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Taming the rugged landscape: Techniques for the production, reordering,
and stabilization of selected cluster inherent structures

Dubravko Saboa) and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

~Received 2 December 2002; accepted 31 January 2003!

We report our studies of the potential energy surface~PES! of selected binary Lennard-Jones
clusters. The effect of adding selected impurity atoms to a homogeneous cluster is explored.
Inherent structures and transition states are found by combination of conjugate gradient and
eigenvector-following methods while the topography of the PES is mapped with the help of a
disconnectivity analysis. We show that we can controllably induce new structures as well as reorder
and stabilize existing structures that are characteristic of higher-lying minima. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1562621#

I. INTRODUCTION

The minimization/optimization problem is one of the
more ubiquitous and challenging in computational science.1

Central to researchers in the physical sciences and engineer-
ing, this problem is also of primary importance to social,
biological, and economics investigators.

Driven in large measure by such widespread interest,
there has been appreciable progress on the minimization
problem. Especially notable have been algorithmic advances
in the form of annealing and stochastic relaxation
approaches1–6 as well as basin-hopping techniques.7,8 In both
classical and quantum form, these methods offer valuable,
complementary alternatives to traditional, gradient or
pseudogradient approaches.1

In addition to algorithmic developments relevant to the
minimization problem, there have also been notable ad-
vances in the tools to classify and analyze the topography of
the underlying objective functions. In chemical applications,
the principal focus of the remainder of our discussion, the
objective function of interest is typically a specified potential
or free energy surface. Following Stillinger and Weber,9,10 it
is useful to perform an ‘‘inherent structure’’ decomposition
of the associated configuration space by employing the
minima ~local and global! of this surface. These inherent
structures, their relative orderings, and their connectivity
provide important information concerning the structure,
function, and dynamics of the associated physical system.
Disconnectivity analysis introduced by Czerminski and
Elber,11 discussed by Becker and Karplus,12 and developed
by, among others, Wales, Doye, and Miller13–15 has proved
especially valuable with respect to these latter tasks.

As evidenced by the development of classical and quan-
tum annealing methods, there is an important interplay be-
tween minimization and the Monte Carlo sampling problem.
Both applications, for example, are concerned with overcom-

ing barriers that inhibit the interconversion or isomerization
of the various inherent structures of the problem. Conse-
quently, developments in one field contain implications for
developments in the other. Advances in rare event sampling
methods, such as J-walking16,17 and parallel tempering18–21

methods, thus contain implications for the minimization
problem.

The field of atomic and molecular clusters has been and
continues to be an important test bed for the development
and application of minimization and analysis methods. Uti-
lizing the above-outlined methods, researchers have pro-
duced a relatively coherent picture of the relationship be-
tween the nature of underlying potential energy surface
~PES! and the physical properties of the associated systems.
For example, from the studies by Berryet al.,22–25the single
component studies of Waleset al.,13–15 the mixed Lennard-
Jones~LJ! cluster studies of Jordanet al.26 as well as the
research of others,27–30we have begun to understand the na-
ture of systems for which the lowest inherent structures can
or cannot be readily located.

In present paper we would like to build upon advances in
the minimization problem by effectively turning the logic
‘‘upside down.’’ That is, instead of asking what we have to
do in order to locate or sample the global minimum of a
specified potential energy surface, we wish instead to ask
how we might go about controllably inducing new structures
as well as reordering and stabilizing existing structures that
are characteristic of higher-lying local minima. Basically, we
seek to utilize what we have learned about what it takes to
avoid local minima to insteadcontrollably producethem.

In principle, one can envision efforts involving both
thermodynamic and kinetic approaches. In the present work
we shall focus principally on the thermodynamic issues. Fur-
thermore, we shall limit the discussion in the present work to
applications involving clusters. As discussed elsewhere,31

clusters are of appreciable technological importance, are
valuable as prototypes for the study of the properties of ex-
tended systems, illuminate issues related to the size-a!Electronic mail: dubravko–sabo@brown.edu
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dependence of selected physical properties, and provide
valuable test beds for the development and application of
emerging computational techniques. This combination of for-
mal, computational, and technological interest has produced
a vast and growing cluster literature.31–33

The remainder of the paper is organized as follows: In
Sec. II we outline the computational details of the present
study. We discuss the methods we use to determine the in-
herent structures and transition states of a specified cluster’s
PES. Using these methods, we examine specific results for
two prototype systems in Sec. III. These particular results are
designed to demonstrate ‘‘proof of principle’’ with respect to
the basic objectives of the present study for selected systems.
Finally, in Sec. IV we summarize our results and speculate
about likely future research directions.

II. COMPUTATIONAL DETAILS

The present section describes the computational details
of our investigations involving binary clusters of the form
XnYm . Our overall interest will be to explore the extent to
which we can utilize the ‘‘adatoms’’~i.e., theY system! to
induce, reorder, and stabilize selected inherent structures in
the ‘‘core’’ X system. While one can easily imagine applica-
tions involving both more and more complex components,
we feel these relatively simple, two-component clusters are a
convenient starting point for an initial study of the issues we
raise.

We shall assume in what follows that the total potential
energy is composed of a pairwise sum of Lennard-Jones in-
teractions. Specifically, we assume that the total potential
energy,Vtot , for anN-particle system is given by

Vtot5(
i , j

N

v i j ~r i j !, ~1!

where the pair interaction as a function of the distance be-
tween particlesi and j , r i j , is given by

v i j ~r i j !54e i j F S s i j

r i j
D 12

2S s i j

r i j
D 6G . ~2!

In Eq. ~2! the constantse i j ands i j are the energy and length-
scale parameters for the interaction of particlesi and j .

For a two-component system, we must specify both the
‘‘like’’ ( X–X, Y–Y) as well as the ‘‘mixed’’ (X–Y) inter-
actions. With an eye toward studying trends in the results as
opposed to results for particular physical systems, it is con-
venient to reduce the number of free parameters. To do so,
we shall assume in the present study that the ‘‘mixed’’
Lennard-Jones values are obtained from the ‘‘like’’ Lennard-
Jones parameters via usual combination rules34

sXY5 1
2 ~sXX1sYY!, ~3!

eXY5AeXXeYY. ~4!

Furthermore, we note that with the mixed Lennard-Jones pa-
rameters specified as in Eqs.~3! and ~4!, the inherent struc-
ture topography of the ‘‘reduced’’ potential energy surface of

the binary system~i.e. Vtot /eXX) is a function of only two
parameters,~s,e!, the ratios of the corresponding adatom/
core length and energy parameters,

s5sYY/sXX , ~5!

e5eYY/eXX . ~6!

If necessary for a discussion of a specific physical sys-
tem, the absolute bond lengths, energies, activation energies,
etc., can be obtained from the corresponding ‘‘reduced’’ re-
sults by a simple rescaling with the appropriate core-system
Lennard-Jones parameters.

The computational task in our study is thus one of ex-
ploring and characterizing the~reduced! potential energy sur-
face of our binary cluster systems as a function of the num-
ber of ~core, adatom! particles, (n,m), and for given~s,e!
ratios. In typical applications the lowestNIS inherent struc-
tures and the associated disconnectivity graphs are deter-
mined. For the applications reported here,NIS is generally of
the order of a few hundred~thousand! or less. Depending on
the size of the cluster, inherent structures are found either via
conjugate gradient methods starting from randomly chosen
initial configurations, or by more systematic surface explora-
tion methods such as those outlined by Wales and
co-workers14 and by Jordanet al.35 In all cases, the inherent
structures that are located are confirmed to be stable minima
via a standard Hessian analysis. To reduce the chance we
miss particular local or global minima, we monitor the num-
ber of times individual inherent structures are found and de-
mand that each of theNIS inherent structures be located a
minimum number of times~at least 10! before we terminate
our search. Once we are satisfied we have located the rel-
evant inherent structures, transition states linking these stable
minima are obtained using the eigenvector following meth-
ods outlined by Cerjan and Miller36 and further developed by
Simonset al.,37–39Jordanet al.,35 and Wales.40 Finally, with
the requisite inherent structures and barriers in hand, we per-
form a disconnectivity analysis using methods outlined by
Czerminski and Elber,11 Becker and Karplus,12 and Miller
et al.13

III. NUMERICAL RESULTS

In the present section, we wish to illustrate the general
themes we introduced in Sec. I. We do so by demonstrating
that we can accomplish three basic objectives. Specifically,
we show that by adding selected ‘‘impurity’’ atoms to bare
‘‘core’’ systems, we can:

~1! induce new ‘‘core structures,’’
~2! reorder the energies of existing core inherent structures,

and
~3! stabilize selected inherent structures by controlling the

activation energies that determine their isomerization ki-
netics.

For purposes of illustration, we shall examine numerical
results for a few, simple Lennard-Jones systems involving
five and seven core atoms, systems well-known from previ-
ous studies to have one and four energetically distinct inher-
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ent structures, respectively. The inherent structures and their
associated energies for these core systems are illustrated in
Figs. 1 and 2.

We first consider mixed clusters of the generic type
X5Y2 . Here two impurityY atoms are added to the parent,
five-atom X core. We have chosen this system because it
builds upon the very simple five-atom core, a system that has
only a single inherent structure, and because the total system
has a total of seven atoms, a magic number for icosahedral
growth in homogeneous systems. Using the techniques of
Sec. II, we then determine the lowest several inherent struc-
tures for a range of~s,e! @c.f. Eqs.~5! and ~6!#. As can be
seen from Fig. 3, the total potential energy@Eq. ~1!# of the

lowest inherent structure for theX5Y2 system shows no ap-
preciable structure as a function of the~s,e! parameters.

On the other hand, we see in Fig. 4 that the core poten-
tial energy, defined as the potential energy of interaction for
only the coreX atoms, of the minimum~total! energy cluster
clearly breaks into extended regions, each corresponding to a
well-defined core structure. The reader should notice that
each region in Fig. 4 contains the same ‘‘kind’’ of core struc-
ture but their core energies are slightly different. We have
chosen a single ‘‘average’’ core energy value to represent all
energies in the corresponding domain for plotting conve-
nience.

The distinct core structures, shown in Fig. 4, have been
identified by examining their core energies (Ecore) and their

FIG. 1. The only stable inherent structure forX5 LJ cluster. Its energy~in
units of the LJ well depth! is 29.104.

FIG. 2. The four, energetically distinct, stable inherent structures forX7 LJ
cluster. The energies~in units of the LJ well depth! are: ~a! 216.505,~b!
215.935,~c! 215.593,~d! 215.533.

FIG. 3. ~Color! Etot(s,e) @c.f. Eqs.~1!, ~5!, and ~6!# for the X5Y2 system.
Note the relative lack of structure in the (s,e) variation of the total cluster
energy.

FIG. 4. ~Color! Ecore(s,e) for the X5Y2 system. Here the ‘‘core’’ energy is
defined as that portion of the potential energy arising from only the core–
core atom interactions. Unlike the total energy, the (s,e) variation of the
core cluster energy exhibits relatively well-defined regions. The labels
of each of these regions correspond to the distinct core structures shown in
Fig. 5.
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principal moments of inertia. For each structure a triplet of
values (Ecore, I 2 , I 3) has been associated, whereI 2 and I 3

are the moments of inertia about the principal axes 2 and 3,
respectively. We have definedI 2 andI 3 in the following way:
I 25I 28/I 18 , I 35I 38/I 18 where I 18 , I 28 , and I 38 are the principal
moments of inertia obtained by diagonalizing the inertia ten-
sor of the system. If the triplet of values has not been suffi-
cient to identify a core structure then we have examined the
structure visually.

Selected cluster structures illustrating the core arrange-
ments corresponding to various~s,e! values are shown in
Fig. 5. We see from Figs. 4 and 5 that theX5Y2 cluster
exhibits coreX-atom structures that include trigonal bipyra-
midal, planar, and square pyramidal core geometries. Of
these, only the trigonal bipyramidal form is stable in the
parentX5 system. This illustrates that a suitable choice of the
~s,e! parameters can controllably induce core geometries not
present as stable minima in the bare cluster. For example, the
square pyramid core structure, seen in Fig. 5.2 as a stable
system, corresponds to a transition state in the bareX5 clus-
ter.

Figure 6 represents theX5Y2 cluster at four points in
Fig. 4 defined by the~s,e! coordinates~0.4,0.5!, ~0.4,1.0!,
~0.4,1.5!, and ~0.4,2.0!. Here the pairs of coordinates corre-
spond to~a!, ~b!, ~c! and~d! of Fig. 6, respectively. In other
words, we keep value ofs50.4 fixed, while increasing the
value of e. Each disconnectivity graph shows all inherent
structures available to the system for the given~s,e! values.
The global minimum of each system is labeled by number 1
and contains as a recognizable component the square pyra-
mid core structure~see Fig. 5.2!. In Fig. 6~a! the square

pyramid core structure is connected to two inherent struc-
tures, labeled 2 and 3, by pathways whose energies do not
exceed213.8 ~in units of eXX). Since isomer 2 contains the
same core structure~the square pyramid! as the global mini-
mum the corresponding isomerization thus does not lead to a
change in the core structure of the cluster. For present pur-
poses, therefore, the barrier that connects them is not a ‘‘rel-
evant’’ barrier. The relevant barriers are those that connect
inherent structures that contain different core structures. The
inherent structure 3 contains as the core structure a~dis-
torted! trigonal bipyramid ~see Fig. 5.3!. Therefore, the
isomerization barrier that connects the inherent structure 3
with global minimum is the lowest relevant isomerization
barrier and its value isDE1,350.986eXX . Figures 6~b! and
6~c! show that increasing the value ofe increases isomeriza-
tion barriers that connect inherent structure 1~the square
pyramid core structure! with inherent structure 2~the dis-
torted trigonal bipyramid core structure!. Numerically, these
barriers areDE1,251.227eXX andDE1,251.431eXX , respec-
tively. In Fig. 6~d! the square pyramid core structure is con-
nected by an isomerization barrier ofDE1,251.647eXX with
two ~almost degenerate in energy! distorted trigonal bipyra-
mid core structures. As illustrated in Fig. 6 and discussed
earlier, the barriers that determine the isomerization kinetics
of these newly induced structures are sensitive to the~s,e!
values and can thus be at least partially controlled. These two
simple results are specific demonstrations of goals~1! and
~3! stated earlier.

As a second illustration, we consider mixed clusters of
the typeX7Y3 . This system builds upon a parent, seven-
atom, ‘‘magic number’’ system known to exhibit a set of
four, energetically distinct inherent structures. The core in-
herent structures and associated energies for the stableX7

inherent structures are presented in Fig. 2. Figure 7, a~s,e!
contour plot of the core-atom potential energies of the lowest
total energyX7Y3 clusters, again reveals the presence of
definite ‘‘core-phases.’’As illustrated in Fig. 8, some of these
regions correspond to various core structures present in the
parentX7 system while others correspond to new structures
not seen in the original, single-component cluster. We can
see from Figs. 7 to 9 that the impurityY atoms provide us
with significant control over the relative ordering of the core
energies of the parentX7 system. Specifically, by choosing
an appropriate range of~s,e! values, we can generateX7Y3

clusters in which the lowest~total! energy inherent structure
can have core structures that are either pentagonal bipyra-
mid, capped octahedral, or bicapped trigonal bipyramidal in
nature. Moreover, since we can manipulate the isomerization
barriers in these systems, we can at least partially stabilize
clusters that exhibit selected core structures with respect to
isomerization. This is illustrated in Fig. 9.

Figures 9~a!–9~d! represent theX7Y3 cluster at four
points in Fig. 7 with X7Y3(s,e) coordinates ~0.4,0.5!,
~0.4,1.0!, ~0.4,1.5!, and ~0.4,2.0!, respectively. The number
of inherent structures available to theX7Y3 cluster varies
from more than 800 in Fig. 9~a! to 400 in Fig. 9~d!. Since we
are primarily interested in energetically low-lying inherent
structures we show only lowest 70 inherent structures. The
global minimum of each system is labeled by number 1 and

FIG. 5. Plots ofX5Y2 structures for selected (s,e) values. The decimal
number for each figure denotes the corresponding (s,e) domain in Fig. 4.
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contains as a recognizable component the core structure
shown in Fig. 8.5. We should mention that for a given range
of s ande values, (s,e)P @0.1,2.0#, we have not been able
to find a global minimum that would contain as a recogniz-

able component inherent structure 4 of the parentX7 cluster
@see Fig. 2~d!#. This is the reason why none of the domains in
Fig. 7 is labeled by number 4. In Fig. 9~a! the global mini-
mum, the core structure 5~see Fig. 8.5!, is linked to inherent

FIG. 6. Disconnectivity graph forX5Y2 (s,e) values demonstrating that we can control barriers for the selected inherent structures. The energy scale is in
units of e

XX
. The (s,e) values for panels~a!–~d! are ~0.4,0.5!, ~0.4,1.0!, ~0.4,1.5!, and~0.4,2.0!, respectively.
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structure 2 which contains the~distorted! capped octahedron
core structure~see Fig. 8.2!. The isomerization barrier be-
tween them isDE1,250.494eXX . Figures 9~b! and 9~c! show
that increasing the value ofe increases isomerization barri-
ers, that connect inherent structure 1~see core structure in
Fig. 8.5! with inherent structures 3 and 2~a distorted capped
octahedron core structure!, respectively. Numerically, these
barriers areDE1,350.975eXX andDE1,251.136eXX , respec-
tively. The inherent structure 2 in Fig. 9~b! contains the same
core structure as the global minimum and, therefore, has not
been considered relevant for the isomerization@see the
above-mentioned explanation for Fig. 6~a!#. In Fig. 6~d! the
core structure 5 is connected to two, energetically almost
degenerate, inherent structures labeled by 2 and 3, by path-
ways whose energies do not exceed240.5~in units ofeXX).
Similar to the case of Fig. 6~a!, isomer 2 contains the same
core structure as the global minimum so the corresponding
isomerization does not lead to a change in the core structure
of the cluster. The barrier that links them is not a relevant
barrier. The inherent structure 3 contains as the core structure
a distorted capped octahedron. Therefore, the isomerization
barrier which connects the inherent structure 3 with global
minimum is the lowest relevant isomerization barrier and its
value isDE1,351.304eXX .

IV. CONCLUSIONS

In the present work, we have considered the general task
of altering core cluster structures. We are, in effect, attempt-
ing to turn the logic of the minimization problem upside
down. Rather than seeking the global minimum of complex
potential energy surfaces, we are instead attempting to ex-
ploit what has been learned about the general minimization
problem to controllably alter core cluster structures. Specifi-
cally, we are examining the extent to which we can induce
new core geometries as well as reorder and stabilize existing,
higher-lying, local core structures.

Our approach, in the present discussion, has been ther-
modynamic in nature. We have utilized selected adatoms to

effect our desired core cluster modifications. We have pre-
sented results for two simple binary cluster examples, the
X5Y2 andX7Y3 systems, to validate our approach.

We speculate that there are at least two important direc-
tions for future theoretical development of the present ideas.
One direction will be to explore the use of more complex
adsorbates to achieve selected core cluster structures. One
could, for example, imagine using ‘‘exterior’’ methods in
which encapsulating agents of well-defined geometries were
utilized to induce desired core structures. Alternatively, ‘‘in-
terior’’ approaches in which complex objects, perhaps even
previously engineered clusters, could be utilized as ‘‘seeds’’
or ‘‘templates’’ to produce a desired structure in the sur-
rounding cluster~either globally or locally!. Another impor-
tant direction will be to explore the extent to which previ-
ously engineered cluster structures can be assembled using
‘‘cluster assembled materials’’ methods to produce larger
scale, macroscopic structures. If this proves possible, it
would seem to offer an important direction in the production
of novel materials starting from synthetic precursors whose
core structures and properties are highly varied and are under
user control.

FIG. 8. Plots of selectedX7Y3 structures for various (s,e) values identified
in Fig. 7. The number of the structures correspond to the regions labeled in
Fig. 7. Note that many of the core structures for these systems are not stable
energy structures of the bareX7 system.

FIG. 7. ~Color! Ecore(s,e) for X7Y3 . Format for the plot is the same as in
Fig. 4.
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