEX-File was tested by the author using the

% Borland 5.5 C++ compiler.

%

% See also, perms, nchoosek, npermutek (on the FEX)

%

% Author: Matt Fig

% Contact: popkenai@yahoo.com

% Date: 5/30/2009

%

% Reference: http://mathworld.wolfram.com/BallPicking.html

ng = nargin;

if ng == 2

s1 = ’p’;

s2 = ’r’;

elseif ng == 3

s2 = ’n’;

elseif ng ~= 4

error(’Only 2, 3 or 4 inputs are allowed. See help.’)

end

if isempty(N) || K == 0

A = [];

return

elseif numel(N)~=1 || N<=0 || ~isreal(N) || floor(N) ~= N

error(’N should be one real, positive integer. See help.’)

elseif numel(K)~=1 || K<0 || ~isreal(K) || floor(K) ~= K

error(’K should be one real non-negative integer. See help.’)

end

STR = lower(s1(1)); % We are only interested in the first letter.

if ~strcmpi(s2(1),’r’)

STR = [STR,’n’];

else

STR = [STR,’r’];

end

60



try

switch STR

case ’pr’

A = perms_rep(N,K); % strings

case ’pn’

A = perms_no_rep(N,K); % permutations

case ’cr’

A = combs_rep(N,K); % multichoose

case ’cn’

A = combs_no_rep(N,K); % choose

otherwise

error(’Unknown option passed. See help’)

end

catch

rethrow(lasterror) % Throw error from here, not subfunction.

%The only error thrown should be K>N for non-replacement calls.

end

function PR = perms_rep(N,K)

% This is (basically) the same as npermutek found on the FEX.

% It is the fastest way to calculate these (in MATLAB) that

% I know. pr = @(N,K) N^K; Number of rows.

% A speed comparison could be made with COMBN.m, found on the

% FEX. This is an excellent code which uses ndgrid.

% COMBN is written by Jos.

%

% % All timings represent the best of 4 consecutive runs.

% % All timings shown in subfunction notes used

% % this configuration:

% % 2007a 64-bit, Intel Xeon, win xp 64, 16 GB RAM

% tic,Tc = combinator(single(9),7,’p’,’r’);toc

% %Elapsed time is 0.199397 seconds. Allow Ctrl+T+C+R on block

% tic,Tj = combn(single(1:9),7);toc

% %Elapsed time is 0.934780 seconds.

% isequal(Tc,Tj) % Yes

if N==1

PR = ones(1,K,class(N));

return

elseif K==1

PR = (1:N).’;

return

end
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CN = class(N);

M = double(N); % Single will give us trouble on indexing.

L = M^K; % This is the number of rows the outputs will have.

PR = zeros(L,K,CN); % Preallocation.

D = ones(1,N-1,CN); % Use this for cumsumming later.

LD = M-1; % See comment on N.

VL = [-(N-1) D].’; % These values will be put into PR.

% Now start building the matrix.

TMP = VL(:,ones(L/M,1,CN)); % Instead of repmatting.

PR(:,K) = TMP(:); % We don’t need to do two these in loop.

PR(1:M^(K-1):L,1) = VL; % The first column is the simplest.

% Here we have to build the cols of PR the rest of the way.

for ii = K-1:-1:2

% Indices into the rows for this col.

ROWS = 1:M^(ii-1):L;

% Match dimension.

TMP = VL(:,ones(length(ROWS)/(LD+1),1,CN));

% Build it up, insert values.

PR(ROWS,K-ii+1) = TMP(:);

end

PR(1,:) = 1; % For proper cumsumming.

PR = cumsum2(PR); % This is the time hog.

%

function PN = perms_no_rep(N,K)

% Subfunction: permutations without replacement.

% Uses the algorithm in combs_no_rep as a basis,

% then permutes each row.

% pn = @(N,K) prod(1:N)/(prod(1:(N-K)));

if N==K

PN = perms_loop(N); % Call helper function.

% [id,id] = sort(PN(:,1));

%#ok Not nec. uncomment for nice order.

% PN = PN(id,:); % Return values.

return

elseif K==1

PN = (1:N).’; % Easy case.

return

end

if K>N

% Since there is no replacement, this cannot happen.

error([’When no repetitions are allowed, ’...

’K must be less than or equal to N’])
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end

M = double(N); % Single will give us trouble on indexing.

WV = 1:K; % Working vector.

lim = K; % Sets the limit for working index.

inc = 1; % Controls which element of WV

BC = prod(M-K+1:M); % Pre-allocation of return arg.

BC1 = BC / ( prod(1:K)); % Number of comb blocks.

PN = zeros(round(BC),K,class(N));

L = prod(1:K) ; % To get the size of the blocks.

cnt = 1+L;

P = perms_loop(K); % Only need to use this once.

PN(1:(1+L-1),:) = WV(P); % The first row.

for ii = 2:(BC1 - 1);

if logical((inc+lim)-N)

% The logical is nec. for class single

stp = inc; % This is where the for loop below stops.

flg = 0; % Used for resetting inc.

else

stp = 1;

flg = 1;

end

for jj = 1:stp

WV(K + jj - inc) = lim + jj;

% Faster than a vector assignment!

end

%

PN(cnt:(cnt+L-1),:) = WV(P); % Assign block.

cnt = cnt + L; % Increment base index.

inc = inc*flg + 1; % Increment the counter.

lim = WV(K - inc + 1 ); % lim for next run.

end

V = (N-K+1):N; % Final vector.

PN(cnt:(cnt+L-1),:) = V(P); % Fill final block.

% The sorting below is NOT necessary. If you prefer this nice

% order, the next two lines can be un-commented.

% [id,id] = sort(PN(:,1));

% PN = PN(id,:); % Return values.

function P = perms_loop(N)

% Helper function to perms_no_rep. This is

% basically the same as the MATLAB function perms.

% It has been un-recursed for a runtime of around
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% half the recursive version found in perms.m For example:

%

% tic,Tp = perms(1:9);toc

% %Elapsed time is 0.222111 seconds.

% tic,Tc = combinator(9,9,’p’);toc

% %Elapsed time is 0.143219 seconds.

% isequal(Tc,Tp) % Yes

M = double(N); % Single will give us trouble on indexing.

P = 1; % Initializer.

G = cumprod(1:(M-1)); % Holds the sizes of P.

CN = class(N);

for n = 2:M

q = P;

m = G(n-1);

P = zeros(n*m,n,CN);

P(1:m, 1) = n;

P(1:m, 2:n) = q;

a = m + 1;

for ii = n-1:-1:1,

t = q;

t(t == ii) = n;

b = a + m - 1;

P(a:b, 1) = ii;

P(a:b, 2:n) = t;

a = b + 1;

end

end

function CR = combs_rep(N,K)

% Subfunction multichoose: combinations with replacement.

% cr = @(N,K) prod((N):(N+K-1))/(prod(1:K)); Number of rows.

M = double(N); % Single will give us trouble on indexing.

WV = ones(1,K,class(N)); % This is the working vector.

mch = prod((M:(M+K-1)) ./ (1:K)); % Pre-allocation.

CR = ones(round(mch),K,class(N));

for ii = 2:mch

if WV(K) == N

cnt = K-1; % Work backwards in WV.

while WV(cnt) == N

cnt = cnt-1; % Work backwards in WV.
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end

WV(cnt:K) = WV(cnt) + 1; % Fill forward.

else

WV(K) = WV(K)+1; % Keep working in this group.

end

CR(ii,:) = WV;

end

function CN = combs_no_rep(N,K)

% Subfunction choose: combinations w/o replacement.

% cn = @(N,K) prod(N-K+1:N)/(prod(1:K)); Number of rows.

% Same output as the MATLAB function nchoosek(1:N,K),

% but often faster for larger N.

% For example:

%

% tic,Tn = nchoosek(1:17,8);toc

% %Elapsed time is 0.430216 seconds.

% tic,Tc = combinator(17,8,’c’);toc

% %Elapsed time is 0.024438 seconds.

% isequal(Tc,Tn) % Yes

if K>N

error([’When no repetitions are allowed, ’...

’K must be less than or equal to N’])

end

M = double(N); % Single will give us trouble on indexing.

if K == 1

CN =(1:N).’; % These are simple cases.

return

elseif K == N

CN = (1:N);

return

elseif K==2 && N>2 %This is an easy case to do quickly

BC = (M-1)*M / 2;

id1 = cumsum2((M-1):-1:2)+1;

CN = zeros(BC,2,class(N));

CN(:,2) = 1;

CN(1,:) = [1 2];

CN(id1,1) = 1;

CN(id1,2) = -((N-3):-1:0);

CN = cumsum2(CN);

return
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end

WV = 1:K; % Working vector.

lim = K; % Sets the limit for working index.

inc = 1; % Controls which element of WV is being worked on

BC = prod(M-K+1:M) / (prod(1:K)); % Pre-allocation.

CN = zeros(round(BC),K,class(N));

CN(1,:) = WV; % The first row.

for ii = 2:(BC - 1);

if logical((inc+lim)-N)

% The logical is nec. for class single(?)

stp = inc; %This is where the for loop below stops

flg = 0; % Used for resetting inc.

else

stp = 1;

flg = 1;

end

for jj = 1:stp

WV(K + jj - inc) = lim + jj;

% Faster than a vector assignment.

end

CN(ii,:) = WV; % Make assignment.

inc = inc*flg + 1; % Increment the counter.

lim = WV(K - inc + 1 ); % lim for next run.

end

CN(ii+1,:) = (N-K+1):N;

function A = cumsum2(A)

%CUMSUM2, works with integer classes.

% Duplicates the action of cumsum, but for integer classes

% If Matlab ever allows cumsum to work for integer classes

% we can remove this.

if isfloat(A)

A = cumsum(A); % For single and double, use built-in

return

else

try

A = cumsumall(A); % User has the MEX-File ready?

catch

66



warning(’Cumsum by loop MEX cumsumall.cpp for speed.’)

for ii = 2:size(A,1)

A(ii,:) = A(ii,:) + A(ii-1,:);

end

end

end

.6 svdResults.m
% Kyle T. Martin

% svd_results.m

%

%

function [u1,v1,v2,v3,error]=...

svd_results (z,L,K,theta,phi,P_ext)

[u,s,v]=svd(z);% could use [u,e]=eig(z*z’);

u_1=u(1:L,1:K);

u_2=u(L+1:2*L,1:K);

u_3=u(2*L+1:3*L,1:K);

%

F1=u_3\u_1;

F2=u_3\u_2;

%

%****

% PAIRING METHODS

%****

%

[u1,v1,v2,v3,error]=pairing_methods(F1,F2,P_ext);

%

.7 pairing methods.m
%

% This code executes code to provide pairing methods

% and utilizes pre-made exhaustive permutation matrix

% ’P_ext’. This code also executes the code

% to do sorting and traditional pairing methods

%

%

function [u1,v1,v2,v3,error]=pairing_methods(F1,F2,P_ext)

%v3=0;

error=0;

% Traditional pairing method

[T1,Db_1]=eig(F1);
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[T2,Db_2]=eig(F2);

u1=diag(real(Db_1))’;

v1=real(Db_2);

[u1,ind]=sort(u1);

T1=T1(:,ind);

%

P=T1\T2;

ns=length(T1);

for k=1:ns

[m,ind]=max(abs(P(:,k)));

P(:,k)=zeros(length(T1),1);

P(ind,k)=1;

end

if rank(P)<ns

error=1;

v1=zeros(1,ns);

else

v1=diag(P*v1*P’)’;

end

% Sorting pairing method

v2=diag(real(Db_2));

perm=pair_evals(F2,T2,v2,F1,T1,u1’);

v2=v2(perm)’;

m2=real(diag(T2\F1*T2));

m1=real(diag(T1\F2*T1));

y=u1’;

%Exhaustive Pairing Method

v3=diag(real(Db_2));

for i = 1:length(P_ext(1,:))

error_1(i)=...

(norm(m1-v3(P_ext(:,i)’))^2)+norm(y-m2(P_ext(:,i)))^2;

end

perm_1=P_ext(:,find(error_1==min(error_1)));

v3=v3(perm_1)’;

.8 pair evals.m
function perm=pair_evals(F,T1,x,G,T2,y)

% x is a vector of real-valued eigenvalues of

% F with corresponding e-vectors cols of T1

%

% y is a vector of real-valued eigenvalues of

% G with corresponding e-vectors cols of T2

% the result of the function is that y(i) is
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% paired with x(perm(i))

m1=real(diag(T2\F*T2));

m2=real(diag(T1\G*T1));

[x1,indx]=sort(x);

[y1,indy]=sort(y);

[m11,indm1]=sort(m1);

[m12,indm2]=sort(m2);

p1=findperm(indm1,indx);

p2=findperm(indy,indm2);

% u=(x+m1)/2;

% v=(y+m2)/2;

perm=p1;

if norm(p1-p2)>0

a=norm(m1-x(p1))^2+norm(y-m2(p1))^2;

b=norm(m1-x(p2))^2+norm(y-m2(p2))^2;

if a>b

perm=p2;

end

end

.9 findperm.m
function perm=findperm(x,y)

% x and y contain identical real-valued elements

% up to a permutation

%the result is that y(i) = x(perm(i))

n=length(y);

perm=zeros(n,1);

for k=1:n

perm(k)=find(y(k)==x);

end

.10 recover.m
% Kyle T. Martin

% recover.m

%

% Recovers theta and phi from the direction cosine

% values using the following equations:

% a=sin(theta)cos(phi)

% b=sin(theta)sin(phi)

%

% b=sin(theta)sin(phi) b sin(phi)

% -------------------- = - = ------- = tan(phi)

% a=sin(theta)cos(phi) a cos(phi)
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%

% inverseTangent(b/a) = phi

%

% a/cos(phi)=sin(theta)

% inverseSin(a/cos(phi))=theta

%

function [theta_recovered,phi_recovered]=...

recover(a,b)

theta_recovered=asin(sqrt(a^2+b^2));

phi_recovered=atan(b/a);

.11 mvkron.m
% Executes kronecker product

function K=mvkron(A,B)

[ma,na]=size(A);

[mb,nb]=size(B);

jab=1:na;

t=0:(ma*mb-1);

ia=fix(t/mb)+1;

ib=rem(t,mb)+1;

K=A(ia,jab).*B(ib,jab);
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