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EPIZOOTIOLOGY OF QUAHOG PARASITE UNKNOWN (QPX) DISEASE IN NORTHERN

QUAHOGS (=HARD CLAMS) MERCENARIA MERCENARIA

M. MAILLE LYONS,1* ROXANNA SMOLOWITZ,2 MARTA GOMEZ-CHIARRI3

AND J. EVAN WARD1

1Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road Groton,
Connecticut 06340; 2Marine Resources Center, Marine Biological Laboratory, 7 MBL Street,
Woods Hole, Massachusetts 02543; 3Department of Fisheries, Animal and Veterinary Science,
University of Rhode Island, 23 Woodward Hall, Kingston, Rhode Island 02881

ABSTRACT The economically important marine bivalve mollusc, Mercenaria mercenaria, (commonly called a northern

quahog or hard clam), has endured considerable mortalities caused by a thraustochytrid pathogen called Quahog Parasite X

(QPX). Data on the percent prevalence of QPX infections were compiled from published reports along with our data to describe

the epizootiology of QPXdisease. QPX infections occurred in clams collected fromboth cultured beds andwild populations, but a

higher percentage of QPX cases (76.5%)were from cultured clam beds. In addition, samples from cultured beds had a significantly

higher prevalence (29.2 ± 27.2%) of QPX infections compared with samples from wild populations (9.6 ± 9.6%). The highest

prevalence of QPX infections occurred in clams from samples with an intermediate size range (shell lengths 20–55 mm). QPX

infections occurred in bothmale and female clams, but infection prevalence does not appear to be correlated with sex or sex ratios.

The geographical range of QPX-related clam mortalities was Atlantic Canada to the Eastern Shore of Virginia, USA. Only

marginally significant differences were detected between the prevalence of QPX at different locations. There were no latitudinal

gradients in QPX prevalence or frequencies, suggesting local factors were important in determining its distribution. Although

QPX infections occurred throughout the year, no seasonal trends in the prevalence or frequencies of QPX were discernable. This

summary of information available on QPX disease highlights the need for more thorough data collection regarding factors

believed to be associated with its presence and severity in hard clams.

KEY WORDS: Quahog Parasite X (QPX), thraustochytrid, Mercenaria mercenaria, clam, northern quahog

INTRODUCTION

The commercially important bivalve, Mercenaria merce-
naria, (northern quahog or hard clam), has suffered cata-
strophic mortalities from eastern Canada to coastal Virginia

because of a pathogen called Quahog Parasite X (QPX; Whyte
et al. 1994, Smolowitz et al. 1998, Ragone-Calvo et al. 1998).
QPX is a small (4–120 mm), spherical protist, characterized as a

thraustochytrid (Whyte et al. 1994, Maas et al. 1999, Ragan
et al. 2000, Stokes et al. 2002). In culture (Kleinschuster et al.
1998, Brothers et al. 2000) and in tissue section (Smolowitz et al.

1998), QPXoccurs in three life stages: (1) thalli that develop into
(2) sporangia that rupture to release (3) endospores (immature
thalli). The presence of a fourth stage, zoospores, has not been

confirmed (Brothers et al. 2000). In laboratory experiments,
cultures of QPX proliferated best at 24�C, with a pH 7–8 and a
salinity of 28 ppt and greater (Brothers et al. 2000).

The QPX organism has been documented in the environ-

ment. Positive results have been found for QPX in seawater,
marine aggregates, sediments, and in association with inverte-
brates and macrophytes (Lyons et al. 2005, Lyons et al. 2006,

Gast et al. 2006, Gast et al. submitted) using real time PCR
(Lyons et al. 2006) and nested PCR followed by DGGE (Gast
et al. 2006). The ecology of QPX is not well known, but there is

information regarding the ecology of other thraustochytrids
(Raghukumar 2002). Thraustochytrids were first described by
Sparrow (1936) from a decaying piece of algae. Since then,
thraustochytrids have been documented in coastal and oceanic

waters, in pelagic and benthic habitats, and on plant and animal
substrates (Miller & Jones 1983, Raghukumar et al. 1990,

Raghukumar & Schaumann 1993, Naganuma et al. 1998,
Raghukumar & Raghukumar 1999, Santangelo et al. 2000).
Several parasitic associations have been documented for thraus-

tochytrids and molluscs including octopuses, squid, sea hares,
abalone, and bivalves (Polglase 1980, McLean & Porter 1982,
Jones & O’Dor 1983, Bower 1987, Azevedo & Corral 1997,

Anderson et al. 2003). Benign associations have been described
for thraustochytrids with salps, sea urchins, corals, hydroids,
and sponges (Raghukumar 1988, Frank et al. 1994, Ilan et al.
1996, Raghukumar & Raghukumar 1999, Thorsen 1999).

The parasite was first designated QPX in a paper by Whyte
et al. (1994), which described mass quahog mortalities (occur-
ring since 1989) in a Canadian hatchery on Prince Edward

Island. The authors found the parasite to be identical to an
unnamed one that caused mass mortalities of wild quahogs in
Canada in the early 1960s (Drinnan & Henderson 1963). From

1990–1998, Canadian researchers monitored cultured hard
clam (quahog) beds and hatcheries in New Brunswick, Nova
Scotia, and Prince Edward Island (Bacon et al. 1999,MacCallum

& McGladdery 2000) and documented the QPX organism in
samples of clams collected from all three Canadian Maritime
Provinces.

The first report of an outbreak of QPX disease in the United

States was published by Smolowitz et al. (1996) and described a
4-y history of chronic, severe mortalities in cultured hard clams
in Provincetown and Duxbury on Cape Cod in Massachusetts.

Dying clams were positive for an endosporulating protist
similar to the one observed in the Canadian hatchery (Whyte*Corresponding author. E-mail: mmmlyons@hotmail.com
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et al. 1994). Smolowitz et al. (1998) detailed the gross- and histo-
pathology by comparing observations of the Massachusetts

QPX-like organism to the one described by Canadian research-
ers. Subsequently, United States researchers reviewed archived
tissue sections from old cases and discovered that episodic die-
offs in Barnegat Bay, NJ as early as 1976 and high mortalities in

the Mitchell River in Chatham, MA around 1992 were also
caused byQPX (Smolowitz et al. 1998). Between 1995 and 1998,
clam seed from South Carolina that were planted in New Jersey

waters suffered significant mortalities from QPX (Ford et al.
2002). Likewise, clam seed fromNew Jersey that were planted in
Massachusetts waters suffered markedly higher levels of QPX

disease than clam seed originating from Massachusetts
(Smolowitz, unpublished data). Since then, QPX has been
detected in New Jersey in wild hard clams from Raritan and
Sandy Hook Bays (Ragone-Calvo & Burreson 2002). In 1996,

researchers in Virginia began surveying wild and cultured hard
clams (Ragone-Calvo et al. 1997, Ragone-Calvo et al. 1998).
Their study was the first to document the presence of QPX in

cultured clams as far south as Quinby Inlet on the Atlantic side
of Virginia’s Eastern Shore. They did not detect QPX in samples
of cultured clams from Chesapeake Bay or in any samples from

wild populations (Ragone-Calvo et al. 1998). In 2001, QPX was
confirmed in Barnstable Harbor, Barnstable, and Pleasant Bay,
Orleans, both on Cape Cod in Massachusetts (Hickey et al.

2002). Also in 2001, the first large scale mortalities from QPX
disease were observed at a seaside location in Virginia (Ragone-
Calvo & Burreson 2002, Camara et al. 2004). In 2002, pre-
liminary testing detected QPX in wild clams from Raritan Bay,

NY (Dove et al. 2004). This prompted researchers in New York
to survey over 600 clams from 21 sites to document infection
prevalence within the bay (Dove et al. 2004). In 2004, QPX was

reported in yet another Cape Cod embayment (Wellfleet, MA;
Fraser 2004) and in cultured clams from Rhode Island (this
report).

To date, the range of QPX-related mass mortalities of hard
clams extends north to Canada’sMiramichi Estuary of the Gulf
of St. Lawrence (MacCallum & McGladdery 2000) and south
to Fisherman’s Island on Eastern Shore of Virginia (Ragone-

Calvo & Burreson 2002). Within this range, there are clam
growing areas that have not experienced mortalities from the
QPX pathogen. For example, no QPX was found in samples of

cultured clams from the northern or southern shores of Long
Island, New York during a 1997–1999 study (Ford et al. 2002).
This study reported 1 clam with a light infection from a single

sample of wild clams from the Connecticut side of Long Island
sound. A later, more intensive survey of wild and cultured clams
from 11 sites along Connecticut’s coastline revealed no evidence

of the presence of QPX (DeCrescenzo et al. 1999) on the
northern (Connecticut) side of Long Island Sound. There have
been nomassmortalities fromQPXdocumented in Connecticut
waters (Sunila 2006).

This analysis combines data frompublished reports described
below with additional QPX disease data from the Marine
Biological Laboratory in Massachusetts and the University of

Rhode Island. Its purpose is 3-fold. First, we review available
data and consolidate information regarding the QPX organism
and QPX disease. Second we take an epizootiological approach

and evaluate factors that may influence the distribution and
severity of QPX disease in hard clams. Finally, we highlight
several areas of research that warrant further exploration.

METHODS

Data Collection

Data were compiled from several resources. Peer-reviewed
published journal articles describing surveys of QPX in clams
were available from Canada (Whyte et al. 1994, MacCallum &

McGladdery 2000), Massachusetts (MA; Smolowitz et al.
1998), New York (NY; Ford et al. 1997, Ford et al. 2002, Dove
et al. 2004), Connecticut (CT) and New Jersey (NJ; Ford et al.

1997, Ford et al. 2002), and Virginia (VA; Ragone-Calvo et al.
1998, Ragone-Calvo et al. 2007). Information from published
conference abstracts and technical reports was also included

for Canada (Bacon et al. 1999), MA (Smolowitz et al. 1996,
Smolowitz & Leavitt 1997, Smolowitz & Leavitt 2001), CT
(DeCrescenzo et al. 1999), NJ (Kraeuter et al. 1998), and VA

(Ragone-Calvo et al. 1997, Ragone-Calvo & Burreson 2002,
Ragone-Calvo & Burreson 2003, Ragone-Calvo et al. 2003).
Additional, unpublished data for QPX disease were obtained
from the Marine Biological Laboratory in Massachusetts

(Table 1) and the University of Rhode Island (Table 2).

Data Description

Histological evaluation was used for determining the pres-

ence of QPX in clam tissues (Bower & McGladdery 2003).
Although slight differences between laboratories occurred, in
general, clams were shucked, sectioned, fixed, embedded,
processed, and stained to make a histological slide (Howard

et al. 2004). Individual clams were designated as positive or
negative for the presence of QPX. The primary variable in this
analysis was percent prevalence of QPX. Prevalence of QPX

(percent prevalence, 0–100%) was calculated as the number of
clams positive for QPX, divided by the total number of clams
evaluated in the sample, multiplied by 100.

This analysis identified 313 samples of clams (averaging 39 ±
26 clams per sample, for a total of more than 11,000 individual
clams) that were tested for the presence of QPX, but not all

samples included the same type or amount of information (see
below). Overall, the 313 samples included data from 1990
(MacCallum&McGladdery 2000) to 2005 (this study) through-
out the range of QPX from Canada (Whyte et al. 1994,

MacCallum & McGladdery 2000) to Virginia (Ragone-Calvo
et al. 1998, Ragone-Calvo & Burreson 2002). Although samples
were not collected randomly, they were representative of

cultured and wild clams throughout the range of this pathogen
over 15 y (1990–2005). A truly random sample is difficult to
obtain because of the proprietary nature of the lease sites and

the high costs associated with testing.

Data Recoding

Using epidemiological terminology, ‘‘cases’’ were defined as
samples of clams that were positive for QPX infections (i.e., with

at least one positive individual clam in the sample) whereas
‘‘controls’’ were defined as samples of clams that were negative
for QPX infections. There were approximately two controls (n¼
211) for every case (n ¼ 102). Data were available for three
CanadianMaritime provinces and six US states. After determin-
ing that therewas no latitudinal gradient (see results, Fig. 2 later),
this ‘‘location’’ data was categorized into ‘‘country’’ according to

Canadian (n ¼ 115) and American (n ¼ 198) locations, because

LYONS ET AL.372
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TABLE 1.

QPX disease data from Marine Biological Laboratory including samples from Massachusetts (MA), Connecticut (CT),
and New York (NY). Size recorded as shell length. (nr ¼ not recorded).

Type of Sample Sample from Month of testing

Mean Size (mm) of

Clams in Sample Number of Clams Tested % Prevalence of QPX

Cultured bed MA January 44.8 67 28.0

Cultured bed MA February 46.8 24 0.0

Cultured bed MA February 52.2 146 0.0

Cultured bed MA April 42.9 nr 0.0

Cultured bed MA April 24.3 60 0.0

Cultured bed MA April nr 8 80.0

Cultured bed MA April 34.2 25 8.0

Cultured bed MA April 38.7 30 10.0

Cultured bed MA April 39.3 30 72.0

Cultured bed MA April 41.6 30 16.0

Cultured bed MA April 40.3 nr 3.0

Cultured bed MA April 28.1 35 42.9

Cultured bed MA April 28.8 59 6.8

Cultured bed MA April 42 60 21.7

Cultured bed MA June 43.9 63 0.0

Cultured bed MA June 15.3 100 0.0

Cultured bed MA June 40.3 28 43.0

Cultured bed MA June 40.1 35 44.0

Cultured bed MA June 34.3 60 12.0

Cultured bed MA June 44.2 62 16.0

Cultured bed MA June 15.5 100 2.0

Cultured bed MA June 39.7 100 100.0

Cultured bed MA August 17.6 nr 0.0

Cultured bed MA August 13.7 24 0.0

Cultured bed MA August 20.2 18 0.0

Cultured bed MA August 38.1 25 0.0

Cultured bed MA August 24.1 59 3.0

Cultured bed MA August 30.1 21 52.4

Cultured bed MA August 36.8 25 32.0

Cultured bed MA August 48.6 21 28.6

Cultured bed MA September 41.3 54 0.0

Cultured bed MA October 22.3 60 0.0

Cultured bed MA October 42.4 120 2.0

Cultured bed MA October 48.1 150 4.0

Cultured bed MA October 39.9 120 7.0

Cultured bed MA October 28.1 60 15.0

Cultured bed MA October nr 53 60.0

Cultured bed MA October 42.1 30 90.0

Cultured bed MA November 20.1 25 0.0

Cultured bed MA November 27 25 0.0

Cultured bed MA November 35.9 25 0.0

Cultured bed MA November 51.5 26 0.0

Cultured bed MA November 40.9 59 0.0

Cultured bed MA November 54.4 nr 0.0

Cultured bed MA November 63.0 60 0.0

Cultured bed MA November 39.4 25 4.0

Cultured bed MA November 37.4 27 29.6

Cultured bed MA November 41.9 67 8.0

Cultured bed MA November 42.3 73 36.0

Cultured bed MA November 43.6 60 28.0

Cultured bed MA November 45.2 71 29.0

Cultured bed MA November nr 72 80.0

Cultured bed MA December 15.7 60 0.0

Cultured bed MA December 46.0 65 0.0

Cultured bed MA December 47.0 76 0.0

Cultured bed MA December 38.1 18 100.0

Cultured bed MA December 35.5 21 100.0

continued on next page
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differences in the manifestation of QPX disease for these
countries have been noted (Smolowitz et al. 1998, Ragone-Calvo
et al. 1998). Data were available for all 12 months, but some
months had fewer than 10 observations; therefore, month of

testing was also regrouped into ‘‘season’’ as follows: winter
(December, January, and February; n ¼ 28), spring (March,
April, and May; n ¼ 69), summer (June, July, and August; n ¼
123), and fall (September, October, andNovember; n¼ 91). Two
of the samples were yearly averages and did not includemonth of
testing (total n ¼ 311). All samples of clams were collected from

either cultured lease sites (n¼ 197, 63%) orwild populations (n¼
116, 37%). Of the 313 samples, 276 (88%) included information
on the size of the clams tested for QPX infections. Sizes of clams

in the samples were usually reported as length (longest dimen-
sion), but sometimes height (umbo to shell edge) and valve width.
To compare size measurements between studies, some data were
systematically recoded as follows. Whenever available, length

was used as the measure of size. If height was the only reported
measure of clam size, it was converted to length by multiplying
height by 1.14 (Archambault et al. 2004). If the mean size was

reported, then the mean size was used in the analysis. If only the
range of sizes was listed (i.e., only the minimum and maximum
sizes for the smallest and largest clams), then the mean size for

that sample was estimated by averaging the minimum and
maximum sizes for the clams reported. For some reports (;9%
of compiled data set) size was reported as ‘‘less than’’ or ‘‘greater

than’’ a particular value (e.g., >25 mm). For these samples, the
reported value (e.g., 25 mm) was used as a conservative estimate
for the size of clams in that sample. Only 45 (14%) of the 313
samples included any information regarding sex of the clams, but

the data were not in comparable formats. For example, some
studies reported the sex ratio of all clams tested, whereas others
only reported sex ratios of the clams that tested positive for QPX

infections. Consequently, this independent variable was not

included in the overall analysis because only 20 samples (;6%
of the compiled data set) included comparable information.

In summary, the four independent variables evaluated in this
analysis were (1) location from which the sample was obtained,

both as state/province and country; (2) month and season
during which the sample was tested; (3) type of sample (i.e.,
clams obtained from a cultured bed or a wild population); and

(4) mean size (shell length) of clams in each sample. Clam sex
was only evaluated for the data in Table 2.

Statistical Analysis

In the overall analysis, associations between the frequencies
of positive results (cases) and negative results (controls) for
location, month, season, and type of sample were evaluated
based on the counts for each category with nonparametric Chi-

Square tests of independence (c2). Yates continuity corrections
were used for 23 2 contingency tables. Fisher’s Exact test was
used when category sizes were small or the expected minimum

counts were less than 5. In all cases the null hypothesis (Ho:
There was no difference between observed and expected counts)
assumed an even distribution of results among categories. For a

more detailed analysis of the positive QPX prevalence results,
prevalence data were log-odds (logit) transformed to account
for the zero-bounded, positively skewed distribution. The

transformation resulted in a normal distribution (data not
shown), which satisfied the normality assumption for univariate
ANOVA’s and t-tests to compare mean differences in preva-
lence of QPX. SPSS software was used for transformations and

statistical analyses.

RESULTS

In addition to data from published reports, 78 new samples

from the Marine Biological Laboratory (Table 1) and 26 new

TABLE 1.

continued

Type of Sample Sample from Month of testing

Mean Size (mm) of

Clams in Sample Number of Clams Tested % Prevalence of QPX

Cultured bed MA December 39.3 28 90.0

Cultured bed MA December 37.4 35 12.0

Cultured bed MA December 34.1 60 12.0

Cultured bed MA December 42.4 66 36.0

Cultured bed MA December 43.3 86 8.0

Cultured bed MA December 40.9 114 3.0

Wild population CT April 73.6 60 0.0

Wild population CT August 53.5 40 0.0

Wild population CT August 55.9 20 0.0

Wild population CT November 56.3 30 0.0

Wild population CT November 61.4 30 0.0

Wild population MA January 46.0 90 4.0

Wild population NY April 50 20 0.0

Wild population NY April 52.3 20 0.0

Wild population NY April 56.5 20 0.0

Wild population NY August 43.3 20 5.0

Wild population NY August 43.4 20 15.0

Wild population NY August 45.2 20 5.0

Wild population NY November 45.6 20 0.0

Wild population NY November 49.5 20 0.0

Wild population NY November 46.5 20 15.0

LYONS ET AL.374
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samples from the University of Rhode Island (Table 2) were

included in this analysis.

Clam Size

The range of clam shell lengths tested for the presence of
QPX was 1 mm to 180 mm with a mean size of 44.7 ± 22.8 mm.
Although the sample containing the largest clams was positive
for QPX (a case), it is not known if the largest clam was positive

for QPX. The two smallest sizes of clams testing positive for
QPX were reported by Whyte et al. 1994 (15–30 mm) and
MacCallum & McGladdery 2000 (18–25 mm), but none of the

seed clams (n¼ 2,303; 1–20mm) tested in Ford et al. (1997) were
positive for the presence of QPX. In this analysis, mean size of
clams and prevalence of QPX infections were not linearly

related, because intermediate sizes appeared to have the highest
prevalences (Fig. 1). There was no significant difference in the
mean sizes of clams from samples that tested positive (cases;
47.3 ± 15.2 mm, n ¼ 90) or negative (controls; 43.5 ± 25.3 mm,

n¼ 186) for QPX infections (t-test, P¼ 0.197; 37 of the samples
did not include data for size of clams tested).

Clam Sex

In evaluating the compiled data set, the effects of sex or sex
ratio were not included for the overall analysis because there

were not enough reports (only 20 out of 313) that included this
information. In evaluating the data from Rhode Island (Table
2) there was no significant difference between the counts of

male, female, and unknown clams, with and without QPX

infections [c2, (2, n ¼ 378) ¼ 0.96, P ¼ 0.62].

Sample Type

QPX infections occurred in samples of clams obtained from
both cultured clam beds and wild populations. In the compiled
data set, there were more samples from cultured beds (n ¼ 197)
than wild populations (n¼ 116). There was a similar number of

controls (i.e., QPX negative samples) among samples collected
from cultured beds (n¼ 119) and wild populations (n¼ 92), but
more cases (i.e., QPX positive samples; n ¼ 78) and a higher

percentage of cases (76.5%) came from cultured clam beds
compared with wild populations (n ¼ 24, 23.5%). In addition,
for QPX positive samples (cases only, n ¼ 102), samples from

cultured beds had a significantly higher prevalence (29.2 ±
27.2%) of QPX infections compared with samples from wild
populations (9.6 ± 9.6%; t-test on logit transformed data, P ¼
0.017). The mean size (length) of clams in samples collected

from cultured clam beds (Fig. 1, solid vertical line) was
significantly smaller than the mean size of clams in samples
from wild populations (35.1 ± 16.5 mm versus 59.8 ± 22.4 mm;

t-test, P < 0.001).

Geographic Distribution

The frequencies (i.e., counts; data not shown) and the
percentages (Fig. 2A) of QPX cases and controls varied among
the three Canadian provinces of New Brunswick (NB), Nova

TABLE 2.

QPX disease data from the University of Rhode Island. All samples were from RI. Size recorded as shell length. (nr ¼ not recorded).

Type of Sample Month Tested

Mean Size (mm) of

Clams in Sample

Number of Clams

Tested % Male % Female % Unknown % Prevalence of QPX

Cultured bed May 23.2 30 nr nr nr 0.0

Cultured bed May 18.7 30 nr nr nr 0.0

Cultured bed May 25.2 27 nr nr nr 0.0

Cultured bed May 19.3 30 nr nr nr 0.0

Cultured bed June 13.3 12 50.0 0.0 33.3 0.0

Cultured bed June 25.0 25 4.0 0.0 96.0 0.0

Cultured bed June 26.2 6 66.7 0.0 16.7 0.0

Cultured bed June nr 15 6.7 6.7 73.3 0.0

Cultured bed June 45.5 26 23.1 50.0 26.9 30.8

Cultured bed June 47.8 25 36.0 48.0 16.0 20.0

Cultured bed June 50.4 25 36.0 48.0 16.0 24.0

Cultured bed June 51.9 25 40.0 36.0 20.0 20.0

Cultured bed June 54.7 26 65.4 30.8 3.6 42.3

Cultured bed June 65.4 26 40.0 44.0 16.0 16.0

Cultured bed July 62.1 60 43.3 35.0 21.7 0.0

Cultured bed September 39.2 26 44.0 46.0 10.0 8.0

Cultured bed September 55.3 25 46.0 42.0 12.0 16.0

Cultured bed October 65.5 12 40.7 59.3 0.0 0.0

Wild population May 61.4 45 nr nr nr 0.0

Wild population May 62.7 15 nr nr nr 0.0

Wild population August 65.9 60 43.3 46.7 10.0 0.0

Wild population August 77.3 60 46.7 43.3 10.0 0.0

Wild population August 94.7 30 40.0 50.0 10.0 0.0

Wild population August 97.5 27 33.3 51.9 14.8 0.0

Wild population September 50.0 25 36.0 62.0 2.0 0.0

Wild population September 67.7 6 50.0 46.0 4.0 0.0
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Scotia (NS), and Prince Edward Island (PEI) and the six US

states of Massachusetts (MA), Rhode Island (RI), Connecticut
(CT), New York (NY), New Jersey (NJ), and Virginia (VA)
where outbreaks of QPX disease have occurred. There was a

significant peak in percent of cases from MA locations where
QPX has been a substantial problem for more than 10 y [c2 (8,

n ¼ 311) ¼ 42.8, P < 0.001]. The mean prevalence of QPX
infections also varied with location (Fig. 2B), with marginally
significant differences among locations (ANOVA on logit
transformed data, P ¼ 0.071). New Jersey and MA recorded

the highest mean percent prevalences of QPX, but overall there
was no latitudinal gradient. Consequently, results from the
three Canadian provinces were combined and compared with

those of six U.S. states. Overall, the frequency of cases from
American locations was higher than that from Canadian
locations [c2 (1, n ¼ 311) ¼ 11.0, P ¼ 0.001] with more cases

(n ¼ 78) and a higher percentage of cases (76.5%) coming from
American locations compared with Canadian locations (n¼ 24,
23.5%). This result is driven by the data from MA (i.e., if MA
data are removed from the analysis, there is no significant

difference between American and Canadian locations, [c2, (1,
n ¼ 248) ¼ 0.98, P ¼ 0.32]. Samples from American locations
were also more often from cultured clam beds (90.9%) com-

pared with the samples from Canadian locations (only 25.0%).
The mean size of clams in QPX positive samples fromAmerican
locations was significantly smaller than themean size of clams in

QPX positive samples fromCanadian locations (40.8 ± 17.3 mm
versus 50.3 ± 27.5 mm; t-test, P ¼ 0.001). For samples positive
for QPX infections (cases only, n¼ 102), themean prevalence of

QPX was significantly higher in samples from American
locations compared with Canadian locations (27.5 ± 26.8%
versus 15.2 ± 18.7%, t-test on logit transformed data, P¼ 0.02).

Seasonal Patterns

The frequencies (data not shown) and percentages (Fig. 3A)
of cases and controls varied among months of testing. Higher
than expected counts of QPX cases were recorded in seven

months, with April andDecember having the largest differences
between observed and expected counts [c2 (11, n ¼ 311) ¼ 19.1,
P ¼ 0.05]. When data were pooled into season, there was no

statistical evidence of seasonal trends in the counts of cases and
controls [c2 (3, n ¼ 311) ¼ 4.5, P ¼ 0.22]. The mean prevalence
of QPX infections also varied by month (Fig. 3B), but there
were no significant differences among months (ANOVA on

logit transformed data,P¼ 0.253) or seasons (ANOVA on logit
transformed data, P ¼ 0.221).

DISCUSSION

The primary dependent variable in this study was prev-
alence of QPX infections in hard clams (¼ northern quahog),
Mercenaria mercenaria. Prevalence (percent positive) data

without matching mortality rates or case-fatality data are
difficult to interpret because high or rapid QPX-related mortal-
ities preceding sample collection would yield a relatively low
estimate of prevalence. Indeed, some of the variation in

prevalences of QPX in the compiled data set is expected to be
due, in part, to mortality events, because samples were often
collected in response to noticeable mortality in the field. As a

result, the prevalence data in this analysis should be viewed as
conservative values.

Using epidemiological terms, the data available for this

analysis were in a case-control format (i.e., data were catego-
rized based on the presence or absence of the organism, which
causes QPX disease). Comparing the characteristics of the case

Figure 1. Samples with clams of an intermediate size range (20–55 mm)

appear to have the highest prevalence of QPX. The solid vertical line

indicates the mean size of clams from all samples (cases and controls)

tested from cultured clam beds (35 mm), whereas the dashed vertical line

indicates the mean size of clams tested from wild populations (60 mm),

suggesting QPX infections in smaller, wild clams may be going unde-

tected.

Figure 2. (A) The percent of cases (darker bars) and controls (lighter

bars) varied for the three Canadian provinces of New Brunswick (NB),

Nova Scotia (NS), and Prince Edward Island (PEI) and the six U.S. states

of Massachusetts (MA), Rhode Island (RI), Connecticut (CT), New York

(NY), New Jersey (NJ), and Virginia (VA) where outbreaks of QPX

disease have occurred. The expected percentage of cases (horizontal line)

under the null hypothesis of an even distribution among locations was

32.2%. There was a significant peak in percent of cases from MA lo-

cations where QPX has been a substantial problem for more than 10 y. (B)

The mean prevalence of QPX infections also varied with location, with

only marginally significant differences among locations.
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samples to those of the control samples highlights potential
factors associated with the clams contracting QPX disease.
Comparing the prevalence within the case samples identifies

potential factors associated with the severity of the disease in the
samples. Neither comparison implies a causal relationship, but
rather is used to identify testable hypotheses for future research.
Factors of potential interest included clam size, age, sex, strain,

density, and environmental variables such as location, season,
temperature, salinity, dissolved oxygen, turbidity, food supply,
water depth, and substrate type. Data for most of these factors

were not available. Factors included in this evaluation were
mean size of clams, type of sample (from cultured beds or wild
populations), location (also grouped by Canada or United

States), and month of testing (also grouped by season). Sex
ratios were only evaluated for the new data from Rhode Island.

Host Demographics

Clam Size and Age

Clam size is related to both the age of the clams and the
growing conditions and is an indirect measure of how long the

clams have been exposed to environmental variables. Literature
values for the relationship between QPX infections and clam
size vary. Ford et al. (1997) examined over 2000 hatchery-raised

seed clams and found no evidence of QPX infections in clams
(1–20 mm). Initial reports from Whyte et al. (1994) described
mortalities in slightly larger juvenile and adult hatchery clams
ranging from 15–30 mm. No data on ages were reported by

Whyte et al. (1994), but MacCallum and McGladdery (2000)
explained that lower growth rates in colder waters would mean
the Canadian hard clams were older than similar sized clams

from the United States. In MacCallum and McGladdery’s 8-y
survey of Canadian hard clams, the size range for infected clams

was 18–180 mm in length. The smaller clams (18–25 mm) with
QPX infections had been in the environment for one year and
were estimated to be about 1½ years old (MacCallum &
McGladdery 2000). Ford et al. (1997) examined over 700

hatchery-reared clams that were in the environment for their
first year of grow-out (9 mo or less) and found no evidence of
QPX infections. In the outbreaks of QPX in Massachusetts,

clam sizes between ‘‘1 and 1½ inches in valve width’’ (approx-
imately 1½ to 2 y old) incurred the highest rate of mortalities
(Smolowitz et al. 1998). Coupling histology andmolecular tools

for diagnostics, QPX has been detected in at least one 15-mm
seed clam (Gast et al. 2006). As diagnostics become increasingly
sensitive it is expected that the minimum size of clams that
acquire QPX infections will become better defined.

In our analysis, clams of an intermediate size (shell length
20–55 mm) had the highest prevalence of QPX infections. This
concurs with field observations that mortality is frequently

highest in clams just under market size (Smolowitz et al. 1998).
If infection prevalence is related to environmental exposure,
then this observation suggests the smaller and larger clams have

a lower rate of exposure to the QPX pathogen. For the smaller
clams, lower exposure may be because of the comparatively
lower particle clearance rates (one measure of suspension

feeding; Winter 1978). For the larger clams, lower exposure is
more difficult to explain. One possibility is that larger clams are
more efficient at selecting, ingesting, and digesting QPX cells,
and therefore have lower infection prevalence, because the

portals of entry appear to be the mantle and gill, not the
digestive track (Smolowitz et al. 1998, Ford et al. 2002).

Alternatively, the observed pattern in QPX prevalence with

clam size may be related to the effects of QPX infection on
growth. If intermediate size clams with QPX infections do not
continue to grow at the same rates as intermediate size clams

without QPX infections, then larger clams might have a
relatively lower prevalence of QPX infections. Smolowitz
et al. (1998) demonstrated that clams with QPX infections
had a lower condition index and lower shell length increases

(i.e., lower signs of new growth) than clams without signs of
QPX infections. Clams with QPX infections were also more
likely to have chips and cracks in their shells and be found

gaping on the surface, both of which would affect food
acquisition and ultimately growth.

Our observation that clams of an intermediate size (i.e.,

sublegal, below market size) had the highest prevalence of QPX
infections raises the concern that some of the environmental
surveys may be underestimating the prevalence of QPX in wild

clams, because most samples from wild populations had larger
(mean 60 mm), legal size clams. We recommend that future
surveys of wild clams include smaller clams in the 20–55mm size
range.

Sex of Clams

QPX infections have been found in both male and female
clams (MacCallum & McGladdery 2000, Dove et al. 2004,
Table 2), but only a few reports have evaluated differences in

infection prevalence between males and females. Sex of an
individual clam cannot always be determined from a histolog-
ical slide, therefore results for sex ratios are usually reported as

Figure 3. (A) The percentage of cases (darker bars) and controls (lighter

bars) varied for each month. The expected percentage (horizontal line)

under the null hypothesis of an even distribution among months tested was

32.2%. Seven months have a higher than expected percentage of positive

results with the largest differences recorded in April and December. The

smallest percentage of positive results was recorded in May. (B) Mean

prevalence of QPX infections also varied bymonth, but because of the high

variability, no gradients were discernable. When month was regrouped by

season, no evidence for seasonal trends was detected.
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the number of males, females, and unknowns. In both their
diagnostic (1991–96) and season surveys (1996–97),MacCallum

and McGladdery (2000) observed no significant correlation
between QPX infection and sex of clams. They reported
percentages of males, females, and unknowns for clams with
QPX infections. In a survey of clams from NY, Dove et al.

(2004) also reported no significant differences between QPX
infections in male and female clams, but this study did not
include the raw data for comparison. In our small subset of data

from RI (Table 2), there was also no significant difference
between the number of males, females, and unknowns with and
without QPX infections.

Sample Type—Cultured Versus Wild

Although most of the QPX-related mass mortalities have
had economic impacts for cultured clam beds (Smolowitz et al.
1996, Smolowitz et al. 1998, Ragone-Calvo et al. 1998, Ford

et al. 2002), wild populations of clams have also been affected
(Bacon et al. 1999,MacCallum&McGladdery 2000, Dove et al.
2004). Prevalence of QPX in Canadian wild clams ranged from

3.3–20% (MacCallum & McGladdery 2000) and in wild clams
from New York averaged 5.8% with an additional 5.1%
suspected (i.e., characteristic inflammation without QPX cells

present in the section evaluated) of infections (Dove et al. 2004).
In contrast, Ragone-Calvo et al. (1998) did not findQPX in wild
clams in Virginia in their 1996–97 study and no wild clams in
samples from Rhode Island were positive for QPX. In our

compiled data set, the mean size of clams in samples collected
from wild clam populations was significantly larger than the
mean size of clams in samples collected from cultured popula-

tions. Because samples with clams of an intermediate size range
(smaller than the mean size of clams fromwild populations) had
a significantly higher percent prevalence of QPX, QPX infec-

tions in smaller, wild clams may be going untested and
consequently underestimated.

In our compiled data set, more than half (63%) of all

samples were collected from cultured clam beds. This reflects
the source of the data, because samples from cultured clams
must be screened for diseases prior to movement and are often
brought to disease research facilities when aquaculturists are

encountering unusually high mortalities in their clam beds.
High mortalities in wild clam populations may go unnoticed
and therefore unreported. A similar number of controls were

found for samples of cultured and wild clams, but a higher
percentage of QPX cases came from cultured clam beds.
Additionally, the samples of cultured clams had a higher

prevalence of QPX infections. This information supports the
concept that some aspect of culturing (i.e., density, strain,
husbandry, etc.) contributes to the presence and the severity
of QPX disease (MacCallum & McGladdery 2000, Ragone-

Calvo et al. 2007). Interestingly, QPX occurs in cultured and
wild samples unlike other thraustochytrid diseases that appear
to be restricted to artificial (e.g., captive, aquaria, and hatche-

ries) systems (McLean & Porter 1982, Jones & O’Dor 1983,
Bower 1987).

Clam Strain

Early anecdotal evidence suggested that some strains of
cultured clams were more susceptible to QPX disease than other
clam strains (Kraeuter et al. 1998, Ragone-Calvo & Burreson

2002, Ford et al. 2002). Field studies have shown that southern-
reared hatchery strains of clams were more susceptible to QPX

infections and subsequent mortalities than northern strains
when both were grown in northern waters. For example, New
Jersey (NJ) clams were significantly less infected than
nearby southern-reared clams (Kraeuter et al. 1998); however,

NJ clam seed suffered higher rates of QPX-mortalities thanMA
clam seed in MA waters (Ragone-Calvo & Burreson 2002,
Ragone-Calvo et al. 2007, Smolowitz unpublished data). Ford

et al. (2002) demonstrated that clam seed from South Carolina
hatcheries were more susceptible to QPX infections (i.e., had
higher prevalences and intensities) than clam seed of a similar

size and age from NJ hatcheries when both were planted in
adjacent beds (in some cases <10 m apart) in NJ waters. Ford
et al. (2002) also report a similar observation for a 2001
outbreak of QPX in clams from FL hatcheries suffering higher

mortalities when grown in VA waters. Ragone-Calvo et al.
(2007) detailed a large, multiyear, multistate, field experiment
with five clam strains grown in three states. QPX prevalence

ranged from 19–21% in FL seed stocks and 27–29% in SC seed
stocks, whereas prevalences were <10% for clams from MA,
VA, and NJ when all 5 strains were grown in VA. Final,

cumulative mortality was highest in FL clams (79%), which was
significantly greater than in SC clams (52%), which was
significantly greater than in clams from VA (36%) or MA

(33%), both of which were significantly greater than in the NJ
clams (20%; i.e., FL > SC > MA and VA > NJ). Logistical
problems prevented a multistate comparison; nonetheless their
results indicate that susceptibility to QPX infection varied with

clam strain (genotype). It is not known if there is a threshold
concentration of QPX, above which all clams (regardless of
strain) would acquire QPX infections. Anecdotal data from RI

supports the observation that once QPX is established in a
location and the clams were under high disease pressure, QPX
may affect clams of all strains. There was not enough informa-

tion in this compiled data set to evaluate differences in QPX
prevalence as a function of clam strain, because data for clam
strain was typically not available in published reports.

Clam Density

Another potential explanation for the patterns observed for

QPX prevalence and hard clam sizes (described previously)
includes the differences in the planting densities of different
sized clams in cultured beds. In aquaculture, smaller clams are

frequently grown at high densities. Our analysis supports the
observation that clam density could be important in the trans-
mission of the QPX pathogen once it is established in a clam bed

(Kraeuter et al. 1998, MacCallum & McGladdery 2000, Ford
et al. 2002). Additionally, clam beds with larger, legal-sized
clams are more actively harvested resulting in a reduction in
density and the removal of potentially infected individuals.

Planting densities have generally been suspected in influencing
the susceptibility of cultured hard clams to QPX infection, but
published reports have not detected a statistically significant

effect of planting density on mortality caused by QPX disease
(Kraeuter et al. 1998, Ford et al. 2002). Ford et al. (2002)
documented a significant positive correlation between clam

density and intensity of QPX infection in a one year experi-
mental planting study, but their experiments did not demon-
strate density effects on other measured parameters. The
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inherent variability that occurs in all large-scale field experi-
ments may have lead to the inconclusive results. Future experi-

ments focusing on density will be important to finding strategies
to minimize the effects of QPX disease, especially in cultured
clam beds.

Environmental Considerations

Geographic Distribution

The range of clam mortalities from QPX disease is Atlantic
Canada to coastal Virginia; however, differences in the mani-
festation of the disease have been noted between Canada and

the United States (particularly Massachusetts and Virginia,
Smolowitz et al. 1998, Ragone-Calvo et al. 1998, Bower &
McGladdery 2003). Because our analysis did not detect a

latitudinal gradient in the frequency or prevalence of QPX
infections, data from the three Canadian provinces and the six
U.S. states were grouped to evaluate differences. The mean

prevalence of QPX infections was higher in American samples,
where QPX disease continues to plague shellfish growers,
especially inMAwaters. The mean size of clams fromAmerican

samples was also smaller because most of the American samples
were from cultured clam beds. The comparisons of Canadian
samples and American samples should be interpreted with
caution because, as indicated previously, the prevalence of

QPX infections may be underestimated for clam samples from
Canada, becausemany of the samples included clams of a larger,
legal size. More detailed data from each region is needed to

further assess this pattern, but the overall lack of larger-scale
latitudinal trends suggests that smaller-scale factors may bemore
important in determining the local distribution of QPX disease.

Temperature and Salinity

Environmental conditions might play a critical role in
determining rates of QPX infections and mortalities. Both
temperature (Brothers et al. 2000) and salinity (Brothers et al.

2000, Camara et al. 2004) have been suggested to influence
infection rates by affecting the physiology and ecology of both
the host bivalve and the pathogenic thraustochytrid. Only a few

of the published studies included environmental data. Ragone-
Calvo et al. (1998) reported detecting QPX in clams from
shallow, high-salinity, barrier islands and marshes (30–34 ppt)

and not in moderate salinity (15–25 ppt) areas. MacCallum and
McGladdery (2000) reported detecting QPX in clams from
Canadian sites of moderate to high salinities (20–32 ppt).
Ragone-Calvo and Burreson (2002) deployed experimental

clams in enzootic waters (28–33 ppt), many of which contracted
QPX infections. MacCallum andMcGladdery (2000) published
temperature and salinity values for the time of collection, but

did not find any correlations. For future surveillance efforts,
temperature and salinity records for months prior to collection
of animals may be preferable, because infections would occur

before the testing dates.

Water Depth and Substrate Type

QPX infections have been documented in clam samples from
both intertidal and subtidal sites, and from both muddy and

sandy substrates. Smolowitz et al. (1998) reported dead and
dying clams from sandy, intertidal aquaculture lease sites in
Massachusetts. As a result of the many sand granules lodged

between the shells of recently dug clams, the authors reported
the ‘‘obvious grinding, crunching sound’’ as clams attempted to

close their shells. Ford et al. 2002, manipulated clam planting
density at two water depths (subtidal and intertidal) in NJ. They
found that intertidal clams (sandy substrates) were more
severely affected by QPX disease than the subtidal clams

(muddy substrates). In the Ragone-Calvo et al. (2007) field
experiments all groups of naı̈ve clams grown in both low-
intertidal muddy and intertidal sandy sediments obtained some

level of QPX infection. Likewise, MacCallum andMcGladdery
(2000) detected QPX in intertidal and subtidal clam samples
from Canada, and Dove et al. (2004) found QPX in wild,

subtidal populations of clams in Raritan Bay, NY. Based on the
limited information available, substrate type does not appear to
influence presence of QPX infections in hard clams, but more
environmental samples from different sediment types are

needed to determine if the distribution of QPX in the environ-
ment is affected by substrate type.

Seasonality—Month of Testing

The percentage of samples that were positive for QPX

showed signs of a seasonal trend with peaks in April and
December. Although this suggests the presence of QPX infec-
tions is highest in the spring and winter, it is not known how

long it takes clams to acquire infections; therefore this does not
yield information on when clams are obtaining infections in the
field. Prior results suggest it takes at least 3 mo in the laboratory
(Smolowitz et al. 2001) and over nine months in the field (Ford

et al. 2002) for naı̈ve clams to contract QPX infections.
Similarly, Ragone-Calvo and Burreson (2003) noted QPX
infections were not detected until 14 mo after planting naı̈ve

clams in the experimental field plots. In our compiled data set
there is an interesting trend in the spring months. First, the
transition from a low percentage of positive results in March to

a peak in April, suggesting many new infections or an increase
in the severity of infections to detectable levels occurred during
that time frame. Then fromApril toMay there was a large dip in
the percent of cases suggesting high clam mortalities may have

occurred within that period. Other dips in prevalence, most
notably, from July to August may also be signs of mortality
events. Data for QPX-related mortalities were not available

but Ragone-Calvo et al. (2007) showed prevalence of QPX was
correlated with mortality in experimental plots of clams. In our
analysis, because of the high variability among months, signif-

icant seasonal trends were not discernable for mean prevalence
of QPX infections. This may be because of interannual varia-
tion masking true month to month differences. Nevertheless,

this data suggests that clams acquire QPX infections through-
out the year (based on frequency of cases), but once the
infections are established then season, along with other factors
such as size, strain, or density, may influence the progression of

the disease ultimately determining the severity in a group of
clams (based on percent prevalence).

For Canadian samples, MacCallum andMcGladdery (2000)

showed the highest prevalences of QPX infections were
recorded in the summer (August). For American samples,
Ragone-Calvo et al. (1998) found the highest prevalence in

the spring (May). In Table 1, the highest recorded prevalences
(100%) occurred in samples tested in June andDecember. Over-
all, our analysis found no seasonal trend in QPX prevalence

EPIZOOTIOLOGY OF QPX 379

JOBNAME: jsr 26#2 2007 PAGE: 9 OUTPUT: Saturday August 4 04:32:24 2007

tsp/jsr/143317/26-2-30



by location, month, or season. Nevertheless, observational data
suggest seasonal patterns in QPX-related mortalities (Kraeuter

et al. 1998, Smolowitz et al. 1998) and these cycles of prevalence
and mortality should be evaluated further. Data on QPX
prevalence alongside mortality and case-fatality rates will be
critical in addressing seasonality of this disease.

EPIZOOTIOLOGICAL SUMMARY

Total prevalence of QPX infections varied from 0–100%.
Nonzero values ranged from 1.7% in a sample of wild clams
from Nova Scotia to 100% in a sample of cultured clams

from Massachusetts.
Sizes of clams tested for QPX varied from 1 mm to 180 mm.

QPX prevalence was highest in samples of intermediate sized
clams (;20–55 mm).

QPX infections occurred in both male and female clams.
QPX infections occurred in clams from subtidal and intertidal

habitats.

QPX infections occurred in clams from both muddy and sandy
environments.

QPX infections occurred in clams collected from both cultured

beds and wild populations, but a higher percentage of QPX
cases came from cultured beds.

Samples of clams collected from cultured beds contained clams

that were smaller in average size (shell length) and had a
higher prevalence of QPX infections compared with samples
of clams collected from wild populations.

QPX-related clam mortalities were reported from Canada to
Virginia; however no latitudinal gradients in QPX prevalence

or frequency were found when evaluated for 3 Canadian
provinces and 6 U.S. states.

The prevalence of QPX infections was higher in American
samples (specifically Massachusetts) where QPX continues

to plague shellfish growers.
High percentages of QPX cases were documented in April

and December.

Because of high variability, no seasonal trends in QPX preva-
lence were found when prevalence was evaluated by type
(wild versus cultured), month tested, season, location, or

country.
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