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A New Approach to Model Reduction of Nonlinear
Control Systems Using Smooth Orthogonal

Decomposition
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Draft Copy, May 25, 2017

Abstract1

A new approach to model order reduction of nonlinear control systems is aimed at developing2

persistent reduced order models (ROMs) that are robust to the changes in system’s energy level.3

A multivariate analysis method called smooth orthogonal decomposition (SOD) is used to identify4

the dynamically relevant modal structures of the control system. The identified SOD subspaces5

are used to develop persistent ROMs. Performance of the resultant SOD-based ROM is compared6

with proper orthogonal decomposition (POD)-based ROM by evaluating their robustness to the7

changes in system’s energy level. Results show that SOD-based ROMs are valid for a relatively8

wider range of the nonlinear control system’s energy when compared with POD-based models.9

In additions, the SOD-based ROMs show considerably faster computation times compared to10

the POD-based ROMs of same order. For the considered dynamic system SOD provides more11

effective reduction in dimension and complexity compared to POD.12

Keywords: nonlinear model reduction, proper orthogonal decomposition, smooth orthogonal de-13

composition, nonlinear control systems, subspace robustness.14

1 Introduction15

A high-fidelity mathematical model is essential to control a complex nonlinear dynamical system.16

These models are often high-dimensional, which means that complex differential equations are17

needed to describe them. Therefore, in many cases, they may not be computationally tractable.18

This makes the real-time control difficult to implement. A reduced order model (ROM) of a complex19

system can result in a computationally tractable accurate model for the control system [1].20

Computationally complex dynamical systems usually evolve on a lower-dimensional curved non-21

linear manifold embedded in a higher dimensional state space of the system. Geometric structures22

of nonlinear manifolds have not been extensively incorporated in nonlinear control theory since23

identification of high-dimensional manifold is difficult [2–4]. Also, even if we overcome this prob-24

lem, the stability and accuracy of the reduced model is still guaranteed only for a small range of25

operating conditions or modal parameters [4].26

In this paper, we use smooth orthogonal decomposition (SOD) [5–7] as a new tool for model27

order reduction (MOR) for nonlinear control systems. Our method is categorized under Galerkin28

projection based reduced order modeling which projects the high-dimensional nonlinear system29

onto an appropriate linear subspace to yield a lower-dimensional system. We also use a new30

metric to evaluate the persistency of the identified linear subspaces. A persistent linear subspace31

is robust to the changes in system’s operating conditions and thus expands a region within the32

∗email: chelidze@uri.edu � phone: 401.874.2356 � fax: 401.874.2355 � web: mcise.uri.edu/chelidze/
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system’s state space in which the ROM is valid. We aim to obtain a persistent ROM which allows33

the control system to globally operate within a region of interest.34

Projection onto the linear subspace does not negate the nonlinearity of the original system35

[8]. While the resultant ROM for the control system is still nonlinear, its corresponding state is36

low-dimensional which makes the control system computationally manageable. Reduced order37

modeling of dynamical systems targets the computational time of the model simulations.38

For nonlinear control systems, however, we examine the output of the persistent ROM for a39

given input in comparison to the output of the full-scale control model. For the input we use a40

set of impulse functions as random input. This approach has two advantages: (1) under random41

input it would be difficult to stay in a limited region of the space; and (2) random input imitates the42

non-deterministic impulses generated by the control scheme as inputs to the system.43

For the purpose of this work we consider the model presented in [1]. We describe and apply44

SOD as a new reduced order modeling method for nonlinear control systems. We also formalize45

the subspace robustness as a metric to identify the persistent subspaces for reduced order control46

models in such a way that they are globally valid for a range of the system’s energy. Finally, the47

developed methodology of this paper will be tested using numerical simulations of a nonlinear48

control system.49

1.1 Background and Prior Work50

Within the realm of complex dynamical systems, reduced order modeling is being extensively used51

to reduce the redundant computations and data storage requiremenst [7, 9–14]. We place the52

majority of reduced order modeling methods for dynamical system into two main categories. In the53

first category, ROMs are obtained by projecting a system onto a lower-dimensional subspace. In54

the second, the identified nonlinear manifolds or nonlinear normal modes are used to obtain ROMs.55

The methodologies for obtaining low-dimensional subspaces in the first category of MOR are,56

though not limited to, linear normal modes [15, 16], proper orthogonal decomposition (POD) (also57

known as singular value decomposition, principal component analysis, or Karhunen-Loève expan-58

sion) [8, 17–23], and SOD [5–7, 24]. In addition, Krylov subspace projections [25], Hankel norm59

approximations [26–29], and truncated balance realizations [30, 31] are to be mentioned. For the60

second category, the nonlinear coordinate transformation can be either approximated analytically,61

by the techniques such as multiple scales [32–36] and harmonic balance [37], or numerically, by62

the methods discussed in [36].63

The research on MOR of control systems is extensive. It includes well understood, and es-64

tablished theories and methodologies for reduction of linear control systems. Examples of these65

methods are POD, used for instance to design control systems for PDEs [38, 39] and optimal con-66

trol of fluids [40], Hankel norm approximation [26, 41, 42], and balanced truncation [43] which was67

proposed by Moore [44]. The reader may review other methods for MOR for linear control system68

in Refs. [43, 45, 46].69

Model reduction of nonlinear control systems is not as well understood as for linear systems.70

For example, POD is being frequently used [47], however, it suffers from some limitations that are71

discussed in [48]: POD-based models are very sensitive to the data used [8] and may become72

unstable even near stable equilibrium points [49]. Another method is balanced truncation which is73

developed for nonlinear control system in two distinct approaches: one is based on energy function74

used in the works by Scherpen [50–53] and the other is proposed by Lall based on empirical75

balanced truncation [1].76

2 Model Reduction Using Galerkin Projection77

We consider a nonlinear control system in the form:78

ẏ(t) = f(y(t) ,u(t))

z(t) = h(y(t)) ,
(1)
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Figure 1: Schematic of the nonlinear control system

where y ∈ R2n is state vector of the system, n is number of degrees-of-freedom, t is time, f :79

R2n × Rp → R2n is a nonlinear flow function describing the dynamics of the system, u(t) ∈ Rp is80

the input to the system, and z(t) ∈ Rw is the system output or the state vector which is based on81

the desired observation, h : R2n → Rw. The goal of the control system is to control the output82

z(t), however, if the system is large-scale or highly nonlinear, we will aim to obtain a reduced order83

nonlinear control model. A reduced order control model is easier to implement and is essential for84

a real-time and accurate control.85

Galerkin projection based MOR methods are based on transforming the 2n-dimensional state86

vector y to a k-dimensional state vector q, given that k < 2n. The transformation is performed by a87

full-rank projection matrix Pk ∈ R2n×k in the form q = P†ky, with (.)
† defined as the pseudoinverse88

of (.), to yield the reduced order model:89

q̇(t) = P†kf(Pkq(t),u(t)) ,

z(t) = h(Pkq(t)) .
(2)

Matrix P represents a description of the modal space of a dynamical system. Matrix Pk is the90

k-dimensional modal sub-space formed by k dominant modes of the modal space. While it can91

be analytically obtained for linear dynamical systems using linear normal modes theory, another92

method to obtain P, regardless of system’s linearity or nonlinearity, is using multivariate analysis of93

its response. Multivariate analysis is applied to the data matrices from the full model simulations or94

experiments. In this work, all the data matrices are obtained from simulations. We first describe a95

new multivariate analysis method with advantages over the conventional methods like POD. Before96

proceeding to the theory and methodology of this paper, we present an example of a nonlinear con-97

trol system derived from the work by Lall et al. [1] in which they developed the balanced truncation98

method for nonlinear control systems.99

2.1 Mathematical Model of Nonlinear Control System100

In this section, we model the system adopted from [1]. The system, shown in Fig. 1, consists of 5101

weightless links with the length of 2l which are connected to each other by torsional springs and102

dampers. Springs and dampers are not drawn for the sake of clarity. The first link is pinned to the103

ground and driven by a torque as the input to the system. The coordinate θi measures the angular104

position of the i-th link as shown in the figure. We obtain the governing differential equation of the105

system using the Lagrange’s equation:106

d

dt

(
∂T

∂θ̇i

)
− ∂T

∂θi
+
∂V

∂θi
= Fi, (for i = 1, . . . , n) (3)
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Figure 2: This figure shows the different values for which the different phase space figure have been obtained.

where V and T are potential and kinetic energy, and Fi is the generalized forcing term. Now we107

consider y = [θ1, . . . , θ5, θ̇1, . . . , θ̇5]T to be the state vector. By substituting the state vector in the108

equations of motion, we obtain its state space form:109

M
(
y(t)

)
ẏ(t) = Ly(t) + fn(y(t)) + u(t) , (4)

in which M
(
y(t)

)
is the time-varying mass matrix and L is the matrix of the linear terms. Both are110

given in Appendix A. Also, fn is the vector of the nonlinear terms and u(t) is the single input to the111

system. The output of the system is defined as the horizontal position of the tip of the 5th link112

z = 2l

5∑
i=1

sin yi (5)

and is to be controlled.113

We simulate Eq. (4) as a full-scale model of the control system using harmonic excitation, u(t) =114

f0 sinωt. Fig. 2 depicts the phase portraits of the fifth link for different forcing amplitude values. It115

shows how the system is in the approximately linear regime for f0 = 1 and transitions into the116

nonlinear regime for higher f0 values. The periodicity of the results is shown by Poincare maps in117

the figures. The system has an indication of chaos for f0 = 40, indication of quasiperiodicity for118

f0 = 50, and is periodic for the other amplitudes. To obtain this figure, the system is excited with119

frequency of 1 Hz, which is close to the third linear modal frequency. The oscillations are recorded120

for 500 sec which is equal to 500 cycles of harmonic forcing, however, only the last 50 cycles are121

shown in the phase portraits in order to get rid of the transient behavior in the visualizations.122

2.2 Multivariate Analysis Method123

As mentioned earlier, each data-based method identifies a modal structure of the system described124

by P for MOR. There are many different approaches to do so but here we use SOD, a relatively new125

multivariate analysis method. SOD can be viewed as an extension to POD and thus, similarly, we126

use the simulation results to form data matrices for multivariate analysis. The data provide us with127

the information on the state of the control system to a defined input u(t) over a specified period of128

time.129
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We record the state variable measurements of the full-scale system, described by Eq. (4) to130

form a position and velocity data matrices X ∈ Rr×n and V ∈ Rr×n, respectively. X is composed131

of r snapshots of n position state variables. Similarly, V is composed of r snapshots of n velocity132

state variables. Thus, the data matrix Y is given as Y = [X V].133

The time derivative of X is V. To obtain a time derivative of V or an acceleration data matrix134

A, we can use a full model of our dynamical system, Eq. (4). Alternatively, for experimental data,135

it can be approximated by A ≈ DV, where D is the matrix form of some differential operator such136

as forward difference. Therefore, an ensemble of time derivative of Y will be Ẏ = [V A]. Provided137

that Y and Ẏ are zero mean, the corresponding auto-covariance matrices can be formed by138

Σyy =
1

r − 1
YTY , Σẏẏ =

1

r − 1
ẎTẎ . (6)

Prior to explaining SOD, we will briefly discuss POD.139

2.2.1 Proper Orthogonal Decomposition140

In POD, we are looking for a basis vector φ ∈ R2n such that a projection of the data matrix onto141

this vector has maximal variance. The description of POD translates into the following constrained142

maximization problem:143

max
φ
‖Yφ‖2 subject to ‖φ‖ = 1 .144

We obtain the solution to the POD problem by solving the eigenvalue problem of the auto-covariance145

matrix Σyy:146

Σyyφk = λkφk , (7)

where λk are proper orthogonal values (POVs), φk ∈ R2n are proper orthogonal modes (POMs),147

and proper orthogonal coordinates (POCs) are columns of Q = YΦ, in which Φ = [φ1, φ2, . . . , φ2n] ∈148

R2n×2n. POVs are ordered such that λ1 ≥ λ2 ≥ . . . ≥ λ2n, and reflect the variances in Y data along149

the corresponding POMs.150

2.2.2 Smooth Orthogonal Decomposition151

In SOD, we are looking for a basis vector ψ ∈ R2n such that a projection of the data matrix onto152

this vector has both minimal roughness and maximal variance. This description of SOD can be153

translated to the following mathematical form:154

max
ψ
‖Yψ‖2 subject to min

ψ
‖Ẏψ‖2 ,155

or156

max
ψ

{
λ(ψ) =

‖Yψ‖2

‖Ẏψ‖2
}

.157

The solution to the SOD problem, is achieved by solving a generalized eigenvalue problem of the158

matrix pair Σyy and Σẏẏ in Eq. (6):159

Σyyψk = λkΣẏẏψk , (8)

where λk are smooth orthogonal values (SOVs), ψk ∈ R2n are smooth projection modes (SPMs),160

and smooth orthogonal coordinates (SOCs) are given by Q = YΨ, where Ψ = [ψ1, ψ2, . . . , ψ2n] ∈161

R2n×2n. Also, smooth orthogonal modes (SOMs) are Φ = Ψ−T . The degree of smoothness of the162

coordinates is described by the magnitude of the corresponding SOV. Thus, the greater magnitude163

of the SOV, the smoother in time is the corresponding coordinate. It should be noted that if we were164

to replace Σẏẏ with the identity matrix, the formulation will yield the POD.165
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Figure 3: Geometrical interpretation of smooth orthogonal decomposition

2.2.3 Geometric Interpretation of SOD166

Let as consider two consecutive samples yn and yn+1 from a two-dimensional zero-mean field Y ∈167

Rm×2 separated by the sampling time interval ∆t = 1. Plot of these data points with the relevant168

axes is shown in Fig. 3. The first derivative of this field corresponding to yn can be approximated169

as vn ≈ (yn+1 − yn)/∆t = yn+1 − yn. We refer to this as velocity vector and depict it by a black170

vector between data points n and n+ 1.171

We aim to obtain two SOMs, φ1 and φ2, and the corresponding bi-orthogonal pair of SPMs, ψ1172

and ψ2, as a solution to SOD optimization (maximization) problem for the two-dimensional case.173

For simplicity, let ψ̂i (i = 1, 2) be unit vectors along the SPM directions. Then the corresponding174

SOM ~φ1 will be perpendicular to ψ̂2 with magnitude equal to (cos θ)−1, where θ is the angle between175

the SPMs. Similarly, ~φ2 will be perpendicular to ψ̂1 and with the same magnitude (cos θ)−1.176

The projection of yn onto ψ1 and ψ2 are shown as light red vectors and have magnitudes qni =177

yTn ψ̂i. The projection of vn onto ψ1 and ψ2 are shown as dark red vectors and have magnitudes178

q̇ni = vTn ψ̂i. Taking ψ̂1, to be a free vector wandering in the 2D space of the data, by definition,179

we first aim to maximize the norm of the projection of each data point yn in Y onto this vector180

ψ̂1, or maxψ1
〈q2n1〉. At the same time, we also try to minimize the norm of the projection of the181

corresponding velocity vn vector onto the same ψ̂1, or minψ1〈q̇2n1〉. Once ψ1 is found, we repeat182

the same process for ψ2 in the null space [DC: the null space is perpendicular, but ψ2 does not183

have to!!!] of ψ1, etc. This optimization problem has two solutions, ψ̂1 and ψ̂2. Unlike POD, the184

orthogonality condition is relaxed and SPMs/SOMs are not necessarily orthogonal1 to each other:185

φ2 axis is not an obviously orthogonal to φ1. Thus, we expand each point in our field into SOMs:186

yn = qn1~φ1 + qn2~φ2 . (9)

Associated with each SOM is a SOV, denoted by λk = 〈q2nk〉/〈q̇2nk〉, which is the ratio of variances187

in data and its time derivatives along ψk or φk. The greatest SOV belongs to the first SOM along188

which the ratio is maximum. Compare this to the first POM along which only the variance of data is189

maximum. The second greatest SOV comes with the second SOM along which the ratio is (locally)190

maximum, and so on. Therefore, each SOV represents the dominance of its corresponding mode191

in terms of overall spatial variation and temporal smoothness of the coordinate.192

1SOCs are orthogonal to each other: QTQ = I.
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The data points in Y come from the consecutive mapping of a system’s state onto another state193

using a vector valued function (flow) f . POD only considers the spatial or geometric consequences194

of this mapping and neglects temporal structure of the states evolution. In contrast, SOD considers195

both the geometrical features of states and their time evolution in terms of overall spatial variation196

and temporal smoothness of the corresponding coordinate.197

2.3 Robustness of Modal Subspaces198

A nonlinear system can exhibit different behaviors based on its level of energy, which include both199

approximately linear behavior near the stable equilibrium points and nonlinear behavior far from200

those equilibrium points. Our system shows similar behavior as we discussed in section 2.1. Closer201

to the equilibria the system is described by LNMs, while as we get farther the system evolves on the202

NNM manifold, which may also change shape as system energy changes. Therefore, as energy203

increases not only the angle of the linear subspace that we get from multivariate analysis of the data204

changes, but we may also need a higher dimensional subspace to capture the NNM of the system.205

Different data set from the system simulations with different inputs or initial conditions have different206

energy level. Therefore, their extracted modal matrices and the corresponding lower-dimensional207

subspaces may be different.208

The data set from the simulations of the systems subjected to random forcing can be used209

for multivariate analysis. In order to illustrate the changes in the modal structure, we excite our210

nonlinear system by the white noise with a chosen cut-off frequency. We expect that as we increase211

the forcing amplitude, the higher frequencies in the system’s response come into account. As a212

result the modal structure of the system, indicated by the subspaces, need to be altered to account213

for higher frequencies.214

We need a metric that measures the difference in the modal structure of two different data sets215

which have different energy level. One possibility is to measure the minimal angle between their216

corresponding subspaces using the following definition.217

Definition: The minimal angle for two nonzero subspaces P1, P2 ∈ Rk is defined to be218

the number 0 ≤ θ ≤ π
2 that satisfies:219

cos θ = max
{
vTu : u ∈ P1, v ∈ P2, and ‖u‖ = ‖v‖ = 1

}
.

For example, we generate data sets with different energy levels by changing the initial condition220

of the unforced links system. The initial angular position and velocity of all links except the first one221

are set to zero. The initial conditions for the first link is selected from the range −5 ≤ θ1(0) ≤ 5222

and −2 ≤ θ̇1(0) ≤ 2. The data set for each individual selection of θ̇1(0) is simulated and recorded.223

POD and SOD are applied to each data set to extract the corresponding modal matrices P. Using224

the minimal angle between two subspaces, we can estimate the changes in the k-dimensional225

subspaces of the estimated modal matrices for different data sets.226

Figure 4 shows the angle between the 2D subspaces within the selected range for the initial227

conditions of the first link. We calculate the angles with respect to a reference 2D subspace, which228

is the subspace obtained from the point (−1.5, −0.2) in the map. The color of the map indicates229

the angle of data set generated for its corresponding initial condition. For POD, the blue region230

is limited to two small regions in which the subspace is not changing. A sudden change in the231

subspace angle occurs when we increase the energy level and enter the red region. However, for232

SOD the blue region is bigger and the changes in the subspace angle is less abrupt when we pass233

the borders of the region. When we increase the subspace dimension, as depicted in Fig. 5, the234

size of the blue region for POD does not change. The color of the red region for POD changes235

to cyan. The blue and cyan regions still have a distinct border indicating a sudden change in the236

subspaces with the increase in energy level. For SOD, in contrast, we observe that the increase in237

the subspace dimension spreads the blue region through the space.238
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Figure 4: This figure shows how the angle of a 2D subspace changes with different energy level. The energy level is
controlled by the initial condition. The figure is the phase plot of θ1. With zero initial conditions for other state variables and
the ones given on this plane, the system starts to vibrate and the angle of the corresponding 2D subspaces are calculated
with respect to a reference 2D subspace.

2.3.1 A New Metric for Subspace Robustness239

We observe that we obtain different modal subspaces for different energy levels of the systems240

which are imposed by changing initial conditions or external forcing. One of the goals of MOR in241

our work is to obtain a global subspace which is suitable for a range of variations in the energy level242

of a system under investigation. The conventional method for proper subspace identification for243

MOR is based on selecting those subspaces which capture most of the system’s energy. However,244

this method would not assure that the subspace is suitable for ROM for an energy-varied system.245

Therefore, a new metric is required to measure if the obtained subspace is robust or not to the246

variations in systems’ energy. In this section, we discuss a metric to measure the robustness of247

different subspaces with respect to each other.248

We can change the systems subspaces obtained from multivariate analysis by changing sys-249

tems’ energy level in two ways: (1) changing the initial conditions of an unforced or forced system;250

and (2) changing the external forcing of a forced system. For example, we can vary the external251

forcing by changing its frequency content and/or forcing amplitude.252

Regardless of how we change the systems’ energy, we do s simulations or experiments and253

assemble the corresponding data matrices. We apply the intended multivariate analysis to the data254

and obtain s different modal spaces, P1, P2, . . . , Ps corresponding to each simulation. The k-255

dimensional subspaces Pik and Pjk of the modal space are considered linearly dependent if the256

minimal angle between them, denoted by θij , is equal to zero. On the other hand they are said to257

be linearly independent, if θij = π
2 .258
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Figure 5: Subspace map in three dimensions
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Each subspace Pk consists of k dominant modes. While these k individual modes can be totally259

different between two data sets, the subspace spanned by them can still be linearly dependent. For260

example, we need two LNMs to span a plane containing a damped linear oscillator degree-of-261

freedom in the n-dimensional vector space of a system. However, these modes are not unique—262

their linear combination would also span the same plane, which means that as the modes of system263

change with its energy level, they can still span the same subspace. Here, we propose a subspace264

robustness metric which determines if the MOR subspace is robust for a range of energy levels. The265

metric is a quantification of changes in the subspaces for the range of energies. For the subspace266

robustness close to one we can argue that the subspace is robust to the changes in energy level.267

In case of s simulations it is difficult to simply use the angles between all the subspaces to268

develop a metric for subspace robustness. Here we propose to use singular values of all combined269

subspaces. Let us assume that k columns of matrix Pi
k span the k-dimensional subspace Pik. We270

look at the vectors spanning the subspaces as data which live in the n-dimensional space and271

apply the singular value decomposition to find the principal directions within the data. We form the272

subspace robustness data matrix S by arranging the subspaces in the following order:273

S =

[ p1
1, . . . , p1

k

]︸ ︷︷ ︸
P1

k from 1st simulation

,
[

p2
1, . . . , p2

k

]︸ ︷︷ ︸
P2

k from 2nd simulation

, . . . ,
[

ps1, . . . , psk
]︸ ︷︷ ︸

Ps
k from sth simulation


T

ks×n

(10)

From singular value decomposition of matrix S, we obtain 2n direction vectors φi in the 2n-dimensional274

space of data. The standard deviation of subspace data along vector φi is given by σi = ‖Sφi‖. We275

define rk =
k∑
i=1

σiφi to be the extension vector of the subspace data in the k-dimensional space.276

Then Ker(rk) =
2∑

i=k+1

nσiφi is the extensiuon vector in the null space of the k-dimensional sub-277

space. Thus, the total extension vector in the 2n-dimensional space is rn = rk + Ker(rk). The278

magnitude of the kernel extension vector, ‖Ker(rk)‖, measures the leak of the data into the null279

space of the k-dimensional space. We compare this magnitude to that of the k-dimensional exten-280

sion vector, ‖rk‖. Therefore, the leak into higher dimensional space is evaluated by the angle of281

extension vectors in the k-dimensional space and its kernel as follows:282

αk = tan−1
‖Ker(rk)‖
‖rk‖

= tan−1

√√√√√√√√
n∑

i=k+1

σ2
i

k∑
i=1

σ2
i

. (11)

We define a lower bound for αk by taking the assumption that all the vectors spanning the283

subspaces are equally distributed in the space. In this case all singular values of matrix S are284

equal, i.e., σi = σ. Thus, a lower bound for the k-dimensional subspace, ᾱk, is:285

ᾱk = tan−1

√√√√√√√√
n∑

i=k+1

σ2

k∑
i=1

σ2

= tan−1
√
n− k
k

. (12)

Using ᾱk we map the angle ᾱk ≤ αk ≤ π
2 to 0 to 1 to define γk as follows:286

γk =
ᾱk − αk
ᾱk

, (13)

which we call the subspace robustness of the k-dimensional subspace.287
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Figure 6: Geometric interpretation of subspace robustness

Geometric Interpretation: Fig. 6 depicts a schematic for a geometric interpretation of subspace288

robustness in a three-dimensional space. We assume that the modal space of the dynamical flow289

has three dimensions. Ps
i ∈ R3 spans the modal space of the s-simulation data. We show the290

vectors spanning different subspaces as data points indicated by blue dots.291

Singular value decomposition is applied to the whole data to obtain three components of the292

extension vectors shown in the figure. As an example, r2 = σ1φ1 + σ2φ2 is the two-dimensional293

covariance vector of data. Ker(r2) = σ3φ3 is the kernel covariance vector. We calculate the angle294

between the two-dimensional subspace and its kernel using Eq. (11):295

α2 = tan−1

√
σ2
3

σ2
1 + σ2

2

(14)

A lower bound for two dimensional subspace of a three-dimensional space is defined via Eq. (12):296

ᾱ2 = tan−1
√

1

2
(15)

Now we can determine the robustness of our two-dimensional subspace via Eq. (13).297

3 Reduced Order Nonlinear Control System298

In order to construct ROM, we first randomly or stochastically drive the full-scale model to collect299

the required data from s different simulations. We use multivariate analysis to obtain the modal300

structure from each simulation. Then we apply the subspace robustness to the modal structures301

to select the dimension of the persistent subspace that can be used for the global reduced model.302

Using the obtained subspace we construct the model and compare it to the full-scale model.303

While any record of the system states can be used as data for multivariate analysis, we use304

random excitation as the system input and collect the response of the system in the data matrices.305

This way we ensure that all neighbors of data points within the space of the system has been cov-306

ered and that the modal structure we obtain from the analysis of data will be a better representation307

of the important dynamical characteristics of the system. Since we aim to build a relatively global308

reduced order control system which is valid for a range of energy levels, we do 12 simulations with309

different energy levels. To impose the changes in the energy, we only change the amplitude of the310

excitation while keeping the frequency content similar for all cases.311

The link system has a linear modal frequency range up to 3 Hz. We limit the frequency of the312

random excitation to 5 Hz to assure that all linear modes are covered while data are not contam-313

inated by noise. We select 12 equally distributed choices of the random forcing amplitude from314

the range of 0.1 ≤ q0 ≤ 3. We excite the link system by the random forcing to obtain 12 data315
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Figure 7: This figure shows the subspace robustness of both POD and SOD for different energy levels imposed by different
random forcing. SOD subspace robustness is alway close to one while the POD one fluctuates.

matrices Y1, Y2, . . . , Y12. We identify the modal structure of each data set using POD and SOD.316

We calculate the subspace robustness of POD and SOD modes using Eq. (13). Fig. 7 shows the317

subspace robustness of POD and SOD for each dimension. The POD subspace robustness for318

k = 1 is very close to unity which means that the first dominant POMs from all the simulations are319

linearly dependent. The POD subspace robustness is also close to one for k = 7, 8 and 10. On the320

other hand, the SOD subspace robustness is always close to one. A subspace robustness closer321

to one suggests few changes occur in subspaces from different simulation. This means that there322

is less leakage to the higher dimensional subspaces and the subspace is persistent to changes in323

system’s energy level. Therefore, SOD subspaces, are more persistent compared to those of POD.324

Following the identification of dimension for which the subspaces are robust and persistent, in325

order to obtain the global reduced order control model, we combine all the data matrices together326

to obtain a large response matrix, Y, as follows:327

Y =

Y1

...
Y12

 . (16)

We extract the corresponding POMs and SOMs, as the modal space given by P, and its k-328

dimensional representation of the k dominant modes given by Pk. In case k is the dimension329

of persistent subspace, we expect Pk via Eq. (2) to result in a persistent ROM within the range of330

energies of the nonlinear control system. Please note that for POD, POMs (denoted by φ) are or-331

thogonal and thus, Pk = φk and P†k = φTk . For SOD, however, SOMs and SPMs are bi-orthogonal332

(φTψ = I), thus, Pk = φk and P†k = ψTk .333

Also, from matrix Y we can extract POVs and SOVs to measure the dominance of the modes.334

Fig. 8 depicts the POVs and SOVs. We look for the drops in their values in order to identify the335

low-dimensional control models. There is no significant drop in the POVs for lower k values as we336

observe that they gradually decrease. The POV after k = 8 drops more drastically. However, SOVs337

come in pairs and the drops are distinguishable. A clear drops occur at k = 2, k = 4, and k = 6.338

Yet, we don’t expect a good control model for k = 2 from SOD since the higher dimensional modes339

still have a significant SOV.340

The full scale nonlinear control system will be controlled by a sequence of unit inputs. The341

proper choice of input merely depends on the design on the controller and the control method.342

Therefore, a good ROM for nonlinear control system is expected to mimic the output of the full343

scale model excited by a random input since we have no further knowledge about the specific344

controller.345

We generate a filtered random input with the frequency content up to 5 Hz. We excite both346

full-scale and ROM control systems by this input and compare their outputs, which are in this case347

the horizontal positions of the 5th link. For SOD, all the ROMs except for the three- and five-348
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Figure 8: POVs compared to SOVs.

dimensional ones are stable, although the lowest dimensional ROM which provides good results349

is four-dimensional. In Fig. 9, we compare the output of the full-scale and the 4-dimensional SOD350

based ROM control system. These figures illustrate three different realization of random inputs. As351

we can see in the figures, the SOD control model closely follows the output of the control system.352

These results are consistent with the subspace robustness, which is always close to 1 for SOD, and353

the changes in SOVs in terms of the drop at k = 4.354

POD ROMs are not stable for k = 4, 5, 6 and 7. The lower dimensional POD models are stable,355

though not able to closely follow the output. The 8-dimensional POD model may result in acceptable356

tracking as we can see in Fig. 10. In this figure we compare the output of the eight-dimensional357

POD model with that of the full-scale control system for the same random inputs that we used for358

the SOD models. Unlike four-dimensional SOD model, the eight-dimensional POD model outputs359

precedes the full control model outputs and their amplitudes are bigger. This confirms the results360

of the subspace robustness metric for POD.361

In Fig. 11 we show the computation speed of the reduced control models and compare it to362

the full scale model of the control system. For both POD and SOD, the computation speeds of363

the unstable models are estimated by interpolation. We observe that the eight-dimensional POD364

model computation time is close to the full scale control model, while its performance is not as365

good. Nine- and ten-dimensional models are even slower than the full-scale model. We note that366

the ten-dimensional POD model is just a POD realization of the full-scale model with the same367

dimension. On the other hand, the four-dimensional SOD control model is more than 6 times faster368

than the full-scale model of the control system.369

We also notice that the computation time of the SOD models, unlike POD, increases almost370

linearly. More interestingly, even a 10-dimensional SOD model, which has the same dimension as371

the full-scale model, is about twice faster, while it provides a perfect tracking of the output. We did372
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Figure 9: ROM on output of the control system using SOD for k = 4
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Figure 10: ROM on output of the control system using POD for k = 8.

not expect to get these results, however, at this point we speculate that SOD provides a smoother373

realization of the full-scale model of the control system. We will further investigate this effect in our374

future work.375

4 Conclusions376

A new approaches for MOR of nonlinear control systems was presented. An example of a system377

with five inverted links was used to examine our approach. The modal subspaces which were378

identified using projection based reduced order modeling methods were shown to dependent on the379

system’s energy. The subspace robustness metric was proposed to obtain robust and persistent380

reduced order control models. These models were aimed to be valid for a range of the system’s381

energy. The developed metric was used to evaluate for POD- and SOD-based subspaces. POD382

subspaces were shown persistent only for the high dimensional models. SOD subspaces were383

persistent for all the dimensions. The resultant reduced order control models were tested using384

different random inputs.385

Low-dimensional POD-based ROMs were not stable and the high dimensional ones were not386

as accurate as the low-dimensional SOD ROMs. A four-dimensional SOD ROM closely tracked the387

output of the nonlinear control system to different random inputs. These results were consistent with388

the subspace robustness metric. The accurate SOD ROMs were shown to be six times faster than389

the full-scale model. These ROMs outperformed the best POD ROM, which was not significantly390

faster than the full-scale control system. Also, we showed that the smoothing effect of SOD may391

speed up the full-scale model simulations, as we observed that the 10-dimensional full-scale SOD392

model was as accurate as, but two times faster than the original full-scale system.393
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Appendix A526

M =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 52

3 14 cos(y1−y2) 10 cos(y1−y3) 6 cos(y1−y4) 2 cos(y1−y5)
0 0 0 0 0 14 cos(y1−y2) 40

3 10 cos(y2−y3) 6 cos(y2−y4) 2 cos(y2−y5)
0 0 0 0 0 10 cos(y1−y3) 10 cos(y2−y3) 28

3 6 cos(y3−y4) 2 cos(y3−y5)
0 0 0 0 0 6 cos(y1−y4) 6 cos(y2−y4) 6 cos(y3−y4) 16

3 2 cos(y4−y5)
0 0 0 0 0 2 cos(y1−y5) 2 cos(y2−y5) 2 cos(y3−y5) 2 cos(y4−y5) 4

3


(17)

527

528

L =



0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
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fn =



0
0
0
0
0

−14y27 sin (y1 − y2)− 10y28 sin (y1 − y3)− 6y29 sin (y1 − y4)− 2y210 sin (y1 − y5)
14y26 sin (y1 − y2)− 10y28 sin (y2 − y3)− 6y29 sin (y2 − y4)− 2y210 sin (y2 − y5)
10y26 sin (y1 − y3) + 10y27 sin (y2 − y3)− 6y29 sin (y3 − y4)− 2y210 sin (y3 − y5)
6y26 sin (y1 − y4) + 6y27 sin (y2 − y4) + 6y28 sin (y3 − y4)− 2y210 sin (y4 − y5)
2y26 sin (y1 − y5) + 2y27 sin (y2 − y5) + 2y28 sin (y3 − y5) + 2y29 sin (y4 − y5)


(19)
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