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Abstract. The Papua New Guinea (PNG) tsunami of July
1998 was a seminal event because it demonstrated that rela-
tively small and relatively deepwater Submarine Mass Fail-
ures (SMFs) can cause devastating local tsunamis that strike
without warning. There is a comprehensive data set that
proves this event was caused by a submarine slump. Yet,
the source of the tsunami has remained controversial. This
controversy is attributed to several causes. Before the PNG
event, it was questionable as to whether SMFs could cause
devastating tsunamis. As a result, only limited modelling of
SMFs as tsunami sources had been undertaken, and these ex-
cluded slumps. The results of these models were that SMFs
in general were not considered to be a potential source of
catastrophic tsunamis. To effectively model a SMF requires
fairly detailed geological data, and these too had been lack-
ing. In addition, qualitative data, such as evidence from
survivors, tended to be disregarded in assessing alternative
tsunami sources. The use of marine geological data to iden-
tify areas of recent submarine failure was not widely applied.

The disastrous loss of life caused by the PNG tsunami
resulted in a major investigation into the area offshore of
the devastated coastline, with five marine expeditions taking
place. This was the first time that a focussed, large-scale, in-
ternational programme of marine surveying had taken place
so soon after a major tsunami. It was also the first time that
such a comprehensive data set became the basis for tsunami
simulations. The use of marine mapping subsequently led
to a larger involvement of marine geologists in the study
of tsunamis, expanding the knowledge base of those study-
ing the threat from SMF hazards. This paper provides an
overview of the PNG tsunami and its impact on tsunami
science. It presents revised interpretations of the slump ar-
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chitecture based on new seabed relief images and, using
these, the most comprehensive tsunami simulation of the
PNG event to date. Simulation results explain the measured
runups to a high degree. The PNG tsunami has made a ma-
jor impact on tsunami science. It is one of the most studied
SMF tsunamis, yet it remains the only one known of its type:
a slump.

1 Introduction

When the Papua New Guinea (PNG) tsunami struck on the
evening of 17 July 1998, devastating three villages with the
loss of over 2200 lives, the potential hazard from tsunamis
caused by Submarine Mass Failures (SMFs) was recog-
nised, but not fully grasped (e.g. Ward, 2001; Bardet et al.,
2003). There was limited appreciation that the magnitude
of tsunamis generated by SMFs was dependent upon the
mode of failure. SMFs include all forms of seabed sedi-
ment movement that may be regarded by their end members
as ranging from translational sediment flows with long run-
outs, formed most often by sands and silts and soft mud, to
rotational slumps which, by comparison to sediment flows,
have restricted horizontal movement and are formed mainly
in cohesive mud. Thus before 1998, although there had been
previous research on SMFs, this work was not generally in
the context of their potential to generate destructive tsunamis
which would have a major coastal impact. The PNG tsunami
changed this perspective. It illustrated that SMFs can cause
devastating local tsunamis. It led to a fundamental reap-
praisal of the hazard from SMFs. It also illustrated that the
specific mechanism of SMF (rotation or translation) is a ma-
jor control on tsunami magnitude (Grilli and Watts, 2005;
Watts et al., 2005a).
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Although the PNG event has had a major impact on
tsunami science, the cause of the local tsunami has remained
controversial (e.g. Geist, 2000; Imamura et al., 2003; Satake
et al., 2003). This controversy continues despite the compre-
hensive data set acquired while researching the disaster, and
the large number of publications addressing the event. Over
40 scientific papers have been published on the tsunami (e.g.
Synolakis et al., 2002; Tappin et al., 1999, 2001, 2002, 2003).
The event was the subject of special workshops, as well as
numerous sessions at international scientific meetings (e.g.
Hebenstreit, 2001; Bardet et al., 2003; Tappin, 2004). The
far field tsunami was probably caused by the earthquake, but
for many scientists an earthquake source for the local tsunami
is still considered a likely alternative or, at the very least, a
contributory factor (e.g. Geist, 2000; Satake et al., 2003).

The purpose of this paper is therefore threefold. 1) To
present new interpretations of multibeam bathymetric and
seismic data from which we readily identify a slump fea-
ture offshore of northern PNG. 2) That new modelling based
on these interpretations proves the 1998 PNG tsunami in
the near field was caused by an underwater sediment slump,
probably triggered by an earthquake, and not by the earth-
quake itself. Models based on the slump source recreate the
tsunami wave to an acceptable degree of precision. 3) Fi-
nally, to gain a better understanding of why the tsunami was
such a seminal event and why its source has remained con-
troversial.

2 Background

The potential for SMFs to generate tsunamis has been known
for over 100 years (Milne, 1898; de Ballore, 1907; Guten-
berg, 1939). Of the more recent SMF events, most have in-
volved some degree of controversy, at least initially. One
example is the Grand Banks event of 1929 (Heezen and Ew-
ing, 1952; Heezen et al., 1954; Terzaghi, 1956; Piper and
McCall, 2003). Other tsunamis that may involve SMFs such
as Unimak, Alaska, 1946, and Sanriku, 1896, were consid-
ered primarily in the context of their earthquake source (e.g.
Abe, 1979; Johnson and Satake, 1997). It is only recently
that a SMF was shown to be a likely cause of the 1946
Alaska event, almost certainly locally and possibly in the
far-field as well (Fryer et al., 2004; López and Okal, 2006;
Waythomas et al., 20081). The Flores Island tsunami of 1992
has been largely neglected, even though it is likely that, as
with Alaska, 1946, both earthquake and landslide sources
contributed to the event (Imamura and Gica, 1996; Imamura
et al., 1995).

Previous to the PNG tsunami, simulations of tsunami gen-
eration were mainly confined to earthquake sources (e.g.

1Waythomas, C. F., Watts, P., Shi, F., and Kirby, J. T.: Pacific
basin tsunami hazards associated with mass flows in the Aleutian
Arc of Alaska, Quat. Sci. Rev., in review, 2008.

Hammack, 1973). Earthquake sources were based on the as-
sumption that the initial water surface deformation was in-
stantaneous and equal to that at the seabed. Seabed deforma-
tion was calculated from earthquake fault parameters (e.g.
Okada, 1985). Underwater landslides were considered to be
ineffective at generating significant tsunamis because of their
longer source generation times, smaller areas of seabed dis-
turbance, and the directivity of the tsunami produced (Ham-
mack, 1973; LeBlond and Jones, 1995). Modelling of SMFs
was mainly confined to translational events (e.g. Jiang and
LeBlond, 1992, 1994) such as those defined by Hampton
(1972). A complication in understanding tsunamis generated
by SMFs is the variety of their failure mechanisms, which
may be classified according to morphology, sediment type,
or kinematics (see Hampton et al., 1996; Turner and Schus-
ter, 1996; Keating and McGuire, 2000; O’Grady et al., 2000).
The type of SMF is determined mainly by its sediment com-
position, which controls SMF morphology and kinematics.
Tsunami generation models were based on depth-averaged
wave equations that represented immiscible liquids, or water
with a Bingham plastic (e.g. Jiang and LeBlond, 1992, 1994).
Whereas depth averaging accurately applies to tsunami gen-
eration from earthquakes, it is questionable when applied to
landslide tsunamis, because it does not allow for vertical fluid
accelerations, which are important during SMF motion and
tsunami generation (Grilli et al., 2002). In 1998, the land-
slide constitutive equations used in modelling were largely
untested by laboratory experiments or case studies. SMF
models were not based on geological data, but idealised SMF
morphologies. There was no established method of merging
geological data with SMF models. In total, there was little
appreciation of the complexity of modelling tsunamis gener-
ated by different SMF mechanisms.

3 The Papua New Guinea tsunami of 1998

The basic facts relating to the PNG event are well estab-
lished. An earthquake of magnitude 7.1 struck the north-
ern coast at 08:49 GMT (18:49 local time) on 17 July 1998
(Fig. 1; Davies, 1998; Kawata et al., 1999). The earth-
quake magnitude was small in comparison to the 10–15 m
high tsunami that devastated the coast around Sissano La-
goon. There was no evidence to suggest that the earthquake
was a “tsunami earthquake” (Kanimori, 1972) and, based
on Newman and Okal’s (1998b) discriminant ofE/M0, the
earthquake did not possess “slow” source characteristics.
(These authors define “slowness” using the ratio between
high-frequency energyE and low-frequency seismic mo-
mentM0. Compared to an average value of−4.98, the main
shock was computed at−5.67, indicating a moderate de-
ficiency in E, and the aftershock at−4.72, a normal rup-
ture speed, neither of which indicates a tsunami earthquake.)
Simulations of the tsunami based on a shallow dipping thrust
(the most probable earthquake failure mechanism) did not

Nat. Hazards Earth Syst. Sci., 8, 243–266, 2008 www.nat-hazards-earth-syst-sci.net/8/243/2008/
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Fig. 1. Location map of the northern PNG coast struck by the tsunami of July, 1998 and bathymetry from the 1999Kairei survey. Also
shown is the earthquake epicentre (Green star), the aftershocks of 09:09:30 and 09:10:00 (pink stars), the T-phase slump signal of 09:02
(blue star – with error ellipse in blue from Synolakis et al., 2002), the main villages destroyed (red dots), the slump area, and main seabed
features. Water depths are in metres.

approach the runup measured during the onshore field sur-
veys, or match the wave arrival times from eyewitness ac-
counts (e.g. Titov and Gonzalez, 1998; Davies, 1998; Kawata
et al., 1999; Matsuyama et al., 1999). The location of the
earthquake epicentre just offshore and to the northwest of
Sissano would have resulted in an almost immediate wave
impact, not corresponding to the∼20 min delay reported by
survivors. The peaked runup distribution along the coast did
not indicate a presumably broad earthquake source. From
the outset it was likely that a tsunami source other than an
earthquake was involved, the most likely alternative being a
SMF (e.g. Newman and Okal, 1998a, b; Titov and Gonzalez,
1998; Geist, 1998a; Takahashi and Kawata, 1998).

Without data from offshore, there would have been no
opportunity to confirm or refute the suggestion that a SMF
may have caused or contributed to the tsunami. However,
in early 1999, the Japanese government funded, through the
Japan Marine Science and Technology Center (JAMSTEC)
two marine surveys to investigate the seabed off the north
coast of PNG. The objective was to discover whether there
was a SMF offshore of Sissano Lagoon and, if so, whether

it could have generated the tsunami. The first two surveys
were followed in September of the same year by a survey
led by the University of California at Santa Cruz (UCSC). In
2000 and 2001, there were two additional surveys funded by
Japan and again sponsored by JAMSTEC and SOPAC. The
first published results of the offshore surveys and preliminary
modelling concluded that an offshore slump was the most
likely source of the local tsunami (Tappin et al., 1999), an
interpretation confirmed by subsequent marine geology re-
search (Tappin et al., 2001, 2002, 2003; Sweet and Silver,
1999, 2003).

Notwithstanding the initial results of the offshore surveys,
the debate over the source of the tsunami continued (e.g.
Matsuyama et al., 1999; Satake and Tanioka, 1999; Tanioka,
1999; Geist, 2000). Far-field earthquake evidence was used
to justify a steeply-dipping thrust as the rupture mechanism
(Kikuchi et al., 1999), despite the fact that this was unlikely
because the aftershock distribution indicated a shallow dip-
ping rupture (McCue, 1998). In addition, the marine surveys
showed that almost all major faults offshore were dip-slip
(Tappin et al., 1999). Simulations based on a tsunami source

www.nat-hazards-earth-syst-sci.net/8/243/2008/ Nat. Hazards Earth Syst. Sci., 8, 243–266, 2008
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Fig. 2. 3-D image of the Amphitheatre viewed from the northwest.
The three slumps (A, B and C, labelled by decreasing age) are iden-
tified together with the control fault at the base of the headscarp.
Note the change in seabed morphology from the heavily gullied area
in the right of the image (slump A) to that to the left (slumps B and
C), where gullies are absent. Water depths are in metres. Vertical
exaggeration 3×. See text for discussion.

from translational landslides (e.g. Hampton, 1972) could not
reproduce the measured runup (see papers presented at the
IUGG meeting in July, 1999 and published in Hebenstreit,
2001). Although the first published results of the marine sur-
veys identified a slump as the likely source (Tappin et al.,
1999), translational landslide sources were still considered
to be the most likely mechanism of failure and tsunami gen-
eration (e.g. Matsuyama et al., 1999; Geist, 2000). With
no local tide gauge data, the reports from survivors on the
20 min time lag between the earthquake and tsunami were
discounted (e.g. Geist, 2000). Despite the additional evi-
dence from the marine surveys of late 1999 (Sweet and Sil-
ver, 1999) and early 2000 (Tappin et al., 2001), together with
the preliminary numerical simulations (Watts et al., 1999)
that confirmed an offshore sediment slump as the most likely
tsunami source, arguments on the source mechanism contin-
ued (Geist, 2001; Imamura and Hashi, 2003; Okal and Syn-
olakis, 2001; Satake and Tanioka, 2003; Tappin et al., 2001;
Synolakis et al., 2002; papers in Bardet et al., 2003).

4 Marine geology

During the marine surveys, a comprehensive geophys-
ical data set was acquired off northern PNG, with
over 19 000 km2 of multibeam bathymetry, 4.2 kHz high-
resolution sub-bottom seismic lines (SBSL), and both single
(SCS) and multichannel seismic (MCS) data. In the region

Fig. 3. 3-D image of the Amphitheatre, including seismic cutaway
of slump C, viewed from the northeast. The headwall of the slump
coincides with a control fault. This fault channelled artesian water
pumped up from depth to the slump failure surface, triggering the
slump itself around 12 min after the main shock. Vertical exaggera-
tion 3×. See text for discussion.

of the slump, four 7 m long sediment piston cores were re-
covered together with numerous shallow (30 cm) push cores
of sediment, rock samples, and marine organisms. Still and
video photography of the seabed were acquired by a tethered
Remotely Operated Vehicle (ROV) and Manned Submersible
(MS). This data set has been fully reported on (Tappin et al.,
1999, 2001, 2002, 2003; Sweet and Silver, 2003). It has
contributed to PNG tsunami analysis by providing a compre-
hensive understanding of: (i) the background tectonics and
sedimentation regime of the area; (ii) the slump and its archi-
tecture; and (iii) the relative timing of slump failure. Here,
we focus on the area termed the ‘Amphitheatre’, in which
lies the slump, considered as the most likely source of the
1998 tsunami (Fig. 1). Our new interpretations are based on
visualisations of seabed relief integrated with seismic reflec-
tion profiles usingFledermaus, an interactive visualisation
software (Figs. 2 and 3).

The arcuate shape of the Amphitheatre indicates a likely
formation by submarine slope failure along a control fault
located along the base of the headscarp (Figs. 1, 2 and
3). Integration and reinterpretation of the multibeam
bathymetry with the SCS and MCS, usingFledermaus, has
resulted in improved interpretations of slumping within the

Nat. Hazards Earth Syst. Sci., 8, 243–266, 2008 www.nat-hazards-earth-syst-sci.net/8/243/2008/
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Amphitheatre (Figs. 2 and 3). The new interpretation shows
that there are three phases of slumping. There are two older
slumps (A and B) located in the east and west of the Am-
phitheatre, that are both cut by the youngest slump (C) that
lies in the centre and is interpreted as failing on 17 July
1998. The western slump (A) is identified by its heavily
gullied surface with arcuate thrust ridges and a headscarp
traced upward to the foot of the subsided reef (Fig. 2). The
eastern slump (B), (described by Sweet and Silver, 2003) is
probably younger than slump A in the west, as its surface
is not as heavily gullied. Both A and B are truncated by
slump C. On the surface of slump C, on the elevated mound
below the headscarp, there are curvilinear, but generally east-
west trending ridges and furrows, that are convex towards
the north and clearly terminate at the eastern and western
boundaries of the slump. These features are the surface ex-
pression of small thrust faults (or pressure ridges) that are
imaged on the seismic data and which formed during downs-
lope movement of the slump. On the seismic surveys, the
slump toe overrides the underlying strata, a relationship typi-
cal of slumping in cohesive sediments (Fig. 3). The youngest
slump terminates the thrust ridges of older slumps A and B
to both the east and west. The data confirms previous inter-
pretations that there is downslope sediment movement in the
Amphitheatre and that this movement is of limited horizontal
extent. There is no further sediment runout below the mound
that would indicate a translational failure, such as landslide
or sediment flow. The new interpretation also confirms that
the failures in the Amphitheatre are slumps. The youngest
central slump has a width of∼4.2 km, a length of∼4.5 km,
and a thickness of∼750 m. The slump volume is estimated
to be around 6.4 km3.

5 Tsunami modelling

Modelling of the PNG tsunami source based on a slump in
the Amphitheatre took place in three phases. Preliminary
modelling took place onboard theKairei in January 1999
as the first data were acquired (published in Tappin et al.,
1999). A subsequent phase of modelling took place after the
first two marine surveys (Tappin et al., 2001; Watts et al.,
2003). More recent modelling has been undertaken over the
past three years. The results of these phases are shown in
Fig. 4a–c.

Our most recent modelling results (Fig. 4d) are based on
the revised slump architecture presented above. The new
modelling also benefits from recent advances made in under-
standing tsunami generation from SMFs, that have now clar-
ified and/or validated assumptions made previously (Grilli et
al., 2005; Watts et al., 2005a; Enet and Grilli, 2007). We have
also refined the grid spacing, and in place of the previous
100×100 m grid we have now used a uniform 50×50 m grid.
For the tsunami propagation and inundation model (see Watts
et al., 2003), we use FUNWAVE, a fully nonlinear and dis-

persive (so-called “Boussinesq”) long wave model that sim-
ulates the more dispersive SMF tsunamis far better than tra-
ditional nonlinear shallow water (NSW) wave models. FUN-
WAVE also includes well-calibrated dissipation models for
wave breaking and bottom friction (Wei and Kirby, 1995;
Wei et al. 1995; Chen et al., 2000; Kennedy et al., 2000). Fi-
nally, we now use the actual time of slump failure (to within
approximately 45 s) as identified by themb=4.4 aftershock at
09.02 (GMT), as well as T-phase records made at the same
time (Okal et al., 1999; Synolakis et al., 2002). (There is
a 45-s error bar in the timing of the T-Phase because of un-
certainty between the relationship of the T-Phase signals and
the roughly 100-s duration of slump failure. To account for
these uncertainties, we have assumed that the two kinds of
signals correlate with the middle period of slump movement,
when seismic waves and T-phase sounds would presumably
be strongest.)

With regard to tsunami generation, based on the revised
dimensions for slump C, we calculate a basal shear strength
of Su≈0.8 MPa, with a corresponding Coulomb friction co-
efficient of Cn≈0.11. Using the equations of motion de-
tailed in Grilli and Watts (2005), which are similar to those
of Watts et al. (1999), we calculate a characteristic time of
slump motion,to=32 s, an initial accelerationao=0.47 m/s2,
and a maximum velocityumax=15 m/s, occurring approxi-
mately 50 s after slump failure. The slump comes to rest af-
ter ∼100 s, at which time its centre of mass has advanced
∼980 m downslope towards an azimuth of 349◦. The initial
water depth over the middle of the slump is 1420 m. These
results are the tsunami source parameters. In our simulations,
the transformation of a 2-D into a 3-D tsunami source uses
mass conservation considerations along the third dimension
(Watts et al. 2005a; Grilli et al., 2002; Enet et al., 2005,
2007). In the most recent simulations, both the free surface
shape and horizontal velocities of the 3-D slump tsunami
source calculated at timet=to are specified as initial con-
ditions in FUNWAVE.

Unlike NSW model results (Fig. 4a, b), FUNWAVE pro-
duces onland runups (Fig. 4c, d), not offshore maximum
wave heights, as previously modelled by various research
groups (e.g. Tappin et al., 2001; Synolakis et al., 2002). Peak
runup is located on the sand spit in front of Sissano Lagoon
and is directly comparable to onland measurements made
during field surveys. Time series snapshots of the tsunami
approaching Sissano Lagoon are shown in Fig. 5. These
snapshots are based on a 100×100 m grid and are for demon-
strative purposes, because offshore propagation and times of
arrival are similar to those modelled on the 50×50 m grid.
Figure 5a shows the sequence of waves travelling away from
the slump source, 15.6 min after the main shock and 3.1 min
into tsunami propagation. In the direction of the open ocean,
there is a leading elevation wave (barely shown), followed
by two pairs of depression and elevation waves. In the land-
ward direction, there is a leading depression wave followed
by two pairs of elevation and depression waves. In deep

www.nat-hazards-earth-syst-sci.net/8/243/2008/ Nat. Hazards Earth Syst. Sci., 8, 243–266, 2008
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Fig. 4. Evolution of slump generated tsunami simulations and runup over the last several years:(a) an improvised landslide tsunami
source combined with linear shallow water wave results from theKairei cruise (maximum wave heights are taken from the 10 m water
depth contour),(b) a landslide tsunami source from TOPICS 1.1 combined with nonlinear shallow water wave results from TUNAMI-
N2 (maximum wave heights occur several kilometres offshore),(c) a landslide tsunami source from TOPICS 1.2 combined with the fully
nonlinear and dispersive model FUNWAVE (maximum runup occurs onshore), and(d) a revised FUNWAVE simulation based on the new
slump architecture given herein [maximum runup occurs onshore] and a uniform 50×50 m grid spacing. Solid line – modelled, circles –
measured runup, dotted line in (c) and (d) – co-seismic tsunami simulation.

Nat. Hazards Earth Syst. Sci., 8, 243–266, 2008 www.nat-hazards-earth-syst-sci.net/8/243/2008/
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Fig. 5. Eight snapshots of tsunami propagation and inundation using FUNWAVE, a uniform 100×100 m grid spacing, and the latest slump
source. Light blue are elevation waves and dark blue are depression waves. (Time after main shock; time after slump initiation).(a) [15.6 min;
3.1 min]. (b) [18.6 min; 6.1 min]. (c) [20.1 min; 7.6 min]. (d) [21.6 min; 9.1 min]. (e) [23.2 min; 10.7 min].(f) [24.7 min; 12.2 min].(g)
[26.2 min; 13.7 min].(h) [27.7 min; 15.2 min]. The slump location is in yellow, and Yalingi Canyon is marked in purple. See text for further
discussion.

www.nat-hazards-earth-syst-sci.net/8/243/2008/ Nat. Hazards Earth Syst. Sci., 8, 243–266, 2008
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water, this pattern is symmetric and oriented in the direc-
tion of mass failure. 18.6 min after the earthquake (Fig. 5b),
there are three clearly imaged elevation waves travelling to-
wards Sissano Lagoon. Frequency dispersion has transferred
energy from the first two elevation waves into the third one
as it propagates towards shore. 20.1 min after the earthquake
(Fig. 5c), the first elevation wave is about to strike the vil-
lage of Malol. The deep-water Yalingi Canyon off Malol,
together with the small bay to the west of the village, focuses
the water waves away from the village. In the deep water off
Malol, the waves propagate faster than elsewhere, explain-
ing the fact that Malol is struck first by the tsunami. Farther
northwest, the first elevation wave is breaking roughly 3 km
off Sissano Lagoon.

After 21.6 min (Fig. 5d), the first elevation wave has al-
ready broken off Sissano Lagoon and is propagating towards
the beach as a bore. The second elevation wave is about to
break or is breaking further offshore. The wave breaking is
localized off Sissano Lagoon because the shallow shelf has
acted as a lens, focusing wave energy towards the sand spit.
The tsunami has inundated most of Malol and is about to ar-
rive at Aitape, near the eastern edge of the image. 23.2 min
after the earthquake (Fig. 5e), the first wave attacks the shore
near the village of Arop, with devastating consequences, and
the second wave is close behind, propagating as a bore to-
wards the sand spit. Malol has been completely inundated
whereas, further east, Aitape is just about to undergo tsunami
attack. After 24.7 min (Fig. 5f), the first elevation wave
is sweeping obliquely across the last part of the sand spit
and is beginning to inundate Sissano village, located on the
west side of the lagoon entrance. Near Malol, tsunami at-
tack is nearing its maximum inland inundation. At Aitape,
the tsunami attack is under way within the village. After
26.2 min (Fig. 5g), the second elevation wave passes over the
sand spit, near where the village of Arop once stood. The first
elevation wave is traversing Sissano Lagoon. Sissano village
has been completely inundated in the west, while Aitape has
been completely inundated in the east. Finally, 27.7 min after
the earthquake and 15.2 min after the slump failed (Fig. 5h),
the first elevation wave continues to traverse the lagoon. The
third elevation wave is just arriving at the sand spit. Else-
where, in the most devastated areas, water is receding back to
the sea. Smaller water waves continue to attack other shore-
lines, but with less consequence than for the area around Sis-
sano Lagoon.

6 Discussion

6.1 New geological interpretations of PNG

Our new interpretation of the Amphitheatre area off Sissano
Lagoon shows that three slumps are present, whereas previ-
ously we identified only one (Tappin et al., 1999, 2001, 2002,
2003). The youngest slump C (Figs. 2 and 3) is located in

the centre of the Amphitheatre. Its young age is evidenced
by the seabed morphology that illustrates its relationship to
the older slumps on either side. The corrugated surface mor-
phology (caused by the thrusts within the slump) of the basal
mound on slump C contrasts with the deeply incised (gul-
lied) seabed in the western part of the Amphitheatre where
slump A is located. The eastern margin of slump C is delin-
eated by the termination of the thrust folds, and the slightly
elevated surface of the basal mound. To the east of this mar-
gin we identify a backward rotated failure from the MCS of
Sweet and Silver (2003). The contrasting seabed morphol-
ogy within the Amphitheatre, together with the slumps iden-
tified on the seismic data, confirms that there are three slumps
present. The youngest slump is restricted to a discrete area,
indicating a rotational cohesive failure. There is no evidence
to indicate the presence of a translational landslide.

Confirmation that the central slump is the youngest of the
three failures is from seabed photographs and video images
(Tappin et al., 2001). These images show that the main con-
centration of seabed disturbance is in the central part of the
Amphitheatre where slump C is located. The main area of
deformation is located where the slump control fault inter-
sects the seabed (Figs. 2 and 3). This visual evidence in-
cludes recently exposed sediment fissures with sharply de-
fined edges located on the mound, and along the slump head-
scarp where we observe angular cohesive sediment blocks.
Along the seabed expression of the control fault there is ac-
tive fluid venting, with an associated chemosynthetic biota
of mussels and tube worms that increase in density towards
the central area of the slump at the foot of the steep scarp
slope. There are numerous black mounds on the seabed
that indicate the presence of sulphides. The concentration
of chemosynthetic mussels, together with their estimated age
based on shell size, indicates that these faunas developed af-
ter the slump failed. It was proposed by Tappin et al. (2001)
that the size of the mussel shells indicates failure on 17 July
1998. By comparison, in the west, the clay exposed at the
seabed in fissures and gullies is eroded. There is little evi-
dence for recent movement, active venting, or the presence
of chemosynthetic communities (see Fig. 2 in Tappin et al.,
2001).

Originally, Amphitheatre morphology was interpreted
from contoured bathymetry maps and ROV photographs,
with the main features of the slump identified being a steep
headscarp slope, with backward rotated fault blocks and a
basal mound at the slump toe, formed by compression as
the slump failed (Tappin et al., 1999; 2001). From that data
set, the slump dimensions were set at 5 km long in a north-
south direction and 7 km wide. Multichannel seismic (MCS)
data (Sweet and Silver, 1999, 2003) confirmed the presence
of slumping in the eastern Amphitheatre, with a maximum
slump thickness of∼760 m (labelled B in Fig. 2). The com-
bination of MCS data and JAMSTEC/SOPAC bathymetry,
led Sweet and Silver (2003) to reduce the width of the
slump to 2.5–3.0 km, thereby calculating a slump volume of
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3.8–4.6 km3. The closely spaced grid of SCS data acquired
in 2001 in the region of the Amphitheatre further delineated
the 3-D architecture of the area (Tappin et al., 2003). Based
on the SCS dataset, Tappin et al. (2003) increased the slump
width to 6 km, with a corresponding increase in slump vol-
ume. However, we now recognise that the slump identified
by Sweet and Silver (2003) in the east (B) is not part of the
central, youngest, failure identified here as C. The seabed
morphology proves that slump C truncates slump B on its
western margin (Fig. 2). In addition, Tappin et al. (2003)
included all three slumps as a single failure in their inter-
pretation of the SCS data, hence the increase in width over
that calculated previously. From our new interpretation we
now recognise that within the Amphitheatre there are three
slumps of different ages (A, B, and C) and that they are dif-
ferent failures.

Interpretation of the marine data set not only provides the
morphology of the slump tsunami source and its relative
age, it also allows us to explain the mechanism of failure.
By inference, we can also account for the time lag between
the earthquake and slumping. We have reported elsewhere
that the slump may have been triggered by fluids driven up-
ward by the main shock along secondary faults (Tappin et
al., 2002). We hypothesise here that the most likely con-
duit for the water would have been the controlling normal
fault, clearly imaged on the seismic data, which runs beneath
the slump headscarp. The strongly reflective character of the
fault on the MCS data suggests long-term active fluid move-
ment leading to authigenic carbonate deposition along the
fault plane (Fig. 3). This contrasts with the headwall fault
imaged on adjacent MCS lines where the fault plane is not
so sharply imaged suggesting a reduced level of authigenic
carbonate precipitation (see Sweet and Silver, 2003). Authi-
genic carbonates were commonly observed on the surface of
the central slump at the seabed intersection with the control
fault under the headscarp (see Fig. 2, Tappin et al., 2001).
The control fault is one of many along the inner trench wall,
and is formed by subduction erosion, clearly a significant
process acting along the margin (Tappin et al., 2001). On
our new 3-D imagery, we locate the slump on the hanging
wall of the control fault, across which we propose a pressure
differential that acted as a pump for artesian water. The after-
shocks, 20 min after the main shock, lie within the same gen-
eral area as the control fault and slump. These may well have
been caused by a similar differential pressure mechanism, al-
though a shift in overburden pressure, caused by slumping,
may have contributed. It is well documented that large land-
slides can generate earthquakes, a phenomenon called in-
duced seismicity (e.g. Simpson, 1986). Slump displacement
may have played a role in triggering the two aftershocks, es-
pecially because the shift in slump potential energy is much
larger than the release of seismic energy by the two after-
shocks.

6.2 New modelling of PNG

New simulation results (Fig. 4d), based on the new slump
architecture, confirm the control of seabed morphology on a
tsunami sourced from a location in the Amphitheatre. The
results are in reasonable agreement with field observations.
Generation and propagation of the tsunami as well as the
resulting coastal runup are both controlled by the morphol-
ogy of the Amphitheatre together with wave interactions with
the Upraised Block. The Amphitheatre topography exerts
an immediate influence on tsunami formation and propaga-
tion because of its similar size to the slump: the Amphithe-
atre is 10 km wide, compared to the tsunami wavelength
of around 7.6 km. Consequently, the new slump architec-
ture we identify here also has an important control on the
tsunami source dimensions and, because of the Amphitheatre
geometry, the runup results as well. Thus, it is important to
identify the precise positioning of the tsunami source within
the Amphitheatre. Different tsunami source positions within
the Amphitheatre change where slump/Amphitheatre inter-
actions initially occur, resulting in variations in the location
and size of onshore runup (see Fig. 6 and Sect. 6.4.1). These
results were produced on a uniform 100×100 m grid for the
purpose of relative comparison.

The new tsunami simulations, based on a slump source
timed from themb=4.4 aftershock at 09:02 and the T-phase
records, are in good agreement (especially at Aitape) with
accounts from survivors on timing, wave impact, and num-
ber of water waves (i.e. three) approaching the shore. They
also explain the reports of the first wave breaking offshore,
the simultaneous arrival of the wave with the aftershocks at
Malol, and the wave converging onto Sissano Lagoon (see
Davies, 1998). Figure 7 provides some specific examples of
reproducing tsunami observations. One way to characterize
simulation results is through wave breaking, as measured by
the eddy viscosity localized on the front face of a breaking
wave (see Chen et al., 2000). The maximum eddy viscosity is
a measure of the strength of wave breaking, as well as a mea-
sure of wave nonlinearity. Strong wave breaking offshore
(Fig. 7) explains the timing and location (3 km offshore) of
the loud bang, and the northern horizon lit by the setting sun
as reported by eyewitnesses on the sand spit before tsunami
attack. Wave breaking also explains the highly localized ero-
sional features observed on the lagoon side of the sand spit
(Gelfenbaum and Jaffe, 2003). Figure 7 indicates that the
first wave occurred more as a flood inundation, whereas the
second wave was highly nonlinear throughout much of its in-
undation. These observations accord with the reports of sur-
vivors’ located on the sand spit at the time of tsunami attack
(Davies, 1998). The first wave propagated across Sissano La-
goon and entered the mangrove forest landward of the lagoon
as a deep inundation by a large volume of water. The sec-
ond wave did not penetrate the mangrove forest as far inland,
but maintained strong wave breaking throughout inundation,
as reported by survivors carried into the forest by that wave
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Fig. 6. Comparison of maximum runup results for the tsunami
source trough located at longitude and latitude: dotted line
(142.25820 E, 2.87910 S), dashed line (142.25455 E, 2.86100 S),
and solid line (142.25090 E, 2.84290 S). The tsunami source is be-
ing shifted downslope, along the axis of failure, by 2 km and 4 km,
which corresponds closely to a quarter and half wavelength, respec-
tively. The comparison is carried out with a uniform 100×100 m
grid spacing.

(Fig. 7). The results from our numerical tide gauges (Fig. 8)
located in shallow water next to the villages of Malol and
Aitape match the reported time of tsunami arrival, relative to
the aftershocks, in both villages. At Aitape, the absolute time
of tsunami arrival, two minutes early in our simulation is ex-
plained by the offshore location of the numerical tide gauge
relative to the village.

Our modelling shows the tsunami striking Malol at the
same time as the aftershocks, a relationship that provides an
explanation as to why the aftershocks were not reported by
the survivors at this location. It also explains the reports from
survivors’ on the sand spit who remembered the tsunami
striking after the aftershocks, because the wave swept across
the sand spit between 21.6 and 24.7 min after the earthquake
(Fig. 5d–f). One of the most significant features of our new
wave propagation results is the correspondence with survivor
evidence from Aitape that the tsunami struck at 09:15 GMT,
25 min after the earthquake (see Fig. 5g). Our simulated
wave arrives within one or two minutes of the time reported
from this location (Davies, 1998). The simulation also shows
that the tsunami strikes Arop village after striking Malol,
contrary to some previous reports (Davies et al., 2003; Syn-
olakis et al., 2002). This sequencing can be explained by the
offshore morphology. The Yalingi Canyon extends offshore
of Malol, and within its relatively deeper waters, as men-
tioned above, the tsunami waves travel faster than elsewhere
(see the wave fronts on Fig. 5a–d).

The offshore morphology also explains the apparent
anomaly of runup around Malol. Based on dead reckoning
from the slump location, there should have been maximum
runup at Malol, because the village is directly in line with
the axis of slump motion. In fact, however, the runup at
Malol is less than at other villages to the immediate west,
such as Arop, which was completely devastated. This appar-
ent anomaly can be explained by wave energy being refracted
away from Malol and onto the shelf off Sissano, because of

Fig. 7. Results from our new Boussinesq simulation carried out with
a uniform 50×50 m grid spacing. Map of maximum eddy viscosity
v (as defined in FUNWAVE) localized on the front face of breaking
waves: blue [very mild,v=0.01], green [mild,v=1], yellow [strong,
v=9], red [very strong,v=40]. Regions of strongly nonlinear break-
ing waves and bores (yellow and red) are seen both offshore and
onshore. A complex pattern occurs onshore from three different
incident waves. See text for further discussion.

the relatively deeper water of Yalingi Canyon (Tappin et al.,
2001). The canyon is therefore responsible for both the first
tsunami arrival at Malol, as well as the much smaller ampli-
tude tsunami experienced here.

West of Malol and Arop, the Sissano and Arnold ar-
eas were the last to experience tsunami attack, as seen
by the wave travelling westward and refracting around the
Bliri Headland (Fig. 5g–h). The morphology of the Arnold
River delta explains why tsunami waves were focussed onto
Sissano Lagoon, resulting in maximum runup there. The
tsunami focussing was the result of the hemispherical shal-
low water shelf that forms the offshore extension of the
Arnold River delta (Tappin et al., 1999; Matsuyama et al.,
1999; Heinrich et al., 2000). The shallow delta also causes
the tsunami to arrive at Sissano and Arnold later than the
other impacted villages to the east. Once again, geological
features control tsunami observations.

6.3 Advances in tsunami modelling

Two of the main scientific advances resulting from investi-
gations into the cause of the PNG tsunami are: 1) the de-
velopment of new modelling methodologies to address SMF
tsunami sources, and 2) the improved recognition of the sig-
nificant differences between modelling earthquake tsunamis
as opposed to SMF tsunamis. Because of the importance of
modelling in assessing tsunami hazard, we review the main
phases of model development over time.
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6.3.1 Onboard Kairei modelling – 1999

The first numerical simulation of the slump devised onboard
theKairei (Fig. 4a) was rudimentary, with many assumptions
not yet validated. There was no slump (as opposed to land-
slide or sediment flow or slide) tsunami generation model
available. Initial tsunami generation estimates were com-
puted by hand, based on published (or soon to be published)
literature (Watts, 1998, 2000; Grilli and Watts, 1999). The
slump architecture was provisional and based only on the
bathymetric data acquired during the initial survey (Tappin
et al., 1999). Slump dimensions were 7 km wide, 5 km long,
and 200 m thick. The slump failed down a slope of mean
gradient 12◦, and horizontal slump movement was 3–4 km
towards an azimuth of 345◦. The initial water depth of the
slump centroid was 1400 m.

The tsunami source, based on a solid block 2-D under-
water landslide model (Grilli and Watts, 1999) did not use
depth-averaging. Instead, the source solved fully nonlinear
potential flow (FNPF) equations, which allowed for vertical
water acceleration. The tsunami simulation however used
linear shallow water wave equations. The maximum wave
height of 6 m was located offshore of the sand spit, with wave
heights measured at the 10 m water depth contour (Fig. 4a).
Although approximating the relative distribution of runup
along the coast, the maximum offshore water height was not
of the same magnitude as runup measured by the onland sur-
veys. A key result of the simulation was significant wave
heights west of the lagoon (published in Tappin et al., 1999).
These wave heights occurred because of wave interactions
(i.e. reflection, diffraction, refraction, etc.) with the Upraised
Block and proved that the tsunami could only be sourced
from within the Amphitheatre.

An earthquake source was also modelled, located along
the 40-km Fault, on the assumption that this was a thrust fault
(although the authors were aware that it was not). The sim-
ulation was based on linear depth-averaged long wave equa-
tions (published later in Matsuyama et al., 1999). For a shal-
low dipping thrust, there was a maximum wave height of up
to 2 m offshore of the Sissano sand spit. For the steeply-
dipping alternative, the maximum wave height was 8 m, al-
though the offshore wave height distribution did not corre-
late well with the measured onshore runup (Tappin et al.,
1999; Matsuyama et al., 1999). Comparing the results of the
modelling, it was the slump, rather than the earthquake, that
was the more likely tsunami source, although it was obvious
that further marine surveys and further refinements of slump
modelling were required to validate this interpretation.

6.3.2 Post cruise tsunami modelling – 2001

The second simulation developed after the surveys (Tappin
et al., 2001; Watts et al., 1999) was a major advance over
that derived onboard theKairei. It was based on a slump
mechanism of SMF motion, that was approximated by a ro-

Fig. 8. Numerical tide gauges located in shallow water next to the
villages of Malol (solid line), and Aitape (dashed line). The time of
tsunami arrival relative to the aftershocks (B for “beginning” and E
for “end” between 20 and 21 min after the earthquake) is correct at
Malol although two minutes early at Aitape, because of the location
of the numerical tide gauge relative to the village.

tational failure similar to that of a damped pendulum. The
slump architecture was better defined than previously be-
cause of access to the MCS data of Sweet and Silver (1999).
A slump volume of 4 km3 was based on slump dimensions
of 4 km width, 4.5 km length (revised from the multibeam
data) and 600 m thickness. The sediment physical properties
were based on the sediment cores acquired during the marine
surveys.

A slump basal shear strength ofSu=0.8 MPa, or a
Coulomb friction coefficient ofCn=0.11, was found to re-
produce the slump displacement of∼1 km. These values
gave a slump initial acceleration ofao∼0.51 m/s2, and max-
imum velocity of∼23 m/s. To solve the equations of fluid
motion, the centre of mass motion was incorporated as a
boundary condition into a FNPF simulation of tsunami gen-
eration (Grilli and Watts, 1999), in which the slump was rep-
resented by a semi-ellipse. The simulation showed the con-
tinual growth of tsunami amplitude during the first 44 s of
slump acceleration, which ceased as the waves propagated
outwards. (Note: 44 s corresponds to the characteristic time
of slump motionto, found to be identical to the duration of
slump acceleration, as well as identical to the tsunami wave
period (Grilli and Watts, 2005).) Tsunami generation was
therefore chosen to take place overto=44 s.

Because there were no validated 3-D models available to
predict the evolution of the free surface in the transverse
direction, the 2-D simulation result was transformed into
a 3-D tsunami source using mass conservation considera-
tions along the third dimension. The transverse wave profile
was thus represented by a functionsech2 {3(y−y0)/(w+λ)},
with the slump widthw=4 km, and the characteristic tsunami
wavelengthλ=4.4 km. The factor of 3 was chosen to yield
a relative wave amplitude of 1% at the transverse distance
y−y0=w+λ, wherey0 is at the centre of the slump location.
By carrying out the conservation of mass calculation, the
PNG slump dictates a 2-D to 3-D reduction ofw/(w+λ)≈0.5
in the initial tsunami amplitude, due to transverse wave prop-
agation during tsunami generation.

www.nat-hazards-earth-syst-sci.net/8/243/2008/ Nat. Hazards Earth Syst. Sci., 8, 243–266, 2008



254 D. R. Tappin et al.: The PNG tsunami of 1998 – a catastrophic event

The 3-D tsunami source predicted at 44 s provided the ba-
sis for simulations of propagation and inundation performed
with TUNAMI-N2 (see Imamura and Goto, 1988). The
mathematical expression of the sea surface shape at timeto
was given by:

η(x, y)=sech2(3(y−y0)
8.4 )

(
−35.71 exp(−0.1013(x−29.07−x0))

2

+25.14 exp(−0.05169(x−31.71−x0))
2

)
which transferred the tsunami source from the generation
model to the propagation model. Water velocities were ne-
glected, because there was no numerical interface available
to link the two models at that time. The bathymetry was a
compilation of theKairei swath data at depths greater than
400 m, and data from the shoreline to 150 m interpolated
from the Aus. 389 chart. Intervening depths between 150–
400 m were merged by linear interpolation. Onland topog-
raphy around Sissano Lagoon was based on transects ac-
quired by the field surveys (Kawata et al., 1999). Because of
the poor resolution of the nearshore bathymetry, and the un-
certainty of the effects of the interactions between shoaling
waves with the shallowest regions fronting Sissano Lagoon,
a uniform grid spacing of 200 m was used for the bathymetry.
The correlation between the measured runup and simulated
wave heights was, however, found to be quite good (Fig. 4b
and Tappin et al., 2001), although the highest waves occurred
several kilometres offshore. Because of limitations of the
wave propagation model TUNAMI-N2 this second simula-
tion still only yielded offshore wave heights, instead of ac-
tual onland runup. We return to this below. There were many
assumptions made in deriving the tsunami source based on
FNPF simulations, and then transforming the source from 2-
D to 3-D. (These techniques were validated later (see Watts
et al., 2003, 2005a; Grilli and Watts, 2005; Enet and Grilli,
2003, 2005, 2007).)

Heinrich et al. (2000) may have been the only other early
publication on the tsunami source to apply methods compa-
rable to those of Watts et al. (1999) and Tappin et al. (2001).
Their landslide simulation was based on a translational SMF
of cohesionless granular material, not a slump. Using the
Kairei bathymetry and a landslide volume of 4 km3, they
achieved a close correlation with the measured runup along
the coast. Modelling of the alternative earthquake sources
(shallow or steeply dipping thrusts) could not explain the
measured runup. Synolakis et al. (2002) applied a simi-
lar methodology to that of Watts et al. (1999) and Tappin
et al. (2001). They discounted the steeply dipping thrust
mechanism on seismological grounds, and modelling of the
shallow dipping thrust as a tsunami source yielded maxi-
mum wave heights of 40 cm. The only significant differ-
ence to the modelling of Tappin et al. (2001) is their use
of the MOST model of tsunami propagation and inundation,
which solves the same nonlinear shallow water wave equa-
tions as TUNAMI-N2, but with the method of characteristics
(Titov and Synolakis, 1998). Following Tappin et al. (2001),
they concluded that the slump in the central region of the

Amphitheatre was the source of the local tsunami. As with
other simulation models, using MOST gave offshore maxi-
mum wave heights, because onland runup was minimal or
not present in the simulation. This fact motivated our new
simulations of the PNG event with a Boussinesq water wave
model.

6.3.3 Recent modelling

The first of our Boussinesq simulations used our previous
slump dimensions and was published in Watts et al. (2003)
(Fig. 4c). A uniform 100×100 m bathymetry grid spacing
was used. The second of our Boussinesq simulations, pre-
pared for this paper, is based on the new slump architecture
described above (Figs. 2 and 3). Compared with earlier mod-
elling work, these simulations benefited from a validated and
better understood 3-D tsunami source (Grilli et al., 2002),
and the use of a finer 50×50 m grid spacing for wave propa-
gation and inundation (Fig. 4d).

Much of the early work on slumps has since been validated
and verified. With regard to tsunami generation, the previ-
ously assumed slump basal shear strength ofSu≈0.8 MPa,
and Coulomb friction coefficient ofCn≈0.11, were consid-
ered to be unrealistically high compared to available pub-
lished values (e.g. Imran et al., 2001). These shear and fric-
tion values are now validated for slumps (Watts and Grilli,
2003; Watts et al., 2005a) even though the values are greater
by one to two orders of magnitude than those of most trans-
lational landslides. The equation of SMF motion previously
applied (see Watts et al., 1999, 2002) was fully derived,
experimentally validated, and the secondary effect of SMF
deformation on tsunami generation quantified (Grilli et al.,
2005; Watts et al., 2005a; Enet and Grilli, 2007). The trans-
formation of a 2-D to a 3-D tsunami source, using mass con-
servation considerations along the third dimension, was fully
supported by 3-D numerical experiments, and validated by
large-scale 3-D laboratory experiments (Watts et al. 2005a;
Grilli et al., 2002; Enet et al., 2003, 2005, 2007). The
improved 3-D tsunami source incorporates both transverse
propagation and initial water velocities.

With regard to tsunami propagation and inundation, FUN-
WAVE is a fully nonlinear and dispersive long wave “Boussi-
nesq” model that features an accurate moving shoreline al-
gorithm and energy dissipation terms (Wei and Kirby, 1995;
Wei et al. 1995; Chen et al., 2000; Kennedy et al., 2000).
The use of FUNWAVE for tsunami simulations has been
well validated by case studies, based on a pyroclastic flow
(Waythomas and Watts, 2003), underwater landslides (Watts
et al., 2003; Day et al., 2005; Greene et al., 2005), earth-
quake generated tsunamis (Day et al., 2005; Grilli et al.,
2007; Ioualalen et al., 2006, 2007), and a debris flow (Walder
et al., 2005). The inclusion of both nonlinear and disper-
sive terms in Boussinesq models eliminates the excessive
shallow water steepening, and corresponding early offshore
wave breaking and dissipation, that take place in NSW wave
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models (such as TSUNAMI-N2 or MOST) and hence allows
for tsunami runup to occur onshore. The frequency disper-
sion in the model is also necessary to account for the shorter
wavelengths of SMF tsunamis, which have horizontal water
velocity profiles that vary with depth. The improvements in
modelling resulting from the use of FUNWAVE led, for the
first time, to tsunami runup occurring onland in the simula-
tions, rather than as offshore wave heights.

6.4 Uncertainty in simulated tsunami runup

Our new work raises fundamental questions about some of
the many factors that affect the alongshore runup distribution
predicted in numerical simulations, their correlation with ob-
servations on runup, and controls on the incidence of tsunami
waves striking the coast. These factors include the tsunami
simulation itself, the reliability of the onshore measurements,
and our understanding of wave interactions with other waves
and with the shoreline.

6.4.1 Grid refinement

Comparison of our latest simulated runup with measured
runup still shows some differences that remain unexplained
(Fig. 4d). To demonstrate the sensitivity in the positioning of
the tsunami source in relation to the Amphitheatre morphol-
ogy and location of the Upraised Block, we simulated several
different tsunami source positions along the slump axis of
failure on a 100×100 m uniform grid (Fig. 6). The slump
centroid is located at longitude and latitude (142.2582 E,
2.8791 S) and, based on experimental results (e.g. Enet and
Grilli, 2007), the deepest trough of the tsunami source is usu-
ally positioned above this location. We also ran simulations
with the deepest trough located at (142.2546 E, 2.8610 S),
and (142.2509 E, 2.8429 S), respectively downslope at, 2 km
or one-quarter wavelength, and 4 km or a half wavelength.
As the tsunami source moves towards the Upraised Block,
more wave energy is directed to the west side of Sissano
Lagoon and the region of highest runup is extended farther
west. The simulated runup could potentially converge onto a
unique slump location that reproduces measured runup (see
Heinrich et al., 2000), but we do not carry that process any
further here.

We should note, however, that the runup measurements
themselves may be suspect. Borrero (2001) questioned what
runup actually represents, and discussed the inherent prob-
lems in its measurement (e.g. differentiating between flow
depth, runup, and wave splash). On the one hand, observers
of the PNG event indicate that many trees were bent over
by the tsunami waves, which would thereby increase the
height of the apparent runup measured during post-tsunami
surveys, by the location of objects caught in trees, as well as
by the stripping of foliage. It was reported that water forces
were strong enough to strip almost all branches offCasurina
trees along the coastline below a certain height (Kawata et

Fig. 9. A sensitivity analysis of our new Boussinesq simulation with
respect to grid spacing. Snapshots of the free surface are shown at
18.8 min (left) and 23.8 min (right) after the main shock for:(a) uni-
form 200×200 m grid spacing,(b) uniform 100×100 m grid spac-
ing, and(c) uniform 50×50 m grid spacing. See text for further
discussion.

al., 1999), a fact observed first hand by two authors (DRT
and PW). On the other hand, subgrid wave interactions (i.e.
here, on scales less than 50 m) and splash would make sim-
ulated results underestimate runup measurements. There is
no known technique to assess and balance these contrary ef-
fects. There is also the presence (or absence) of measurable
features of sufficient height, by which peak runups may be
measured, that might bias results. It is not inconceivable that
the tsunami runup peaked at +20 m (see Fig. 4d), but the ev-
idence for this height was not preserved. The correlation in
Fig. 4d between simulated and measured runup is as good
as we can expect from a first hand simulation made without
iterations or adjustments.

Simulation results depend on the bathymetry data, the
choice of simulation model, and the simulation grid spac-
ing. Figure 9 compares free surface snapshots of FUNWAVE
results obtained with the same tsunami tsunami source on
200 m, 100 m, and 50 m uniform bathymetry grids. Prior to
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Fig. 10. A sensitivity analysis of our new Boussinesq simulation with respect to grid spacing. Maximum water elevations at any time during
the simulation are provided for:(a) uniform 200×200 m grid spacing,(b) uniform 100×100 m grid spacing, and(c) uniform 50×50 m grid
spacing.(d) Comparison of onshore runup for the three grid spacings. Dashed line – 200 m, dotted line – 100 m, solid line – 50 m, and circles
– measured runup. See text for further discussion.

interactions with the shoreline, the shoaling wave appears
nearly identical. However, the simulations performed with
larger grid spacing either dissipate or reflect wave energy,
limiting the water volume on land and slowing the speed
of tsunami inundation. Figure 10 compares the maximum
wave elevations at any time during the simulation, as well as
simulated and measured runup. The maximum wave eleva-
tions above sea level produced with a 50 m grid display the
full complexity of wave breaking, edge wave interactions,

and the inundation of multiple waves (Fig. 10c). The dif-
ference in simulation results from the onset of inundation
and onward is significant (Fig. 10d). A similar sensitivity
analysis was carried out by Ioualalen et al. (2007) for the 26
December 2004 tsunami striking Thailand, where a uniform
460×460 m grid was necessary to capture the wave dynam-
ics for a large earthquake tsunami. The shorter wavelength
of an SMF tsunami requires a smaller grid spacing.
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6.4.2 Beach slope

With regard to the beach slope (in a 2-D vertical plane),
NSW wave theory predicts that this is an important control
on tsunami wave runup (e.g. Kanoglu and Synolakis, 1998).
Using Boussinesq modelling for the PNG event, we can actu-
ally model onshore runup rather than offshore tsunami wave
heights. Hence, we had an opportunity to investigate whether
this prediction is borne out. A constraint on our modelling is
undoubtedly the poor nearshore bathymetric control in water
depths shallower than 400 m that may compromise any con-
clusions we can draw on this subject. However, for PNG,
we do know that runup involved short wavelength breaking
waves and bores. For example, most eyewitness accounts
from the sand spit describe either a wave breaking on the
beach, or a vertical wall of water that was probably a bore.
Our latest simulation shows that some waves broke several
kilometres offshore, again near the shoreline, and once more
on the landward side of the sand spit (Fig. 7). In this kind
of dynamic wave environment, with rapid evolution of rel-
atively short wavelength waves, we consider it unlikely that
runup predictions based on NSW wave theory are relevant
to tsunami runup during the PNG event. We therefore ques-
tion the relevance of beach slope effects on the runup results
and, in the instance of PNG, consider it not as important as
previously predicted.

6.4.3 Edge waves

Numerical simulations of other tsunami events using FUN-
WAVE (e.g. Day et al., 2005; Greene et al., 2005; Ioualalen
et al., 2007) suggest that maximum inundation and maxi-
mum runup may be caused at some locations by collisions
(or interactions) of edge waves travelling in opposing direc-
tions along the shoreline (Watts et al., 2003; Waythomas and
Watts, 2003). Despite being present in our previous simu-
lation results, edge wave interactions have received little at-
tention in the context of tsunami hazards, specifically with
regard to maximum runup. Whereas, during the PNG event,
most of the sand spit experienced oblique wave attack, edge
waves appear to have played a role in causing maximum
runup around Aitape, the entrance to Sissano Lagoon, and
the mouth of the Arnold River. In all of these locations, sim-
ulations show that edge waves travelling in opposite direc-
tions interact with each other thereby producing peaked wave
heights and maximum runup long after most other locations
along the coast had ceased experiencing dangerous wave ac-
tivity (see Figs. 4d, 7, and 9c). Clearly, the tsunami hazard
from edge wave interactions is very local. However, the lo-
cations of such interactions remain unpredictable without de-
tailed modelling, and the interactions themselves are highly
three-dimensional. In the presence of interacting edge waves,
there can be no simple 2-D estimates of maximum tsunami
runup, based on vertical planar transects. The runup hazard
is intrinsically three-dimensional for all tsunamis.

6.4.4 The important choice of wave equations

A method of assessing the relative importance of nonlinear
and dispersive effects during water wave propagation is the
Ursell number; the ratio of nonlinear to dispersive effects of
a water wave. Table 1 shows ratios of tsunami amplitudea

to depthh, and tsunami wavelengthλ to depthh, as well as
the Ursell numberU=a λ2/h3 for selected locations along a
straight transect from the slump to the sand spit in front of
Sissano Lagoon. Based on these values, especially the Ursell
number, wave breaking could have been expected during
tsunami propagation on the shallow shelf in front of Sissano
Lagoon (Watts et al., 2003). The values in Table 1 suggest
that all modelling capabilities of FUNWAVE were required if
we were committed to reproducing all of the tsunami obser-
vations, from generation through propagation to inundation.
While the numbers in Table 1 were derived from our simula-
tion, they can be estimated from engineering approximations
prior to an event (Watts, 1998, 2000; Watts et al., 2005), and
clearly guide the choice of an appropriate simulation model.
Enet and Grilli (2007) used similar estimates to design 3-D
SMF experiments.

Dispersive effects in the PNG event play specific roles dur-
ing shoaling and breaking/dissipation of tsunami waves. Fig-
ure 11 illustrates these considerations by comparing disper-
sive and non-dispersive simulations of the PNG event (made
here by running FUNWAVE in non-dispersive mode) using
our latest slump tsunami source. We see that the NSW simu-
lation overpredicts wave focusing and shoaling in the shallow
water area fronting Sissano Lagoon (Fig. 11a), where waves
build up early to a maximum of around 18 m in amplitude
(Fig. 11c) and then rapidly attenuate through numerical dis-
sipation before reaching the shore with a much reduced wave
height. By contrast, in the dispersive simulation, breaking
and dissipation occur closer to the shoreline (Fig. 11a). In
addition, Fig. 11b shows that the Boussinesq model captures
the three elevation waves observed by survivors, whereas the
NSW model, lacking dispersion, produces only two eleva-
tion waves, one for the tsunami source itself and a smaller
wave for its rebound at the source. Since both simulations
used the same discretization scheme, moving shoreline al-
gorithm, wave breaking algorithms, and 50×50 m grid, re-
sults in Fig. 11 independently assess the effects of disper-
sion on model results. We note a fundamental failure of the
NSW wave equations present in NSW simulations carried
out with FUNWAVE, TUNAMI-N2, and MOST. Simulations
of the PNG event appear to need dispersive wave equations to
achieve realistic and accurate results. Of course, this result
is not generally true for all tsunamis. For instance, recent
simulations by Ioualalen et al. (2007) of tsunami impact in
Thailand during the 26 December 2004 event showed that
dispersion affected runup values very little, which was ex-
pected given the longer wavelength of earthquake tsunami
waves. Indeed, we found nearly identical NSW and Boussi-
nesq simulation results for the earthquake tsunami generated
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Fig. 11. A comparison of results from the Boussinesq and NSW models of FUNWAVE for identical discretization scheme, bathymetry
grid, uniform 50×50 m grid spacing, and tsunami source.(a) Maximum water elevations at any time during the simulation. The large
amplitude wave in front of Sissano Lagoon in the NSW model is an anomalous feature.(b) Snapshot of the free surfaces at 21.3 min after
the main shock. The NSW model produces one sharp N-wave and a smaller wave from rebound at the source, with high frequency numerical
instabilities, especially during interactions with the shoreline.(c) Comparison of maximum offshore wave heights, and comparison of
onshore runup along with measured runup (circles). Dotted line – NSW, solid line – Boussinesq. The offshore wave heights give the NSW
model an appearance of reproducing tsunami runup, although the actual runup results fall well short of the onland measurements. See text
for further discussion.
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Table 1. Wave parameter values during tsunami propagation from source to shore.

Distance from shoreline (km) a/h λ/h U=a λ2/h3 Nonlinearity Dispersivity

Source (25) 0.0093 2.4 0.056 Mildly Fully
21 0.0078 4.8 0.18 Linear Mildly
14 0.0092 7.9 0.57 Linear Mildly
5.6 0.046 23 24 Cnoidal None
2.8 0.34 60 1200 Breaking None
1.0 0.60 160 15000 Breaking None

by the main shock during the PNG event.
Lynett et al. (2003) also ran a successful Boussinesq sim-

ulation of the 1998 PNG event although they did not at-
tempt to reproduce all tsunami observations (see Sect. 6.5).
Notwithstanding, they made the surprising claim that a NSW
model was necessary to reproduce the overland inundation
correctly, a claim that contradicts the results of Tappin et
al. (2001), Synolakis et al. (2002), as well as the results pre-
sented here. With its accurate inundation algorithm on dry
land, using a slot method, FUNWAVE has successfully re-
produced coastal inundation for all tsunami events studied to
date (see Watts et al., 2003, 2005b; Waythomas and Watts,
2003; Fryer et al., 2004; Day et al., 2005; Ioualalen et al.,
2007). The choice of numerical model is thus critical in re-
producing data acquired by onshore field surveys and from
survivor observations. Whereas Boussinesq simulations may
not have been possible in the past due to their more com-
putationally intensive nature, this is no longer the case, and
our results for PNG confirm their importance for tsunamis
generated by SMFs.

6.5 Ramifications of our new understanding

During our continuing study of the PNG event, we have
progressively improved our understanding of the general
controls on tsunami generation by SMF. Based on this re-
search, we can make a number of observations regarding
SMF tsunami generation that are of more general conse-
quence.

It has been proposed that SMF tsunami sources can be
represented by dipoles (Okal and Synolakis, 2003), i.e. the
equivalent of two instantaneous volumetric fluxes placed in
close proximity. Our research, however, shows that the gen-
eration of a tsunami by a moving SMF occurs over some fi-
nite region of space and (in contrast to earthquakes) over a
relatively long time (t0) related to SMF kinematics, during
which time the leading elevation wave can travel a significant
distance before a trough is formed (Grilli and Watts, 2005).
The elevation wave behaves like a volumetric flux positioned
ahead of the SMF, whereas the trough above the SMF be-
haves like an equivalent volumetric flux of opposite sign (i.e.
an absence of water). This tsunami generation mechanism

results in two volumetric fluxes situated widely apart – in-
stead of a dipole. The experimental results of Wiegel (1955)
and Watts (1997, 2000) demonstrate that the leading wave of
a tsunami generated by a SMF propagates as if the source
were volumetric. (While these experiments were carried out
along 1-D channels, we note that the conclusion of volumet-
ric wave propagation is general and applies equally well to
2-D radial geometries.) Hence, the asymptotic tsunami be-
haviour in the far field is not that of a dipole. Therefore, we
conclude that tsunamis generated by SMFs cannot be repre-
sented as simple dipoles. This new understanding on the ba-
sic mechanism of SMF tsunami generation leads to the logi-
cal conclusion that the leading elevation wave will have a far
greater tsunami potential in the far field than previously be-
lieved. In scaling terms, assuming radial spreading in a con-
stant depth ocean, the far field tsunami amplitude would de-
cay as 1/r for a volume, instead of 1/r2 for a dipole, where
r is the radial distance from the tsunami source. The impli-
cation is that the SMF tsunami in the PNG event may have
contributed to the earthquake tsunami in the far field, includ-
ing in places like Japan. While it is not our purpose here, we
point out that this hypothesis can be tested.

Some researchers have used a single constant SMF veloc-
ity to describe tsunami generation (e.g. Tinti et al., 2001;
Ward, 2001; Okal and Synolakis, 2003). Recent work
demonstrates that tsunami generation takes place essen-
tially during the initial phase of SMF acceleration, during
which time the instantaneous velocity is approximated by
u (t) ≈ao t . Therefore, with SMFs, there is no characteristic
velocity that can be used to describe their motion, and their
initial acceleration is the only relevant parameter to describe
their motion during the tsunami generation phase (Enet and
Grilli, 2007; Grilli and Watts, 2005; Watts et al., 2005a;
Watts, 1998). Further discussion of this issue can be found
in Greene et al. (2005) and Watts et al. (2005a).

Regarding the maximum velocity attained by a SMF, we
show that this is dependent on the size of the failure to-
gether with the local seabed morphology (Grilli and Watts,
2005). In the instance of PNG, our results indicate the slump
reached a maximum velocity of around 15 m/s near the mid-
dle period of motion, which lasted in total approximately
100 s. Assuming the same size slump, a smaller maximum
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velocity would require less displacement down the slope,
whereas a greater maximum velocity would require more dis-
placement. The slump displacement therefore constrains the
slump velocity. Maximum SMF velocity is highly sensitive
to the geology, downslope displacement, and the SMF size.
Large translational slides on long continental slopes can have
much higher centre of mass velocities (e.g. Fryer et al., 2004;
Waythomas et al., 20081).

6.6 Earthquake versus SMF Tsunami Sources

Our work also has important ramifications for understand-
ing the differences between tsunamis generated by SMFs and
earthquakes, an understanding that has in large part been val-
idated by work since 1998. Both earthquakes and SMFs
involve vertical sea floor movement that affects the water
column and results in gravity driven displacements of the
sea surface that spread out as waves from the source. For
an earthquake source, the initial tsunami wave field is de-
termined primarily from the vertical coseismic displacement
field of the seafloor, which is a measure of earthquake mag-
nitude (Hammack, 1973; Geist, 1998). For the rise time of
most earthquakes, the long-wave phase velocity in the ocean
is slow enough so that the displacement is usually considered
instantaneous. (In this respect, the 9.3 magnitude earthquake
of 26 December 2004 in the Indian Ocean, which had an
extremely large rupture/source area, was an exception; e.g.
Grilli et al., 2007.) Because of the relatively large source area
of most earthquakes, the resulting vertical seafloor deforma-
tion usually (but not always) generates a tsunami with longer
wavelengths and longer periods compared to those generated
by SMFs (Hammack, 1973; Watts, 1998, 2000). The tsunami
generated is thus mainly dependent on the earthquake mag-
nitude, together with centroid mechanism and depth (Ham-
mack, 1973; Geist, 1998b), except in instances where the
earthquake is “slow” (Kanamori, 1972; Newman and Okal,
1998b). Coseismic displacement generates tsunami ampli-
tudes that rarely exceed 10 m at the source (which was the
case for the 26 December 2004 tsunami; e.g. Grilli et al.,
2007).

In contrast to earthquakes, SMFs usually take place more
slowly and at slower dislocation velocities (Grilli and Watts,
2005; Watts et al., 2005a). The longer source time reduces
the efficiency with which a tsunami is generated, and allows
the source to spread in area during tsunami generation. How-
ever, a relatively shallow depth SMF (i.e. submergence to
length ratio) can more than compensate for the longer source
time in terms of tsunami generation (Grilli and Watts, 2005).
Given the potential for large SMF displacement and size,
tsunami amplitude does not have atheoreticalupper bound
other than the water depth itself. Despite spreading during
generation, the tsunami source area above a SMF is usu-
ally much smaller than that of an earthquake source. There
is also a strong directivity along the SMF axis of motion
(Iwasaki, 1997; Fryer et al., 2004; Enet et al., 2003, 2005,

2007; Waythomas et al., 20081) that often results in focused
local runup (Imamura and Gica, 1996; Imamura et al., 1995),
the magnitude of which is a function of tsunami source loca-
tion, initial wave amplitude, and wavelength.

Another complication in the generation of tsunami by
SMF is the variety of their failure mechanisms. As a simpli-
fication for modelling purposes, two end members of SMF
were recognised (Grilli and Watts, 2005): (1) slumps, which
fail while largely maintaining their structural integrity; and
(2) landslides, which are translational and often evolve mor-
phologically during failure. The composition of the SMF de-
termines its law of motion, from which the tsunami source
is derived. The law of motion therefore controls tsunami
generation and tsunami magnitude (Grilli and Watts, 2005).
Landslides initiated in shallow water and travelling down
the continental slope can be tsunamigenic over consider-
able distances. In contrast, slumps typically do not travel
as far as landslides because of basal friction, thereby reduc-
ing their potential in generating tsunamis. Thus, SMFs may
result in tsunamis with amplitudes limited only by the verti-
cal extent of their centre of mass displacement (Murty, 1979;
Watts, 1998), which can potentially reach several kilometres
in magnitude, as in large-scale volcano flank failure (e.g. Mc-
Murtry et al., 2004). Hence, despite the smaller SMF source
area, both mass failure centre of mass motion and the sub-
sequent tsunami amplitude at the source can surpass those
of coseismic displacement by several orders of magnitude
(Schwab et al., 1993; Watts, 1998).

6.7 The controversy

The roots of the controversy over the source of the PNG
tsunami stem from the fact that in 1998 SMFs were mainly
considered in terms of translational events. The modelling
of translational events either did not produce tsunamis with
significant local runup, and/or with simulated runup that
matched measured runups. Thus, for some scientists, a SMF
mechanism was ruled out, and the earthquake was, almost
by default, considered the only possible tsunami source. It
was on the basis of such an argument that the steeply dip-
ping thrust mechanism was identified by some authors (e.g.
Kikuchi et al., 1999) as the preferable earthquake rupture
mechanism and thus used to explain the tsunami. This choice
of rupture was made even though the earthquake mechanism
was more likely to be a shallow dipping thrust (McCue, 1998;
Heinrich et al., 2000). Key to the slump tsunami source is the
runup west of Sissano Lagoon that can only be explained by
a source located within the Amphitheatre, as reported early
on by Tappin et al. (1999).

Submarine slumps are rare, at least compared to other
SMFs. Thus, even when the marine data identified a slump
offshore of Sissano (Tappin et al., 1999), this geological
fact was ignored (e.g. Matsuyama et al., 1999; Geist, 2000;
Iwasaki and Satake, 2001; Satake et al., 2003). Authors us-
ing an earthquake source usually located the thrust at the

Nat. Hazards Earth Syst. Sci., 8, 243–266, 2008 www.nat-hazards-earth-syst-sci.net/8/243/2008/



D. R. Tappin et al.: The PNG tsunami of 1998 – a catastrophic event 261

40-km Fault (e.g. Matsuyama et al., 2000), although move-
ment along this fault was clearly dip-slip to the north, with
the only active fault segment to the west of the Amphithe-
atre. Other combinations of faulting, such as a steeply dip-
ping fault and/or a splay fault off a blind thrust, are not sup-
ported by the marine data (e.g. Satake et al., 2003; Imamura
and Hashi, 2003). These interpretations are not only in con-
flict with the evidence from the marine data but, as alternative
tsunami sources, they do not reproduce the arrival time of the
tsunami from the earthquake. Alternative slumps (e.g. Satake
et al., 2003) located on the Upraised Block are too small to
source the measured tsunami and would not produce a LDN
wave on the PNG coast. To fully utilise the marine data set
(comprising bathymetry, seismic, images, and samples) one
needs interpretations and integration in their entirety. The
bathymetry and sampling evidence from the Amphitheatre
indicate a submarine slump of recent origin located near the
centre of the Amphitheatre. Each individual feature observed
in isolation might well be attributed to another cause, such as
an earthquake (e.g. Matsuyama et al., 1999; Satake et al.,
2003). However, it is the use of all the marine data that
demonstrates the slump as the most likely tsunami source.

With regard to the timing of tsunami impact on the shore,
this is normally identified from tide gauge data. Without tide
gauge data, the quantitative approach of seismologists could
not be followed, and in this context the evidence from sur-
vivors on the delay between main shock and tsunami strike
was discounted (e.g. Geist, 2000). There is no doubt that
contradictory reporting of tsunami arrival times contributed
to survivor’s evidence being ignored. There are good reasons
why the reports varied. 1) The survivors would have been
traumatised, and their reporting confused. 2) Felt effects of
the earthquake would have varied along the coast because of
changes in composition of the substrate. On the sand spit,
earthquake energy would have been absorbed and dissipated,
and here we know of significant fluid expulsion and sediment
liquefaction (McSaveny et al., 2000). Farther east, at Malol
and Aitape, the presence of hard limestone resulted in far
greater felt effects. 3) There is also evidence that at some
locations (such as Malol) the tsunami may have struck at the
same time as the aftershocks. 4) There are significant varia-
tions in tsunami attack along the shoreline found from mod-
elling results. However, not all of the reports were ‘relative’
and timed according to the earthquake or the aftershocks. In
the east, at Aitape, accurate reporting on the tsunami arrival
time was based on watches, clocks, and radios that give an
absolute time (Davies, 1999). These showed the tsunami ar-
riving there 5 min after the aftershocks and approximately
25 min after the main shock. This evidence is as accurate as
the timing from most tide gauge records.

7 Conclusions

The PNG tsunami has resulted in the development of new
and improved models of tsunami generation that more real-
istically represent SMF tsunami sources. Additionally, it has
stimulated the development of propagation and runup mod-
els that may be applied to all tsunami sources. Although con-
troversial, the event has resulted in a global re-evaluation of
the tsunami hazard from SMFs and of anomalous tsunami
events, where earthquake magnitude does not correlate with
measured runup. Since 1999, the west coast of the USA
has received a great deal more focussed attention on SMF
tsunami hazard (e.g. Eichhubl et al., 2002; Lee et al., 2003,
2004; Bohannon and Gardner, 2004; Locat et al., 2004; Nor-
mark et al., 2004; Greene et al., 2005). One of the largest
marine survey programmes ever carried out over a SMF has
been off Norway to investigate the potential hazard from a
future failure in the area of the Storegga Landslide, although
the motivation for the research was mainly to do with the safe
extraction of gas from the underlying Ormen Lange Gasfield
(e.g. Bondevik et al., 2005; Løvholt et al., 2005; Solheim et
al., 2005). The Storegga Landslide, dated at 8200 years BP,
resulted in a tsunami with significant runup along the NW
European coastline.

Although several recent tsunamis (e.g. Grand Banks,
1929; Seward, 1964) were known to be sourced by SMFs,
and these events indicated their potential hazard, the PNG
tsunami was largely unexpected. It was a “wake-up” call
with regard to the tsunami hazard from SMFs triggered by
modest size earthquakes. The initial motivation for the re-
search on the PNG tsunami was undoubtedly due to the
scale of the catastrophe that resulted in the funding, at very
short notice, of costly marine scientific investigations into the
cause of the disaster.

The controversy over the source of the PNG tsunami,
now accepted by most scientists as a submarine slump, was
mainly because SMFs were not considered a source of catas-
trophic tsunamis before 1998. In addition, the modelling
of SMF tsunami sources was almost exclusively confined to
tsunami generation by thin, translational landslides or sedi-
ment flows. As a consequence, there were no validated mod-
els for SMFs formed of thick, cohesive, rotational slumps.
Early consideration of the cause of the tsunami tended to
discount qualitative evidence, such as that from survivors.
All these factors contributed to the mistaken identification
by many scientists of an earthquake source for the tsunami.

The marine surveys carried out in 1999 were the first or-
ganised specifically to identify the offshore cause of a recent
tsunami. They have led to marine geologists becoming more
actively involved in tsunami research, thereby providing a
new approach to researching tsunami hazards. The appli-
cation of swath bathymetry (a recent technological develop-
ment in marine science) together with other more traditional
technologies used in marine surveying, such as sub-bottom
seismic, seabed photography, and sediment coring, provide
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data essential to the identification of SMFs. However, to
maximise their effectiveness, the marine data acquired have
to be fully integrated, thereby providing a powerful tool for
tsunami hazard assessment. Marine data is a requisite for
SMF modelling. It also informs on the background geology
and the dating of events. Although laboratory based stud-
ies underpin our understanding of tsunami generation from
SMFs, field examples are essential in validating theoretical
analyses and numerical models.

Since 1998, modelling of SMF tsunamis has advanced
to the stage where integrated models, based on SMF ar-
chitecture, can account for the complete tsunami process
from tsunami source through wave generation and propaga-
tion to tsunami runup and inundation, similar to co-seismic
tsunamis. The direct result of PNG is our increased aware-
ness of how SMFs cause tsunamis in both the near and far
field. They are not dipoles (as earthquakes are), they cannot
be modelled using a constant velocity, their maximum veloc-
ity scales with SMF size, and wave amplitude decay in the far
field is an order of magnitude less than previously supposed.
A lot has been learned over the last decade.

It should be cautioned however, that current SMF tsunami
source models still require many simplifications and assump-
tions, and that more work is needed to refine existing models
of failure from all types of SMF (e.g. Greene et al., 2005;
Waythomas et al., 2006). In 1998, there was little apprecia-
tion of the importance of centre of mass motion on tsunami
generation. For the same size and density SMF, tsunami am-
plitudes and wavelengths can differ by up to a factor of five
depending on the centre of mass motion (Grilli and Watts,
2005). The most important measure of centre of mass mo-
tion is the SMF initial acceleration.

At present, PNG remains the only tsunami clearly iden-
tified as caused by a submarine slump. It is a bench-
mark case. By contrast with translational landslides, SMF
tsunamis caused by slumps are still a largely unknown haz-
ard for coastal communities. Notwithstanding, the method-
ologies developed to study the PNG event now provide the
basis for assessing other vulnerable areas.
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